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Abstract.  Years of work have gone into algorithms and optimizations for two-
player perfect-information games such as Chess and Checkers. It is only more 
recently that serious research has gone into games with imperfect information, 
such as Bridge, or game with more than two players or teams of players, such 
as Poker. This work focuses on multi-player game search in the card games 
Hearts and Spades, providing an overview of past research in multi-player game 
search and then presents new research results regarding the optimality of cur-
rent search techniques and the need for good opponent modeling in multi-player 
game search. We show that we are already achieving near-optimal pruning in the 
games Hearts and Spades.

1 Introduction

Artificial Intelligence research in the field of two-player games has been quite suc-
cessful, with well-publicized victories in games such as chess with DEEP BLUE [1] and 
checkers with CHINOOK [2]. While there are still interesting challenges in these games, 
there are many other domains with new challenges yet to be explored. Recent work for 
programs such as POKI in poker [3] and GIB in bridge [4] has started to shift focus to the 
difficulties associated with imperfect information and opponent modeling.
 Another area that has recently received further attention is the area of multi-player 
game search. Specifically, this is search applied to domains with three or more players 
or teams of players. While one might expect that most work from two-player games 
would extend directly to multi-player games, there are many subtleties that have to 
be considered. This means that the lessons and techniques derived from work in two-
player games must be reconsidered for multi-player games. Techniques of prominence 
from two-player games may no longer be dominant, while good ideas in two-player 
games that were not effective enough in practice may find their place in multi-player 
games.
 Without question the most prominent technique from two-player games is mini-
max search with alpha-beta pruning [5], although this is not the only search algorithm 
used in two-player games. For instance, there have been attempts to do more selective 
searches using algorithms like MGSS* [6], or attempts to use an opponent model to 
increase quality of play, such as in M* [7]. But, in general, these techniques have not 
found widespread usage, as they cannot compete well with the simplicity and search 
depth available from minimax with alpha-beta. For instance, while M* was able to out-



perform minimax at fixed depth searches, it was unable to do so when the search was 
limited by node expansions.
 The goal of this paper is to provide an overview of the work that has been done in 
multi-player games and suggest new challenges for future work in the field. The big-
gest question we wish to address is whether work in multi-player games will follow the 
route of two-player games, being dominated by algorithms and techniques for deeper 
search, or whether techniques based on things like selective search or higher-quality 
shallow search will be more important. As part of that process we present a brief history 
of multi-player games, new results on the relative size of multi-player game trees in 
relation to optimally pruned trees, and an overview of some of the techniques and ideas 
related to opponent modeling that have yet to be explored in multi-player games.

2 Multi-Player Game Search Research History

Work on multi-player games traces back, in some sense, to Nash’s original work de-
fining equilibrium points, showing that non-cooperative games have at least mixed 
equilibriums [8]. More importantly, it was later shown that there is a pure equilibrium 
for every perfect information finite game [9, 10]. These theorems were first realized in 
the field of Artificial Intelligence by Luckhardt and Irani in the maxn algorithm [11]. 
In her PhD thesis, Carol Redfield (Luckhardt) also did work on formalizing the maxn 
algorithm, coalition formation and pruning [12]. However, pruning was only presented 
within the context of selectively evaluating the components of each leaf value in the 
game tree, as opposed to pruning away branches of the game tree, as is done in alpha-
beta.
 Around the same time David Mutchler showed that maxn displays game-tree 
pathologies [13], as was originally observed in minimax [14, 15]. That is, searching 
deeper into the game tree can produce less accurate results. To date, however, no one 
has shown that these pathologies occur outside of well-structured artificial game trees.
 In 1991, Rich Korf published the first thorough analysis of alpha-beta style prun-
ing in maxn [16]. Specifically, without any bounds on the range of leaf values in a maxn 
game tree, no pruning is generally possible. But, assuming there is an upper bound on 
the sum of all players’ scores, and a lower bound on each player’s score, pruning is 
possible. This pruning can be divided into three classes, immediate pruning, shallow 
pruning, and deep pruning. Immediate pruning corresponds roughly to a win or loss in 
a two-player game. Shallow pruning uses the bounds from two consecutive players to 
prune a game tree. Deep pruning attempts to use the bounds from two non-consecutive 
players in a game tree, however, is not guaranteed to preserve the maxn value of a game 
tree, and cannot be applied in general. In the best case, as the branching factor gets 
large, shallow pruning can reduce the branching factor of a game tree from b to O(√b̄) 
as b gets large.
 No further work in multi-player game search was published until 2000, when Na-
than Sturtevant, working with Rich Korf, showed that in some games shallow pruning 
could never be applied [17]. Specifically, the effectiveness of shallow pruning relies on 
both the order of nodes in the tree and the range of leaf-values in the tree, as opposed to 



alpha-beta, whose effectiveness just relies on node ordering. However, this work also 
showed that information from monotonic heuristics could be used to prune maxn game 
trees. What is more, the bounds from shallow pruning can be combined with the bounds 
from monotonic heuristics to prune even more effectively.
 In this same work, the idea of the paranoid algorithm was formally analyzed for the 
first time. The idea of the paranoid algorithm is to reduce a multi-player game to a two-
player game by assuming that all of one’s opponents have formed a coalition against 
you. While this idea had been touched upon in both Mutchler and Luckhardt’s work, 
it had not been seriously considered as a plausible search algorithm, and its properties 
had not been explored. The paranoid algorithm has the attractive feature that it inherits 
the ability to use any technique from two-player games, at the cost of using unrealistic 
opponent models. In an n-player paranoid game tree, alpha-beta pruning will reduce the 
branching factor from b to O(bn-1/n).
 The properties of maxn were further explored in [18]. This work brought to light 
some of the issues with using the maxn algorithm, specifically that tie-breaking is a 
major issue which limits the applicability of some techniques such as zero-window 
search [19] from two-player games. It also showed that the paranoid algorithm could be 
competitive in some games, out-performing maxn in both fixed-depth and node-limited 
searches in the game of Chinese Checkers.
 In 2003 there was a significant advance in pruning algorithms for maxn game trees 
with the introduction of speculative pruning [20]. This is the first pruning algorithm for 
maxn that, given a constant-sum game, relies only on the ordering of nodes, as opposed 
to the actual leaf values in the game tree for effective pruning. Asymptotically, it offers 
the same reduction as the paranoid algorithm, O(bn-1/n), however in practice the para-
noid algorithm will still dominate speculative pruning.
 There is a discrepancy between the best case branching factor of shallow pruning, 
O(√b̄), and the best case branching factor of paranoid and speculative pruning O(bn-

1/n). That is, the best case of shallow pruning depends only on the branching factor of a 
game, not on the number of players in the game. This discrepancy is explained in more 
detail in [21], but arises from the assumption of independent sub-trees in a maxn tree. In 
practice, the best case for shallow pruning actually converges to best-case for immedi-
ate pruning, where every leave has a value of win/loss. In this case, only a very precise 
arrangement of leaf values can achieve the best-case, which will be independent of the 
number of players in the game, but we do not expect anything close to this in practice.
 Given this history, we push to answer the question “What techniques should be 
used to play multi-player games?” The answer to this question for many two-player 
games is well known: use minimax with alpha-beta, a high-quality heuristic evaluation 
function, transposition tables, opening and closing books. The answer for multi-player 
games are still being explored. However, a program developed to play Hearts using 
speculative pruning, transposition tables, and monte-carlo simulation for imperfect 
information was able to out-play one of the better commercial Hearts programs [21], 
although its play is still weak against humans. We explore this question further in the 
remainder of this paper.



3 Sample Domains

We use two domains, Hearts and Spades, to illustrate the ideas and concepts in this 
paper. Hearts and Spades are both trick-based card games. In such games cards are 
dealt out to each player before the game begins. The first player plays (leads) a card 
face-up on the table, and the other players follow in order, playing the same suit as lead 
if possible. When all players have played, the player who played the highest card in 
the suit that was led “wins” or “takes” the trick. He then places the played cards face 
down in his discard pile, and leads the next trick. This continues until all cards have 
been played.
 Hearts is usually played with four players, but there are variations for playing 
with two or more players. The goal of Hearts is to take as few points as possible. A 
player takes points when he takes a trick which contains point cards. Each card in the 
suit of hearts is worth one point, and the queen of spades is worth 13. At the end of 
the game, the sum of all scores is always 26, and each player can score between 0 and 
26. If a player takes all 26 points, or “shoots the moon,” he instead gets 0 points, and 
the other players all get 26 points each. These fundamental mechanics of the game are 
unchanged regardless of the number of players.
 Spades can be played with 2-4 players. Before the game begins, each player pre-
dicts how many tricks they think they are going to take, and they then get a score based 
on how many tricks they actually do take. With 4 players, the players opposite each 
other play as a team, collectively trying to make their bids, while in the 3-player version 
each player plays for themselves. There are, however, several popular games for which 
the mechanics of play are identical to Spades, except that players do not play in teams 
no matter how many players there are. These games have various names and rules that 
differ by region, but we consider them as larger variations on the game of Spades. More 
in-depth descriptions of these and other multi-player games can be found in Hoyle et 
al [22]. A much larger database of games and descriptions can currently also be found 
online at http://www.pagat.com/.
 Although these games are imperfect information games, we will play them as 
perfect information games, assuming we can see all the cards that our opponents hold. 
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Given this assumption, we can use monte-carlo methods in real play to sample possible 
distributions of opponent cards. These methods have been applied most successfully in 
Bridge [4], and to a lesser extent in Hearts [21].

4 The Maxn Algorithm

The maxn algorithm [11] is a general form of the minimax algorithm and can be used to 
play any n-player general-sum game. For two-player games, maxn simply computes the 
minimax value of a tree. We will generally call what maxn calculates as the maxn value 
of a game tree, although in a more general sense it is calculating a Nash equilibrium.
 In a maxn tree with n players, the leaves of the tree are n-tuples, where the ith ele-
ment in the tuple is the ith player’s score. At the interior nodes in the game tree, the 
maxn value of a node where player i is to move is the child of that node for which the ith 
component is maximum. At the leaves of a game tree an exact or heuristic evaluation 
function can be applied to calculate the n-tuples that are backed up in the game tree.
 We demonstrate this in Figure 1. In this tree there are three players. At node (a), 
Player 2 is to move. Player 2 can get a score of 3 by moving to the left, and a score of 
1 by moving to the right. So, Player 2 will choose the left branch, and the maxn value 
of node (a) is (1, 3, 5). Player 2 acts similarly at node (b) selecting the right branch, 
and at node (c) breaks the tie to the left, selecting the left branch. At node (d), Player 1 
chooses the move at node (c), because 6 is greater than the 1 or 3 available at nodes (a) 
and (b).

4.1 Speculative Pruning

Figure 2. Simple example of speculative pruning in a maxn tree.
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Speculative pruning [20] is the most general effective pruning technique for multi-
player games. It is a non-directional algorithm, meaning that it may not search through 
a game tree in a strictly left-to-right fashion. The key idea behind this algorithm is that 
we prune nodes that may still affect the maxn value of the game tree. But, as the search 
progresses, we can detect whether the pruned nodes could have actually affected the 
maxn value of the game tree, and then re-explore portions of the tree as necessary. We 
demonstrate this in Figure 2, however we leave out some of the details for simplicity.
 In this example, the sum of all players’ scores, maxsum, is 10, and each player’s 
score has a lower bound of zero. At the root of the tree, Player 1 can get at least 5 by 
moving to his left branch. At node (a), Player 2 can get at least 3 points from his left 
branch. Finally, at node (b) Player 3 can get at least 2 points from his left branch. The 
sum of consecutive lower bounds at this point in the game tree, 5 + 3 + 2 = 10, is at least 
as large as maxsum, so we can prune the right child of (b). The caveat is that unexplored 
children of (a) may affect the maxn value of the game. But, we can detect this and re-
expand node (b) and its children if necessary. It is possible that poor node ordering may 
cause us to expand more nodes using speculative pruning than we would have without 
it, although we have never seen this in practice.

4.2 Other Properties of Maxn

 We cannot cover all the theoretical details of the maxn algorithm here, but we do 
need to point out a few issues that strongly affect how the maxn algorithm can be used. 
A minimax game tree has a single minimax value, no matter what order the game tree is 
searched. A maxn game tree, however, can have many different maxn values, depending 
on ties in the game tree and the tie-breaking rule used. This is a property of multi-player 
games, as each maxn value corresponds to a different equilibrium point in the game. 
This means that any time we vary node ordering in the game we have the potential of 
changing the maxn value of the corresponding game tree. Furthermore, the change may 
not be bounded. For instance, the value at the root of a tree can change from a win to a 
loss based on the difference of how one tie is broken. How large of a problem this is in 
practice is not yet fully understood, although we address some of the related issues in 
the following sections.

5 Comparing Maxn Tree Reductions

In this section we begin our presentation of new research. If we wish to understand 
how various search enhancements will affect the size of maxn game trees, it is impor-
tant to have an idea of how current pruning algorithms perform, and whether they are 
anywhere close to optimal. There are well-known techniques that have been applied to 
two-player games, such as the history heuristic [23], which have helped to order two-
player game trees nearly optimally. If ordering maxn game trees is difficult, we would 
also like to know if such techniques can help.



5.1 Estimating Minimal Maxn Trees

 Computing the minimal size of a game tree is a non-trivial task, as was originally 
noted by Knuth and Moore in their analysis of alpha-beta pruning [5]. Specifically, they 
point out that just ordering nodes from best to worst within a game tree may not be 
optimal. In an unbalanced tree, for instance, if we are likely to get a pruning cut-off, we 
might want to search the move that leads to the smallest sub-tree first.
 This same issues exist in multi-player games, although there are further complexi-
ties. For instance, depending on the ties in a multi-player game, each node in the game 
tree may have not one, but many different possible maxn values, each one correspond-
ing to a different way of breaking ties in the game tree. Thus, we might try to find the 
best way to break ties in order to create the smallest game tree possible, although this 
may lead to a poor maxn value. We might also try to make smaller adjustments that 
don’t change the maxn value of an entire game, but still decrease the portion of the game 
tree that we must search. We demonstrate this in Figure 3.
 In this figure, Player 1 can get a score of 5 at node (a). When searching the right 
branch of the tree, Player 3 has a tie at node (b). Normally we break ties to the left, 
which will not affect the maxn value of this game tree. If we do this, however, Player 
1’s bound at the root, 5, plus Player 2’s bound at (c), 2, will not be adequate to prune, 
as they don’t sum to at least maxsum, 10. But, breaking the tie at (b) differently to give 
Player 2 a higher score at node (c) will allow us to prune node (d) and any of its chil-
dren, since the best scores for Player 1 and Player 2 would then exceed maxsum. Thus, 
by making subtle changes to a maxn game tree, we could increase pruning. We haven’t 
attempted this in practice.
 When we prune a n-player maxn game tree, every tree fragment where pruning 
occurs has a similar structure to Figure 2, meaning we do not usually prune more than 
n-1 ply away from where any bound originates, unlike in alpha-beta. It is possible to 
do so correctly, but the bookkeeping costs of making sure such a prune is legal and the 
potential cost of having to re-search that line under speculative pruning is prohibitive. 
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However, in an optimally ordered tree, such pruning is not only possible, but it will 
never lead to tree re-expansions, so there will be no additional overhead or bookkeep-
ing costs.
 Comparing the effect of such pruning, however, would be misleading, because we 
would still have to pay such costs in practice. The only time we might consider using 
such pruning in practice is when we are willing to give up the guarantee that we calcu-
late a correct maxn value, which we will discuss further in section 5.4.

5.2 Current Best Maxn Tree Reductions

 Given a best approximation of an optimally ordered game tree to compare against, 
we can then compare to the best techniques for generating a similar game tree, without 
omniscient ordering. A good overview of such an attempt in two-player games can be 
found in [23], which showed that a combination of transposition tables and the history 
heuristic were able to account for 99% of the possible reductions in a game tree.
 We ran four experiments in the games of Hearts and Spades to see how tree sizes 
compare when using standard techniques. We compared the number of nodes analyzed 
for the first move in each of the card games. For simplicity, we used a 3-player version 
of both games, and limited the number of cards in each player’s hand so that we could 
save the game trees to disk. We played a total of 100 hands in each game. Each game 
tree was saved to disk, with transpositions recorded, to minimize tree size. We then 
measured the average number of nodes under various combinations of techniques. In 
Spades, we gave each player 8 cards, for a total search depth of 24 ply, while we gave 
each player 7 cards in Hearts, for a total search depth of 21 ply. To ensure correctness 
we used a total ordering on leaf values in the game trees to break ties, which guarantees 
that each game tree will only have a single maxn value.
 Our first experiment was to measure the full size of the game tree, with no search 
enhancements, besides those inherent in the domain itself. For instance, we only gen-
erate one move when a player holds a sequence of consecutive cards in their hand. In 
Spades these trees were, on average, 112 million nodes, while in Hearts they were 52.7 
million nodes. This is the total count of nodes in the tree, not just leaf nodes.

Table 1. Tree sizes in Hearts and Spades given a variety of search enhancements.

Game Full Tree TT TT + P Ordered

Spades 112M 711k 296k 232k

reduction - 157x 2.4x 1.3x

Hearts 52.7M 2.04M 1.01M 580k

reduction - 26x 2.0x 1.7x



 Next, we enabled transposition tables. In Spades, this reduced the size of the game 
tree to 711k nodes on average, 157x times smaller than the previous tree. In Hearts, 
transposition tables reduced the average tree size to 2.04 million nodes, a reduction fac-
tor of 26x. The reduction is smaller in Hearts because of the significance of the AKQ♠, 
where in Spades we only care about relative rankings of cards. The next enhancement 
we added was speculative pruning (which includes shallow pruning). In Spades, this 
reduced the average tree size to 296k, while in Hearts it reduced it to 1.01 million 
nodes. Again, this is the total number of nodes in the tree, including re-expansions from 
speculative pruning.
 Finally, we compared the trees with all of these enhancements to ordered trees us-
ing transposition tables and speculative pruning. As discussed previously, we cannot 
measure the true optimal tree sizes, but we can guarantee that the first line of play is the 
best at every node. Doing so reduced the average Spades tree size to 232k nodes, and 
the average Hearts tree to 580k nodes.
 One enhancement that we did not measure for either of these games is branch 
and bound pruning. Although it would have reduced the size of these trees further, the 
reductions are simply based on the properties of the game tree, and are not affected by 
node ordering.
 The most surprising result here is that the game trees are so close to optimal given 
just a simple manual ordering of nodes. In Spades, for example, this is just composed 
of a few rules such as “if you can’t win the trick, try low cards first” or “if you can 
use trump to win, try the lowest winning trump first.” Also, in Hearts we sometimes 
observed many re-expansions from speculative maxn, and so we expected these trees 
to be significantly larger than optimal. But, it appears that transposition tables are able 
to compensate well for the cost of node re-expansions, although there is more room for 
improvement in Hearts than in Spades.
 Overall these results also explain why, in separate experiments not shown here, we 
were unable to get significant gains from using the history heuristic, although it was 
able to perform as well as our custom ordering. In domains where there are not easy 
or obvious ordering rules, we would still expect it to be effective in improving the ef-
ficiency of search.

5.3 Implications

These results have significant implications for future directions of multi-player game 
research. We are currently within a factor of two times optimal, which is on the order 
that we often give up with techniques like iterative deepening. As we have achieved 
near optimal pruning relatively easily in practice, this means that instead of focusing 
our efforts improving node-ordering, there are two directions to push future research.
 The first direction, which we consider in the next section, is to continue to develop 
pruning techniques and methods to try to extend search depth even further. The second 
possible direction is to use a shallower search, but to apply more complex reasoning 
methods to the search in an attempt to improve performance.



5.4 Further Search Techniques

Speculative pruning was the first pruning technique that is generally applicable to 
multi-player games. We do not expect that there are any other general pruning tech-
niques that are significantly better than speculative pruning in practice, however there 
are better pruning techniques in theory. For instance, suppose we want to avoid the 
bookkeeping costs from speculative pruning, and ignore the need to re-expand portions 
of the game tree. This would only be marginally faster in practice. But, taking this idea 
further, if we are going to ignore re-expansions we could re-consider deep pruning. 
That is, expanding the idea of speculative maxn beyond consecutive nodes in the game 
tree. Normally the bookkeeping and re-expansions costs would be prohibitive, but if 
we aren’t going to re-expand nodes, we might as well get the best gain possible, since 
we are not guaranteed to preserve the same maxn value in the game tree either way. We 
call this approximate deep maxn.
 This approach may not have much justification in two-player games, but in multi-
player games there is some possible justification. First, a maxn game tree may have 
several maxn values depending on the way ties are broken in the tree. Second, we must 
model both our opponents leaf utility function and the way they are going to break their 
ties when they play the game. If we break ties incorrectly, the maxn value we calculate 
may not be the one our opponents calculate. Thus, since we are prevented in practice 
from being able to guarantee that our maxn value will coincide with the one our oppo-
nents calculate, we can argue that the small amount of noise introduced by deep pruning 
may be offset by increased search depth. This may be particularly true in card games, 
where the branching factor decreases the farther we search into the tree. So a small 
reduction in node expansions may bring a larger increase in search depth.
 To investigate this in practice, we generated 100 hands in the three-player varia-
tion of the game of Hearts. We then searched these hands to determine which move 
would be made at the root of the tree using three different methods. The first method 
was simply to use a predefined node-ordering under speculative pruning. The second 
method was to use a randomized node ordering under speculative pruning. The third 
method was to use the predefined ordering with approximate deep pruning. The results 
of these experiments are in Table 2. Using a random move ordering changed the move 
that would be made 58% of the time, while using approximate deep pruning changed 
the move only 10% of the time. As expected, the average number of nodes expanded 
was higher when we used a random ordering. When using approximate deep pruning 
we were able to reduce the nodes expanded by over a factor of three. These results sug-

Table 2. The effect of different techniques on the calculated maxn value.

%  changed moves nodes expanded

regular ordering - 413k

random ordering 58% 618k

approx. deep pruning 10% 120k



gest that it is possible that any mistakes made from approximate deep pruning may be 
more than compensated for by the fact that we don’t have an exact model of how our 
opponent will order their moves. Results on quality of play when compared to various 
opponents, not shown here, were inconsistent, partially due to issues of opponent mod-
eling, which we will discuss in the next section.
 We note that there is a similar argument to why we should use the paranoid al-
gorithm. Specifically, because it is a form of minimax, any techniques developed for 
minimax can be applied to the paranoid algorithm, and in practice the paranoid assump-
tion allows you to search deeper than you can with maxn. But, the paranoid algorithm 
can also lead to extremely pessimistic play. The one exception to this is in the game of 
Chinese Checkers. Our conjecture, first suggested in [21], is that if we had some mea-
sure m of the ability of our opponents to collude, we will only want to use the paranoid 
algorithm when m is low, that is, when it is difficult for them to collude, otherwise we 
will want to use something more similar to maxn.

6. Opponent Modeling

While there has been a reasonable amount of work on incorporating opponent model-
ing into two-player games, this work hasn’t been widely used in practice. For instance, 
Jansen [24] describes various positions in a game where you would need to consider 
your opponents strategy, Iida, et. al. suggested other potential applications of opponent 
modeling [25, 26], and various other algorithms for opponent modeling have been sug-
gested by Carmel and Markovitch [7], Korf [27], and Donkers et. al [28].
 Results from Carmel and Markovitch give a strong indication of why this work 
hasn’t been more widely applied. In their experiments in Checkers they showed that 
while opponent modeling methods were superior given the same search depth, they 
weren’t effective when budgeted the same number of node expansions. This is because 
opponent modeling necessarily reduces the amount of pruning possible in a game tree. 
So, alpha-beta is able to overcome handicaps in opponent modeling due to its advan-
tage in search depth.
 Donkers presents further experiments with opponent modeling in [29], showing 
that in certain situations gains from opponent modeling are possible, although it is a 
difficult task, even when given a perfect model of one’s opponent.
 Most work in opponent modeling has been focused on two-player perfect informa-
tion games. But, in multi-player games we don’t see the same large gains from pruning 
as in two-player games. This means that if there are any benefits to be obtained by good 
opponent modeling, they are less likely to be overshadowed by deeper search by a ver-
sion of maxn that does not do sophisticated opponent modeling.
 There are several ways we can add opponent modeling to maxn. One way is with-
out modifying the maxn algorithm itself, but instead just by changing the evaluation 
function used by our opponents at the leaves of the game tree. This is a limited form of 
opponent modeling that is inherently assuming that the model we have of our opponent 
is correct, and that our opponent also has a correct model of our own behavior. This ap-
proach will not directly allow us to use a sophisticated model of our opponent to trick 



them into making sub-optimal plays, because we are assuming that we both have accu-
rate models of each other, but it is a reasonable starting point. We will use this idea in a 
moment, but we first provide a stronger motivation of why we cannot ignore opponent 
modeling in multi-player games.

6.1 Opponent Modeling Motivation

A different explanation for why opponent modeling techniques weren’t developed ear-
lier and haven’t been widely applied in two-player game search is that the assumption 
of an optimal opponent in the minimax strategy is adequate for most play. While this is 
true in two-player, zero-sum games, it is not true in multi-player games, because there 
isn’t necessarily a good definition of optimality for our opponents.
 For instance, we may define an optimal opponent as one that plays a Nash equi-
librium. But, as we have mentioned multiple times, there can be many different Nash 
equilibriums in a multi-player game, and we do not know which equilibrium our op-
ponent will be playing. Furthermore, if we are each playing parts of different equilib-
rium strategies, our combined strategy will not necessarily be part of any equilibrium 
strategy. We might try to avoid this issue by guaranteeing that a game tree only has one 
equilibrium point, by eliminating all ties in the game tree.
 We define a pure tie between two maxn values to be one in which all players have 
exactly the same scores. Any other tie just assumes that a single player has a tie between 
their own components of a maxn value. If every tie in a game tree is pure, there will be 
exactly one maxn value of the game tree. For many games, it is fairly easy to modify the 
evaluation function to avoid ties.
 But, while this will avoid the equilibrium selection problem, it leaves an equally 
difficult opponent modeling problem. We now must have a perfect model of our op-
ponent’s evaluation function, which is impossible in practice. For instance, one player 
might be maximizing their own score while another is maximizing the difference be-
tween their score and their opponents’ score. Thus, the fundamental problem hasn’t 
changed. Unlike two-player games, there is no widely applicable “optimal” opponent 
model for use in multi-player games.
 This can be seen from Korf’s proof of why deep pruning fails in multi-player 
games [16]. In this proof he shows that changing the value of any single node in a maxn 
game tree can potentially change the maxn value of the entire tree. So, if we have mod-
eled our opponent’s utility function incorrectly at any node in a game tree, the maxn 
value of the tree can change, and our expected utility from our calculated maxn value 
may be incorrect. This means, unless we have some oracle providing perfect informa-
tion about our opponent, we cannot be guaranteed that the maxn strategy we are playing 
with is correct. We can now show how this occurs in practice.

6.2 Opponent Modeling Experiments

To understand better the role opponent modeling plays in multi-player games, we ran 



experiments in the games of Hearts and Spades. For each of these games, we chose two 
different evaluation functions to compare the effects of correct and incorrect opponent 
modeling. Players were dealt small enough hands (8 cards in Spades, 7 in Hearts) so 
that they could search entire game trees, meaning the evaluation function is exact.
 In Spades, each player bids on how many tricks they expect to take at the begin-
ning of the game, and is trying to take at least that many tricks, with as few overtricks as 
possible. Taking 10 overtricks leads to a 100 point penalty. The first evaluation function 
we used for Spades simply tried to maximize the number of tricks taken, so we will call 
it ‘MT’. The second evaluation function tried to both make the bid, but also minimize 
overtricks, so we will call it ‘mOT’. We then created two variations on each of these 
players. The first variation was aware of the type of player it was playing against, and 
could model that player’s evaluation function as part of its search. When a player is us-
ing a model of their opponent, we add a subscript m to their player type. If they are not 
modeling their opponent correctly, each player assumes that all other players are the 
same type that they are. This gives us four player types, MT, MT

m
, mOT, and mOT

m
.

 Players receive a cumulative score throughout a round until they reach a pre-de-
termined bound, which we set at 200 points, when a winner is declared. For each of 
the four variations on player types (<MT, mOT>, <MT

m
, mOT>, <MT, mOT

m
>, <MT

m
, 

mOT
m
>) we played 600 rounds and then measured the average score and number of 

wins. Within these rounds, we repeated each round six times with the same cards being 
dealt to each position at the table in order to account for all combinations of players and 
positions in a 3-player game, as shown in Table 3.
 The results of this experiment are in Table 4. As expected, when both players had 
correct models of their opponent, the mOT players outplayed the maximizing players, 
winning 53% of the games and having 10 more points on average. But, when the mOT 
player did have not a correct opponent model, it played much more poorly, essentially 
tying the game when the mOT player was the only player with a correct model, and 
losing badly when the mOT player did not have a correct model of the opponent.
 This is not surprising, since, in Spades in particular, having a bad opponent model 
can be very costly. This is because of the large penalty for missing your bid. If you are 
also trying to minimize overtricks, you must be certain that you will first get the chance 

Table 3. The six possible ways to assign ‘MT’and ‘mOT’ player 
types to a 3-player game

Player 1 Player 2 Player 3

1 MT MT mOT

2 MT mOT MT

3 MT mOT mOT

4 mOT MT MT

5 mOT MT mOT

6 mOT mOT MT



to make your bid. An incorrect assumption of how your opponent is going to play can 
break this assumption and carry a high penalty.
 We performed similar experiments in the game of Hearts. In Hearts we played until 
one player had a score that exceeded 100, where players are trying to minimize their 
scores. When a round ends, the player with the lowest score wins. Our first player type 
simply tried to minimize their score (mS), while the second player tried to maximize 
their lead (ML) over the next best player of they were ahead, and tried to minimize the 
amount they trailed the best player if they were behind. The results are in Table 5. We 
see that the players trying to minimize their score were generally successful at that task, 
but not as successful in the larger goal of actually winning games. When both players 
modeled each other correctly, the ML player averaged 92 points per round versus 86.6 
for the minimizing player, but won 54.5% of the total games. When the ML player 
had a model of the minimizing player, but not vice versa, the ML player won 58.1% 
of the games with a slightly lower average score of 89.3. On the other hand, when the 
ML player didn’t have a proper model of the opponent, and the mS player did, the ML 
player only won 45% of the games, and averaged 95.1 per game. Finally, when neither 
player had a model of each other, they both won roughly the same number of games, 
although the ML player still had a much higher (worse) average score.
 In both of these games, our experiments show that having a good opponent model 
is important, but if the modeling done is incorrectly, it can have strongly negative re-
percussions. We note that except for the case in which both players had models of each 
other, the modeling is incomplete. Specifically, when a player had a model of their 
opponent, they also assumed that their opponent had a model of them, which wasn’t 
always true.

Table 5: Hearts Games

“minimizing score” player “maximizing lead” player

comparison average score % wins average score % wins

mS
m
 v. ML

m
86.6 45.5 92.0 54.5

mS v. ML
m

86.5 41.9 89.3 58.1

mS
m
 v. ML 72.7 54.5 94.4 46.5

mS v. ML 74.4 49.1 93.2 50.9

Table 4: Spades Games.

“maximizing tricks” player “minimize overtricks” player

comparison average score % wins average score % wins

MT
m
 v. mOT

m
139.0 47.0 149.2 53.0

MT
m
 v. mOT 145.0 65.0 78.0 35.0

MT v. mOT
m

144.9 49.3 144.1 50.7

MT v. mOT 147.9 63.2 95.8 36.8



 In order to correct this deficiency in modeling, we need to extend M* or a similar 
algorithm to n-player games, as maxn cannot do full opponent modeling by only chang-
ing the leaf evaluations in the game tree.

7. Conclusions

In this work we have shown that existing pruning and tree reduction techniques are 
adequate to produce multi-player game trees to within a factor of two of optimal sized 
trees. This, along with results on opponent modeling, suggest that a key question for 
multi-player game tree search is whether we better off trying to search as deep as pos-
sible into a game tree, or is it be better to spend our resources doing a more intelligent, 
but shallower search.
 We have taken the first steps towards answering this question by suggesting that 
using an approximate search strategy like approximate deep maxn will allow us to 
search deeper into a game tree, and the penalty for doing an approximate search may 
be no more than what we pay for having an incorrect opponent model. We have also 
demonstrated how opponent models are crucial to the quality of play in a multi-player 
search algorithm.
 There are many areas in which this work can be extended. First, we could consider 
extending other two-player algorithms besides minimax to multi-player games. Given 
this, we also need to compare the relationship between quality of play to search depth, 
as opponent modeling necessarily reduces search depth. Additionally, there is the ques-
tion of where we can get an opponent model in practice.
 In conclusion, there are many open questions in the field of multi-player game-tree 
search. Experimental and theoretical results in this paper point to the fact that we may 
not be able to get by with just brute-force search as we often have in two-player games, 
although further research must be done to give more conclusive results.
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