
Analyzing and Improving the Use of the FastMap Embedding in Pathfinding Tasks

Reza Mashayekhi1, Dor Atzmon3, 4, Nathan R. Sturtevant1, 2

1Department of Computing Science, University of Alberta, Canada
2Alberta Machine Intelligence Institute (Amii)

3Ben Gurion University of the Negev, Israel
4Royal Holloway, University of London

{rmashaye, nathanst}@ualberta.ca, dorat@post.bgu.ac.il

Abstract

The FastMap algorithm has been proposed as an inexpensive
metric embedding which provides admissible distance esti-
mates between all vertices in an embedding. As an embed-
ding, it also supports additional operations such as taking the
median location of two vertices, which is important in some
problems. This paper studies several aspects of FastMap em-
beddings, showing the relationship of FastMap to general
additive heuristics. As an admissible heuristic, FastMap is
not as strong as previous suggested. However, by combin-
ing FastMap with the ideas of differential heuristics, we can
significantly improve the performance of FastMap heuris-
tics. We show the impact of these ideas in both single-agent
pathfinding and the Multi-Agent Meeting problem, where the
performance of algorithms using our improved FastMap em-
bedding is improved by up to a factor of two.

Introduction
The idea of re-embedding a state space to improve heuristic
estimates has received moderate research interest over the
last decade (Rayner, Bowling, and Sturtevant 2011; Chen,
Weinberger, and Chen 2013; Cohen et al. 2018). Figure 1
illustrates the power of an embedding. The original map is
in Figure 1(a), while the graph representation of this map
has been re-embedded in Figure 1(b). The distance between
points in both representations can be used as an admissible
heuristic for the true distances. In Figure 1(a) the two points
marked with circles seem to be nearly adjacent. But, the em-
bedding is able to capture these distances more accurately,
placing these same vertices farther apart. Embeddings can
be used as improved heuristics for algorithms like A*, or
can be used for operations such as finding the median loca-
tion between vertices (Atzmon et al. 2020). We are particu-
larly interested in the FastMap embedding, which has been
adapted and studied in different applications (Li et al. 2019;
Gopalakrishnan et al. 2020; Li et al. 2022).

There are many open questions about the L1 variant of
FastMap (Cohen et al. 2018), particularly when it is used
as an admissible heuristic. These include how FastMap per-
forms across different problem types, how FastMap relates
to other heuristics, whether FastMap can use alternate em-
bedding functions, and whether FastMap pivot selection can

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(a) (b)

Figure 1: (a) Two points in a sample map that appear close
and (b) a 2-dimensional re-embedding of the map where dis-
tances are represented more accurately.

be optimized as in differential heuristics (DHs) can (Gold-
berg and Harrelson 2005a; Sturtevant et al. 2009; Rayner,
Sturtevant, and Bowling 2013).

This paper is the result of deep study of the FastMap
heuristic, making the following contributions. First, we
present validation results of FastMap, showing that FastMap
is much worse in practice that previous results suggested.
Next, we provide pedagogical results establishing the re-
lationship between FastMap and other additive heuristics.
Then, a general framework shows how to (1) combine
FastMap and DHs into a new FM+DH approach, and (2) op-
timize the selection of pivots in FastMap to allow multiple
independent FastMap heuristics to be used together.

Experimental results give insight into the performance of
the A* and MM* algorithms using our improved FastMap
embedding. In A*, our improved embeddings are up two 2x
better than the original FastMap, when measured by aver-
age expansions, while there is minimal difference in run-
time speed. Extensive experimentation shows that the rela-
tive strength of FastMap depends highly on the type of maps
being tested. These results also carry over to MM* (Atz-
mon et al. 2020) in the Multi-Agent Meeting problem, which
can take advantage of an L1 embedding to estimate the best
meeting point when solving this problem.

Related Work and Background
For many years, research in heuristic search focused on
exponential domains, where Pattern Databases (Culberson
and Schaeffer 1998) are a dominant heuristic approach. A

broader range of approaches have been developed in plan-
ning, such as merge-and-shrink (Helmert et al. 2014; Sievers
and Helmert 2021) among many others. These abstraction-
based approaches are generally not effective in polynomial
domains (Felner, Sturtevant, and Schaeffer 2009) where
heuristics based on true distances (Sturtevant et al. 2009) are
more effective. This has motivated approaches such as ALT
(A*, Landmarks, and the Triangle Inequality) (Goldberg and
Harrelson 2005a), differential heuristics (DHs) (Sturtevant
et al. 2009), and optimal Euclidean embeddings (Rayner,
Bowling, and Sturtevant 2011).

Most of the true-distance approaches can be seen as em-
bedding the state space into a new metric space where
distances in the embedding can be used as heuristics in
the original state space. Optimal Euclidean embeddings are
built based on an optimization that builds a single high-
dimensional embedding and then discards all but k of the
dimensions to construct the final embedding; L2 (Euclidean)
distance can be used to compute heuristic values. ALT and
DHs build k-dimensional embeddings incrementally, using
the L∞ norm (max) of several different embeddings to com-
pute a heuristic. FastMap (Cohen et al. 2018) is also an
incremental approach that builds a k-dimensional embed-
ding, one dimension at a time. The original FastMap ap-
proach, adapted from work in data mining (Faloutsos and
Lin 1995), uses L1 (Manhattan) distance to compute heuris-
tics, which are also admissible using an L2 norm (Li et al.
2019). FastMap and DHs both require O(N) time (as mea-
sured by expansions) and memory to compute and store a
single dimension, where N is the size of the input graph.
A formal definition of these approaches will be provided
later in the paper. Euclidean embeddings also require O(N)
memory per dimension, but require O(N3) time to compute.

There are other approaches that also use memory constant
in the size of the input graph, however these require more
computation to construct. These include Bounding Boxes
(Rabin and Sturtevant 2016; Hu et al. 2021), which store a
bounding box on each edge. This bounding box contains all
possible goals that can be reached optimally by following an
edge. Reach (Goldberg, Kaplan, and Werneck 2007) stores
with each state the maximum distance to a start/goal that can
be reached optimally via that state. Both of these approaches
provide constraints that prune states from the search. While
both can be very effective, they are more expensive to com-
pute exactly, and cannot be improved with further memory.
This contrasts with heuristics. DHs store, in the limit, a per-
fect heuristic (Sturtevant et al. 2009), and monotonically im-
prove with more memory (Rayner, Sturtevant, and Bowl-
ing 2013). While FastMap will monotonically improve with
more memory, it will not approach a perfect heuristic.

Note that the FastMap algorithm has different embedding
variants (Cohen et al. 2018; Li et al. 2019). This paper stud-
ies the L1 variant of FastMap and its applications.

Problem Definition
The primary problem studied in this paper is how to build
one or more metric embeddings of a graph. In this prob-
lem, the input is defined by a graph, a cost function, and
a heuristic: (G, c, h). G = (V,E) is a weighted undi-

rected graph, with vertices V and edges E. The cost of all
edges are non-negative, and are defined by the cost func-
tion c : E → R+. Let a path π be a tuple of vertices
{v0, v1, v2, . . . , vn} where {vi, vi+1} ∈ E. The cost of a
path is c(π) =

∑n−1
i=0 c({vi, vi+1}). The heuristic h is an

estimate of the cost of the shortest path between two ver-
tices h : V × V → R+. Let C∗ be the cost of an op-
timal (least-cost) path between v1 and v2. A heuristic is
admissible if for all e = {v1, v2} ∈ E h(v1, v2) ≤ C∗

and is consistent if for all e = {v1, v2} ∈ E and v ∈ V
|h(v1, v)− h(v2, v)| ≤ c(v1, v2).

The output of algorithms that solve this problem is a met-
ric embedding of the vertices in G. The embedding function
maps (embeds) each vertex to k-dimensional real-valued co-
ordinates; ℓ : v → Rd. An embedding is metric if distances
are symmetric, self distance is 0, and the triangle inequality
holds. We let ℓi(v) be the ith dimension (or coordinate) of
the vertex v in the metric space. Grid graphs are, by def-
inition, already embedded in the metric space defined by
their coordinates in the grid. In a 2D grid the embedding
for a grid cell would just be the coordinates of that cell; eg
ℓ(v) = (3, 4) where l0(v) = 3 and l1(v) = 4. The met-
ric embedding is a new tuple of coordinates for each vertex.
This embedding can then be used to reason about vertices,
such as the average location of a group of vertices, or can be
used directly as an admissible heuristic.

The approaches we describe require distance computa-
tions to perform embeddings. Thus, we define a distance
function dc as the cost of the shortest path between vertices
using cost function c on the input graph. We allow d to return
distances between pairs of vertices or from a set of vertices
to a single vertex. In the second case it returns the cost of the
shortest path to any vertex in the set. In either case the dis-
tance function can be computed by a single Dijkstra search.

The quality of an embedding can measured by the per-
formance of algorithms using that embedding. For the pur-
pose of pathfinding, performance is measured by the num-
ber nodes expanded by A* when using the embedding as a
heuristic. Time is also an important measure, if approaches
have different computational overheads. The heuristics com-
pared in this paper perform exactly the same memory ac-
cesses and, as we will show, thus have nearly identical time
overhead. In the multi-agent meeting problem (Atzmon et al.
2020) performance is measured by the number of expan-
sions performed by MM*.

Pre-Study of FastMap
We began this research by attempting to replicate previous
published results that claimed FastMap as an L1 heuristic
is ‘competitive with other state-of-the-art heuristics’ (Cohen
et al. 2018). The distribution of node expansions on a single
grid map by A* with a 10-dimensional FastMap embedding
(FM10) and DH with 10 heuristics (DH10) is found in Fig-
ure 2. This distribution suggests that FastMap is not compet-
itive. There is little difference in performance on 75% of the
benchmark problems used, but significant differences on the
remaining 25%.

Looking further into the results, there are two primary ex-

Algorithm 1 Generalized Metric Embedding

1: Input: G = {V,E}, c, h, k
2: Output: Embedding: ℓ1(V), ℓ2(V), ..., ℓk(V)
3: i = 1;
4: c1 = c
5: P = ∅
6: while i ≤ k do
7: P ← SELECTPIVOTS(G, c, ci, h, P)
8: ∀v∈V ℓi(v)← EMBED(v,G, ci, P)
9: ci+1 ← UPDATECOSTS(G, ci, ℓi)

10: i← i+ 1
11: end while
12: return ℓ

planations. First, the original paper looked at the percent-
age of problems where FastMap outperforms DHs, but not
the magnitude of the improvement on these problems. Sec-
ond, the original paper looked primarily at the median node
expansions. These alone do not give a full view of the dis-
tribution of problem difficulties. We additionally observed
that the original experiments were run on random problems;
benchmark problems contain a longer tail of hard prob-
lems, which further reduce the performance of FastMap.
The FM9+DH curve in Figure 2 shows the improved per-
formance that will be achieved from the ideas in this paper.

Unified Description of DH and FastMap
The key idea studied in this paper is the idea of embedding
the vertices from the input graph into a metric space to use as
heuristics for search. To simplify the description of the con-
tributions of the paper we begin with a unified description of
DHs and (L1) FastMap.

These two approaches are generalized by the pseudo-code
in Algorithm 1. That is to say, these approaches take as input
a graph, a cost function, possibly a default heuristic, and the
number of dimensions for the resulting embedding, k. The
embedding process works by first selecting pivots (line 7),
using those pivots to compute the embedding (line 8), and
then possibly updating the cost function (line 9). These steps
are done once per dimension. The pivots are list of vertices
P = (p0, p1, . . . , p|P |−1).

We can now provide the specific details of SELECTPIV-

FM10
DH10
FM9+DH

50% 75%

N
od

es
 E

xp
an

de
d

by
 A

*

0

2000

4000

6000

Problem (Sorted by Expansions)
0 500 1000

FastMap Validation [lak503d]

Figure 2: Baseline heuristic performance with A*.

Algorithm 2 SELECTPIVOTS (Farthest) for DH

1: Input: G = {V,E}, cinput, ccurr, h, P
2: Output: list of pivots
3: S ← ∅
4: if P = ∅ then
5: S ← random state from V ;
6: else
7: S ← P
8: end if
9: P ← P

⋃
argmaxv∈V : dcinput

(S, v)
10: return P

Algorithm 3 EMBED for DH

1: Input: v,G, c, P
2: Output: Location of v in embedding
3: return dc(p|P |−1, v)

OTS, EMBED, and UPDATECOSTS for FastMap and DHs, as
well as how the final embedding is used in practice.

Differential Heuristics
Each dimension of a differential heuristic (DH) is built based
on the selection of a single pivot vertex, pi, which is de-
scribed below. Once a pivot vertex is selected, the distance
dc(pi, v) is computed for all v ∈ V using the input cost
function c. Then, in the ith dimension, vertex v is embed-
ded at location d(pi, v) (Algorithm 3). Let ℓ(v) be the em-
bedded coordinate of vertex v and ℓi(v) be the ith dimen-
sion of the embedding of v. Then, the differential heuris-
tic hDH(v1, v2) = maxi |ℓi(v1) − ℓi(v2)|. That is, the DH
measures the distance between vertices in each individual di-
mension and takes the maximum of these distances to return
the final heuristic. Using the maximum of the distances in
each dimension is equivalent to using L∞ norm to measure
distances between vertices in the embedding.

There are multiple ways to select the pivot locations used
for each DH. The simplest approach, called furthest (Gold-
berg and Harrelson 2005b; Sturtevant et al. 2009), chooses
the next pivot, pi+1, as the point in the graph that has max-
imum distance from previous pivots p0 . . . pi. In this imple-
mentation (Algorithm 2), P is the list of all pivots selected
thus far. Each new pivot is added to P so that future pivots
can be selected based on the past pivots stored in P , but the
embedding function only uses the last pivot selected (Algo-
rithm 3). The first pivot is the location that is farthest from a
random point in the graph. A more expensive approach is to
use subset selection (Rayner, Sturtevant, and Bowling 2013)
to greedily select the best pivots. Our experiments verified
that this does result in a better embedding, but it requires
significantly more precomputation time and memory, so we
only use the simpler and faster approach here.

The DH method always uses distances in the input cost
function, c, so the UPDATECOSTS method, not shown here,
just returns the original cost function.

We demonstrate a one-dimensional DH embedding in
Figure 3. The first portion of the figure shows the input graph

a b

g

e

d
c

f

0
1

0
1

1

½½

FM Residual Graph

a b

g

e

d
c

f

0
0 0

0
0

0

1

DH Residual Graph

a b

g

e

d
c

f

1
1 1

1
1

1

1

Input Graph

a b

g

e
d

c
f

FastMap Embedding

a b

g

e

d
c

f

DH Embedding

Figure 3: Example of FastMap and DH embeddings

along with the weights in the graph. In the DH embedding,
the graph is embedded in one dimension along the x-axis.
The separation in the y-axis is only so vertices can be distin-
guished. In this example, the pivot vertex is e, and all other
vertices are embedded according to their distance from e.
While all distances to e are captured perfectly, the distance
estimate between all remaining pairs vertices (e.g. h(b, c))
excluding a is 0, because they are all at the same x coordi-
nate of 2. Subsequent embeddings would in turn select each
of these vertices as the next pivot. The DH residual graph
will be discussed later.

L1 FastMap Heuristic
Each dimension of the FastMap heuristic is built based on
the selection of two pivot vertices, p1 and p2 (Algorithm 4).
Once the pivot vertices are selected, the distances dc(p1, v)
and dc(p2, v) are computed for all v ∈ V using the cur-
rent residual cost function, which will be described mo-
mentarily. Then in the ith dimension, vertex v is embedded
at location (dc(pi1 , v) + dc(pi1 , pi2)− dc(v, pi2))/2 (Algo-
rithm 5). Note that this embedding function could also be
used with DHs (using the L∞ norm), but FastMap updates
the cost function in order to use the L1 norm (Manhattan
distance) in the embedding for the heuristic instead.

FastMap computes a new cost function ci+1 for each edge
(v1, v2) as ci+1(v1, v2) = ci(v1, v2)−|ℓi(v1)− ℓi(v2)| (Al-
gorithm 6). That is, after each embedding, the distances cap-
tured in that embedding are subtracted from the cost func-
tion. This results in a new graph with the same edge struc-
ture, but only the residual costs that were not captured in pre-
vious dimensions. Subsequent embeddings are performed
based on distances using ci instead of c. The final heuris-
tic is hFM (v1, v2) =

∑
i |ℓi(v1)− ℓi(v2)|, or the L1 norm.

FastMap chooses pivots similarly to the furthest differ-
ential heuristic pivot selection scheme, but does not need
to maintain previous pivots, as they are already captured
through the updated cost function. The pivot selection
method, shown in Algorithm 5, begins by selecting a ran-
dom vertex in the graph. The first pivot, pi1 is the vertex
with maximum distance from the random point. The second
pivot, pi2 , is the vertex with maximum distance from pi1 ,
where distances for pivot i are computed using ci. We call
this pivot selection scheme the maximum embedding dis-
tance, or ED, as it attempts to select as pivots the vertices
separated by maximum distance in the graph.

We demonstrate a one-dimensional FastMap embedding
in Figure 3. The first portion of the figure shows the input

Algorithm 4 SELECTPIVOTSED (Embedding Distance) for
FastMap

1: Input: G = {V,E}, cinput, ccurr, h, P
2: Output: list of pivots
3: t = random state from V
4: P ← argmaxv∈V dccurr

(t, v)
5: P ← P

⋃
argmaxv∈V dccurr (p0, v)

6: return P

Algorithm 5 EMBED for FastMap

1: Input: v,G, c, P
2: Output: Location of v in embedding
3: return (dc(p0, v) + dc(p0, p1)− dc(v, p1))/2

graph along with the weights in the graph. In the FastMap
embedding the graph is embedded in one dimension along
the x-axis. The separation in the y-axis is only so vertices
can be distinguished. In this example, the pivot vertices are
e and b. Because a, d, f , and g are equidistant from e and b,
they are embedded at location 1 between them. Because c is
distance 2 from e and distance 1 from b, it is embedded at
location 2+ 2− 1/2 = 1.5. In this embedding, the heuristic
between vertices a, d, f , and g are all 0, because they are em-
bedded at the same coordinate. The FastMap residual graph
shows the new cost function after building the first embed-
ding. The edge costs on the shortest path between the pivots
have been captured in the first embedding, but no other edge
costs have been fully captured. The remaining residual can
be captured in the next dimension of the embedding.

Comparing DH and FastMap Embeddings
DHs and FastMap both produce a k-dimensional embed-
ding. In DHs the heuristic is based on L∞ distance between
the points, while in FastMap the heuristic is the L1 distance.

The DH pivot selection schema puts the next pivot in the

Algorithm 6 UPDATECOSTS for FastMap

1: Input: G, c, ℓ
2: Output: Updated cost function
3: cnew ← c
4: ∀e={v1,v2}∈Ecnew(e)← c(e)− |ℓ(v1)− ℓ(v2)|
5: return cnew

furthest location from all previously placed pivots, so as
more dimensions are added to the embedding, pivots will
never be duplicated. While this is also true for a single
FastMap embedding, as a result of the modified cost func-
tion, it is not true if we wish to build multiple independent
FastMap embeddings and take the maximum of the heuris-
tics returned. That is, given storage to store 10 embedding
dimensions we could choose to build five 2-dimensional em-
beddings instead of a single 10-dimensional embedding.

Suppose we choose to build five independent 2-
dimensional FastMap embeddings. With the existing pivot
selection scheme, there is a chance that the same pivots
would be selected in all five embeddings, since the selection
of the first pivot in the embedding is independent of pivots in
other embedding. In this case, there would be no benefit to
using more than one embedding. After showing the connec-
tion between FastMap and additive heuristics, we will dis-
cuss alternate methods of selecting pivots and embeddings
for FastMap.

FastMap as an Additive Heuristic
One might wonder why FastMap can add each of the embed-
ding dimensions, while DHs must take the maximum. This
is not discussed in the original FastMap paper; our goal here
is to connect the FastMap approach to the general theory be-
hind additive heuristics (Yang et al. 2008).

Yang et. al.’s analysis assumes that the costs in the orig-
inal state space, as defined by c, are divided up into k
separate abstractions, where the cost in each abstraction is
defined by ci. In our context we can assume that the ab-
straction only partitions the costs between abstractions but
does not change the structure of the underlying graph. Then,
they show that as long as the distances in the abstraction
are admissible and consistent, they will also be additive if
the costs are partitioned across the abstractions such that
they do not exceed the costs in the original graph. That is,
∀e∈E

∑n
i=1 ci(ei) ≤ c(e).

In this context, FastMap does not a priori divide the costs
between abstractions, as is typically done in additive pattern
databases (Felner, Korf, and Hanan 2004). Instead, it builds
a new dimension to the embedding, measures the costs that
were captured, and then removes them from the residual
graph. This ensures that the sum of edge costs across all
abstractions is additive, but allows costs to be partitioned
dynamically as each dimension of the embedding is built.
This is related to approaches in planning (Seipp, Keller, and
Helmert 2020) that similarly partition costs between actions.

Alternate FastMap Embedding Functions
FastMap’s greedy strategy is not optimal. As an exercise to
the reader, this can be seen by considering a 4-connected
grid map without obstacles. Manhattan distance is an opti-
mal heuristic in the default grid embedding, but FastMap is
unable to reproduce this embedding when embedding rela-
tive to a pair of vertices. As such, it is worthwhile to con-
sider both alternate strategies for selecting pivots and alter-
nate embedding functions, as both can improve the perfor-
mance of FastMap. Note that in this specific case the original

FM[k]
FM[k-1]+DH

C
ap

tu
re

d
H

eu
ris

tic

6×106

8×106

10×106

12×106

Embedding Dimensions
1 2 3 4 5 6 7 8 9 10

Figure 4: Captured edge costs in embeddings. FM[k] refers
to an embedding with k dimensions.

grid embedding can be reproduced by embedding relative to
a path instead of a pair of vertices, something that cannot be
explored further here. We propose a simpler approach that is
effective in practice.

In order to build a metric embedding, the primary require-
ment is that distances in the embedding obey the triangle in-
equality. Both the FastMap and DH embeddings meet this
property, and there are many other embedding functions that
also maintain this property. We focus on combining FastMap
and DH embeddings, because this provided the best results.

The primary question we consider is whether we could
build a FastMap embedding using the DH embedding func-
tion. While this is possible, the DH residual graph in Figure
3 illustrates the problem that arises with the DH embedding.
If we compare the FastMap and DH residual graphs, we can
see that many more edges were captured in the DH embed-
ding because the sum of edge weights in the residual graph
is smaller. But, as a result, the least cost path between ver-
tices c and b is not via the edge cost 1 between them, but is
via a, with a total cost of 0. In fact, after performing a DH
embedding and computing the residual, the shortest distance
between all vertices using the residual costs will always be
0. This is because the shortest path between every vertex and
the pivot is always fully captured in the DH embedding. So,
after building a DH embedding, while residual may remain,
it cannot be captured through further embeddings.

If the DH embedding is constructed from the residual
graph weights, it is possible to use the DH embedding as
part of the additive FastMap heuristic. But, once we have
done so, we will not be able to build any additional em-
beddings from the graph. This suggests that if we aim to
build a k-dimensional FastMap embedding, we can use the
FastMap embedding function for the first k − 1 dimensions
of the embedding, and the DH embedding function only for
the last dimension. While implementation-wise this is very
small change to FastMap (essentially one line of code), in
practice, it works very well. Experimental results will show
that this approach, which we call FM+DH, always gave bet-
ter aggregate results than using the FastMap embedding.

This is because the FM+DH approach can capture far
more residual than the FM approach alone. This is illustrated
numerically in Figure 4, where the x-axis shows the num-
ber of dimensions in the embedding and the y-axis shows
the total edge costs captured in the complete embedding.
The more edges captured, the smaller the residual, and the

(a) (b) (c) (d) (e) (f)

Figure 5: (a), (d) Original maps. (b), (e) FM embedding. (c), (f) FMDH embedding.

Algorithm 7 SELECTPIVOTSHE with Heuristic Error (HE)

1: Input: G = {V,E}, cinput, ccurr, h, P
2: Output: list of pivots
3: if P = ∅ then
4: t = random state from V ;
5: p1 ← argmaxv∈V : 3dcinput

(t, v)− 2h(t, v)
6: p2 ← argmaxv∈V : 3dcinput

(p1, v)− 2h(p1, v)
7: return p1

⋃
p2

8: else
9: return SELECTPIVOTSED(G, cinput, ccurr, h, P)

10: end if

larger the heuristic. Note that the y-axis does not start at
0. The FM+DH approach captures more information more
quickly than the FM approach alone. This can be seen visu-
ally by looking at the embeddings in Figure 5. Part (a) and
(d) contain the original maps being embedded. Part (b) and
(e) are a two-dimensional FM embeddings, while (c) and (f)
show the FMDH embedding. The FMDH embedding distin-
guishes distances between many more states.

FastMap Embedding Based on Heuristic Error
While existing work has taken the maximum of independent
FastMap and DHs (Cohen et al. 2018), it did not built more
than one FastMap heuristic at a time. This is likely because
the current FastMap pivot selection scheme is likely to pro-
duce the same pivots if run a second time. Thus, if we wish
to use multiple FastMap embeddings, we need to design a
new SelectPivots method which takes into account the pre-
vious embedding and/or heuristics.

One possible approach is to use subset selection meth-
ods (Rayner, Sturtevant, and Bowling 2013; Levi et al. 2016)
to find good pivots. However, in our experiments these ap-
proaches required significant computational overhead to sig-
nificantly improve over faster greedy selection schemes.
Thus, we focus on linear-time greedy selection schemes to
keep the overhead of all methods equal.

The ED pivot selection scheme is built based on the cur-
rent residual costs in the graph. We propose a new method,
Heuristic Error (HE), which selects pivots according to both
the embedding distance and heuristic error.

The HE pivot selection method begins by selecting a ran-
dom point in the input graph. From that point, we measure
the distance to all other vertices in the input graph as with
ED. From these, we select the first pivot as the vertex that

maximizes the sum of the embedding distance and twice the
heuristic error, where the heuristic error is the difference be-
tween the true distance in the embedding and the heuristic
distance in the full graph. This function can, for instance,
take into account any error in the default heuristics. But, we
only used this approach to select the first two pivots; remain-
ing pivots are selected using ED, as using different initial
pivots significantly changes the residual graph.

Note that other variants are possible, including selecting
all pivots using the HE scheme, and using a different equa-
tion to balance heuristic error and distance. Empirically, our
settings gave the most consistent improvement, so all exper-
iments will use these setting. Pseudo-code for the HE ap-
proach, including simple algebraic re-arrangement in lines 5
and 6, is found in Algorithm 7.

Experimental Results
To evaluate the ideas in this paper, we experiment with op-
timal pathfinding using A* with the FastMap embedding
as a heuristic, and then validate the differences in runtime
performance between the approaches used in the paper. We
then experiment in the Multi-Agent Meeting problem us-
ing the MM* algorithm. In this context an L1 embedding
is able to efficiently find potential meeting points and get a
lower-bound on the cost for all agents to reach that point.
Our experiments illustrate that (1) FastMap on its own gives
poor heuristics, (2) adding DHs to FastMap improves per-
formance on both problems, and that (3) the overall perfor-
mance depends on the nature of the problem set. Our imple-
mentation is in C++ in the HOG2 repository1.

Baseline Performance We begin by evaluating the perfor-
mance A* using previously published heuristics on a va-
riety of grid maps from the MovingAI pathfinding reposi-
tory (Sturtevant 2012) and the standard associated bench-
mark problems. We solve problems on maps from the games
Dragon Age: Origins (DAO) and Starcraft (SC1), as well
as artificial maps including random maps, room maps, and
maze maps. The number of problems used in each set is in-
dicated next to the name of the map set. As all approaches
evaluated have approximately the same pre-computation
time and runtime overhead, we will use node expansions to
compare these approaches.

As previously illustrated in Figure 2, we studied the full
distribution of results on individual maps and map sets over-

1https://github.com/nathansttt/hog2/tree/PDB-
refactor/papers/FMDH

Heuristics Pivot DAO (157,905) SC1 (198,230) Random (146,220) Rooms (78,840)

Md Mean C Md Mean C Md Mean C Md Mean C

DH10 FAR 561 1,581 13 2,219 7,453 58 2,984 5,345 32 4,098 7,700 66
FM10 ED 516 2,172 21 4,199 18,548 144 5,917 12,455 84 9,471 19,271 165
FM9+DH ED 381 1,034 11 1,576 15,036 136 4,053 11,069 83 5,783 16,778 163
FM9+DH HE 370 1,038 12 1,460 13,961 129 4,049 11,089 83 6,219 16,960 161
max[DH5,FM5] ED 467 1,290 11 2,277 9,029 74 3,452 6,118 36 4,467 8,809 75
max[DH5,FM4+DH] ED 406 1,036 9 1,511 7,834 70 3,139 5,773 35 3,632 8,030 73
max[FM4+DH,DH5] HE 399 1,002 8 1,441 7,227 64 3,079 5,717 34 3,466 7,687 70
max[DH5,FM4+DH] HE 400 995 8 1,446 7,399 66 3,025 5,628 34 3,355 7,598 70

DH24 FAR 518 1,483 13 1,520 5,678 46 2,387 4,469 28 3,077 5,882 53
FM24 ED 401 1,471 16 1,983 16,120 138 5,257 11,923 83 8,059 18,130 163
FM23+DH ED 349 887 10 1,198 14,783 135 3,562 10,838 83 5,437 16,471 163
max[DH12+FM12] ED 355 772 6 916 4,758 46 2,191 4,461 29 2,658 5,930 57
max[DH12,FM11+DH] ED 327 646 5 784 4,314 45 2,011 4,256 29 2,152 5,513 57
max[DH12,FM11+DH] HE 326 641 5 773 4,240 44 1,995 4,229 29 2,127 5,222 53
max[8xFM2+DH] ED 641 2,036 19 4,924 18,415 145 5,376 11,962 83 7,654 18,200 166
max[8xFM2+DH] HE 473 1,518 16 1,694 11,337 117 2,638 5,533 37 1,900 5,139 56

Table 1: Results reporting expansions by A* including the median node, mean, and the 95% confidence interval on the mean.

Heuristics Pivot Mazes (586,370)

Md Mean C

DH10 FAR 6,554 10,090 27
FM10 ED 8,898 15,311 44
FM9+DH ED 4,668 7,067 19
FM9+DH HE 4,679 7,084 19
max[DH5,FM5] ED 6,630 10,036 26
max[DH5,FM4+DH] ED 6,270 9,477 24
max[FM4+DH,DH5] HE 6,252 9,449 24
max[DH5,FM4+DH] HE 6,231 9,422 24

DH24 FAR 4,806 7,493 21
FM24 ED 5,557 10,512 32
FM23+DH ED 3,348 4,873 13
max[DH12+FM12] ED 4,377 6,622 17
max[DH12,FM11+DH] ED 4,449 5,409 23
max[DH12,FM11+DH] HE 4,164 6,179 16
max[8xFM2+DH] ED 10,122 15,047 39
max[8xFM2+DH] HE 7,313 11,712 32

Table 2: Results on mazes extending Table 1.

all, and summarize these by presenting the median number
of expansions, the mean number of expansions, and the 95%
confidence interval on the mean. We refer to the FastMap
heuristic as FM. FMx or FM[x-1]+DH refers to an embed-
ding with x dimensions. When the maximum of multiple
embeddings is used, the order of arguments to max indicates
the order in which the embeddings are built. We present re-
sults with either 10 dimensions or 24 dimension, as these
best illustrate the general trends.

The initial results are in the top two rows of Table 1 and
2. The first point, when just comparing previously published
approaches, is to notice the difference between the median
and mean performance with FastMap. For instance, on the
DAO problems FastMap performs 1.4x more expansions on

Algorithm Median Mean 95%

FM 271 242 40
FMDH 263 231 37
DH 260 233 37

Table 3: Average total time in microseconds to compute
heuristics on 75 SC1 maps.

average than DHs, but the median expansions are nearly
identical. The problem sets used for testing are explicitly
built to include difficult problems, which DHs are better
able to solve than FastMap. We also repeated these exper-
iments on purely random problems; FastMap’s performance
improved relative to DH. Thus, we observed a small tail of
very hard problems are not handled well on FastMap.

The second point to notice is that FastMap performs sig-
nificantly worse than DHs across most problem sets, except
when considering the median expansions in DAO. The DAO
maps are much more linear in nature, as they come from a
single-player game, while the Starcraft maps are designed
for two or more players. This can be seen in quantitative
analysis of the map sets measuring the underlying dimen-
sion of the maps (Sturtevant 2012), which showed that DAO
and maze maps have the lowest dimension, which will be
reflected by the improved performance of FM+DH.

A Single 10-Dimension Embedding Next we look at the
overall results where a single 10-dimension embedding was
built. These results are in the top of the table, and include
the addition of a single DH embedding (FM9+DH), as well
as the HE pivot selection scheme.

Across all maps, FM9+DH improves the performance of
FM10, but the gains are particularly large in the Maze and
DAO domains – over a 2x improvement in average expan-
sions on both. In these domains FM9+DH outperforms even

MD FM10 FM9+DH
Map Set Md Mean Md Mean Md Mean

DAO 46,904 100,961 6,476 13,626 4,487 8,841
SC1 451,753 585,071 258,528 468,700 240,690 446,307
City 36,904 45,598 95,872 98,518 94,345 96,985
Random 831 1,058 5,698 6,639 5,622 6,583
Room 4,725 5,242 2,425 3,166 2,086 2,766
Mazes 52,553 43,735 3,436 3,497 1,775 1,864

Table 4: Results on different map sets reporting the median and mean node expansions by MM* on MAM problems.

the DH10 approach by a statistically significant margin. This
is a surprisingly large impact for what amounts to a very
small change in the implementation. The HE pivot selection
scheme does not have a significant impact on performance
in this context.

Two 5-Dimension Embeddings Next we look at the re-
sults using two 5-dimension embeddings, and taking the
max of each. The baseline approach is to take the max
of a single 5-dimension FastMap embedding and a 5-
dimension DH embedding. Replacing the FM5 embedding
with a FM4+DH embedding improves the performance on
all maps. This gives the best mean expansions on DAO and
room maps. The HE pivot selection scheme significantly im-
proves performance on room maps over ED.

24 Dimensions Because FastMap has diminishing returns,
it may be less useful when using an embedding with more di-
mensions. Thus, we also experimented with 24-dimensional
embeddings to test this. These results are in the bottom of
Table 1 and 2. We see the same trend that FastMap performs
poorly across most maps. In maze maps, FM23+DH has the
best performance, improving the average nodes expanded by
over a factor of two. This is likely because mazes have a tree
structure; each embedding is able to capture two branches of
this tree. Thus, a single-high dimensional embedding is very
effective, particularly because the heuristic is additive.

The other interesting result in the remaining data is that
the maximum of 8 3-dimensional embeddings surpassed the
performance of DHs on room maps, with a significantly bet-
ter median, meaning there is still a tail of hard problems.
But, this is only with the HE placement scheme; the ED
placement scheme performs very poorly.

Heuristic Lookup Speed To isolate details such as the
open list implementation and size, we measure the relative
cost of heuristic lookups independent of the surrounding
search. Our original implementation used somewhat ineffi-
cient data structures for storing the heuristic values, which
resulted in unstable timing results, likely due to issues such
as cache locality. Thus, we re-implemented the algorithms
from scratch storing each state’s embedding locations adja-
cently in memory to improve cache locality. We then looked
up the heuristic value of every start/goal pair in the bench-
mark problem sets, and recorded the total time to do this on
each map. Then we report the average time per map in mi-
croseconds when running on an Apple M1 Pro with 16 GB
of RAM on macOS Monterey version 12.6.1 and with the

code compiled with Apple clang version 14.0.0. As shown
in Table 3, over the 75 maps in the Starcraft map set, all of
the mean results fall within the 95% confidence intervals,
showing no statistical difference in runtime between the var-
ious heuristics.

FastMap in MM*
In the Multi-Agent Meeting (MAM) problem, agents dis-
tributed around a map must find the best meeting point. The
current state of the art algorithm for MAM is the MM* al-
gorithm (Atzmon et al. 2020). In this work the embedding is
used directly to reason about where the meeting point might
be. It depends on the fact that the median of each agents’ lo-
cation in an L1 embedding is the closest point to all agents.

We ran these experiments using the code from the original
paper. A larger set of problems is used than in the original
work; overall we ran over 338k problems across all maps
tested. We created instances for five agents to meet by taking
each set of five consecutive start locations from the standard
benchmark problems and using them as starting locations for
the agents. We compared three L1 embeddings: Manhattan
Distance (MD) in the original maps, the original FastMap,
and our improved FM+DH approach. The cost metric opti-
mized was Sum of Costs, and the FastMap embeddings used
10 dimensions.

Experimental results are in Table 4. In these results we
find that the MD embedding outperforms FastMap on rela-
tively open maps, such as random maps, where the MD em-
bedding will be more accurate, but FastMap approaches are
better overall. The DH approach cannot be used in this prob-
lem without solving a relatively expensive LP, so it was not
considered. As we saw in single-agent pathfinding, FM+DH
always outperforms FM. The data suggests that the better
the performance of FastMap over MD, the better the gain of
FM+DH over FM.

Conclusions and Future Work
This paper has revisited the FastMap L1 heuristic and em-
beddings, showing that their performance isn’t as strong
as originally suggested. But, combining the DH embed-
ding into the last dimension of a FastMap embedding can
significantly improve performance both on A* and MM*
pathfinding tasks. Future work will explore additional em-
bedding functions, and integration with other approaches,
such as JPS and its variants (Harabor and Grastien 2012,
2014; Sturtevant and Rabin 2016).

Acknowledgements
This work was funded by the Canada CIFAR AI Chairs Pro-
gram. We acknowledge the support of the Natural Sciences
and Engineering Research Council of Canada (NSERC).

References
Atzmon, D.; Li, J.; Felner, A.; Nachmani, E.; Shperberg,
S.; Sturtevant, N.; and Koenig, S. 2020. Multi-Directional
Heuristic Search. In International Joint Conference on Arti-
ficial Intelligence (IJCAI).
Chen, W.; Weinberger, K.; and Chen, Y. 2013. Maximum
Variance Correction with Application to A* Search. In Das-
gupta, S.; and McAllester, D., eds., Proceedings of the 30th
International Conference on Machine Learning, volume 28
of Proceedings of Machine Learning Research, 302–310.
Atlanta, Georgia, USA: PMLR.
Cohen, L.; Uras, T.; Jahangiri, S.; Arunasalam, A.; Koenig,
S.; and Kumar, T. K. S. 2018. The FastMap Algorithm for
Shortest Path Computations. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intel-
ligence, IJCAI-18, 1427–1433. International Joint Confer-
ences on Artificial Intelligence Organization.
Culberson, J. C.; and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence, 14(3): 318–334.
Faloutsos, C.; and Lin, K.-I. 1995. FastMap: A fast algo-
rithm for indexing, data-mining and visualization of tradi-
tional and multimedia datasets. In Proceedings of the 1995
ACM SIGMOD international conference on Management of
data, 163–174.
Felner, A.; Korf, R. E.; and Hanan, S. 2004. Additive pat-
tern database heuristics. Journal of Artificial Intelligence
Research, 22: 279–318.
Felner, A.; Sturtevant, N.; and Schaeffer, J. 2009.
Abstraction-based heuristics with true distance computa-
tions. Symposium on Abstraction, Reformulation and Ap-
proximation, 9.
Goldberg, A. V.; and Harrelson, C. 2005a. Computing the
Shortest Path: A Search Meets Graph Theory. In Proceed-
ings of the Sixteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, 156–165.
Goldberg, A. V.; and Harrelson, C. 2005b. Computing the
shortest path: A search meets graph theory. In SODA, vol-
ume 5, 156–165. Citeseer.
Goldberg, A. V.; Kaplan, H.; and Werneck, R. F. 2007. Bet-
ter landmarks within reach. In International Workshop on
Experimental and Efficient Algorithms, 38–51. Springer.
Gopalakrishnan, S.; Cohen, L.; Koenig, S.; and Kumar, T.
2020. Embedding directed graphs in potential fields using
fastmap-d. In International Symposium on Combinatorial
Search, volume 11.
Harabor, D.; and Grastien, A. 2012. The JPS pathfind-
ing system. In International Symposium on Combinatorial
Search, volume 3.
Harabor, D.; and Grastien, A. 2014. Improving jump point
search. In Proceedings of the International Conference on
Automated Planning and Scheduling, volume 24, 128–135.

Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R.
2014. Merge-and-shrink abstraction: A method for gener-
ating lower bounds in factored state spaces. Journal of the
ACM (JACM), 61(3): 1–63.
Hu, Y.; Harabor, D.; Qin, L.; and Yin, Q. 2021. Regarding
Goal Bounding and Jump Point Search. Journal of Artificial
Intelligence Research, 70: 631–681.
Levi, L. H.; Franco, S.; Abisrror, M.; Barley, M.; Zilles,
S.; and Holte, R. 2016. Heuristic subset selection in clas-
sical planning. In Proceedings of the Twenty-Fifth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-16),
3185–3195. AAAI Press/IJCAI.
Li, A.; Stuckey, P.; Koenig, S.; and Kumar, T. K. S. 2022.
A FastMap-Based Algorithm for Block Modeling. In Inte-
gration of Constraint Programming, Artificial Intelligence,
and Operations Research, 232–248. Springer International
Publishing. ISBN 978-3-031-08011-1.
Li, J.; Felner, A.; Koenig, S.; and Kumar, T. S. 2019. Using
fastmap to solve graph problems in a euclidean space. In
Proceedings of the international conference on automated
planning and scheduling, volume 29, 273–278.
Rabin, S.; and Sturtevant, N. R. 2016. Combining Bounding
Boxes and JPS to Prune Grid Pathfinding. In AAAI Confer-
ence on Artificial Intelligence.
Rayner, C.; Bowling, M.; and Sturtevant, N. 2011. Euclidean
Heuristic Optimization. In AAAI Conference on Artificial
Intelligence, 81–86.
Rayner, C.; Sturtevant, N.; and Bowling, M. 2013. Subset
Selection of Search Heuristics. International Joint Confer-
ence on Artificial Intelligence (IJCAI), 637–643.
Seipp, J.; Keller, T.; and Helmert, M. 2020. Saturated cost
partitioning for optimal classical planning. Journal of Arti-
ficial Intelligence Research, 67: 129–167.
Sievers, S.; and Helmert, M. 2021. Merge-and-Shrink: A
Compositional Theory of Transformations of Factored Tran-
sition Systems. Journal of Artificial Intelligence Research,
71: 781–883.
Sturtevant, N. R. 2012. Benchmarks for grid-based pathfind-
ing. IEEE Transactions on Computational Intelligence and
AI in Games, 4(2): 144–148.
Sturtevant, N. R.; Felner, A.; Barer, M.; Schaeffer, J.; and
Burch, N. 2009. Memory-based heuristics for explicit state
spaces. International Joint Conference on Artificial Intelli-
gence (IJCAI), 609–614.
Sturtevant, N. R.; and Rabin, S. 2016. Canonical Orderings
on Grids. International Joint Conference on Artificial Intel-
ligence (IJCAI), 683–689.
Yang, F.; Culberson, J.; Holte, R.; Zahavi, U.; and Felner, A.
2008. A general theory of additive state space abstractions.
Journal of Artificial Intelligence Research, 32: 631–662.

