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Abstract

NBS is a non-parametric bidirectional search algorithm,
proved to expand at most twice the number of node expan-
sions required to verify the optimality of a solution. We intro-
duce new variants of NBS that are aimed at finding all optimal
solutions. We then introduce an algorithmic framework that
includes NBS as a special case. Finally, we introduce DVCBS,
a new algorithm in this framework that aims to further red-
cue the number of expansions. Unlike NBS, DVCBS does not
have any worst-case bound guarantees, but in practice it out-
performs NBS in verifying the optimality of solutions.

1 Introduction and Overview
Given a graph G, the shortest-path problem is to find the
least-cost path from state s to state g in G. Bidirectional
heuristic search algorithms (denoted henceforth by Bi-HS)
interleave two separate searches, a search forward from s
and a search backward from g. Recent research (Eckerle
et al. 2017) defined conditions on the node expansions re-
quired by Bi-HS algorithms to guarantee solutions optimal-
ity. Following work reformulated these conditions as a must-
expand graph (GMX), showing that the Minimum Vertex
Cover (MVC) of GMX corresponds to the minimal number of
expansions (Chen et al. 2017) required to prove optimality.
Finally, Shaham et al. (2017; 2018) studied the GMX struc-
ture and its extension, GMXε

, that exploits knowledge of the
minimal edge cost (ε), to characterize properties of the MVC.

Bi-HS algorithms can be classified as parametric or as
non-parametric. Two parametric algorithms were recently
developed. Fractional MM (fMM(p)) (Shaham et al. 2017)
generalizes the MM algorithm (Holte et al. 2017) by control-
ling the fraction p of the optimal path at which the forward
and backward frontiers meet. There exists an optimal frac-
tion p∗ for which fMM(p∗) will expand exactly an MVC of
GMX, but p∗ is not known a priori. Another parametric al-
gorithm is GBFHS (Barley et al. 2018), which iteratively
increases the depth of the search. It is parametric in a pre-
defined split function that determines how deep to search
on each side at each iteration. GBFHS with an optimal split
function also converges to an MVC of GMX. However, such
a split function is not known a priori. Without knowledge of
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the optimal parameter values, both algorithms may expand
many more nodes than an MVC of GMX.

In this paper we focus on non-parametric Bi-HS algo-
rithms. NBS (Chen et al. 2017) is a robust state-of-the-art
non-parametric algorithm that computes a vertex cover (VC)
of GMX whose size is at most 2|MVC|. We enrich this line
of research and introduce new settings and new algorithms
that aim to find a VC of GMX. In particular, we make the
following contributions:
(1) We describe and motivate the problem of finding all op-
timal solutions, and introduce two new versions of GMX
(with/without ε) that are suited for such settings. This results
in four different problem settings, each with its own GMX.
(2) We introduce a 2-level framework for non-parametric
Bi-HS algorithms and reformulate NBS as a special case.
(3) Utilizing our framework, we adapt NBS to the four set-
tings, while maintaining the 2|MVC| guarantee.
(4) We introduce a new algorithm Dynamic Vertex Cover
Bidirectional Search (DVCBS). It uses the same high-level
framework we developed, but unlike NBS, always tries to
expand a VC of a dynamic GMX graph which is also intro-
duced. Here too, four versions are possible.
(5) Our experimental results show that the new variants of
NBS, as well as DVCBS, outperform previous variants of
NBS for finding both the first and all optimal solutions, ex-
panding significantly fewer nodes in many cases.

2 Definitions and Background
Let d(x, y) denote the shortest distance between x and y,
C∗ = d(s, g), and let fF , gF and hF indicate f -, g-, and
h-costs in the forward search, and likewise fB , gB and hB
in the backward search. The forward heuristic hF is admis-
sible iff hF (u) ≤ d(u, g) for every state u ∈ G and is con-
sistent iff hF (u) ≤ d(u, u′) + hF (u

′) for all u, u′ ∈ G. The
backward heuristic hB is defined analogously. Front-to-end
Bi-HS algorithms use these two heuristic functions and in
this paper we assume that both are admissible and consis-
tent. Front-to-front Bi-HS algorithms use heuristics between
pairs of states on opposite frontiers, and are outside the focus
of this paper; see Holte et al. (2017) for a survey.

2.1 Guaranteeing Solution Optimality
Unidirectional search algorithms must expand all nodes n
with f(n) < C∗ in order to guarantee the optimality of so-



lutions (Dechter and Pearl 1985).
Eckerle et al. (2017) generalized this to Bi-HS by examin-

ing pairs of nodes 〈u, v〉 such that u is in the forward frontier
and v is in the backward frontier. They defined conditions for
when such pairs should be expanded:

1. fF (u) < C∗

2. fB(v) < C∗

3. gF (u) + gB(v) < C∗

If u and v meet the three conditions, then to guarantee
solution optimality every algorithm must expand at least one
of u or v in order to ensure that there is no path from s to g
passing through u and v of cost < C∗.
Definition 1. For each pair of states (u, v) let

lb(u, v) = max{fF (u), fB(v), gF (u) + gB(v)}
In Bi-HS, a pair of states 〈u, v〉 is called a must-expand

pair (MEP) if lb(u, v) < C∗. The MEP definition is equiva-
lent to the above conditions; for each MEP only one of u or
v must be expanded. In the special case of unidirectional
search, algorithms expand all the nodes with fF < C∗,
which is equivalent to expanding the forward node of every
MEP. Bi-HS algorithms may expand nodes from either side,
potentially covering all the MEPs with fewer expansions.

Shaham et al. (2018) generalized the three conditions to
handle the case where a lower bound ε on the edge costs is
available. In unit edge-cost domains ε = 1, while in other
domains one might iterate over all action costs and set ε to
their minimum. We denote this case by ε-case, as opposed
to the base-case, where no knowledge of ε is available.
For ε-case, Condition 3 is changed to:

3. gF (u) + gB(v) + ε < C∗

Consequently, the lower bound is changed to:
lb(u, v) = max{fF (u), fB(v), gF (u) + gB(v) + ε}

and an MEP is defined according to the new lb.

2.2 The Must-Expand Graph (GMX)
The problem of selecting the minimal set of nodes that cover
all MEPs can be restated as finding an MVC on the must-
expand graph (Chen et al. 2017).
Definition 2. The Must-Expand Graph (GMX) of a problem
instance is an undirected, unweighted bipartite graph. For
each state u ∈ G there is a left vertex uF and a right vertex
uB . GMX has an edge between a left vertex uF and a right
vertex vB if and only if (u, v) is an MEP.

It follows that Bi-HS algorithms must expand a vertex
cover (VC) of the induced GMX when solving a problem in-
stance. The MVC is thus a lower bound on the number of ex-
pansions. Another version of GMX, denoted by GMXε

, can
be constructed for ε-case (Shaham et al. 2018).

Figure 1 illustrates different versions ofGMX for the prob-
lem instance in Figure 1(a), in which C∗ = 3. Figure 1(b)
shows the corresponding GMX. The left (right) vertices are
ordered by increasing (decreasing) gF -costs (gB-costs). Ad-
ditionally, vertices with identical gF (or gB) are merged into
a single weighted vertex, denoted as a cluster. For example
the cluster with gF= 1 includes bothA andX and its weight
is 2. Similarly, an edge that connects clusters represents all
possible edges between them (the product of their weights),

(a) Problem
Instance

(b) GMX (c) GMXε

(d) GMXA (e) GMXAε

Figure 1: Case Study: Different versions of GMX

e.g., 6 edges connect the cluster with gF= 1 to the one with
gB= 1. Figure 1(c) shows GMXε

(ε = 1). Due to the addi-
tion of ε, some edges that exist in GMX no longer exist in
GMXε

. For example, the left cluster (vertex) with gF = 1 is
connected to all right clusters with gB ≤ 1 in GMX but is
only connected to the right cluster with gB = 0 in GMXε .

2.3 The Minimum Vertex-Cover of GMX

Shaham et al. (2017) introduced CalculateMVC() (see
their Section 6.5), an algorithm for finding an MVC of a
GMX. This algorithm relies on the fact that all such MVCs
are contiguous and restrained in both directions. That is,
there exist thresholds tF , tB ∈ R such that tF + tB = C∗

(tF + tB + ε = C∗ for ε-case) for which a vertex u in
direction D is in the MVC if and only if gD(u) < tD.
CalculateMVC() iterates over all relevant pairs of val-

ues for which tF+tB = C∗ and finds the pair which induces
the MVC. For example, in Figure 1(b) the MVC (colored blue)
is induced by 〈tF , tB〉 = 〈2, 1〉 and includes only four nodes
(s, A, X, g). CalculateMVC() runs in time linear in num-
ber of clusters (O(C∗)) but assumes that GMX and C∗ are
given as input. Thus, it can only run post-priori, after C∗
was found and the entire GMX was fully built (e.g., by run-
ning A* from both sides). Such information is not available
to any Bi-HS algorithm during execution. Therefore, Bi-HS
algorithms cannot guarantee that the VC they find is mini-



mal. Hence, a main challenge of Bi-HS is to approximate an
MVC by using only information available during the search.

3 Finding All Optimal Solutions
A common practice in the heuristic search literature is to
halt the search once the first optimal solution is found and
verified. This problem comprises two tasks: (1) finding a
solution of cost C∗ and (2) verifying that there are no so-
lutions with cost < C∗. Most search algorithms interleave
these tasks, completing them in an arbitrary order. The GMX
analysis above only handles the second task. Therefore, an
MVC ofGMX may not capture the extra work needed to com-
plete the first task of finding a solution (but |MVC| is still a
lower bound on the entire search). This is similar to only
counting nodes with f < C∗ as necessary expansions in
unidirectional search, and omitting nodes with f = C∗ that
are expanded to find the goal (Dechter and Pearl 1985).

In many cases, the set of all optimal solutions is re-
quired. For example, if not all the problem constraints can
be encoded due to privacy issues, competing objectives,
partial knowledge, etc. then an external decision maker is
needed to choose a solution from the set of all optimal
solutions (Byers and Waterman 1984; Arthur et al. 1997;
Mahadevan and Schilling 2003). In other cases a solution
may become invalid and an additional solution needs to be
obtained quickly (Siegmund et al. 2012; Isermann 1977). We
denote these problem spaces by ε-ALL-case when knowl-
edge of ε exists, and base-ALL-case otherwise.

Finding all optimal solutions only consists of a single
compound task: verifying that there are no undiscovered so-
lutions with cost ≤ C∗ (as this includes the task of finding
solutions with cost C∗). Thus, we can generalize the analy-
sis in Section 2.1 to the case of finding all solutions in a way
that allows us to bound the number of expansions required
for the entire search. In addition, we show below that using
this formalization also helps in finding a first solution faster.

3.1 GMX for Finding All Optimal Solutions
The first step in generalizing the analysis for the task of find-
ing all solutions is to re-define MEPs to use ≤ instead of <
in the three conditions. Let u and v be nodes in the forward
and backward frontiers, respectively. There can be an opti-
mal path (of cost C∗) that goes from s to u to v to g, if:

1. fF (u) ≤ C∗
2. fB(v) ≤ C∗
3. gF (u) + gB(v) ≤ C∗

Likewise, gF (u) + gB(v) + ε ≤ C∗ is used in the
ε-ALL-case. We define a pair of states (u, v) to be an MEP
for the all cases (we call such pairs must-expand-all pairs, or
MEAPs) if lb(u, v) ≤ C∗, where lb(u, v) is again the maxi-
mum of the three terms.

Theorem 1. Let I = 〈G(V,E), s, g〉. A Bi-HS algorithm B
will find all optimal paths in I if and only if B expands at
least one state from every MEAP.1

1We assume B is DXBB (See (Eckerle et al. 2017)). We also
assumeB maintains a frontier of all unexpanded discovered nodes,
from which nodes are removed only upon expansion.

proof. If Case: Assume that B found all optimal paths but
there is an MEAP〈u, v〉 where neither u nor v were expanded
by B. Consider the two paths: U from s to u with a cost
of gF (u); and V from v to g with the cost of gB(v). Let
I ′ = 〈G′(V,E)〉, h〉 be a problem instance where 〈u, v〉 is
an edge with cost ε. Therefore, there is a path P = U · V
from s to g in G′. Since 〈u, v〉 is an MEAP, the cost of P
is gF (u) + d(u, v) + gB(v) = gF (u) + gB(v) + ε ≤ C∗.
However, B(I ′) = B(I) 63 P , contradicting the assumption
that all optimal paths from s to g were found by B.
Only-If Case: Assume that B expanded at least one state
from every MEAP, and there exists an optimal solution P =
〈s = p0, . . . , pk = g〉 that was not found. Since the heuris-
tics are admissible, for all 0 ≤ i ≤ k, fF (pi) ≤ C∗,
fB(pi) ≤ C∗. Since P was not found, there exist nodes
pi, pj ∈ P , pi 6= pj , in the forward frontier and backward
frontiers of B respectively, when the search terminates. P is
an optimal path, thus, gF (pi) + gB(pj) + d(pi, pj) = C∗.
Since ε is a lower bound on the distance between nodes,
gF (pi) + gB(pj) + ε ≤ gF (pi) + gB(pj) + d(pi, pj) = C∗.
Hence 〈pi, pj〉 is an MEAP, contradicting the assumption that
B expanded at least one state from every MEAP.

Note that the proof holds in base-ALL-case if ε = 0.
We use the new must-expand-all conditions to define two

new graphs: GMXA for base-ALL-case, and GMXAε
for

ε-ALL-case, in a manner similar to GMX and GMXε
re-

spectively, but with the ≤ conditions. Importantly, |MVC| of
GMXA and GMXAε is a lower bound on the number of nodes
that must be expanded to complete the joint task of finding
all optimal solutions and verifying that there are no cheaper
solutions. By contrast, |MVC| ofGMX andGMXε

only bounds
the minimal number of expansions to complete the (second)
task of verifying that no solution with cost < C∗ exists.
GMXAand GMXAε for the example in Figure 1(a) are

shown in Figures 1(d) and 1(e), respectively. As can be seen,
each vertex has more neighbors due to the use of ≤ instead
of < in condition 3. For example, the cluster with gF = 1
is now also connected to the cluster with gB = 2. Further-
more, since conditions 1 and 2 now also have≤,GMXA con-
tains additional clusters (e.g., with gF= 0) and existing clus-
ters may now be composed of additional states (e.g., yi with
gF = 1 are included in GMXA but not in GMX).

Since GMXA includes more edges than GMX, the con-
tiguous partition of their MVCs may be different, as demon-
strated in Figure 1. The MVC of GMX (Figure 1(b)) is com-
posed of the vertices {s,A,X} in the forward direction and
{g} in the backward direction. The MVC of GMXA (Fig-
ure 1(d)) is composed of vertex s in the forward direction
and {g,D,C,B,A} in the backward direction. Note that X
is part of the MVC ofGMX but not a part of the MVC ofGMXA.

As a result, existing Bi-HS algorithms that consider GMX
when aiming to find a first solution should be modified to
considerGMXA when trying to find all optimal solutions. For
example, the optimal fraction of fMM(p) for finding all so-
lutions ( 14 for Figure 1(a)) is different from the optimal frac-
tion for finding a first solution ( 23 ). Furthermore, in section
4.2 we demonstrate that algorithms which consider GMXA
may be even better at finding the first solution.



Algorithm 1: LBF high-level
1 C ←∞
2 LB ← min{hF (s), hB(g)}
3 while LB < C do
4 C=ExpandLevel(LB,C)
5 Increase LB to the next value
6 return C

Algorithm 2: NBS Expand Level (LB, C)
1 while true do
2 while min f in waitingD < LB do
3 move best node from waitingD to readyD
4 if readyD ∪ waitingD empty then
5 Terminate search - no solution was found
6 if readyF .g + readyB .g ≤ LB then
7 ExpandD(C) node with min gD-value in readyD
8 else
9 if waitingD.f ≤ LB then

10 move best node from waitingD to readyD
11 else
12 return C

4 A General Framework Encompassing NBS
Near-Optimal Bidirectional Search (NBS) (Chen et al. 2017)
is a robust state-of-the-art non-parametric algorithm that
is guaranteed to expand a VC of GMX whose size is at
most 2|MVC|. In this section, we introduce a generaliza-
tion of NBS: a two-level framework which we call the
Lower-Bound-Framework (LBF). NBS is a specific im-
plementation of the low level of LBF. We then introduce
additional algorithms in this family which differ in their de-
cisions at the low level of LBF.
LBF has two levels. The high level (Algorithm 1) main-

tains and dynamically increases a global lower bound (LB)
on the cost of an optimal solution. It keeps track of all states
in the frontiers (OPEN lists) of the two directions of the
search. For each node pair 〈u, v〉, lb(u, v) is defined accord-
ing to Definition 1 above, depending of course, on the exact
case (base-case, ε-case etc.). The global lower bound
LB is set to be the minimal lb among all pairs.2 The low
level of LBF then needs to select valid nodes for expansion,
i.e., nodes that may be part of paths of cost ≤ LB. All the
algorithms in the LBF family discussed in this paper use the
same high level, but differ in the low-level selection policy.

4.1 The Low-Level Expansion Policy of NBS
The low-level policy of NBS is based on an approximate
VC algorithm (Papadimitriou and Steiglitz 1982) which re-

2Other Bi-HS algorithms also maintain and increase a global
lower bound on the optimal solution, e.g., C in MM and fLim in
GBFHS. These bounds use less information than LB of LBF which
directly depends on current knowledge on MEP as defined by the
GMX theory and therefore is tighter.

peatedly chooses an edge and adds both its endpoints to the
VC. Therefore, NBS repeatedly finds a pair 〈u, v〉 for which
lb(u, v) ≤ LB and expands both u and v. The implementa-
tion details of NBS, as done by the original authors (outlined
in Algorithm 2) are as follows. The frontier for each direc-
tion D is split into two separate queues: waitingD (sorted
by f -value), which serves as a gateway to readyD (sorted
by g-value). Nodes with a minimal f -value are moved from
waitingD to readyD, and only nodes from readyD are ex-
panded. In the pseudo codes, every line which includes D is
repeated twice, once for each direction. First (Lines 2–3), all
nodes for which fD(u) < LB are moved to readyD. Next
(Lines 6–7), NBS selects a pair of nodes u ∈ readyF and v ∈
readyB for which gF (u)+gB(v) ≤ LB, and expands both u
and v. If no such pair is found, NBS repeatedly moves a pair
of nodes for which fF (u) ≤ LB and fF (u) ≤ LB from
waitingD into readyD (Line 10) and continues to look for a
pair for which gF (u) + gB(v) ≤ LB. If such a pair is still
not found, the low level reports back to the high level that no
valid pairs were found, causing LB to be incremented.

Chen et al. (2017) proved three properties of NBS: (1) It
is guaranteed to find an optimal solution. (2) It expands at
most 2|MVC| states while finding a VC in GMX. (3) No other
Bi-HS algorithm can have better worst-case performance.

4.2 Finding All Optimal Solutions with NBS
The original low level used for NBS by Chen et al. (2017) is
based on the properties of MEPs which use < C∗ in all three
conditions. Therefore, NBS first considers nodes with fF
and fB which are strictly less than LB (Line 2). Nodes with
fF and fB that equal LB are only added lazily later (Lines
9–10 of Algorithm 2). We use NBSF and NBSFε (F for first
solution) to denote the original versions (Algorithm 2) for
the base-case and ε-case, respectively.

In order to be better suited for for finding all solutions we
adapt the low-level expansion policy of NBS to be based on
MEAPs which have ≤ in the three conditions. Specifically,
we modify the NBSF expansion policy to immediately con-
sider all nodes for which fD(u) ≤ LB by changing the <
condition in Line 2 of Algorithm 2 to be≤. This change also
eliminates Lines 9–11, as such nodes are handled eagerly in
Line 2. We use NBSA and NBSAε (A for all solutions) to de-
note these new versions which use the modified expansion
policy (with ≤ in Line 2) and aim to find a vertex cover of
GMXA and GMXAε respectively.

Note that there are many possible ways to implement
the low level of NBS in terms of how to move nodes from
waitingD to readyD. NBSF and NBSA are special cases di-
rectly inspired by GMX and GMXA.

4.3 Finding a First Solution with NBSA
An interesting phenomenon is that although NBSA is de-
signed to find all solutions, it may expand fewer nodes than
NBSF , even when finding the first solution. The explanation
for this is as follows. The low level of NBSA utilizes more
information aboutGMX when making a decision. In an itera-
tion where LB < C∗, nodes with f = LB are part of GMX,
and considering them earlier helps in increasing LB faster,
thus finding an MVC faster. In iterations where LB = C∗, a



Figure 2: Comparing NBSA and NBSF

VC ofGMX has already been found, and nodes with f = LB
can lead to a solution if one was not yet discovered.

An example of this phenomenon is presented in Figure
2, where C∗ = 4 (the edge between s and g). Both NBSF
and NBSA begin by expanding 〈s, g〉 (LB = 1), followed
by 〈A,H〉 (LB = 2), at which point LB is incremented
to 3. For NBSF readyB will contain only K (fF (K) = 2
while f = LB = 3 for all other nodes). NBSF will expand
〈B,K〉 before moving other nodes to readyB (using Lines
10–11). Next, it will expand 〈C,E〉, 〈D,F 〉 and terminate
after expanding 10 nodes. By contrast, in NBSA after setting
LB = 3 readyB will contain E,F ,I ,J and K (all with f ≤
LB = 3). Since nodes with lower g-values are expanded
first, NBSA will expand 〈B,E〉 and 〈C,F 〉, terminating with
8 node expansions, without expanding nodes K and D (since
gF (D) + gB(K) = 4 > 3 = LB). Our experiments below
suggest that this phenomenon is rather common in practice.

Note that every pair expanded by NBSA in every iteration
where LB < C∗ is an edge ofGMX. Thus, NBSA retains the
2|MVC| bound until finding a VC of GMX.

5 Bidirectional Search using Dynamic VC

We now introduce a new family of algorithms called Dy-
namic Vertex Cover Bidirectional Search (DVCBS). It uses
the high level of LBF but conceptually differs from the NBS
family in its low-level expansion policy. While NBS always
expands both nodes of a chosen MEP, DVCBS works by
maintaining a dynamic version of GMX (DGMX) and greed-
ily expanding an MVC of the DGMX at each step.
DGMX is defined as follows. Its structure resemblesGMX,

with two main differences: (1) The full GMX is not available
during the search. Instead,DGMX contains only nodes in the
forward frontier (generated not expanded) for constructing
left vertices, and only nodes from the backward frontier for
constructing right vertices. (2) The value of C∗ is not known
during the search, thus edges of DGMX are defined on pairs
〈u, v〉 such that lb(u, v) < LB. Since LB ≤ C∗, all such
pairs are in fact MEPs of GMX.

Note that DGMX shares all the interesting properties of
the full GMX. Thus, vertices with the same g-value can be
merged to form a weighted vertex (cluster). More impor-
tantly, CalculateMVC() can be directly applied toDGMX
in time linear in the number of its clusters. This is done in
all low-level variants of DVCBS presented next.

5.1 Low-Level Expansion Policy in DVCBS
There are many possible low-level expansion policies based
on DGMX and on its MVC. Every node expansion deletes
vertices and may add new vertices to DGMX, invalidating
the most recently computed MVC. However, computing the
MVC every time DGMX changes incurs extra overhead (al-
beit linear in the number of clusters in DGMX). Thus, an
efficient expansion policy should balance between expand-
ing many nodes and maintaining the most up-to-dateDGMX
and MVC. We experimented with multiple expansion policy
variants, and found that an efficient balance between these
two extremes is to expand a single cluster (containing all
nodes with the same gF - or gB-value) in every iteration of
the high level. This results in a manageable amount of MVC
computations, while working on reasonably up-to-date in-
formation. Furthermore, since all vertices in a cluster have
the same g-value, LB may increase only after expanding an
entire cluster but never before. We only report experimental
results for this variant.
DVCBS contains several other decision points. First, there

can be several possible MVCs for a given DGMX. Addi-
tionally, as mentioned above, one cluster from MVC should
be chosen and expanded. Finally, the way we order nodes
within the cluster for expansion may affect the number of
expansions before reaching a solution when LB = C∗. We
have experimented with many possible decision choices but
report the results in Section 6 using the best variant as fol-
lows. Select the cluster with the smallest number of nodes
among the clusters with minimal gF - and gB-values, among
all MVCs. Tie breaking for specific node expansion within a
cluster orders nodes according to their order of discovery.

Pseudo code of the low level of DVCBS appears in Al-
gorithm 3. The life cycle of DVCBS includes the follow-
ing steps: (1) initialize DGMX, (2) CalculateMVC(), (3)
choose the cluster of nodes to expand from the MVC, and
(4) update DGMX. Steps 2-4 are repeated until either an
optimal solution is found or no possible solution exists. To
execute efficiently, DVCBS uses data structures denoted as
CwaitingD and CreadyD, which are similar to the waitingD
and readyD queues of NBS, modified to use clusters.

5.2 Variants of DVCBS
Like NBS, DVCBS also has four variants corresponding to
the four versions of GMX. The variants that use GMX and
GMXε are denoted by DVCBSF and DVCBSFε which lazily
move nodes with fD = LB from CwaitingD to CreadyD.
Likewise, variants that use DGMXA (a dynamic graph based
onGMXA, i.e., based on the conditions of MEAPs) can be de-
rived by adapting the low-level expansion policy to GMXA
and GMXAε

. Specifically, as was done for NBS, we mod-
ify the DVCBS expansion policy to immediately consider all
nodes for which fD(u) ≤ LB by changing the < condition
in Line 2 of Algorithm 3 to be ≤. This change also elimi-
nates Lines 11–13, as we handle such nodes immediately in
Line 2. These variants are called DVCBSA and DVCBSAε.

Here too, DVCBSA can also be used to find a first solution,
sometimes faster than DVCBSF , as we demonstrate using
Figure 2. Initially, LB = 1. Since no nodes have fD < LB,



Algorithm 3: DVCBS Expand a Level
1 while true do
2 while min f in CwaitingD < LB do
3 Move best cluster from CwaitingD to CreadyD
4 if CreadyD ∪ CwaitingD empty then
5 Terminate search - no solution was found
6 DGMX← BuildDGMX(CreadyD)
7 if DGMXis not empty then
8 MVC ← findMV C(DGMX)
9 Choose and Expand a cluster from MVC of

DGMX.
10 else
11 if CwaitingD.f ≤ LB then
12 Move best cluster from CwaitingD to

CreadyD
13 else
14 return true

DGMX = DGMXA = {UF = {s}, VB = {g}, E =
{〈s, g〉}}. Assume that both DVCBSF and DVCBSA selected
s for expansion and so {A,B,C} are added to waitingF .
Their minimal f -value is 2 (A and B) so LB = 2. There
are no clusters in waitingF with fF < LB, thus, {A,B}
are moved to readyF and DGMX = DGMXA = {UF =
{A,B}, VB = {g}, E = {〈A, g〉, 〈B, g〉}}. Therefore,
{g} is the MVC, and both algorithms expand g and add
{E,F,H, I, J} to waitingB . Next (LB is still 2), H is
added to readyB and since H is the MVC, it is expanded
and K is added to waitingB . Now, {K} is the only clus-
ter in waitingB with fB ≤ LB. Since gB(K) = 2 and
gminF = 1 ({A,B}) LB is incremented to 3. At this
point the algorithms diverge. DGMXA moves C to readyF
and {E,F, I, J,K} to readyB . Thus, DGMXA includes 3
clusters with fD ≤ LB = 3: {A,B,C} with gF = 1
in readyF , and two clusters in readyB : {E, J, F, I} with
gB = 1, and {K} with gB = 2. Thus, DVCBSA ex-
pands cluster {A,B,C} (it is the MVC), then, D is gener-
ated and expanded and DVCBSA terminates after expand-
ing a total of 7 nodes (s, g,H,A,B,C and D). By con-
trast, when LB = 3, DGMX contains only two clusters
with fD < LB = 3: {A,B} (with gF = 1) in readyF and
{K} (with gF = 2) in readyB . Thus, DVCBSF expands K
(node C, as well as {E, J, F, I} are added to readyD, with
fD = LB = 3). Then it expands cluster {A,B,C}. Next it
exapndsD and terminates, after expanding a total of 8 nodes
(s, g,H,K,A,B,C and D). Recall that NBSF expands 10
nodes and NBSA expands 8 on this example.

5.3 No Upper Bound Guarantees for DVCBS
The most important property of NBS is the 2× bound guar-
antee. While DVCBS outperforms NBS on average (see ex-
periments below), DVCBS is not bounded in its worst case.
A synthetic example and its GMX demonstrate this in Figure
3. The optimal path is 〈s,X, g〉 of cost k+(k−1) = 2k−1.
Note that there is a longer path to X via the vi nodes of cost

Figure 3: An example for unbounded behavior of DVCBS

2k+1. In this example, the MVC ofGMX includes three nodes
(g, X and Y in the backward direction, all colored blue).
We next show that DVCBS never expands Y , and therefore
has to expand at least k + 2 nodes — all connected to Y in
GMX. To expand Y , an algorithm needs to generate it by ex-
panding g. If at any point DVCBS chooses to expand g then
DGMX will have two nodes in the backward side ({X,Y })
and a single node in the forward side (s or one of the Vi
nodes). Thus, the MVC of DGMX is always in the forward
direction (choosing the Vi node), and DVCBS has to expand
all of s, V1, . . . , Vk−1 before converging to the size k + 1
VC of GMX. Otherwise, if g is never chosen for expansion,
DVCBS always chooses to expand nodes in the forward di-
rection and it has to expand k + 2 nodes (s,X and all of the
Vis) in order to find a VC. In both cases, DVCBS expands
more than k nodes. Since k can be arbitrarily large, DVCBS
is not bounded by a constant factor of the MVC.

6 Experimental Evaluation
We ran experiments on four domains: (1) 50 14-Pancake
Puzzle instances with the GAP heuristic (Helmert 2010). To
get a range of heuristic strengths, we also used the GAP-n
heuristics (for n = 1 . . . 3) where the n smallest pancakes
are left out of the heuristic computation. (2) The standard
100 instances of the 15 Puzzle problem (Korf 1985) using
the Manhattan Distance heuristic. (3) Grid-based pathfind-
ing: 156 maps from Dragon Age Origins (DAO) (Sturtevant
2012), each with different start and goal points (a total of
3150 instances); (4) 50 instances of the 12-disk 4-peg Tow-
ers of Hanoi (TOH4) problem with (10+2), (8+4) and (6+6)
additive PDBs (Felner, Korf, and Hanan 2004).

Table 1 presents results averaged over all instances for
a representative set of the heuristics we used. The same
trends were observed for other heuristics. The left side of
the table is for the base-case while the right side is for
the ε-case. Four low-level expansion policies were exe-
cuted until all optimal solutions were found: NBSF , NBSA,
DVCBSF and DVCBSA. For comparison reasons we also
added A∗ as a baseline. We report the number of nodes ex-
panded at three different points of the execution, each in a
different column, as follows. (1) The VC column presents



Domain Heuristic Algorithm
base-case ε-case

VC: GMX first all: GMXA VC: GMXε first all: GMXAε

14
Pancake

GAP

A* 32 (1.22) 57 941 (1.17) 32 (1.23) 57 941 (1.24)
NBSF 49 (1.88) 163 1,338 (1.67) 47 (1.83) 147 1,224 (1.61)
NBSA 44 (1.70) 258 1,106 (1.38) 41 (1.57) 310 932 (1.23)
DVCBSF 31 (1.18) 106 880 (1.10) 30 (1.14) 121 832 (1.09)
DVCBSA 32 (1.24) 191 901 (1.12) 31 (1.18) 284 793 (1.04)

GAP-1

A* 6,410 (1.39) 6,412 81,705 (1.56) 6,404 (1.73) 6,416 81,694 (2.11)
NBSF 7,184 (1.55) 7,226 80,192 (1.53) 5,870 (1.59) 5,915 62,374 (1.61)
NBSA 5,656 (1.22) 5,705 61,699 (1.18) 4,332 (1.17) 4,527 45,746 (1.18)
DVCBSF 5,319 (1.15) 5,341 61,278 (1.17) 4,321 (1.17) 4,344 45,206 (1.17)
DVCBSA 4,818 (1.04) 4,886 52,747 (1.01) 3,750 (1.01) 9,955 38,819 (1.00)

GAP-2

A* 322,299 (2.65) 322,378 2,659,657 (3.33) 322,099 (4.15) 322,938 2,659,326 (5.61)
NBSF 208,648 (1.71) 209,723 1,393,062 (1.74) 137,295 (1.77) 137,719 842,947 (1.78)
NBSA 151,616 (1.24) 152,046 991,354 (1.24) 96,774 (1.25) 99,773 614,320 (1.30)
DVCBSF 141,111 (1.16) 141,669 864,611 (1.08) 86,292 (1.11) 87,012 493,288 (1.04)
DVCBSA 122,054 (1.00) 122,587 800,105 (1.00) 77,595 (1.00) 168,176 474,315 (1.00)

15
Puzzle MD

NBSF 13,542,536 (N/A) 13,587,955 28,117,879 (N/A) 12,709,517 (N/A) 12,748,107 26,162,236 (N/A)
NBSA 12,696,359 (N/A) 12,817,989 24,649,233 (N/A) 11,739,393 (N/A) 12,556,299 22,648,690 (N/A)
DVCBSF 11,863,100 (N/A) 11,940,791 25,717,691 (N/A) 11,589,837 (N/A) 11,669,720 24,088,398 (N/A)
DVCBSA 11,253,941 (N/A) 11,449,406 23,276,239 (N/A) 10,659,744 (N/A) 11,933,791 21,619,261 (N/A)

Grids
DAO Octile

A* 5,322 (1.25) 5,406 5,758 (1.20) 5,322 (1.25) 5,406 5,758 (1.20)
NBSF 6,569 (1.54) 6,686 6,952 (1.45) 6,561 (1.54) 6,677 6,942 (1.44)
NBSA 6,555 (1.54) 6,888 6,932 (1.44) 6,547 (1.53) 6,880 6,919 (1.44)
DVCBSF 5,158 (1.21) 5,546 5,594 (1.16) 5,158 (1.21) 5,545 5,593 (1.16)
DVCBSA 5,154 (1.21) 5,547 5,590 (1.16) 5,152 (1.21) 5,546 5,586 (1.16)

TOH4

10+2

A* 276,081 (2.25) 276,089 353,130 (2.28) 276,081 (2.25) 276,089 353,130 (2.28)
NBSF 234,165 (1.91) 234,165 291,195 (1.88) 232,509 (1.90) 232,509 288,177 (1.86)
NBSA 232,268 (1.89) 232,268 288,583 (1.86) 230,108 (1.88) 230,108 285,073 (1.84)
DVCBSF 225,910 (1.84) 225,910 273,210 (1.76) 224,233 (1.83) 224,249 270,715 (1.74)
DVCBSA 218,820 (1.78) 218,820 280,800 (1.81) 217,247 (1.77) 219,022 278,286 (1.79)

6+6

A* 3,239,287 (4.75) 3,268,093 3,674,518 (4.89) 3,239,287 (5.19) 3,268,093 3,674,518 (5.34)
NBSF 731,446 (1.07) 731,522 796,289 (1.06) 663,136 (1.06) 681,995 732,638 (1.07)
NBSA 730,562 (1.07) 730,597 795,564 (1.06) 662,424 (1.06) 681,989 732,303 (1.06)
DVCBSF 704,213 (1.03) 707,679 766,722 (1.02) 636,375 (1.02) 664,469 695,950 (1.01)
DVCBSA 690,389 (1.01) 691,159 757,484 (1.01) 627,983 (1.01) 660,555 690,348 (1.00)

Table 1: Experimental results of average node expansions across domains

the number of nodes expanded until the algorithm reached
a VC of the corresponding GMX. The number reported in
parenthesis is the ratio (i.e., the relative size) of the discov-
ered VC compared to an oracle (Shaham et al. 2017), that
built the entire GMX (by running A∗ in both directions) and
found its exact MVC. Numbers close to 1 indicate nearly op-
timal VCs. Due to memory limits, some MVCs could not be
computed (N/A). (2) The first column shows the number of
nodes expanded until the first solution was found and veri-
fied. (3) The all column gives the number of nodes expanded
until all optimal solutions were found (i.e., exactly when a
VC ofGMXA/GMXAε is found). Here, the ratio relative to the
optimal MVC of GMXA/GMXAε is reported.

Runtime results are reported in Table 2. The node expan-
sion rates of all variants were similar, with very low vari-
ance. Therefore, we use the number of node expansions as
the measure in the following analysis of the results.

Previous research (Chen et al. 2017; Sturtevant and Felner
2018) reported that NBS tends to outperform and is more ro-
bust than A∗ and other related Bi-HS algorithms (e.g., MM).
Table 1 confirms that A∗ is not as robust as the LBF fam-
ily. In some cases, e.g., the 15 puzzle, A∗ failed to solve all
instances because memory was exhausted. Except for cases
where the heuristic is very good (where MVC might be uni-
directional), A∗’s performance is much worse than the LBF
family in all three measures. See (Shaham et al. 2017) for a

deeper study on the relation between A∗ and MVC.
Since NBS has a 2x bound guarantee, any other algorithm

will expand no fewer than half the nodes of NBS, leaving
little leeway. Yet, our new algorithms managed to improve
upon NBS and the following trends are evident. First, within
the NBS family, NBSA and NBSAε outperform NBSF and
NBSFε, respectively, in terms of finding a VC of GMX and
of GMXA. Moreover, they found the first solution faster than
NBSF /NBSFε in all cases except GAP and DAO.

Second, both DVCBS variants always outperformed the
NBS variants in all three measures in the base-case,
with DVCBSA almost always being best. In the ε-case,
DVCBSF outperformed NBSF in all three measures, while
DVCBSA outperformed NBSA in VC and all. We note that
the VCs discovered by the DVCBS variants were often much
closer (e.g., GAP-1; 55% vs. 4%, a factor of 14) to being
optimal compared to the VCs discovered by the NBS vari-
ants. In fact, in some cases, with a weak heuristic, DVCBSA
managed to find the exact MVC(!) of GMX (a ratio of 1).

Finally, an interesting anomaly occurs with DVCBSAε. It
was the fastest to reach a VC of GMXε

but was rarely the
fastest to find a first solution; in such cases DVCBS was best
among all algorithms. For example, for GAP-2, DVCBSAε
expanded 77, 595 nodes to find a VC of GMXε

while DVCBS
found a VC after 86, 292 expansions. However, DVCBSAε
expanded 90, 581 more nodes (totaling 168, 176) before dis-



Alg 14 Pancake 15 Puzzle Grids DAO TOH4
A∗ 92,697 N/A 1,821,205 380,325

NBSF 93,176 250,518 1,567,131 402,616
NBSA 98,868 233,166 1,604,500 408,415

DVCBSF 98,448 235,621 1,417,141 418,944
DVCBSA 86,339 259,756 1,457,497 460,368

Table 2: Average node expansions per second

covering a first solution, while DVCBSFε expanded only 720
additional nodes (totaling 87, 012). We conjecture that the
reason is that in the ε-case, the frontiers may not be con-
nected (i.e., same node in both frontiers) when a VC is found,
and DVCBSAε must perform many additional node expan-
sions before connecting the frontiers and finding a solution.
However, other algorithms seem to perform more expan-
sions before finding a VC, but they are able to connect the
frontiers during this process. We intend to study this behav-
ior further in future work.

To summarize, DVCBSA is clearly the algorithm of choice
(among all 4) when all optimal solutions are needed. When
only a first solution is needed, DVCBSA is the best in the
base-case, while DVCBSFε is the best in ε-case. Both
always outperform any of the NBS variants, despite not hav-
ing any theoretical guarantees.

We have also compared DVCBSFε (which is our best vari-
ant for finding a first solution in the ε-case) to A∗ as well
as to MMε (Holte et al. 2017) and BS∗ (Kwa 1989) which are
benchmark Bi-HS algorithms. Table 3 presents the average
number of node expansions for finding a first solution in the
ε-case. As can be seen, DVCBSFε tends to outperform all
others, and is certainly the most robust to weaker heuristic.

7 Conclusions and Future Research
We have enriched the family of non-parametric Bi-HS algo-
rithms as well as the family ofGMX graphs while also focus-
ing on the problem of finding all optimal solutions. We have
shown that our new algorithms outperform existing ones. We
aim to look deeper in these directions in the future, and study
additional variants and their relative performance.
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Domain BS∗ MMε DVCBSFε A∗

GAP-0 183 149 121 57
GAP-1 5,262 5,048 4,344 6,416
GAP-2 266,442 119,310 87,012 322,938
10+2 174,936 303,189 224,249 276,089
6+6 1,599,018 1,120,392 664,469 3,268,093
MD 12,001,024 13,162,312 11,669,720 N/A

Octile 6,200 7,396 5,545 5,406

Table 3: Average expansions for first solution (ε-case)
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