
Abstraction-Based Heuristics with True Distance Computations

Ariel Felner and Max Barer
Information Systems Engineering

Deutsche Telekom Labs
Ben-Gurion University

Be’er-Sheva, Israel 85104
felner@bgu.ac.il

Nathan Sturtevant and Jonathan Schaeffer
Computing Science

University of Alberta
Edmonton, Alberta, Canada T6G 2E8
{nathanst, jonathan}@cs.ualberta.ca

Abstract

Pattern Databases (PDBs) are the most common form of
memory-based heuristics, and they have been widely used
in a variety of permutation puzzles and other domains. We
explore the true-distance heuristics (TDHs) (also appeared
in (Sturtevant et al. 2009)) which are a different form of
memory-based heuristics, designed to work in problem states
where there isn’t a fixed goal state. Unlike PDBs, which build
a heuristic based on distances in an abstract state space, TDHs
store distances which are computed in the actual state space.
We look in detail at how TDHs work, providing both theoret-
ical and experimental motivation for their use.

Introduction
In the area of heuristic search, a major research direction has
been finding optimal or suboptimal solutions in state spaces
where the number of states grows exponentially with the so-
lution depth. Examples for such exponential domains are the
different permutation puzzles (e.g., the tile puzzles, Topspin,
Pancake puzzle and Rubik’s cube) as well as other forms of
combinatorial problems (e.g. scheduling, SAT, CSP etc.).

There are, however, many problems where the number
of states grow quadratically or polynomially with the solu-
tion depth. Examples for quadratic- or polynomial domains
are two- and three-dimensional pathfinding problems or the
sequence alignment problem, where a number of DNA se-
quences must be aligned with minimum cost.

Pattern databases (PDBs), a common method for build-
ing memory based heuristics, have shown great success in
building heuristics for exponential domains but their general
effectiveness in polynomial domains is limited. In addition,
PDBs are goal specific and may not work if a path between
any two states is needed.

We introduce a class of memory-based heuristics called
true distance heuristics (TDHs). They are useful in any
undirected graph, even for applications where traditional
PDBs are not efficient (e.g. polynomial domains). Unlike
traditional PDBs, which store distances in an abstract state
space, TDHs can be seen as using abstract states but storing
information about true distances in the original state space.

A perfect heuristic for any pair of start and goal states
could be achieved by computing and storing all-pairs-

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

shortest-path distances (e.g., using the Floyd-Warshall algo-
rithm). However, due to time and memory limitations this is
not practical. TDHs compute and store only a small part of
this information based on an abstraction of the state space.

We first provide a new analysis of TDHs which relates
the TDH idea to previous abstraction-based work on heuris-
tic search such as hierarchical A* and PDBs. Based on this
we explain theoretically why PDBs work well in exponen-
tial domains but are not as effective in polynomial domains.
We then present the main forms of TDHs and relate them
to previous work on abstraction, showing why TDHs are
better-suited to polynomial domains. For example, TDHs
work well for domains such as map-based searches (com-
mon in GPS navigation, computer games, and robotics),
where paths often must be found very quickly due to their re-
altime nature. Finally, we provide experimental results that
show the benefits of TDHs on a number of domains.

TDHs were also introduced in (Sturtevant et al. 2009)
and the two papers have some overlap for completeness. The
portions that overlap are clearly denoted. However, the fo-
cus of the two papers are different as this paper aims to un-
derstand these heuristics and their relation to abstractions
and PDBs on different domain settings. In addition, this pa-
per introduces the border heuristic variant of TDHs and also
provides new results on the 8-puzzle and on TOH4.

Forms of TDHs have already appeared before. For ex-
ample (Björnsson and Halldórsson 2006), used the exact
distances between some of the states in the domain. Also,
(Goldberg and Harrelson 2005) independently introduced
DH heuristics (see below). Our paper is the first to deeply
explore these heuristics and provide theoretical analysis and
thorough experimental results.

Background: Heuristics from Abstractions
Heuristics are naturally generated by abstracting a prob-
lem and then using the distances from the abstract space
in the original space. Early analysis on how abstractions
could be used for search (Valtorta 1984) showed that in
some classes of problems it isn’t possible to compute an
effective abstraction-based heuristic online during search.
An example would be edge supergraphs (Gasching 1979;
Pearl 1984) which arise when constraints are removed from
a problem definition, resulting in more edges being added
to the graph. In such cases the size of the abstract search

space is no smaller than the size original search. Thus in
general, the cost of building the heuristic (based on the ab-
stract graph) will equal that of doing a brute-force search.

Homomorphic Abstractions
Homomorphic abstractions use abstract state spaces that are
much smaller than the original state space. The main idea is
to merge groups of nodes from the original graphG into one
abstract node in an abstract graph G′. There is an edge be-
tween two different abstract nodes n1 and n2 in G′ if there
was an edge between two nodes in G that are abstracted to
n1 and to n2 respectively. Homomorphic abstractions pre-
serve locality, so that nodes that are close to each other in G
are also close to each other in G′.

A pioneering work using homomorphic abstractions is
Hierarchical A* (HA*) (Holte et al. 1996b). HA* begins
with a pre-computed hierarchy of abstract spaces. HA* per-
forms an A* search in the original search space. Whenever
a heuristic value is needed, it is computed recursively using
A* search in one or more abstracted state spaces. At the
highest abstract level, a breadth-first search is performed be-
tween the start and the goal. The distances in these abstract
graphs are then used as heuristic estimates for distances in a
less abstract graphs or the original search space. Hierarchi-
cal A* showed some improvement over simple breadth-first
search, however the performances gains were not significant.

Similar techniques were applied in cooperative pathfind-
ing. (Silver 2005) abstracted away one dimension of a three-
dimensional cooperative search to build a better heuristic
and greatly improved performance. (Sturtevant and Buro
2006) applied homomorphic abstractions to further improve
performance on this domain. However, they used inadmissi-
ble heuristics and were not looking for optimal solutions.

Explicit Homomorphic Abstractions.
There are two ways to build homomorphic abstractions - ex-
plicit and implicit. An explicit abstraction is built by com-
pletely traversing the original graph and explicitly deciding
which groups of states to merge. Explicit abstractions are
generally only used in domains that fit in memory. A large
variety of these abstractions have been analyzed (Sturtevant
and Jansen 2007). An example of a homomorphic abstrac-
tion is the star abstraction (Holte et al. 1996a), also called
a radius abstraction, where all nodes in a fixed radius are
abstracted together. An example of explicit homomorphic
abstraction is shown in Figure 1. Part (a) shows a map from
a commercial video game. Part (b) shows a portion of the
graph induced by the map with 16,544 nodes. Part (c) shows
the results of applying a homomorphic abstraction to this
portion after which there are only 5,121 nodes in the map.

Pattern Databases (PDBs)
A second way to build homomorphic abstractions is to use
general implicit rules for deciding which nodes to merge.
Pattern databases (Cullberson and Schaeffer 1998) are a spe-
cial case of such implicit homomorphic abstractions. States
in a search space are often represented using a set of state
variables. An implicit abstraction of the search space, called

(a) (b) (c)

Figure 1: Sample map abstractions.

the pattern space, can be defined by only considering a sub-
set of the state variables (called the pattern variables). A
pattern is a state of the pattern space which has an assign-
ment of values to the pattern variables while ignoring the
values of the other variables. A pattern database (PDB)
stores the distance of each pattern to the goal pattern which
is a lower bound on the corresponding distances in the orig-
inal space. Thus PDBs serve as admissible heuristics for
searching in the original search space.

Despite their large success, PDBs have some limitations.
First, PDBs are goal-specific; they only provide heuristics
for a single goal state. While some domains have properties
(e.g., duality (Felner et al. 2005)) that allow a given PDB to
be used for many goal states, this is not a general property.

Second, PDBs store abstract distances between states.
This guarantees that the distances are lower bounds on dis-
tances in the original domain, but if good abstractions are
not available, then the estimates will be poor. PDBs work
very well for domains where a state can be described by as-
signing values to set of variables (e.g., locations to tiles, as
in the sliding-tile puzzle). Replacing some of the assign-
ments with a don’t care value can yield an effective abstrac-
tion. But, in map-based pathfinding problems a state is just
an x/y coordinate. Replacing the x or y coordinate by a
don’t care yields an abstraction that is too general to be ef-
fective. In addition, as will be mathematically suggested in
the next section, PDBs are effective in exponential search
spaces such as combinatorial puzzles but their applicabil-
ity in quadratic search spaces such as maps is questionable.
True distance heuristics (TDHs) provide alternative ways to
build abstraction based heuristics.

Effectiveness of PDBs
Before describing TDHs in detail we first provide some in-
sights into the effectiveness of PDBs.

Let us first analyze the effectiveness of a traditional PDB
on exponential domains such as Rubik’s cube or the slid-
ing tile puzzle. This analysis is similar in nature to previ-
ous analysis (Korf 1997). First, assume that the maximum
solution depth in the original state space is d and that the
asymptotic branching factor is b. Then, assume that we have
memory to build a PDB which is some fraction 1/f of the
full problem size (N = bd). If we build a PDB in which
the abstract state space has the same branching factor as the
original state space, then we can approximately compute the
radius of the abstract space, w, as bw = 1/f · bd. Thus,
w · log(b) = d · log(b)− log(f) and w = d− logb(f).

The maximum heuristic value that we expect in a PDB
is w. This is smaller than the radius of the original prob-

N entries k entries (used)

N
 e

nt
rie

s

k
en

tri
es

 (u
se

d)

k entries (used)

k
en

tri
es

 (u
se

d)

All-Pairs Shortest Path Differential Heuristic (DH) Canonical Heuristic (CH)

Figure 2: Types of heuristics.

lem. But, with a reduction of a factor of (f) in memory over
the full problem size the distance estimates of the resulting
heuristics will have an error difference of at most [logb(f)]
in the distance estimates. This implies that PDB’s are par-
ticularly effective on exponential domains.

Next, consider polynomial domains. Special cases are
quadratic domains (such as maps) where the number of
nodes up to depth d is d2. Assume that we have a homomor-
phic abstraction that is a fraction 1/f of the full state space
size. If we build a PDB for this abstract graph (that is, store
the distances from all abstract states to the abstract goal), the
abstract graph will have maximum depth of w2 = 1/f · d2.
Thus, w = d/

√
f . In this case, any heuristic which is built

from an abstraction will not differ from the exact value by
a constant amount, as in exponential domains, but will be
some fraction of the true distance. In such domains the re-
sulting heuristic is not likely to be strong.

Note that as the size of the search space grows to d3 or
higher dimensions, a heuristic built in this way will be more
and more accurate. For a general k-dimensional problem,
w = d/(f1/k). Note also that in n-dimensional problems,
a (n − 1)-dimension version of the problem might provide
an accurate heuristic for the n-dimensional problem, but
whether this works well is domain dependent.

We give simple experimental evidence here to validate
these claims. The 15 puzzle has 1013 different states and
a maximum depth of 80. One possible (non-additive) 6-tile
PDB needs only 6MB of storage but has a maximum heuris-
tic value of 55. This is a 106 fold reduction in memory of the
abstract state space over the size of the full state space while
the heuristic error is approximately 1/3 of the true distance.

Now consider the map shown in Figure 1. The original
map has 11,614 reachable nodes in the largest connected
component. After applying one level of abstraction, there
are 3,455 nodes, a 3.36 fold reduction. But, the maximum
radius of the original problem is estimated to be 157 moves,
while the maximum radius in the abstract state space is just
80 moves, a reduction of a factor of 2. The results explains
why the original results of (Holte et al. 1996b) were not im-
pressive – the abstractions used were unable to provide very
accurate heuristics on all domains.

True Distance Heuristics (TDHs)
This section presents the different versions of TDHs. The
first two versions were also introduced in (Sturtevant et al.
2009). The border heuristics variant is new to this work,

although similar heuristics have been proposed (Björnsson
and Halldórsson 2006).

Let N denote the number of vertices in a graph. If the full
all-pairs shortest-path database is available, then the exact
distance between two states, d(x, y), can be retrieved and
used as a perfect heuristic between x and y. This situation is
illustrated in Figure 2a. Each row and column corresponds
to a state in the world, and an entry in the grid is marked
if the corresponding distance is stored. Computing such a
database will require as much as O(N3) time which might
not be feasible (even in an offline phase). Assuming that the
size of the state space is O(N), storing this database will re-
quire O(N2) memory—much more than is likely available.

We propose several abstraction methods that reduce the
memory needs by using a subset of the all-pairs-shortest-
path information to compute a heuristic distance.

Differential Heuristics (DHs)
In the first method (shown Figure 2b) lengths of shortest
paths are only stored for k of the N states (k � N). We de-
note these k states as canonical states. The database is sym-
metric around the main diagonal (the graph is undirected)
so this is equivalent to retaining only k rows (or columns)
out of the full all-pairs database. If s is one of the canonical
states then d(x, s) is available for any state x. A differential
heuristic (DH) between arbitrary states a and b is:

h(a, b) = |d(a, s)− d(b, s)|

If we use k > 1 canonical states, we can take the maxi-
mum from each of the independent heuristics. A DH can be
built using k complete single-source searches. The time will
be O(kN) and the memory used is also O(kN). Placement
strategies are discussed in (Sturtevant et al. 2009). The best
approach is to place them as far from each other as possible.

Canonical Heuristics (CHs)
Our second method uses canonical states in a different way,
illustrated in Figure 2c. Again, we first select k canonical
states. Here, the shortest path between all pairs of these k
states is stored in the database (primary data). Additionally,
for each of the N states in the world we store which canon-
ical state is closest as well as the distance to this canonical
state (secondary data). The shortest-path data (primary data)
is marked in a light-gray in Figure 2 while the secondary
data is slightly darker. Note that in a domain with regular

structure (such as the sliding-tile puzzle), it might be possi-
ble to avoid storing the secondary data, instead computing it
on demand. We call this a Canonical Heuristic (CH). Define
C(x) as the closest canonical state to x. Then:

h(a, b) = d(C(a), C(b))− d(a,C(a))− d(b, C(b))
This can be less than 0, but in practice we always take the

max of the CH and an existing heuristic (e.g. air distance
or Manhattan distance). Let all states which share the same
closest canonical state C(x) be called a canonical neighbor-
hood. If two states are in the same canonical neighborhood
then the DH heuristic rule can be used for them instead.

Canonical states perform best if they are uniformly dis-
tributed (Sturtevant et al. 2009). Once k canonical states
are chosen, we need to perform k complete single-source
searches. The time complexity is again O(kN). The mem-
ory needed is O(k2) for the primary data.

When necessary (e.g., in non-regular domains) the sec-
ondary data is calculated as follows. We perform a breadth-
first search simultaneously from all the canonical states until
the entire state space is spanned. When a state s is first gen-
erated by the breadth-first search from the canonical state
P , P and d(s, P) are stored in the secondary data. The time
needed for this is O(N) and additional 2N memory might
be needed for the secondary data.

Border Heuristics
An alternate form of TDHs not described in (Sturtevant et al.
2009) is motivated by considering how the abstract heuris-
tics built by Hierarchical A* might be pre-computed. Sup-
pose we build an abstract state space that is small enough
such that we can store all-pairs-shortest-path data between
each of the abstract nodes in the state space. But, instead
of storing abstract distances, as Hierarchical A* would, we
store actual distances in the state space. As we need the
heuristic to be a lower bound on the cost between any two
states, the stored cost between any two abstract statesA′ and
B′ is the minimum distance between all states a and b where
a abstracts intoA′ and b abstracts intoB′. This is equivalent
to computing the minimum distance between the borders of
two canonical neighborhoods. This is the main idea behind
the new TDH version which we call border heuristic (BH).

Define a border state as a state which has at least one
neighbor in another neighborhood. The border heuristic
(primary data) between states a and b, would be h(a, b) =
d(C(a), C(b)) where d(C(a), C(b)) is the minimal distance
between border states of the two neighborhoods.

This estimate can be improved if we know the distance
from any state to the border of its canonical neighborhood.
In that case we can add that distance to the heuristic estimate
(secondary data). If DB(x) is the distance from state x to
the border of its canonical neighborhood then the heuristic
estimate can be improved to

h(a, b) = d(C(a), C(b)) +DB(a) +DB(b)

The primary data for BHs is calculated by performing
a breadth-first search seeded with border states of a given
canonical neighborhood until all other canonical neighbor-
hoods have been reached. The final data will require O(k2)

A B
d(C(a), C(b))d(a, C(a)) d(

b,
 C

(b
))

a

bCanonical Neighborhood

Figure 3: True distance heuristics.

Technique Storage Time to Build
All-Pairs Shortest Path O(N2) O(N3)

DH O(kN) O(kN)
CH(k, 1) O(k2) + 2N O(kN)

BH(k) O(k2) + 2N O(kN)
CH(k, d) O(k2) + 2dN O(kN)

Table 1: Memory and time complexity.

memory and will take O(kN) time to compute. When nec-
essary (e.g., in non-regular domains) the secondary data is
calculated using the same multi-seed breadth-first search.
When a state s (inside the neighborhood) is first generated at
depth x we set DB(s) = x. Again, additional 2N memory
might be needed for the secondary data.

Comparison between CH and BH
We compare the behavior of border and canonical heuristics
with the help of Figure 3. There are two neighborhoods in
this figure with canonical states A and B. There are two
other states a (where C(a) = A) and b (where (C(b) = B).
For the sake if the illustration we assume that all true dis-
tances are identical to the straight lines. First, consider
what will happen if both neighborhoods are symmetric cir-
cles with radius r (as is the case for A in the figure). In
this case d(a,C(a)) = r − DB(a) (similarly for b). As-
sume that shortest distances between the borders is db. Thus
d(A,B) = db + 2r. Now, BH(a, b) = db + DB(a) +
DB(b). The CH will be identical as CH(a, b) = d(A,B)−
d(a,A)−d(b, B) = db+2r−(r−DB(a))−(r−DB(b)) =
db +DB(a) +DB(b)

However, when the neighborhoods are not symmetric cir-
cles, as is the case with neighborhood B in the figure, there
can either be a gain or loss. In the case of our figure, state b
will have a better heuristic value (between a and b) with the
border heuristic than with the canonical heuristic. However,
if the neighborhood around B is rotated 90◦, b will have a
better heuristic with the canonical heuristic.

Unified View
Table 1 summarizes the time and memory requirements for
DHs, CHs and BHs. Building any of the databases requires
k single-source searches of the entire state space. However,
for the same amount of memory (e.g. 10N), DHs will have
smaller k, so they can be built more quickly.

Differential and canonical heuristics can be viewed as op-
posite extremes of a general framework. Suppose the avail-
able memory is fixed at 10N . Memory can be filled in one of
two ways. First, 10 differential heuristics can be built, each

Total Memory
Closest States Stored Num Canonical States (2dN + k2)

d < k
d = 1 k =

√
8N 10N

d = 2 k =
√
6N 10N

d = 3 k =
√
4N 10N

d = 4 k =
√
2N 10N

d = k
d = 5 k = 5 10N

d = 10 (optimized) k = 10 10N

Table 2: Transition between DH and CH.

of which takes N memory. Alternately, k =
√
8N canoni-

cal states can be selected for a canonical heuristic which will
use k2 = 8N memory. With the additional 2N memory for
storing the secondary data, this will also require 10N mem-
ory. Similarly for border heuristics.

Consider that instead of keeping the distance to the clos-
est canonical state (and its identity) in the secondary data,
we keep the distance to the d closest canonical states among
the k canonical states available (d < k). We denote this
as CH(d, k). The memory required is 2dN + k2. Our in-
troductory discussion to CH implicitly used d = 1. When
d = k then every state maintains the exact distance to all k
canonical states— which is actually a differential heuristic.

The possible heuristics using 10N memory are shown in
Table 2. When d < k, both the optimal distance to the clos-
est canonical states and the identity of these canonical states
must be stored in the secondary data. When d = k (log-
ically a differential heuristic) the distance to all canonical
states is stored. Thus, the identity of the canonical state is
not needed, allowing twice as many canonical states to be
used. Additionally, when d = k the primary data of all-
pairs-shortest-path distance between the k canonical states
is redundant here, as it is already stored in the secondary
data. This allows us to reuse the space by doubling d (‘opti-
mized’ in Figure 2).

In this unified scheme, there are many possible heuris-
tic lookups. For any two states a and b we need to choose
two out of d different canonical states as reference points
for the canonical heuristic; a total of d2 possible lookups.
As well, there could be as many as d valid differential
lookups. Clearly there is a tradeoff; the maximum over mul-
tiple heuristic values yields a better heuristic but at the cost
of increased execution time. In addition, larger d means
fewer canonical states. The border heuristics can be simi-
larly generalized using negative distances, but we just con-
sider d = 1 here.

The advantage of using d > 1 is shown in Figure 4. The
search is between the start (S) and the goal (G), both of
which are canonical states. While the canonical heuristic
will store the exact distance between these states (16), it will
give no guidance to an A* search as to which nodes are on
the optimal path to G. Consider states a and b. They are
equally far from S (say, 5) so their heuristic value from G
will be the same (16 − 5 = 11), they will have the same
f -cost (16), and will both be expanded. But, we can use
canonical state C to improve the heuristic estimate for b.
In particular, h(b,G) = d(C,G) − d(b, C) − d(G,G) =

C S G

16

16
32

ab
11

Figure 4: Two heuristic lookups are better than one.

32−11 = 21. With a g-cost of 5, b will have an f -cost of 26
and will not be expanded (26 > 16). The second lookup can
be seen as triangulating the position of state b to improve its
heuristic value.

Potential of CH’s in Polynomial Domains
We would like to estimate the error of a CH. Assume that
there are k canonical states which are uniformly distributed.
Thus, each has N/k different states in its neighborhood.

Exponential domains: Assume that the state space
grows exponentially in depth with branching factor b. If r
is the radius of a neighborhood we get br = N/k. Solv-
ing for r gives r = logbN/k. If N = bd where d is
the radius of the search space we get r = logbN/k =
logb b

d − logb k = d − logb k. We chose values such as
k =

√
CN where C is a small constant so that the CH

would fit in memory. In this case r = d − logb(
√
CN) =

d−0.5(logb Cb
d) = 0.5(d− logb C). As most states will be

at the borders of the canonical neighborhoods, the heuristic
estimate between two arbitrary states is likely to be no bet-
ter than d − 2r = logb C. As C is a small constant, this
suggests that CH’s will provide no gain for most states in an
exponential domain.

Quadratic domains: Assume that the state space grows
quadratically with the depth. If we assume that r is the ra-
dius of a neighborhood we get r2 = N/k and r =

√
N/k.

But, now N = d2, so r = d/
√
k. Again, let k =

√
CN ,

in which case r = 4
√
N/C. The heuristic between two

states given that the true distance is dt can be as low as
dt − 2r = dt − 2 4

√
N/C. This implies that the heuris-

tic will be accurate for states which are far apart, but less
for states which are closer together. In general polyno-
mial domains, we have ri = N/k and N = di. Thus
r = i

√
N/k = 2i

√
N/C.

The outcome from our analysis is that while PDBs seem
to work best for exponential domains (as explained above),
CHs are better in polynomial domains. This analysis is
specifically for CHs, but a similar analysis exists for BHs.
A detailed analysis of DHs is an area of future research.

Experimental Results
We now provide experimental results on a number of do-
mains. In all experiments we use the max of an existing
heuristic (e.g. Manhattan distance, air distance etc.) with
the TDH. All times are reported in seconds. The results for
pathfinding overlap with (Sturtevant et al. 2009).

Pathfinding: Differential Heuristics
Pathfinding is an example of a domain where the entire state
space is usually kept in memory. The real-time nature of this

Figure 5: Example mazes/rooms (left/right).

domain requires finding a path as quickly as possible.
Two types of maps were used which are illustrated in Fig-

ure 5: mazes and rooms. In a simple maze there is only
one path between any two points, however we use corri-
dors width two, which increases the average branching fac-
tor from two to five. The octile-distance heuristic, which is
similar to Manhattan distance except that it allows for diago-
nal moves, can be very inaccurate on mazes. Room maps are
composed of small (16×16) rooms with randomly opened
doors between rooms. Octile-distance is more accurate on
these maps. All maps used here are publicly available.

To begin, we compare the search effort required with the
full all-pairs-shortest-path data to the differential heuris-
tics. The results in Figure 6 use a 512×512 room map with
206,720 states. The number of canonical states varied from
0 to 125 by intervals of 5. Because we cannot plot ‘0’ canon-
ical states on a log-plot, the first point denotes the results
with the default octile heuristic. The results are averaged
over 640 problems with solution lengths between 256 and
512. The all-pairs data was estimated by assuming that with
a perfect heuristic only the optimal path would be explored.
We drew a line from the 125 data point to the 206,720 data
point (all pairs) to approximate data in between.

The top curve shows how the average h-value grows as the
number of canonical states is increased. Note that the x-axis
is logarithmic. The optimal heuristic value is 384.59 and
would require the full all-pairs data and 21 billion heuristic
entries. With 125 canonical states (26 million entries) we get
an average heuristic value of 382.04. With just 10 canonical
states (2 million entries) the heuristic value is 370.34. In
contrast, the average octile-distance heuristic is 306.83.

The number of node expansions are shown at the bottom
of Figure 6. This is a log-log graph, so the slope of the
line looks much shallower than it actually is. With octile-
distance, 21,686 nodes are expanded on average. 10 canon-
ical states reduces this to 3,440 nodes. 125 canonical states
reduces this further to 760 nodes (29× reduction). The abso-
lute minimum, assuming a perfect heuristic would be 384.6
nodes. A 29× reduction in nodes expanded can be achieved
with 1/1000 of the total memory needed for the full all-pairs
information (which only achieves an additional 2× reduc-
tion.)

Pathfinding: Canonical Heuristics
Next, we look at the transition between canonical heuris-
tic parameters. We begin with the default heuristic, octile
distance. Then, fixing the total memory at 10N we build a
CH(d, k) (where d = {1 . . . 5} and k =

√
(10N − 2Nd))

and a DH(k = 10). The canonical and differential heuristics

Heuristic Value

Nodes Expanded

Ex
pa

ns
io

ns

103

104

h-
va

lu
e

360

370

380

Canonical States
101 102 103 104 105

Figure 6: Comparison as memory usage grows.

h Mazes Rooms
d k nodes h-val time nodes h-val time

Octile 7792 151 0.068 21354 309 0.296
1 1448 2377 611 0.026 8698 372 0.123
2 1254 1845 626 0.022 6011 375 0.091
3 1042 1729 627 0.021 5472 376 0.083
4 724 1776 619 0.023 5646 373 0.092
5 5 1793 610 0.026 14473 337 0.246
10 10 707 636 0.010 3479 370 0.054

Table 3: Results on maze and room maps. Memory = 10N.

were built twice: once with random and once with advanced
placement of canonical states.

We present the average number of nodes expanded by A*,
starting h-cost, and average time for the search. The results
are averaged over 640 problem instances on each of 5 maze
and room maps (3,200 total instances for each map type).
All maps are 512 × 512. Paths were evenly distributed be-
tween lengths 256 and 512 on the room maps and between
lengths 512 and 768 on the maze maps. Paths are longer
on maze maps, but fewer nodes are expanded because the
search is more restricted in the maze corridors.

The results for mazes and rooms are in Table 3. For
mazes, the average heuristic between start and goal points is
151 with octile distance, while the optimized DH (last line)
has an average heuristic value of 636. The DH expands over
11× fewer nodes than the octile heuristic but is only 6.8×
faster due to the overhead of the heuristic lookups.

For room maps the octile heuristic is more accurate in
these maps with an average value between start and goal
pairs of 309, compared to 370 with the best canonical heuris-
tic. There is a saddle point in the canonical results, where the
best results are with d = 3 (for mazes too). The best time
performance is with the optimized DH, 5.5× faster than the
octile heuristic with 6× fewer nodes.

The average DH value between the start to the goal is 370,
lower than the CH(d = 3) (376), but fewer nodes are ex-
panded with the DH. To investigate this, we recorded the h-
value of every node expanded over 640 problems on a single
room map. A histogram of values is in Figure 7. Search-
ing with either heuristic expands the same number of nodes
with high heuristic values. But, the DH results in far fewer
nodes expansions with low heuristic values. CHs are inaccu-
rate near the borders of the canonical neighborhoods which
suggests there are enough nodes along these borders to sig-
nificantly increase the cost of search.

Canonical Heuristic

Differential Heuristic

x

no

de
s w

ith
 v

al
ue

103

0

3

6

9

12

Heuristic Value

0 100 200 300 400 500

Figure 7: Nodes expanded with CH and DH.

h d k h start nodes Mem
Manhattan - - 14.21 3000.26 -

DH 1 1 14.26 2941.35 1N
DH 5 5 14.34 2784.32 5N
DH 10 10 14.41 2570.33 10N
CH 1 1204 14.50 2376.23 10N
CH 3 852 14.44 2422.28 10N
DH 50 50 14.95 2184.43 50N
DH 200 200 16.11 832.71 200N

blank in the center
CH 1 20,160 18.55 345.95 1120N
BH - 20,160 18.92 211.31 1120N
CH 3 20,160 19.83 69.42 1120N

Table 4: Results on the 8 puzzle.

Experiments on the Sliding-Tile Puzzle
To test TDHs on exponential domains we implemented them
on the 8 puzzle. This puzzle has N = 181, 440 different
reachable states. 250 states were randomly generated, and
we ran an IDA* search between every pair of these states, a
total of 31,125 different searches.

We performed two sets of experiments. In the first set
we bounded the size of the memory of the databases and
randomly chose a given number of canonical states for the
differential and canonical heuristics. Table 4 shows the re-
sults where the rows are ordered according to the number
of nodes generated in decreasing order. The first line used
Manhattan Distance (MD) as a benchmark comparison. The
next lines show results with increasing size of memory and
with different settings for d and k. The gains provided by
DHs and CHs up to 50N are modest. Only with 200N are the
gains more significant. Canonical and differential heuristics
will likely work best in domains where paths cover long dis-
tances. This is possible in quadratic domains such as the
pathfinding domains above. This puzzle is an exponential
domain and these methods achieve only modest gains.

To check the limit of of this method, in the next set of
experiments we used as much memory as possible and took
advantage of the internal structure of this puzzle. Define a
corner state as one where the blank is in the corner. Edge
and center states are similarly defined. We divided the do-
main to neighborhoods as follows. First, all the 20,160 cen-
ter states were chosen as canonical states, each had the near-
est 4 edge states and 4 corner states in its neighborhood as
shown in Figure 8. In order to relate a corner state to a single
canonical state we ordered the operators such that left-right

7

86
573
241

86
573
241

86
573
241

876
53
241

876
53
241

876
543

21B B B

B

BB

B

B

B

1 2
3 4 5

1 2
3 4 5

6 7 8 6 8

1 4 2
3 5
6 7 8

Figure 8: Neighborhoods for the 8 puzzle

moves are performed before up-down moves. Bold arrows
show moves within the same neighborhood while dashed ar-
rows are moves to another neighborhood. The only way to
exit the neighborhood is to have the blank in the rightmost
or leftmost columns and to move it either up or down. It is
easy to see that corner states are two moves away from the
canonical state while edge states are one step away. In ad-
dition, all states where the blank is either in the left or the
right column are border states and all other states have a bor-
der distance of 1. Thus, secondary data need not be stored
and can be easily determined on the fly.

We then built a CH and BH databases with a table of size
20, 160×20, 160 = 406, 425, 600. At one byte per entry the
total memory used was roughly 200 megabytes, very rea-
sonable on current machines. For both cases we ran 20,210
breadth-first searches, one for each neighborhood. For CH
we seeded the queue with the canonical states while for the
BH we seeded the queue with all six border states. Each
time a canonical state (for the CH) or a border state (for
BH) was first seen we updated the corresponding entry in
the database. These databases were built in about half an
hours while generating roughly 3 Billion states.

Both CH and BH were rather effective and reduced the
number of generated nodes by a factor of 10 compared to
MD. The best performance was achieved with CH when d =
3. This version generated only 69 nodes which is a 43×
reduction over MD. It is important to note that PDBs are not
directly comparable because they are built for a given goal
state while our searches are between two arbitrary states.

Border Heuristics for Towers of Hanoi
The four-peg Towers of Hanoi problem (TOH4) is a com-
mon testbed for search algorithms. The task is to move n
discs (ordered by their size) which from an initial peg to an-
other goal peg. Each action moves one disc from the top of
one peg to the top of another peg with the constraint that a
larger disc cannot be placed on top of a smaller disc. Al-
though theoretical results suggest that CHs won’t work well
in domains that grow exponentially, TOH is unique in that
the solutions also grow exponentially, which is differs from
our PDB analysis. TOH is also unique in that the normal
domain abstractions for TOH only abstract nearby states,
so in this domain explicit homomorphic abstractions would

simple compression simple + border
δ Mem Avg h Nodes Avg h Nodes
0 256M 87.04 36,479,151 87.04 36,479,151
1 64M 86.48 37,964,227 86.48 37,963,596
2 16M 85.67 40,055,436 85.67 38,160,236
3 4M 84.45 44,996,743 84.82 41,854,341
4 1M 82.74 45,808,328 83.49 43,918,650
5 256K 80.85 61,132,726 82.09 51,420,682
6 64K 78.54 76,121,867 80.46 57,708,367
7 16K 74.81 97,260,058 77.63 70,090,868
8 4K 68.34 164,292,964 72.28 102,829,813
9 1K 62.71 315,930,865 68.01 174,873,646

Table 5: Solving the 16 discs TOH4

closely resemble the implicit abstractions of PDBs.
PDBs (Felner, Korf, and Hanan 2004) and compressed

PDB (Felner et al. 2007) have been effectively applied to
this problem. In a compressed PDB several PDB entries
are merged into one entry. In order to guarantee admissi-
bly, only the minimal value among the entries of the original
PDB is stored. If merged entries are highly correlated then
the loss of information is small and in many cases only a
modest increase in the search effort is caused by the com-
pression despite the fact that a large reduction in memory is
achieved.

A PDB for N discs contains 4N entries. Consider a spe-
cific configuration c of the largest N − K discs. There are
now 4K combinations of the K smallest discs that can be
placed on top of c. All these have a different entries in the
original PDB. In the compressed PDB the minimum among
all these configurations is stored in one entry and the size
of the compressed PDB is 4N−K (See (Felner et al. 2007)).
Note that each entry of the compressed PDB has a value that
was taken from a specific configuration of the K smallest
discs in original PDB (the one with the minimal value).

It turns out that this PDB is identical to a BH. Define a
neighborhood to contain all the states (in the pattern space
of N discs) where the N − K large discs are in the same
location. In the compressed PDB, the minimal distance from
all the states of the neighborhood was stored. This distance
belongs to one of the states in the neighborhood. This state
(call it X) must be on the border. That is, you can move
from another neighborhood (where the largest discs are in
different location) to this border state.

So, assume a state Y in the neighborhood of X . In the
compressed PDB we take the distance from X to the goal
as the heuristic for Y . But, we from Y we first need to go
to some border. Thus, based on the analysis behind BHs we
can also add the distance from Y to a border state. A border
state in this problem is a state where at least two pegs do not
have any of the smallest k disc on them and that one of the
large discs can move. We can build a small lookup table for
each configuration of K discs (4K) by running 4K different
breadth-first searches until a state was reached where any
two pegs are empty and thus a large disc can move.

Experimental results for this new enhancement compared
to the published results from (Felner et al. 2007) are shown
in Table 5. The problem had 16 discs and the original un-

compressed PDB contained 14 discs. Each row corresponds
to the number of discs that were compressed (the δ column).
The next three columns give the memory needed for the
compressed PDB, the average heuristic over a large sam-
ple of random states and the number of nodes generated for
solving initial. Similar data is then presented when we added
the border distances too (with the help of the border distance
table). The results clearly show that adding this extra knowl-
edge reduces the search effort by up to a factor of 2.

Conclusions
In the past decade, PDBs have received considerable atten-
tion in the heuristic search literature. This paper explains the
limits of PDBs and introduces new memory-based heuristics
that use memory in a novel way to solve more general prob-
lems with arbitrary start and goal states.

We provide analysis that shows that PDBs work best for
exponential domains while CHs are better for polynomial
domains. Experimental results showed a important perfor-
mance gains of CH for real-time pathfinding as a quadratic
domains but much more modest gains for the 8 puzzle which
is an exponential domains. Considerable research remains.
The best number and location of canonical states is an open
problem. More insights are also needed into the nature of
these heuristics to give guidance to an application developer
as to which heuristic (and its parameters) to choose for a
given problem.

Acknowledgements
This research was supported by ISF grant 305/09 and by iCore.

References
Björnsson, Y., and Halldórsson, K. 2006. Improved heuristics for
optimal path-finding on game maps. In AIIDE, 9–14.
Cullberson, J., and Schaeffer, J. 1998. Pattern databases. Com-
putational Intelligence 14(3):318–334.
Felner, A.; Zahavi, U.; Holte, R.; and Schaeffer, J. 2005. Dual
lookups in pattern databases. In IJCAI, 103–108.
Felner, A.; Korf, R. E.; Meshulam, R.; and Holte, R. C. 2007.
Compressed pattern databases. JAIR 30:213–247.
Felner, A.; Korf, R. E.; and Hanan, S. 2004. Addtive pattern
database heuristics. JAIR 22:279–318.
Gasching, J. 1979. A problem similarity approach to devising
heuristics: First results. IJCAI 301–307.
Goldberg, A. V., and Harrelson, C. 2005. Computing the shortest
path: A* search meets graph theory. In SODA, 156–165.
Holte, R. C.; Mkadmi, T.; Zimmer, R. M.; and MacDonald, A. J.
1996a. Speeding up problem solving by abstraction: A graph
oriented approach. Artif. Intell. 85(1-2):321–361.
Holte, R. C.; Perez, M. B.; Zimmer, R. M.; and MacDonald, A. J.
1996b. Hierarchical A*: Searching abstraction hierarchies effi-
ciently. AAAI 530–535.
Korf, R. E. 1997. Finding optimal solutions to Rubik’s Cube
using pattern databases. In AAAI, 700–705.
Pearl, J. 1984. Heuristics: Intelligent Search Strategies for Com-
puter Problem Solving. Addison & Wesley.
Silver, D. 2005. Cooperative pathfinding. In AIIDE, 117–122.
Sturtevant, N. R., and Buro, M. 2006. Improving collaborative
pathfinding using map abstraction. In AIIDE, 80–85.

Sturtevant, N. R., and Jansen, R. 2007. An analysis of map-based
abstraction and refinement. In SARA, 344–358.
Sturtevant, N.; Felner, A.; Barer, M.; Schaeffer, J.; and Burch,
N. 2009. Memory-based heuristics for explicit state spaces. Ac-
cepted for publication in IJCAI-09, To appear.
Valtorta, M. 1984. A result on the computational complexity of
heuristic estimates for the A* algorithm. Information Sciences
47–59.

