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Abstract

Search is a recognized technique for procedural content gen-
eration and game design, and it has been used successfully
as part of commercial and academic games. In this context,
search has almost always referred to selective search, as op-
posed to larger brute-force searches. The argument against
brute-force search is that the state spaces of the games are al-
most always too large to be amenable for brute-force search.
We believe, however, that brute-force search should not be
too quickly dismissed. State spaces with trillions or tens of
trillions states can now be exhaustively searched with relative
ease, and growth in parallelism and computational power is
expected to continue to scale this trend. We believe that this,
combined with appropriate abstraction, will allow exhaustive
search to be applied to many problems once thought to be pro-
hibitively large. We explore this argument in the context of a
game called ‘Fling!’, available for mobile devices, showing a
system for interactively designing and analyzing puzzles.

Introduction and Motivation
This paper explores the application of exhaustive search in
content generation for games. Procedural content generation
(PCG) is a growing field, with many diverse approaches.
Many of these have been detailed in a recent survey pa-
per (Togelius et al. 2011). This survey paper describes the
majority of search approaches as being based in some sort of
local search, often evolutionary mechanisms, although other
search approaches are not excluded. Our goal in this work
is to begin the exploration the applicability of large-scale
brute-force search to the design process, both automated and
with human interaction.

From our perspective, the work here addresses the follow-
ing research question from this survey paper:

Can we combine search-based PCG with top-down ap-
proaches? Coupled with the right representation and
evaluation function, a global optimisation algorithm
can be a formidable tool for content generation. How-
ever, one should be careful not to see everything as a
nail just because one has a hammer; not every prob-
lem calls for the same tool, and sometimes several tools
need to be combined to solve a problem. In particular,
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the hybridization of the form of bottom-up perspective
taken by the search-based approach with the top- down
perspective taken in AI planning (commonly used in
narrative generation) could be very fruitful. It is cur-
rently not clear how these two perspectives would in-
form each other, but their respective merits make the
case for attempting hybrid approaches quite powerful.

We say ‘from our perspective’ because the exact definition
of ‘top-down approaches’ is not provided. But, we suggest a
number of techniques for assisting with the solving of puz-
zles, including how we can use a brute-force analysis at the
end of a puzzle along with selective forward search from a
particular problem instance to interactively analyze puzzle
instances.

Our ideas are fleshed out through a small case study of the
game of Fling!, a popular puzzle game available for mobile
devices. We use a combination of breadth-first search, ret-
rograde analysis, and forward search. Our view is that this
tool would be used by a designer to explore the design space
possible within a domain that is being created. When design
choices have been made about the types of puzzles desired
for a given application, further automation could be applied
to generate puzzles with desired properties, although we do
not address the automatic content creation step here.

We then conclude with an overview of related work in
large-scale search.

Search Classifications
For completeness and clarity, we begin with a simple classi-
fication of search approaches. In particular, we distinguish
between compete and incomplete search methods as well
as between informed and uninformed methods. These ap-
proaches are most easily illustrated with how they are used
for problem solving.

A complete/informed approach is usually used when solv-
ing a single instance of a problem. Heuristics or other guid-
ance are used to prune away unpromising portions of the
search, but the core of the search is exhaustive in nature.
A* (Hart, Nilsson, and Raphael 1968) and DPLL (Davis,
Logemann, and Loveland 1962) (and more generally Depth-
First Branch and Bound approaches) fall into this category,
although A* will run out of memory on large problems,
while the DPLL algorithm will not.



A complete/uninformed approach is used when no guid-
ance is available, or when the goal is to enumerate an entire
state space. Example algorithms include breadth-first and
depth-first search. When we use the term brute-force search,
this is what we are referring to.

A wide variety of approaches can be described as incom-
plete/informed; these more broadly fall into the category of
local search (Russell and Norvig 2005). In these approaches
a solution (or genome which encodes a solution) is created
and then iteratively altered to improve the solution. The al-
gorithms converge to a local optima, with no guarantees of
global optimality, but can run on problems that are not feasi-
ble for complete search. These algorithms can be informed
both by the representation used, by selection heuristics, and
by evaluation of the quality of the resulting solution.

Incomplete/uninformed approaches are less common; the
simplest example is a pure Monte-Carlo search, where the
best action is determined by random walks through the state
space. But, to be meaningful, an evaluation (fitness) function
is usually still required to evaluate the result of the random
walks.

This paper focuses on the use of complete/uninformed
search and its applicability to PCG.

Example Domain: Fling!
Fling! is a game by CandyCane Software which has been
available for iOS devices for a number of years, and more re-
cently for other devices. A screenshot of the game is shown
in Figure 1. The goal of the game is to fling the balls into
each other and remove all the balls, except one, from the
board. We demonstrate this in Figure 2. The left side of this
figure contains a much simpler level, with only three balls.
Moving the top ball down will cause it to collide with the
ball below it and stop. The lower ball rolls off the board, and
the upper ball remains. The board that results after the move
is shown in the right half of the figure. Then, either ball can
be rolled into the other ball to complete the level.

Fling! has several modes of play, but the primary mode
has 35 successive levels. The number of puzzles needed to
pass a level varies from three to eight. The number of balls
gradually increases through the levels, increasing the diffi-
culty of solving the levels. In the main mode there is no time
limit on play.

If there are N balls on the board, every move will roll
exactly one ball off the screen, so the solution is always
of length N − 1. The number of balls on the board in the
game varies between 3 and 14, but there is no fundamen-
tal reason why more balls cannot be used. There are 56
total locations on the board. Ignoring symmetry, there are(
56
14

)
= 56!

14!42! = 5, 804, 731, 963, 800 ways to place 14
balls on the screen. Storing which combinations are solv-
able1 would take 725,591,495,475 bytes, or about 675 GB,
which is well within the range of current external storage,
but might take a few weeks to solve. Table 1 shows the num-
ber of states and the memory required for storing all arrange-
ments with a given number of balls on the board. If we were
building this game and had finalized the mechanics of the

1Using 1-bit per state (without further compression).

Figure 1: A level 35 (the highest level) Fling! board.

game, we would consider large searches to help us select
interesting levels for the game, but significant time invest-
ments may not always pay off in early design stages. The
full process of puzzle selection and design can easily take
weeks or months, and so an exhaustive search could be used
to validate the final solutions and to assist in later puzzle
design.

Building a tool to analyze Fling! puzzles
Given the previous analysis, we can now build a tool to an-
alyze and explore Fling! puzzles. We begin by iteratively
solving the Fling! boards of size 1 . . . 10 using a retrograde
search approach (Schaeffer et al. 2003). Given that all boards
of size n − 1 have been solved, solving all boards of size
n requires iterating through every possible board, and gen-

Figure 2: Sample moves on a fling board.



Table 1: Storage requirements for solving board with 1 . . . 15
pieces.

# Balls # of Arrangements Memory (GiB)
1 56 0.00
2 1,540 0.00
3 27,720 0.00
4 367,290 0.00
5 3,819,816 0.00
6 32,468,436 0.00
7 231,917,400 0.03
8 1,420,494,075 0.17
9 7,575,968,400 0.88

10 35,607,051,480 4.15
11 148,902,215,280 17.33
12 558,383,307,300 65.00
13 1,889,912,732,400 220.01
14 5,804,731,963,800 675.76

erating legal moves. If one of the moves leads to a level
which is solvable, then the given board is considered to be
solvable. There is nothing sequential about this process, and
so it can be easily parallelized. On an 8-core 2.4GHz Intel
Xeon machine with 12GB of RAM we were able to solve all
boards with 10 balls in 129 minutes, or just over two hours
using 16 threads. For perspective, this is less time that was
spent developing the software to perform the search. Hyper-
threading enables faster performance with more threads than
processors; in this case we used 16 threads and 8 cores. We
refer to this data as the endgame data, as it resembles the
endgame databases built for solving the game of Check-
ers (Schaeffer 1997). Iterating through the boards can be
done with a ranking and unranking function, also called a
perfect hash function. If there are N possible boards, an un-
ranking function can take the integers 0 . . . N−1 and convert
them into unique boards. A ranking function reverses the
process. We used well-known methods described in the lit-
erature (Edelkamp, Sulewski, and Yücel 2010) for this pro-
cess2.

We then built a tool, shown in Figure 3 which, given a
Fling! board, can perform searches to determine the follow-
ing metrics for the given board.

1. The number of states legally reachable. This is deter-
mined by a forward breadth-first search from the current
board state. The endgame data is not used, as it would
prevent an accurate count of legally reachable states. This
metric can be expensive for large boards. The problem in
Figure 3 has 14,409 reachable states, which takes about
50ms to exhaustively search.

2. The legal moves which lead to a goal state. This is de-
termined by a depth-first search with duplicate detection.
The endgame data is used to speed this process. The white
triangles in Figure 3 indicate which pieces can be moved

2Simple representations, such as a 1/0 bit-representation of each
square on the board, can also be used, but are not necessarily space
efficient when stored on disk

Figure 3: A screen shot of our tool for analyzing Fling!
boards.

and in which directions to solve the board.

3. How adding/removing pieces from the board change
the solvability. This process iterates through all 56 loca-
tions on the board. If a location has a piece, the piece is
removed, and the resulting board is analyzed. If a location
does not have a piece, a piece is temporarily added, and
the resulting board is analyzed. Our tool highlights the
squares on the board where adding or removing a piece
would change the solvability of the board. Removing the
piece in the lower-left hand corner of Figure 3, for in-
stance, would render the puzzle unsolvable. The cost of
this analysis varies greatly, but is most expensive when
many positions are not solvable.

The tool also allows the user to add or remove balls from
the screen by left-clicking on them, and balls can be ‘flung’
across the board by right-clicking and dragging.

After playing with the tool and its parameters, we opted to
only load the 9-piece endgame data into memory, as it takes
a significant time and memory to load the data for 10 pieces,
and the puzzles that we are experimenting with do not re-
quire the larger endgame data for high performance. If the
larger data was required, we would consider accessing the
data directly from disk and caching results in memory. This
actually suggests that the Fling! puzzle is relatively simple
to analyze and does not require the full advantages of the
endgame data for analysis; we present these results momen-
tarily.

The puzzle in Figure 3 was generated randomly and has
many possible solutions – almost any legal move will lead
to a solution. There is only one legal move which does not
lead to a solution. In collecting the solutions for the puz-
zles offered to the user in Fling!, we verified what a hint
in the game suggested – that the puzzles in the game only
have a single unique solution. We illustrate this in Figure 4,
a puzzle from the game which has a single solution. But, as
can be seen, there are many ways that we could add or re-
move pieces from the board and still have a solvable puzzle.
Adding or removing pieces almost always significantly in-
creases the number of possible solutions for the given board.



Figure 4: A problem from level 35 which only has a single
solution.

The designer of this game3 clearly chose this property as
one that was important for creating interesting puzzles, al-
though we could imagine allowing more than a single solu-
tion at earlier levels and decreasing the number of solutions
at later levels. Generating all problems which only have a
single solution can be done using the same retrograde anal-
ysis as we used to generate the endgames for the solvable
states. But, when testing a state at level n, we would only
set its related bit if there was only a single move that led to a
solution. (Technically speaking there can be multiple moves,
but when multiple moves are available, they all lead to the
same successor state.) We could also modify our analysis to
indicate which changes to the board lead to a board with a
single solution path.

Measuring Problem Difficulty
We believe that there are general metrics that can point to the
difficulty of a puzzle, something that has been explored in
other puzzles as well (Ritchie 2011). To us, the most obvious
and generic metric is the number of states reachable from an
initial puzzle instance. We stored all the boards given to us
in a single play-through of the game and then solved them
all with a breadth-first search, counting the number of legal
states. The results are shown in Figure 5. The solid curve
plots the average number of states in the BFS of each level,
while the error bars indicate the easiest and hardest instances
at a particular level. While we didn’t find a monotonic rela-
tionship between difficulty and the number of states in the
state space, there was a strong correlation through most of
the levels. There is also a strong correlation between the
number of balls on the board (shown in Figure 6) and the
average reachable states in a level. The bulk of the time in
this analysis was spent collecting levels; analyzing all levels
can be done in about 15 seconds.

There are domain-specific metrics which could also be
used. For instance, a fling-specific metric is how many times
the user must switch from moving one ball to another during
the solution, and how one move interacts with balls that were

3We attempted to contact the designer of the game, but did not
receive a response.
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Figure 5: The reachable states of Fling! instances on each
given level (a proxy for difficulty). The error bars represent
the smallest and largest instances on a level. Note that the
y-axis is logarithmic.
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Figure 6: The average number of balls on each level of the
game.

disturbed in the previous move. The puzzles that ship with
the game all only have a single legal solution, which actu-
ally gives a logical flavor to the puzzles, as you can logically
exclude moves to help solve puzzles. (If a pair of moves can
be applied in any order and result in the same board config-
uration, then they won’t be on the solution path.) Thus, you
could also measure the difficulty of a problem based on the
number of candidate moves after performing logical reason-
ing to eliminate incorrect moves. More work is needed to
explore this, but it wouldn’t be difficult to annotate states in
our tool with different metrics.

Savings from Endgame Analysis
Next we measured the savings from using the 9-piece
endgame data during the analysis to determine which pieces
could be added or removed from the game to preserve solv-
ability. We generated 100 random problems with each of 14
through 16 pieces and solved them with and without the
endgame data, measuring the time required to perform the
analysis. The results are in Figure 7. Note that the y-axis is
on a logarithmic scale to clarify the savings.

The overall savings from the endgame data is about a fac-
tor of 5 on the random problems with 14 pieces, but the sav-
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Figure 7: The savings from using the endgame analysis in
Fling!

ings are larger on easier instances than harder instances. The
boards that are most difficult are those that are unsolvable or
have many locations which would cause the problems to be
unsolvable. These boards require the full DFS to verify un-
solvability, while solvable boards tend to terminate early and
can be solved quite quickly. We also measured the savings
over all the actual problems that we collected from the game
and found the same factor of savings on actual instances and
random instances.

These savings are less than we expected, but are still
meaningful. They are related to the properties of the Fling!
game; it is a point of future research to identify when ret-
rograde analysis will save time and how much time it will
save.

Solvable Problems
One metric which influences the search for interesting in-
stances is the number of problems that are solvable. We ob-
served that many random instances were solvable without
modification and so we looked into the percentage of solv-
able random instances. The results are in Figure 8. While
only 10% of the problems with 4 pieces are solvable, around
65% of the problems with 10 pieces are solvable. This means
that the problem is not in generating solvable instances, but
generating interesting solvable instances. The difference in
the number of solvable problems will significantly influence
the features needed in a tool designed to help designers build
and find interesting instances, something which is a topic of
current research (Smith, Butler, and Popovic 2013).

General Approach
Using our tool for Fling! as a model, we propose that there
are a number of brute force search techniques which can be
used to assist in the design of interesting puzzle instances.
These include combining retrograde analysis and the cre-
ation of endgame databases, as well as forward search us-
ing this data. Other techniques include selective breadth-first
search. Together, these techniques can be used to label and
annotate puzzle instances to suggest how changes to a puz-
zle will influence solvability.
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Figure 8: The percentage of problems which are solvable.

Overall, the state space of many games grows exponen-
tially with the size of the puzzle, meaning that a slight
growth in the size of the representation can result in a large
multiplicative growth in the state space size. Although rel-
atively large instances can now be solved exhaustively, the
state space of many games is far beyond that which can ever
be exhaustively searched. While we agree that these methods
do not apply to all games, particularly those of a more con-
tinuous nature, many large state spaces can be decomposed
or abstracted in ways that drastically reduce the number of
possible states.

Consider, for instance, work on generating puzzles for a
fraction-training game (Smith et al. 2012). In this game play-
ers must route lasers around a board, which is blocked in
certain locations by rocks. While the full game is too large
to exhaustively enumerate, it is possible to factor the board
and generate all solutions for the lasers, ignoring the rocks.
Then, the placement of rocks can be used to filter the legal
solutions. This type of decomposition has the potential to
significantly scale the size of the search space which can be
handled via uninformed search.

Related Work on Large-Scale Breadth-First
Search

Large-scale searches, often with trillions or more states,
have been more widely studied in the last few years. We
highlight a few approaches here, although there is much
more work on the topic than can be described here.

Notable in this work is Korf’s complete breadth-first
search of the 15-puzzle sliding-tile puzzle (Korf and
Schultze 2005), which has over 10 trillion (1013) states. At
the time this took approximately 30 days, and there was in-
sufficient storage to store the results for later analysis, al-
though this is possible today on consumer hardware. The
approach took advantage of a large number of search tech-
niques, including frontier search, which just stores a single
layer of the BFS at one time.

Another line of research has been performed on Rubik’s
cube. This work successively reduced the bound on the max-
imum number of moves required to solve any state (Kunkle
and Cooperman 2008). The primary method used to per-
form these computations was large-scale parallel breadth-



first search with hard disk drives for storage. The final bound
of 20 moves was recently proven (Rokicki et al. 2010) using
slightly different methods.

Both of these techniques are primarily one-shot, in that
a computation is performed, but the results are not used
for significant purposes afterwards. Work by Zhou and
Hansen (2007) have used large-scale searches for finding
optimal solutions to planning problems, and they have de-
veloped methods for using data stored in external memory
efficiently (Zhou and Hansen 2005).

The largest search results which have been computed
for later extensive usage has been the endgame databases
used in the game of Checkers (Schaeffer et al. 2005). These
databases were built after the Chinook program had finished
competitive play, but could be used both for analyzing and
playing the game of Checkers, and were later used for solv-
ing the game (Schaeffer et al. 2003).

More recently, we have computed and saved the results of
a large-scale BFS of the edge cubes of Rubik’s Cube, and
of the single-agent version of Chinese Checkers (Sturtevant
and Rutherford 2013). Both of these state spaces have about
1 trillion states and are stored using 4-bits per state requiring
approximately 500GB of storage. The Rubik’s cube search
only required a week to complete, while Chinese Checkers
took a month.

One other area where large-scale searches are also per-
formed is in model-checking (Jabbar and Edelkamp 2006).
In this area the searches are used to validate that a model of
a system meets the given specification.

Conclusions and Future Work
In this paper we have performed a case-study of the puzzle
game Fling!. We have used a number of brute-force search
techniques to enable designers to explore puzzles and how
modifications of the puzzles influence solvability. This pa-
per represents the preliminary stages of work on automated
large-scale analysis of puzzles with the purposes of semi- or
fully-automated design of new puzzle instances. Much more
work is needed to improve and understand the limits of the
approach, stretching the applicability of simple searches for
puzzle design.
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