
Part 3: Map Representations &
 Geometric Path Planning

Michael Buro

          GAMES Group
                  University of Alberta

Game-playing, Analytical methods, 
Minimax search, and Empirical Studies



Outline
● Map Representations

– Grids, polygon-based

– Free space decompositions

– Constrained Delaunay Triangulations

● Path Planning in Triangulations
– A* applied to triangulations (TA*)

– Triangulation Reductions and TRA*

● Outlook
– Further improvements

– Applications to high-level game AI



Pathfinding
● Want to get some 

object from one point 
to another, avoiding 
obstacles

● Robotics: non-point 
object, needs to avoid 
obstacles by some 
margin

● Games: needs to be 
very fast and use little 
memory



Map Representations
● Path planning algorithm is only half the 

picture
● Underlying map representation and data 

structures are just as important
● Important design questions:

– Are optimal paths required?
– Is the world static or dynamic?
– Are worlds known ahead of time?
– Are there real-time constraints?
– How much memory is available?



Goal of pathfinding algorithms

● Find (nearly) optimal path, where optimal 
usually means quickest 

● Obey constraints (e.g. object size, fuel limit, 
exposure to enemy fire, real-time)

● Terrain features and some interactions with 
the environment can be expressed in terms 
of gaining or losing time
– Moving on highways vs. swamps

– Destructible obstacles along the way 

● Tradeoff between search space complexity 
and path quality



State Space Generation

● Worlds can be huge
● Like to avoid cumbersome task of picking 

waypoints or room abstractions manually
● Should be automatically generated from  

world geometry



Finding Paths in 
Continuous Spaces

● Main approach: discretize continuous height 
field to create search graph

● Objects move on 2d surface, so mapping 
height field to plane is sufficient



Regular Grids



Grid-Based Methods

● Represent the environment 
by a grid of (usually square) 
cells

● Each cell is either 
traversable or obstructed

● Object (on a traversable 
cell) can move to any 
adjacent traversable cell



Grid-Based Methods: Advantages
● Conceptually simple 

representation
● Local changes have 

only local effects –   
well-suited for dynamic 
environments

● Perfectly represents tile-
based environments

● Exact paths easy to 
determine for cell-sized 
objects



Grid-Based Methods: Disadvantages
● Imprecise representation of 

arbitrary barriers
● Increased precision in one 

area increases complexity 
everywhere – potentially 
large memory footprint

● Awkward for objects that 
are not tile-sized and 
shaped

● Need to post-process paths 
if environment allows 
arbitrary motion angles (or 
tweak A*)



Geometric Representations

● World is an initially 
empty simple shape

● Represent obstacles 
as polygons, i.e. 
sequences of line 
segments (also 
called constraints)

● Find path between 
two points that does 
not cross constraints

A

B



Geometric Methods

● Advantages
– Arbitrary polygon 

obstacles

– Arbitrary motion 
angles

– Memory efficient

– Finding optimal 
paths for circular 
objects isn't hard

– Topological 
abstractions

● Disadvantages
– Complex code

– Robustness issues

– Point localization 
takes more than 
constant time



Visibility Graphs
● Place nodes at corners of 

obstacles

● Place edges between nodes 
that can “see” each other

● Find path from A to B:

– add these nodes to graph, 
connect to visible nodes

– A* on resulting graph
● Path provably optimal

● But adding and changing 
world can be expensive as 
graph can be dense

A

B



Free-Space Decompositions
● Decompose empty areas into 

simple convex shapes (e.g. 
triangles, trapezoids)

● Create waypoint graph by placing 
nodes on unconstrained edges 
and in the face interior, if needed

● Connect nodes according to  
direct reachability

● Find path from A to B:

– Locate faces in which A, B 
reside

– Connect A, B to all face nodes

– Run A*, smooth path

 



Local path finding
● Path planning algorithms must be able to deal with 

dynamic obstacles
● Adding / removing objects can be expensive in 

abstractions or geometry-based systems 
● Can use simple object avoidance methods that try 

to follow high-level paths and resolve local 
conflicts



Triangulations

● Starting with an area (like 
a rectangle) and a 
collection of points

● Add edges between the 
points without such 
edges crossing

● Continue until no more 
such edges can be 
added



Triangulation Quality

● For a given point set 
many triangulations 
exist

● We would like to avoid 
sliver-like triangles 
which decrease 
locality and the quality 
of distance heuristics



Delaunay Triangulations

● Triangulations in which the 
minimum interior angle of all 
triangles is maximized

● Makes “nice” triangulation: 
tends to avoid thin, sliver-
like triangles

● Can be done locally by 
“edge flipping” diagonals 
across quadrilaterals



Delaunay Triangulation 
Characterization

A triangulation maximizes the minimal angle iff
the circumcircle of any triangle does not contain
another point in its interior

legal

illegal – needs to be flipped



Computing 
Delaunay Triangulations

1. Initialize triangulation T with a “big enough” helper 
bounding triangle that contains all points of P

2. Randomly choose a point pr from P

3. Find the triangle ∆ that pr lies in

4. Subdivide ∆ into smaller triangles that have pr as a 
vertex

5. Flip edges until all edges are legal
6. Repeat steps 2-5 until all points have been added 

to T

Randomized algorithm. Expected runtime O(n log n)
Can also be computed using Divide & Conquer



Inductive Step



Constrained Triangulations

● Triangulations where 
certain (constrained) edges 
are required to be in the 
triangulation

● Then other (unconstrained) 
edges are added as before

● Constrained Delaunay 
Triangulations maximize 
the minimum angle while 
keeping constrained edges

● Above algorithm can be 
used with modifications



Dynamic Constrained Delaunay 
Triangulations (DCDT)

● Marcelo Kallmann's DCDT software can repair a 
triangulation dynamically when constraints 
change

● Repairs can be made using local information 
allowing it to work in a real-time setting



How DCDT Works
● Point localization.  Algorithms 

usually construct a DAG for 
localizing points in time O(log n) 

– Maintaining this DAG is 
complicated

– “Jump and Walk” algorithm 
much simpler and quite 
efficient (           in DTs)

● Repairing the triangulation 
after changing constraints is not 
trivial either but takes amortized 
constant time (mostly local 
operations)

O n1 /3

Sample triangles and walk 
towards the location starting 
with the closest triangle



Example: Add Constraint



Robustness of
Geometric Computations

● Using fixed-length floating point 
arithmetic can cause geometric 
algorithms

– to crash

– to hang

– to produce incorrect output
● Kallmann's DCDT software suffers 

from this in rare cases

● We are working on a GPL'ed DCDT 
implementation that overcomes this 
problem by using rational and 
interval arithmetic



Triangulation-Based Pathfinding
● Using a constrained 

triangulation with barriers 
represented as constraints

● Find which triangle the 
start (and goal) point is in

● Search adjacent triangles 
across unconstrained 
edges

● Finds a channel of 
triangles inside which we 
can easily determine the 
shortest path 



Triangulation-Based Pathfinding:
Advantages

● Remedies grid-based 
methods' deficiency with 
off-axis barriers

● Representing detailed 
areas better doesn't 
complicate “open” areas

● Triangulations have much 
fewer cells and are more 
accurate than grids

● Can deal with non-point 
objects quite easily (below)



Triangulation-Based Pathfinding: 
Disadvantages

● Curved obstacle barriers must 
be approximated by straight 
segments

● We do not know what path we 
will take through the triangles 
until after we have found the 
goal

● Can lead to either suboptimal 
paths or multiple paths to 
triangles ?   ?    ?



Funnel Algorithm
● To find the exact path 

through a channel of 
triangles, we use the funnel 
algorithm

● Finds the shortest path in this 
simple polygon in time linear 
in the number of triangles in 
it

● Maintains a funnel which 
contains the shortest path to 
the end of the channel so far

● Funnel is updated for each 
new vertex in the channel



Modified Funnel Algorithm
● For circular units with 

non-zero radius
● Conceptually attach 

circles of equal radius 
around each vertex of 
the channel

● Consider segments 
tangent to these 
circles and arcs along 
them



“Naive” Search

● Assume, while 
searching, that we 
know the exact path 
through the triangles

● Use this to prune 
search states

● For example, assume 
straight-segment 
paths between edge 
midpoints



“Naive” Search:
Advantages and Disadvantages

● Considers each triangle 
once and has fairly good 
distance measures

● So finds paths quickly
● However, in cases like 

the example on the right, 
thinks a path through the 
bottom channel is shorter 
than one through the top

● So it may result in 
suboptimal paths



How To Find Optimal Paths?
● (Under)estimate the distance travelled so far
● Allow multiple paths to any triangle
● When a channel is found to the goal, calculate 

the length of the shortest path in this channel
● If it is the shortest path found so far, keep it, 

otherwise, reject it (anytime algorithm)
● When the distance travelled so far for the paths 

yet to be searched exceeds the length of the 
shortest path, the algorithm ends and we have 
an optimal path



Triangulation A* (TA*)
● Search running on the base triangulation
● Uses a triangle for a search state and the adjacent 

triangles across unconstrained edges as neighbors
● Using anytime algorithm and considering multiple 

paths to a triangle as described earlier
● For a heuristic (h-value), take the Euclidean 

distance between the goal and any point on the 
triangle's entry edge

● Calculate an underestimate for the distance-
travelled-so-far (g-value) 

● Only considers triangles once until the first path is 
found



Triangulation Reduction

● Want to reduce the 
triangulation without losing 
its topological structure

● Determine triangles as 
being decision points, on 
corridors, or in dead ends

● Map a triangle to a degree-
n node when it has exactly 
3-n triangles adjacent 
across unconstrained 
edges that are not mapped 
to degree-1

?



Topological View



Reduction Example

● Pathfinding in tree 
components (degree-1, 
empty squares) and 
corridors (degree-2, 
solid squares) is trivial

● The only real choice 
points are degree-3 
triangles (solid circles)

● The resulting search 
graph has size linear in 
the number of islands!



 Simple Special Cases:
 No Search Required



Typical Triangulation Graph
and its Reduced Form



Abstraction Information

● Adjacent structures
● Choke points (the 

narrowest point between 
this triangle and the 
adjacent structure)

● A lower bound on the 
distance to each adjacent 
structure

● The triangle “widths”
● Using this graph can find 

paths for differently sized 
objects



Triangulation Reduction A* (TRA*)

● TA* running on the abstraction just described
● First check for a number of “special cases” 

where no actual search needs to be done
● Move from the start and goal to their 

adjacent degree-3 nodes
● Use degree-3 nodes as search states and 

generate their children as the degree-3 
nodes adjacent across corridors

● As with TA*, use an anytime algorithm, 
allowing multiple paths to a node, and use 
the same g- and h-values



Experimental Setup
● 116 maps scaled to 512 x 512 tiles:

75 Baldur's Gate maps (grid of tiles marked 
traversible or untraversible)

41 WarCraft III maps (grid of types of terrain and 
heights where paths cannot cross height differences 
without ramps or boundaries between different types 
of terrain)

● 1280 paths in each, with A* length between 0 
and 511 and categorized into one of 128 buckets 
based on length

● Compared TA* and TRA* to A* and PRA* using 
these same maps and paths



Experimental Results
● Execution times of standard A* and PRA*



Experimental Results, Cont'd
● First paths found by TA* & TRA* (not searching 

duplicates)



Experimental Results, Cont'd
● Speedup comparison and nodes expanded



Experimental Results, Cont'd

● TA* path length ratios compared to A* and 
lower bound



Experimental Results, Cont'd

● TRA* path length ratios compared to A* and 
lower bound



Conclusions

● Triangulations can accurately and efficiently represent 
polygonal environments

● Triangulations offer unique possibilities for pathfinding 
for a non-point (especially circular) object

● Triangulation-based pathfinding finds paths very quickly 
and can also find optimal paths given a bit more time

● Our abstraction technique identifies useful structures in 
the environment: dead-ends, corridors, and decision 
points

● This abstraction can be used to find paths even more 
quickly, only depending on the number of obstacles



Future Work (1)
● Further abstraction is possible by collapsing strongly-

connected components of the abstract graph into single 
nodes of an even more abstract graph (a forest)

– Identify “rooms” in the environment (similar to HPA*)
– Pathfinding across tree nodes is trivial, and paths 

between entry points of the components could even 
be cached



Future Work (2)
● Channels resulting from TA* or TRA*  are 

useful in pathfinding involving multiple 
objects because channel widths are known

● Terrain analysis is possible with the 
abstraction information (e.g. identifying 
choke points)

● More edge annotations can reduce the 
need for triangulation updates (e.g. enemy 
presense in corridors)

● It may be useful to construct waypoint 
graphs from triangulations that produce 
close to optimal paths in one shot



References
● AI Game Programming Wisdom Book Series
● M. de Berg et al., Computational Geometry, 3rd 

edition, Springer Verlag 2008
● M. Kallmann, H. Bieri, D. Thalmann, Fully 

Dynamic Constraint Delaunay Triangulations, 
in Geometric Modeling for Scientific Visualization, 
Springer Verlag 2003

● M. Kallmann, Pathplanning in Triangulations, 
IJCAI 2005

● D. Demyen, Triangulation-Based Pathfinding, 
MSc. Thesis, 2006, which is summarized in:

● D. Demyen and M. Buro, Efficient Triangulation-
Based Pathfinding, AAAI 2006



Extra Material



Reduction Algorithm
● Abstract triangles with 

3 constrained edges 
as degree-0

● Abstract triangles with 
2 constrained edges 
as degree-1

● Put the triangle 
adjacent the 
unconstrained edge 
on a queue

1

1

1
1

11

1

1

1

1

q

q

q

q

0

0

0

0

0

q



Reduction Algorithm, Cont'd
● Go through the queue

– If the triangle is now 
degree-1, abstract it as 
one

– And put the unabstracted 
face across the 
unconstrained edge onto 
the end of the queue

– Otherwise, just remove it
● Sometimes a connected 

component is “collapsed” 
into all degree-1 triangles

1

1

1
1

11

1

1

1

1

q

q

0

0

0

0

0

1

1

1

1

q



Reduction Algorithm, Cont'd
● Go through the other 

triangles
● Determine which ones 

have neither 
constrained edges nor 
adjacent degree-1 
triangles

● Abstract these as 
degree-3

● There are 2n – 2 for a 
component with n 
obstacles

1

1

1
1

11

1

1

1

1

0

0

0

0

0

1

1

1

1

1

3

3

3

3



Reduction Algorithm, Cont'd
● From degree-3 

triangles, move 
through the corridors 
of unabstracted 
triangles to the next 
degree-3 triangles

● Abstract these 
triangles as degree-2

● If there are still any 
unabstracted nodes, 
abstract them into one 
or more “rings” of 
degree-2 triangles

1

1

1
1

11

1

1

1

1

0

0

0

0

0

1

1

1

1

1

3

3

3

3

2 2 2

22

2

2

2

2

2
2

2 2 2

2

2

2

2

2

2



TRA* Special Cases

● For TRA* there are a 
number of special cases

● One must check for 
these first, a degree-3 
search may not be 
required

● For example: If the start 
or goal is the root of a 
tree containing the 
other, we can “walk” to 
the root for the only 
path



TRA* Special Cases, Cont'd

● Another one occurs 
when the start and 
goal are on the same 
“loop”

● We walk both ways 
around and pick the 
shorter path

● Works the same for 
degree-2 rings



TRA* Special Cases, Cont'd

● If they are in the same 
degree-1 tree, we can 
do a simple search to 
find the path

● We stay within the tree
● Since there is only one 

path in a tree, we don't 
need to worry about 
duplicates



TRA* Special Cases, Cont'd
● If they are on the 

same degree-2 
corridor, we take one 
path by walking 
through the corridor

● The degree-3 search 
then starts from the 
endpoints to attempt 
to find a shorter one

● The regular search 
starts if none if these 
cases applies



TRA* Degree-3 Node Search

● Start on a degree-3 
node: search queue 
initialized with a state 
using that node

● Goal on a degree-2 
corridor: degree-3 
nodes on both ends of 
that corridor are 
possible goals for the 
search

s

g
1

g
2



TRA* Degree-3 Node Search, Cont'd
● Start in degree-1 tree: 

search queue 
initialized with states 
using degree-3 nodes 
at ends of corridor at 
the root of the tree

● Goal is one degree-3 
node

● Now search moves 
only between 
degree-3 nodes

g

s
1

s
2


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Goal of Pathfinding algorithms
	Another Goal
	Better Option: Triangulation
	Regular Grids
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Corner graphs
	Slide 15
	Interacting with local pathfinding
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Algorithm Overview
	Outer Edges May Be Illegal
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	References
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

