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 with a focus on commercial video games
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Bridging contexts…

! Sven discussed many techniques for 

enhancing A* search

! There is another dimension along which we 

can optimize the performance of pathfinding 

algorithms
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Abstraction

! Most search problems can be represented 

by a graph

! Build a smaller graph which retains most 

relevant information in the original graph

! Similar to a low-resolution image

! (Holte 96; Bulitko et. al. 07)
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Why abstraction?

! Abstract graph is smaller

! Search is cheaper

! Defines subgoals in search

! Can be used for optimal or suboptimal 

solutions

! Pattern databases
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How is abstraction used?

! Almost all commercial video games use 

some type of abstraction

! Unreal engine has Kynapse A.I. plug-in

! Automatically builds high-level graph

! Units can only walk on the graph

! Will describe the system built for BioWare 

Corp for their upcoming title Dragon Age

(Sturtevant, 2007, AIIDE)
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Dragon Age™

BioWare Corp®

Leading developer of RTS games
Mass Effect
Jade Empire
Knights of the Old Republic
Neverwinter Nights
Baldur’s Gate

Dragon Age™

BioWare Corp®

Motivation

! Games have tight memory budgets

! ~5MB total memory for map data

! 1024x1024 or larger maps

• 1MB per byte per grid cell

! Can we use build an abstraction which 

minimizes memory usage?

! Total memory usage by abstraction

! Memory used during planning
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Motivation

! Don!t computers have lots of memory now?

! Develop / design for low end

! Models / graphics expensive

! New gaming platforms

• Nintendo DS

• iPhone
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Motivation

! Need to speed up search

! Previous pathfinding engine was taking up to 

100ms to plan

! Ideally should plan in 1ms or less

• 3-5ms for all planning per frame

! May need to handle many units in the same 

time frame
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Assumptions

! Grid world

! No true 3-d movement

! Cells can be blocked/free/weighted

! May be height difference between cells

! Units can move across real-valued space
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Solution

! Build abstract graph from low-level data

! Divide world into sectors

• Sub-divide into regions

! Maintain connectivity information between 

sectors
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Sectors / Regions

! Divide world into large 
sectors

! Fixed size

! Index implicitly

! Divide sectors into 
regions

! Regions entirely 
connected

! Regions have a 
center point
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Edges

! Look at borders of 
regions to determine 
edges
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Abstract Graph

! Original Map:

! 32x32 = 1024 

cells

! Abstract Graph:

! 9 nodes

! 10 edges
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Memory Usage

! Sector data

! Fixed size (32 bits)

! Region data

! Variable sized

! 8 bit region center

! Edge count

! 8 bits per edge

Sector Data Example

# Regions 2

unused -

Region Data Example

center 196

# edges 3

center 142

# edges 4

left:3

upleft:1

up:1

up:2

up:1

variable-sized 

edge storage
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Memory Usage

! Can save more 

memory:

! 16 bits for sectors

! “Default” regions

! Edges stored twice

! Other optimizations

Sector Data Example

# Regions 2

unused -

Region Data Example

center 196

# edges 3

center 142

# edges 4

left:3

upleft:1

up:1

up:2

up:1

variable-sized 

edge storage
1
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2
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How is abstraction used?

! Need to find path 

between two 

points in the actual 

map

! Find abstract 

region

! Find abstract path

! Refine
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Find Abstract Region

! Begin with x/y location in real world

! Sector implicit

! If sector only has 1 region, done

! Otherwise do BFS to find region center
! Extra bits in grid can store region info

! Pointers not needed
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Find Abstract Path

! Given sector/region for start and goal:

! Use A* to find a complete abstract path

! Use Manhattan/octile distance between region 

centers as both heuristic and edge cost
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Refine

! Many different ways to use abstract path

! Simplest method:
! Find path from start to first region

! Find path to successive region centers

! Find path from last region to goal
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Usage Example

! Find abstract 

parents

! Find abstract path

! Find real path
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Analysis

! Total pathfinding cost

! Optimizations
! Region center placement

! Reducing suboptimality

! Experimental verification
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Total Pathfinding Cost

! Abstract planning

! Depends on path length, sector size

! Refinement

! Depends on path length, edge refinement

(region centers, suboptimality)

! Maximize sector size
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Optimizing

Region Centers

! How to determine 

the region 

centers?

! Some locations 

are much better 

than others

! Harder with larger 

sector sizes
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Optimizing

Region Centers

! How to determine 

the region 

centers?

! Some locations 

are much better 

than others

! Harder with larger 

sector sizes

b c

a

b

a

b

1

2 3

0

a

26

Optimizing

Region Centers

! How to determine 

the region 

centers?

! Some locations 

are much better 

than others

! Harder with larger 

sector sizes
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Optimizing

Region Centers

! How to 

determine the 

region centers?

! Some locations 

are much better 

than others

! Harder with 

larger sector 

sizes
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Optimizing

Region Centers

! In a sector, for each cell in a region:

! Measure A* cost to plan a path to each neighboring 

region from that cell

! Choose the region center which minimizes the 

maximum cost

! Can optimize any cost function
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Pathfinding Optimization

! Refinement at 

start/goal can be 

inefficient

! Trim path 

segments

! Skip to next 

region at start/

goal
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30

Sector-Related Errors

! All points within a 

sector/region are 

treated equally

! Adjust abstraction 

when performing 

search
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Sector-Related Errors

! All points within a 

sector/region are 

treated equally

! Adjust abstraction 

when performing 

search
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Experimental Results

! 93,000 paths over 120 maps

! Maps scaled to 512x512

! Paths length

1…512

! Evaluate:

! Memory

! Region center optimization

! Optimality

! Total Work
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Memory Usage

! How does the memory usage scale with 

sector size?

! How much memory can be saved with 

simple compression?
! Don!t store “default” sectors with

1 region, 8 neighbors
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Memory Usage
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35

Dynamic Region Centers

! Is there a gain to dynamically optimizing 

region centers?

! Measure 95% work done in one-step path 

refinement
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Dynamic v. Static Centers

(1-Step Planning)
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Optimality

! Paths will not be optimal

! Special cases for start/goal help

! Smoothing is applied as a post-processing 

step (not measured)
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Optimality
Optimality
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Total Work

! Compare total work by sector size

! Find abstract path

! Refine low-level path

! Compare to A*
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Total Work
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Total Work v. A*
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A* (Average)
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Implementation

! Custom implementation for upcoming title 

Dragon Age™ (BioWare Corp®)

! Worked in-game during parts of 4 months

! Initial implementation took two weeks

• Rebuilt pathfinding core

! Spent ~4 weeks optimizing code, adding 

smoothing, control structures, etc
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Final Performance

! About 0.1ms (100µs) per step of planning

! Find abstract path

! Refine 1 edge from abstract path

! Interleave planning and acting
! Can plan for 30-50 units every frame

! Units do not need to plan every frame

! Can “gracefully” degrade performance

! Units offscreen don!t need to smooth
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Memory Usage

! Memory usage is well within requirements

! Very little memory needed on a per-unit 

basis for planning
! Abstract path

! Current path

! State of planning/smoothing
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Data Structures

! A* uses:

! Open list -- usually a heap

! Closed list -- hash table

! Back pointers -- reconstruct path

! Can!t store these on the map

! Simple implementation occasionally slow

! Allocate small closed list for each sector

! Can quickly be cleared; no deallocation

48



Summary

! Units walk on real-space

! Abstract into a high-resolution 2-d grid

! Abstract again into coarse graph

! Units pretend to live on high-resolution grid

! Michael will talk about getting rid of the 2-d 

grid
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That!s great but…

! In many domains, pathfinding involves 

multiple units

! How can units cooperate when planning?
! Ignore each other and replan

! Using "flocking! methods to avoid other units

! Explicitly cooperate

• (Dresner and Stone, 2008, JAIR)

• (Silver, 2005, AIIDE)

• (Sturtevant and Buro, 2006, AIIDE)
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Dresner & Stone

! Traffic management problem

! Can cooperative cars increase traffic 

throughput?

! Centralized system manages reservations
! Can a car get through the intersection safely?

! Tries several different speeds

! Forces cars to wait until the can get a 

reservation
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Generalized Cooperative

Pathfinding

! Goal: Multiple agents cooperate during path 

planning and execution

! Generalized travel (eg no lanes)

! Centralized reservation system

! Use abstraction to reduce costs
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Possible Strategies

! Plan all units simultaneously

! Computationally intractable

! (unitsactions)depth

! Plan individual units
! Not complete

! A lot of techniques needed to be practical
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Overview

! Why problem is hard

! What techniques simplify the problem

! Improving performance with abstraction

! Evaluation
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WHCA*(w)

! Windowed Hierarchical Cooperative A*

! Cooperative A*

! Hierarchical Heuristic

! Windowed cooperation

! Silver, 2005
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WHCA*

! Use a hash table to store time-space 

indexed reservations

! Constant time acces

! Is a space/time cell free?

! Reserve a space/time cell

! Free a space/time cell

67 68



A*

! A* relies on a heuristic to guide search

! Poor heuristics cause extra node expansions

! Cost is the area in which the heuristic is poor
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Cooperative A*

! 3-dimensional search problem

! x-location, y-location, time

! Still need a heuristic

• Cost is the area in which the heuristic is poor times 
the time to get out of that area = volume
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Heuristics

! Need a very accurate heuristic

! Where can we get a heuristic?
! Run A* from the goal to the start state to get h() 

value for many states
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Windowed Search

! We now have a perfect heuristic

! With a perfect heuristic only 1-step lookahead 

is needed

! Stop search at any time and be guaranteed to 

be on a path to the goal

! Do k-step lookahead in cooperative space
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WHCA*(k)

! Do single A* search from goal to start

! Do k-step forward cooperative search

! Expand original search if new heuristic values 

needed
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WHCA* Drawbacks

! First step is expensive

! Compute complete reverse A* search

! Compute forward CA* search

! Memory per unit is expensive
! Keep whole search frontier in memory

! Goal State can!t change
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Improving WHCA*

! Abstraction

! Widely used idea (eg Holte, 1996)

! Two possible usages

! WHCA*(w, a)

! CPRA*(k)
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Abstraction

! Use fine-grained map abstraction

! Dragon Age abstraction abstractions 16x16 

sectors in one step

! Instead abstract 2x2 sectors in one step

! Or: abstract small cliques (4 nodes) in the map

! Theoretical work suggests this minimizes 

pathfinding computation

• (Holte, 96; Sturtevant and Jansen, 07)
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Sample
Map
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Base Graph

16,807 nodes
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Abstraction 1

5,212 nodes
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Abstraction 2

1,919 nodes
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Abstraction 3

771 nodes
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! Same as WHCA*(k) but do reverse A* 

search at abstract level a

! Keep smaller A* open/closed list in memory

! Faster A* computation

! Eventually less accurate

WHCA*(k, a)
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PRA*

! Partial-Refinement A*

! Use multiple abstraction levels

! Refine abstract paths using A*
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Start Goal
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Pathfinding

! Given abstract path:

! Path defines a corridor in the lower level of 

abstraction

! Run A* in this corridor to find next path

! Repeat until done
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Start Goal

PRA*(!)
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Start Goal

PRA*(k)
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CPRA*(k)

! Same as PRA*(k), but do WHCA*(k, 1) at 

last refinement level

! Only plan part of total path
! Much lower first-step cost

! Repeated WHCA* calls after executing each 

path
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Experiments

! Run algorithms on 256x256 map

! Place units on opposite sides of map and ask 

them to cross sides

! Report 95%
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Memory Usage
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Nodes

First second
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Nodes

Average per second
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Nodes

Average per second
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Generalizing

! General technique for n-dimensional 

pathfinding problems

! Solve problem in n-1 dimensional space

! Use as heuristic in n-dimensional search

! If possible use “lower resolution” version of n-1 

dimensional problem

104



But…

! How well does it work with lots of units in 

open space?

! Not as well as one might expect
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But…

! How well does it work with lots of units in 

open space?

! Not as well as one might expect

! Units are searching for the shortest path
! Prefer shorter paths over paths which have a 

higher probability of success
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Real crowd movement



Simulated crowd movement

Some perspective

! Static 2-d search is cheaper than 3-d search

! Static information about other units isn!t 

very useful

! Is there any other static information that we 

can retain?
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Static information about motion.

Retained Information

! Direction Vector

! Associated with a location on a map

! Which direction units travel through the location

! Updated dynamically as units move

! Direction Map

! Direction vectors for every location on the map

! Similar to flow fields used for flocking
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Now what…?

! What do we do with all these arrows?

! During planning:
! Traveling in the same direction of an arrow is 

cheaper

! Traveling in the opposite direction is more 

expensive

113

!!

Uncoordinated

Unit Behavior

Coordinated

Unit Behavior



Uncoordinated

Unit Behavior

Coordinated

Unit Behavior

Uncoordinated

Unit Behavior

Coordinated

Unit Behavior

Practical

Considerations

Other considerations

! Where do the initial weights come from?

! How much memory does it take to store the 

weights?

! What is the additional planning cost?
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Other considerations

! Where do the initial weights come from?

! How much memory does it take to store the 

weights?

! What is the additional planning cost?
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! Simple design

! One arrow per 

square

! Arrow is two 

floats

! In-game usage
! One arrow for 

multiple squares

! 3 bits per arrow
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Other considerations

! Where do the initial weights come from?

! How much memory does it take to store the 

weights?

! What is the additional planning cost?
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Planning Cost

! Planning using direction maps is more 

expensive

! Weighted A* can reduce the cost

! Use abstraction to reduce planning length

! Can maintain direction maps for classes of 

units, or only in congested areas of the map
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Summary

! Abstraction techniques very effective across 

a variety of problems in reducing planning 

costs

! Used for defining subgoals in search

• Dragon Age

! Used for heuristics in search

• Cooperative pathfinding

! Many different ways of applying abstraction
! Best method depends on problem constraints
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Summary

! Abstraction is orthogonal to many other 

search enhancements

! Everything Sven talked about could be used on 

one or more levels of abstraction

! Rich toolbox for balancing performance in any 

particular domain
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Thanks!

! Comments, 

questions?

! Co-collaborators:

! Markus 

Enzenberger

! Renee Jansen

! Michael Buro

! Vadim Bulitko
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