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Problem definition

(k, A)-subgraph problem:
@ Input: Given a weighted undirected graph G and integer
parameters k and A
@ QOutput: Find a minimum weight A-edge-connected subgraph
of G containing at least k nodes.
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Problem definition

(k, A)-subgraph problem:
@ Input: Given a weighted undirected graph G and integer
parameters k and A
@ QOutput: Find a minimum weight A-edge-connected subgraph
of G containing at least k nodes.
Generalizes many classical problems:
@ k-MST = (k,1)—subgraph problem.
Approximation factor: vk [13], O(log? k) [1], O(log n) [12],
constant [3, 8] and 2 [9].
@ min-cost A-edge-connected spanning graph
= (|V(G)|, \)—subgraph problem
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Known results

(k, A)-subgraph problem in general graphs:
@ Introduced recently by Lau et al. [11].

o They obtain an O(log? n)-approximation for (k,2)-subgraph
problem.

MohammadAli Safari and Mok i R. Sal Approximation algorithm for minimum X-edge-connected k-sub




Introduction Obtaining a low cost (k — O(\), A)-subgraph From size k — O()) to size k Conclusion
00000 0000 00

Known results

(k, A)-subgraph problem in general graphs:
@ Introduced recently by Lau et al. [11].
@ They obtain an O(log? n)-approximation for (k,2)-subgraph
problem.
@ For arbitrary A: as hard as the k-densest subgraph problem
[11]; best known approximation factor is O(n%*) for some
e > 0.
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Known results

(k, A)-subgraph problem in general graphs:
@ Introduced recently by Lau et al. [11].
@ They obtain an O(log? n)-approximation for (k,2)-subgraph
problem.

@ For arbitrary A: as hard as the k-densest subgraph problem
[11]; best known approximation factor is O(n%f“‘) for some
e>0.

@ Chekuri and Korula [5]: O(log? n)-approx for (k,2)-subgraph
problem with node-connectivity constraint.
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Our result

@ Here we consider the instances in which the underlying graph

G is metric:
Theorem: For the (k, \)-subgraph problem on metric graphs,

there is an O(1)-approximation algorithm.
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Our result

@ Here we consider the instances in which the underlying graph
G is metric:
Theorem: For the (k, \)-subgraph problem on metric graphs,
there is an O(1)-approximation algorithm.

@ Note that the constant factor approximation algorithms for
k-MST and k-TSP are on graphs with metric cost function.
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Our result

@ Here we consider the instances in which the underlying graph
G is metric:
Theorem: For the (k, \)-subgraph problem on metric graphs,
there is an O(1)-approximation algorithm.

@ Note that the constant factor approximation algorithms for
k-MST and k-TSP are on graphs with metric cost function.

@ The constant in the O(1) term is between 400-500.
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Our result

@ Here we consider the instances in which the underlying graph
G is metric:
Theorem: For the (k, \)-subgraph problem on metric graphs,
there is an O(1)-approximation algorithm.

@ Note that the constant factor approximation algorithms for
k-MST and k-TSP are on graphs with metric cost function.

@ The constant in the O(1) term is between 400-500.

@ Our algorithm is inspired by the work of Cheriyan and Vetta
[4] for subset-node-connectivity problem.
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Observation

We use two basic lower bounds on the optimum solution.
Let G* be the optimal solution and OPT = ¢(G*); T* be a MST
of G*.
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Observation

We use two basic lower bounds on the optimum solution.

Let G* be the optimal solution and OPT = ¢(G*); T* be a MST
of G*.

1. Minimum Spanning Tree of G*

Using the cut-constraint in the IP-formulation of MST:
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Observation

We use two basic lower bounds on the optimum solution.
Let G* be the optimal solution and OPT = ¢(G*); T* be a MST
of G*.

1. Minimum Spanning Tree of G*

Using the cut-constraint in the IP-formulation of MST:

2. A nearest neighbors

if S, is the set of A nearest neighbors of v and s, is their total
distance to u then 13", ;. s, < OPT
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Observation

We use two basic lower bounds on the optimum solution.
Let G* be the optimal solution and OPT = ¢(G*); T* be a MST
of G*.

1. Minimum Spanning Tree of G*

Using the cut-constraint in the IP-formulation of MST:

2. A nearest neighbors

if S, is the set of A nearest neighbors of v and s, is their total
distance to u then 13", ;. s, < OPT

Our algorithm presents a solution whose cost is bounded within an
O(1)-factor of these two bounds.
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General steps

The algorithm has two main phases.

@ In Phase 1, we obtain a (k — \/7, \)-subgraph, call it H,
which has cost O(oPT).
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General steps

The algorithm has two main phases.
@ In Phase 1, we obtain a (k — A\/7, \)-subgraph, call it H,
which has cost O(oPT).

@ In Phase 2, we show how to expand H to a (k, \)-subgraph,
while keeping the cost within O(0oPT).
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Algorithm for Phase 1

To find a low cost (k — O(X), A)-subgraph:

o Create a new graph G'(V U V', E’) from G by creating a new
vertex u’ for each v € G and E' = EU {uu/|u € V},
c(ud) =s,.
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Algorithm for Phase 1

To find a low cost (k — O(X), A)-subgraph:

o Create a new graph G'(V U V', E’) from G by creating a new
vertex u’ for each v € G and E' = EU {uu/|u € V},
c(ud) =s,.

@ For every other edge in G’ multiply its weight by \.
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Algorithm for Phase 1

To find a low cost (k — O(X), A)-subgraph:

o Create a new graph G'(V U V', E’) from G by creating a new
vertex u’ for each v € G and E' = EU {uu/|u € V},
c(ud") = s,.

@ For every other edge in G’ multiply its weight by \.

@ Using a p-approx alg, say ST-alg, for k-Steiner tree, find a
k-Steiner tree T’ in G’ on terminal set V',
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Algorithm for Phase 1

To find a low cost (k — O(X), A)-subgraph:

o Create a new graph G'(V U V', E’) from G by creating a new
vertex u’ for each v € G and E' = EU {uu/|u € V},
c(ud") = s,.

@ For every other edge in G’ multiply its weight by \.

@ Using a p-approx alg, say ST-alg, for k-Steiner tree, find a
k-Steiner tree T’ in G’ on terminal set V',

o Note that T’ minimizes (approximately)
> uet Sut ADect Cer and has at least k nodes of G.
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Algorithm for Phase 1

@ Using the two lower bounds mentioned, it is easy to show that:
Claim:¢(T’) = 4poPT.
Let To C G be the tree obtained by deleting dummy vertices
of T'.
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Algorithm for Phase 1

@ Using the two lower bounds mentioned, it is easy to show that:
Claim:¢(T’) = 4poPT.
Let To C G be the tree obtained by deleting dummy vertices
of T'.

e We'll pick some vertices v € Ty such that [, s/| =~ k.
Make a clique of each such vertex v together with its
neighbors in S,.

MohammadAli Safari and Mol 1 R. Sal ipour Approximation algorithm for minimum X-edge-connected k-sub




Introduction Obtaining a low cost (k — O(\), A)-subgraph From size k — O()) to size k Conclusion
00000 [o] Te¥e} fele}

Algorithm for Phase 1

@ Using the two lower bounds mentioned, it is easy to show that:
Claim:¢(T’) = 4poPT.
Let To C G be the tree obtained by deleting dummy vertices
of T'.

e We'll pick some vertices v € Ty such that [, s/| =~ k.
Make a clique of each such vertex v together with its
neighbors in S,.

e For every (u,v) € Ty put a matching between the vertices in
S,—S, and S, — S, to obtain \-edge-connectivity.
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More details on how to do it...

@ Let vq,..., vk be an ordering of vertices of Ty s.t.
Sy Sy, <Ll Sy,
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Algorithm for Phase 1

More details on how to do it...
@ Let vy,..., vk be an ordering of vertices of Ty s.t.
Sy Sy, <.l Sy,

o We call the set S, the ball with center v; and B,, C S,,,
called the core, is the set of nodes with distance at most
2s,, /A to v;.
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Algorithm for Phase 1

More details on how to do it...

@ Let vy,..., vk be an ordering of vertices of Ty s.t.
Sy Sy, <.l Sy,

@ We call the set S, the ball with center v; and B,, C S,
called the core, is the set of nodes with distance at most
2s,, /A to v;.

@ We use a clustering to obtain a set of Active/Inactive balls:

o Active vs. Inactive Balls: Every vertex is active unless it is
close to an active ball with smaller s, value.
e The cores of active balls are disjoint.

MohammadAli Safari and Mol 1 R. Sal ipour Approximation algorithm for minimum X-edge-connected k-sub




Introduction Obtaining a low cost (k — O(\), X)-subgraph From size k — O() to size k Conclusion
00000 ooceo fele}

Algorithm for Phase 1

More details on how to do it...

@ Let vy,..., vk be an ordering of vertices of Ty s.t.
Sy Sy, <.l Sy,

@ We call the set S, the ball with center v; and B,, C S,
called the core, is the set of nodes with distance at most
2s,, /A to v;.

@ We use a clustering to obtain a set of Active/Inactive balls:

o Active vs. Inactive Balls: Every vertex is active unless it is
close to an active ball with smaller s, value.
e The cores of active balls are disjoint.

o Let i* be the smallest index such that U = U .cier, s < Sy
has at least k — \/7 nodes. We discard vertices v; with j > i*.
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Algorithm for Phase 1

More details on how to do it...

@ Let vy,..., vk be an ordering of vertices of Ty s.t.
Sy Sy, <.l Sy,

@ We call the set S, the ball with center v; and B,, C S,
called the core, is the set of nodes with distance at most
2s,, /A to v;.

@ We use a clustering to obtain a set of Active/Inactive balls:

o Active vs. Inactive Balls: Every vertex is active unless it is

close to an active ball with smaller s, value.
o The cores of active balls are disjoint.

o Let i* be the smallest index such that U = U .cier, s < Sy
has at least k — \/7 nodes. We discard vertices v; with j > i*.
Note that k — % < |Ui+| < k+ %.
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Algorithm for Phase 1

®  Other vertices

QO active nodeswithout balls < maiching edges
ball edges

W activenodes with balls — steiner tree edges

@ By short-cutting over non-active nodes in Ty, we obtain tree
T1. Then for each active nodes v; € U;, make a clique on 5\,j.
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Algorithm for Phase 1

®  Other vertices

QO active nodeswithout balls < maiching edges
ball edges

W activenodes with balls — steiner tree edges

@ By short-cutting over non-active nodes in Ty, we obtain tree
T1. Then for each active nodes v; € U;, make a clique on 5\,j.

@ For every (u,v) € Ty put a matching between the vertices in
S,— S, and S, — S, to obtain A-edge-connectivity.
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Algorithm for Phase 1

®  Other vertices

QO active nodeswithout balls < maiching edges
ball edges

W activenodes with balls — steiner tree edges

@ By short-cutting over non-active nodes in Ty, we obtain tree
T1. Then for each active nodes v; € U;, make a clique on 5Vj.

@ For every (u,v) € Ty put a matching between the vertices in
S,— S, and S, — S, to obtain A-edge-connectivity.

© It can be shown that the resulting graph H is
A-edge-connected, has at least k — A\/7 nodes and has cost at
most 28pOPT.

MohammadAli Safari and Mol 1 R. Sal ipour Approximation algorithm for minimum \-edge-connected k-sub




Introduction Obtaining a low cost (k — O(\), A)-subgraph From size k — O()\) to size k Conclusion
00000 0000 (1]

Two ways to augment H to size k in Phase 2

Phase 2:

How to expand H to have size k.
Vu € G\H: let d(u, H) be the distance between u and H.
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Two ways to augment H to size k in Phase 2

Phase 2:

How to expand H to have size k.
Vu € G\H: let d(u, H) be the distance between u and H.

If there is a set A C G\H of k — |H]| vertices s.t. has a low-cost
matching between A and H then we can augment H with small
cost.
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Two ways to augment H to size k in Phase 2

Phase 2:

How to expand H to have size k.
Vu € G\H: let d(u, H) be the distance between u and H.

If there is a set A C G\H of k — |H]| vertices s.t. has a low-cost
matching between A and H then we can augment H with small
cost.

H G\H @ connect each u; to Sy, to
obtain \-edge-connectivity.
Total cost added:

Ac(M) 4 2¢(H)

@ Show if |[G*\H| < \/3, then
this can be done with
c(M) < 8OFT
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Two ways to augment H to size k in Phase 2

If there is a vertex u € G\H s.t. s, + d(u, H) is small and S,
contains at least \/7 vertices in G\H then we can augment H
with small cost.

" G\H

@ It can be shown that if
|G*\H| > A\/3, i.e. Case
1 does not happen, then
this happens

@ The cost of augmenting
H in this case is
< 120pPT + 3¢(H).
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Conclusion

@ So we can extend H to a (k, \)-subgraph by spending a total
of at most 120pPT + 3¢(H).

@ Recalling that c(H) = O(0oPT), the total approximation ratio
is 18 4+ 108p with p < 4 being the ratio for k-Steiner tree.

@ Getting a small constant factor approximation seems
challenging, for general values of A.

@ For general cost functions, even for the special case of A = 3,

there is no known non-trivial approximation algorithm or lower
bound.
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