Approximation algorithm for minimum λ-edge-connected k-subgraph with metric costs

MohammadAli Safari and Mohammad R. Salavatipour

Dept. of Computing Science
University of Alberta
August, 2008
(k, λ)-subgraph problem:

- Input: Given a weighted undirected graph G and integer parameters k and λ
- Output: Find a minimum weight λ-edge-connected subgraph of G containing at least k nodes.
(k, λ)-subgraph problem:
- Input: Given a weighted undirected graph G and integer parameters k and λ
- Output: Find a minimum weight λ-edge-connected subgraph of G containing at least k nodes.
Generalizes many classical problems:
- k-MST $\equiv(k, 1)$-subgraph problem. Approximation factor: $\sqrt{k}[13], O\left(\log ^{2} k\right)[1], O(\log n)$ [12], constant [3, 8] and 2 [9].
- min-cost λ-edge-connected spanning graph $\equiv(|V(G)|, \lambda)$-subgraph problem
(k, λ)-subgraph problem in general graphs:
- Introduced recently by Lau et al. [11].
- They obtain an $O\left(\log ^{2} n\right)$-approximation for ($k, 2$)-subgraph problem.
(k, λ)-subgraph problem in general graphs:
- Introduced recently by Lau et al. [11].
- They obtain an $O\left(\log ^{2} n\right)$-approximation for ($k, 2$)-subgraph problem.
- For arbitrary λ : as hard as the k-densest subgraph problem [11]; best known approximation factor is $O\left(n^{\frac{1}{3}-\epsilon}\right)$ for some $\epsilon>0$.
(k, λ)-subgraph problem in general graphs:
- Introduced recently by Lau et al. [11].
- They obtain an $O\left(\log ^{2} n\right)$-approximation for ($k, 2$)-subgraph problem.
- For arbitrary λ : as hard as the k-densest subgraph problem [11]; best known approximation factor is $O\left(n^{\frac{1}{3}-\epsilon}\right)$ for some $\epsilon>0$.
- Chekuri and Korula [5]: $O\left(\log ^{2} n\right)$-approx for ($k, 2$)-subgraph problem with node-connectivity constraint.
- Here we consider the instances in which the underlying graph G is metric:
Theorem: For the (k, λ)-subgraph problem on metric graphs, there is an $O(1)$-approximation algorithm.
- Here we consider the instances in which the underlying graph G is metric:
Theorem: For the (k, λ)-subgraph problem on metric graphs, there is an $O(1)$-approximation algorithm.
- Note that the constant factor approximation algorithms for k-MST and k-TSP are on graphs with metric cost function.
- Here we consider the instances in which the underlying graph G is metric:
Theorem: For the (k, λ)-subgraph problem on metric graphs, there is an $O(1)$-approximation algorithm.
- Note that the constant factor approximation algorithms for k-MST and k-TSP are on graphs with metric cost function.
- The constant in the $O(1)$ term is between 400-500.
- Here we consider the instances in which the underlying graph G is metric:
Theorem: For the (k, λ)-subgraph problem on metric graphs, there is an $O(1)$-approximation algorithm.
- Note that the constant factor approximation algorithms for k-MST and k-TSP are on graphs with metric cost function.
- The constant in the $O(1)$ term is between 400-500.
- Our algorithm is inspired by the work of Cheriyan and Vetta [4] for subset-node-connectivity problem.

We use two basic lower bounds on the optimum solution. Let G^{*} be the optimal solution and OPT $=c\left(G^{*}\right) ; T^{*}$ be a MST of G^{*}.

Observation

We use two basic lower bounds on the optimum solution. Let G^{*} be the optimal solution and OPT $=c\left(G^{*}\right) ; T^{*}$ be a MST of G^{*}.

1. Minimum Spanning Tree of G^{*}

Using the cut-constraint in the IP-formulation of MST:
$\frac{\lambda}{2} \sum_{e \in T^{*}} c_{e} \leq \mathrm{OPT}$

We use two basic lower bounds on the optimum solution. Let G^{*} be the optimal solution and OPT $=c\left(G^{*}\right) ; T^{*}$ be a MST of G^{*}.

1. Minimum Spanning Tree of G^{*}

Using the cut-constraint in the IP-formulation of MST:
$\frac{\lambda}{2} \sum_{e \in T^{*}} c_{e} \leq$ OPT
2. λ nearest neighbors
if S_{u} is the set of λ nearest neighbors of u and s_{u} is their total distance to u then $\frac{1}{2} \sum_{u \in T^{*}} S_{u} \leq$ OPT

We use two basic lower bounds on the optimum solution.
Let G^{*} be the optimal solution and OPT $=c\left(G^{*}\right) ; T^{*}$ be a MST of G^{*}.

1. Minimum Spanning Tree of G^{*}

Using the cut-constraint in the IP-formulation of MST:
$\frac{\lambda}{2} \sum_{e \in T^{*}} c_{e} \leq$ OPT

2. λ nearest neighbors

if S_{u} is the set of λ nearest neighbors of u and s_{u} is their total distance to u then $\frac{1}{2} \sum_{u \in T^{*}} s_{u} \leq$ OPT

Our algorithm presents a solution whose cost is bounded within an $O(1)$-factor of these two bounds.

General steps

The algorithm has two main phases.

The algorithm has two main phases.

- In Phase 1 , we obtain a $(k-\lambda / 7, \lambda)$-subgraph, call it H, which has cost $O(\mathrm{OPT})$.

The algorithm has two main phases.

- In Phase 1 , we obtain a $(k-\lambda / 7, \lambda)$-subgraph, call it H, which has cost O (OPT).
- In Phase 2, we show how to expand H to a (k, λ)-subgraph, while keeping the cost within O (Opt).

- Create a new graph $G^{\prime}\left(V \cup V^{\prime}, E^{\prime}\right)$ from G by creating a new vertex u^{\prime} for each $u \in G$ and $E^{\prime}=E \cup\left\{u u^{\prime} \mid u \in V\right\}$, $c\left(u u^{\prime}\right)=s_{u}$.

To find a low cost $(k-O(\lambda), \lambda)$-subgraph:

- Create a new graph $G^{\prime}\left(V \cup V^{\prime}, E^{\prime}\right)$ from G by creating a new vertex u^{\prime} for each $u \in G$ and $E^{\prime}=E \cup\left\{u u^{\prime} \mid u \in V\right\}$, $c\left(u u^{\prime}\right)=s_{u}$.
- For every other edge in G^{\prime} multiply its weight by λ.

To find a low cost $(k-O(\lambda), \lambda)$-subgraph:

- Create a new graph $G^{\prime}\left(V \cup V^{\prime}, E^{\prime}\right)$ from G by creating a new vertex u^{\prime} for each $u \in G$ and $E^{\prime}=E \cup\left\{u u^{\prime} \mid u \in V\right\}$, $c\left(u u^{\prime}\right)=s_{u}$.
- For every other edge in G^{\prime} multiply its weight by λ.
- Using a ρ-approx alg, say ST-alg, for k-Steiner tree, find a k-Steiner tree T^{\prime} in G^{\prime} on terminal set V^{\prime}.

To find a low cost $(k-O(\lambda), \lambda)$-subgraph:

- Create a new graph $G^{\prime}\left(V \cup V^{\prime}, E^{\prime}\right)$ from G by creating a new vertex u^{\prime} for each $u \in G$ and $E^{\prime}=E \cup\left\{u u^{\prime} \mid u \in V\right\}$, $c\left(u u^{\prime}\right)=s_{u}$.
- For every other edge in G^{\prime} multiply its weight by λ.
- Using a ρ-approx alg, say ST-alg, for k-Steiner tree, find a k-Steiner tree T^{\prime} in G^{\prime} on terminal set V^{\prime}.
- Note that T^{\prime} minimizes (approximately) $\sum_{u \in T^{\prime}} s_{u}+\lambda \sum_{e \in T^{\prime}} c_{e}$, and has at least k nodes of G.

- Using the two lower bounds mentioned, it is easy to show that: Claim: $c\left(T^{\prime}\right)=4 \rho$ OPT.
Let $T_{0} \subseteq G$ be the tree obtained by deleting dummy vertices of T^{\prime}.

- Using the two lower bounds mentioned, it is easy to show that: Claim: $c\left(T^{\prime}\right)=4 \rho$ OPT.
Let $T_{0} \subseteq G$ be the tree obtained by deleting dummy vertices of T^{\prime}.
- We'll pick some vertices $v \in T_{0}$ such that $\left|\bigcup_{v} s_{v}\right| \approx k$. Make a clique of each such vertex v together with its neighbors in S_{v}.

- Using the two lower bounds mentioned, it is easy to show that: Claim: $c\left(T^{\prime}\right)=4 \rho$ OPT.
Let $T_{0} \subseteq G$ be the tree obtained by deleting dummy vertices of T^{\prime}.
- We'll pick some vertices $v \in T_{0}$ such that $\left|\bigcup_{v} s_{v}\right| \approx k$. Make a clique of each such vertex v together with its neighbors in S_{v}.
- For every $(u, v) \in T_{0}$ put a matching between the vertices in $S_{u}-S_{v}$ and $S_{v}-S_{u}$ to obtain λ-edge-connectivity.

Algorithm for Phase 1

More details on how to do it...

- Let v_{1}, \ldots, v_{k} be an ordering of vertices of T_{0} s.t.

$$
s_{v_{1}} \leq s_{v_{2}} \leq \ldots s_{v_{k}} .
$$

More details on how to do it...

- Let v_{1}, \ldots, v_{k} be an ordering of vertices of T_{0} s.t. $s_{v_{1}} \leq s_{v_{2}} \leq \ldots s_{v_{k}}$.
- We call the set $S_{v_{i}}$ the ball with center v_{i} and $B_{v_{i}} \subseteq S_{v_{i}}$, called the core, is the set of nodes with distance at most $2 s_{v_{i}} / \lambda$ to v_{i}.

More details on how to do it...

- Let v_{1}, \ldots, v_{k} be an ordering of vertices of T_{0} s.t. $s_{v_{1}} \leq s_{v_{2}} \leq \ldots s_{v_{k}}$.
- We call the set $S_{v_{i}}$ the ball with center v_{i} and $B_{v_{i}} \subseteq S_{v_{i}}$, called the core, is the set of nodes with distance at most $2 s_{v_{i}} / \lambda$ to v_{i}.
- We use a clustering to obtain a set of Active/Inactive balls:
- Active vs. Inactive Balls: Every vertex is active unless it is close to an active ball with smaller s_{u} value.
- The cores of active balls are disjoint.

More details on how to do it...

- Let v_{1}, \ldots, v_{k} be an ordering of vertices of T_{0} s.t. $s_{v_{1}} \leq s_{v_{2}} \leq \ldots s_{v_{k}}$.
- We call the set $S_{v_{i}}$ the ball with center v_{i} and $B_{v_{i}} \subseteq S_{v_{i}}$, called the core, is the set of nodes with distance at most $2 s_{v_{i}} / \lambda$ to v_{i}.
- We use a clustering to obtain a set of Active/Inactive balls:
- Active vs. Inactive Balls: Every vertex is active unless it is close to an active ball with smaller s_{u} value.
- The cores of active balls are disjoint.
- Let i^{*} be the smallest index such that $U_{i^{*}}=\bigcup_{\text {active } v_{j}, j \leq i *} S_{v_{j}}$ has at least $k-\lambda / 7$ nodes. We discard vertices v_{j} with $j>i^{*}$.

More details on how to do it...

- Let v_{1}, \ldots, v_{k} be an ordering of vertices of T_{0} s.t. $s_{v_{1}} \leq s_{v_{2}} \leq \ldots s_{v_{k}}$.
- We call the set $S_{v_{i}}$ the ball with center v_{i} and $B_{v_{i}} \subseteq S_{v_{i}}$, called the core, is the set of nodes with distance at most $2 s_{v_{i}} / \lambda$ to v_{i}.
- We use a clustering to obtain a set of Active/Inactive balls:
- Active vs. Inactive Balls: Every vertex is active unless it is close to an active ball with smaller s_{u} value.
- The cores of active balls are disjoint.
- Let i^{*} be the smallest index such that $U_{i^{*}}=\bigcup_{\text {active } v_{j}, j \leq i *} S_{v_{j}}$ has at least $k-\lambda / 7$ nodes. We discard vertices v_{j} with $j>i^{*}$. Note that $k-\frac{\lambda}{7} \leq\left|U_{i^{*}}\right| \leq k+\frac{6 \lambda}{7}$.

Algorithm for Phase 1

(1) By short-cutting over non-active nodes in T_{0}, we obtain tree T_{1}. Then for each active nodes $v_{j} \in U_{i *}$ make a clique on $S_{v_{j}}$.

Algorithm for Phase 1

- Other vertices
\bigcirc active nodes without balls $\quad \backsim$ matching edges
\square active nodes with balls steiner tree edges

(1) By short-cutting over non-active nodes in T_{0}, we obtain tree T_{1}. Then for each active nodes $v_{j} \in U_{i *}$ make a clique on $S_{v_{j}}$.
(2) For every $(u, v) \in T_{1}$ put a matching between the vertices in $S_{u}-S_{v}$ and $S_{v}-S_{u}$ to obtain λ-edge-connectivity.

Algorithm for Phase 1

- Other vertices
\bigcirc active nodes without balls $\quad \leftrightarrow$ matching edges
- active nodes with balls ball edges
steiner tree edges

(1) By short-cutting over non-active nodes in T_{0}, we obtain tree T_{1}. Then for each active nodes $v_{j} \in U_{i *}$ make a clique on $S_{v_{j}}$.
(2) For every $(u, v) \in T_{1}$ put a matching between the vertices in $S_{u}-S_{v}$ and $S_{v}-S_{u}$ to obtain λ-edge-connectivity.
(3) It can be shown that the resulting graph H is λ-edge-connected, has at least $k-\lambda / 7$ nodes and has cost at most 28ρ OPT.

Phase 2:

How to expand H to have size k.
$\forall u \in G \backslash H$: let $d(u, H)$ be the distance between u and H.

Phase 2:

How to expand H to have size k.
$\forall u \in G \backslash H$: let $d(u, H)$ be the distance between u and H.

Case 1

If there is a set $A \subseteq G \backslash H$ of $k-|H|$ vertices s.t. has a low-cost matching between A and H then we can augment H with small cost.

Two ways to augment H to size k in Phase 2

Phase 2:

How to expand H to have size k.
$\forall u \in G \backslash H$: let $d(u, H)$ be the distance between u and H.

Case 1

If there is a set $A \subseteq G \backslash H$ of $k-|H|$ vertices s.t. has a low-cost matching between A and H then we can augment H with small cost.

- connect each u_{i} to $S_{M\left(u_{i}\right)}$ to obtain λ-edge-connectivity. Total cost added: $\lambda c(M)+2 c(H)$
- Show if $\left|G^{*} \backslash H\right| \leq \lambda / 3$, then this can be done with
$c(M) \leq \frac{6 \mathrm{OPT}}{\lambda}$

Case 2

If there is a vertex $u \in G \backslash H$ s.t. $s_{u}+d(u, H)$ is small and S_{u} contains at least $\lambda / 7$ vertices in $G \backslash H$ then we can augment H with small cost.

- It can be shown that if $\left|G^{*} \backslash H\right|>\lambda / 3$, i.e. Case 1 does not happen, then this happens
- The cost of augmenting H in this case is $\leq 12 \mathrm{OPT}+3 c(H)$.

Conclusion

- So we can extend H to a (k, λ)-subgraph by spending a total of at most $12 \mathrm{OPT}+3 c(H)$.
- Recalling that $c(H)=O(\mathrm{OPT})$, the total approximation ratio is $18+108 \rho$ with $\rho \leq 4$ being the ratio for k-Steiner tree.
- Getting a small constant factor approximation seems challenging, for general values of λ.
- For general cost functions, even for the special case of $\lambda=3$, there is no known non-trivial approximation algorithm or lower bound.
B. Awerbuch, Y. Azar, A. Blum and S. Vempala, New approximation guarantees for minimum-weight k-trees and prize-collecting salesmen, SIAM J. Computing 28(1):254-262, 1999.

Ein A. Blum, S. Chawla, D. Karger, T. Lane, A. Meyerson, and M. Minkoff, Approximation Algorithms for Orienteering and Discounted-Reward TSP, SIAM J. on Computing 28(1):254-262, 1999. Earlier version in Proc of STOC 1995.

R A. Blum, R. Ravi, and S. Vempala, A constant-factor approximation algorithm for the k-MST problem, J. Comput. Syst. Sci. 58(1): 101-108, 1999. Earlier in Proceedings of the 28th Annual ACM Symposium on the Theory of Computing (STOC '96), pp. 442-448.

E J. Cheriyan and A. Vetta, Approximation algorithms for network design with metric costs, In Proceedings of the
thirty－seventh annual ACM symposium on Theory of computing（STOC）2005，167－175．

國 C．Chekuri and N．Korula，Min－Cost 2－Connected Subgraphs with k Terminals，manuscript 2008，available at http：／／arxiv．org／abs／0802．2528．

目 C．Chekuri，N．Korula，and M．Pál，Improved Algorithms for Orienteering and Related Problems，In Proc of ACM－SIAM SODA， 2008.

围 F．Chudak，T．Roughgarden，and D．P．Williamson， Approximate MSTs and Steiner trees via the primal－dual method and Lagrangean relaxation，Math．Program． 100（2）：411－421， 2004.
㞒 N．Garg，A 3－Approximation for the minim tree spanning k vertices，In Proceedings of the 37th Annual Symposium on Foundations of Computer Science（FOCS），302－309， 1996.

N．Garg，Saving an epsilon：a 2－approximation for the k－MST problem in graphs，In Proceedings of the thirty－seventh annual ACM symposium on Theory of computing（STOC），396－402， 2005.

E．K．Jain，A factor 2 approximation algorithm for the generalized Steiner network problem，Combinatorica，21：39－60， 2001.
围 L．Lau，S．Naor，M．Salavatipour，and M．Singh，Survivable Network Design with Degree or Order Constraints，To appear in SIAM J．on Computing．Earlier version in Proceedings of the thirty－nineth annual ACM symposium on Theory of computing（STOC）， 2007.

嗇 S．Rajagopalan and V．Vazirani，Logarithmic approximation of minimum weight k trees，unpublished manuscript， 1995.
R. Ravi, R. Sundaram, M.V. Marathe, D.J. Rosenkrants, and S.S. Ravi, Spanning trees short or small, SIAM Journal on Discrete Mathematics, 9(2):178-200, 1996.
囯 A. Schrijver, Combinatorial Optimization, Springer, 2003.

