Introduction	Obtaining a low cost $(k - O(\lambda), \lambda)$ -subgraph 0000	From size $k - O(\lambda)$ to size k 00	Conclusion

Approximation algorithm for minimum $\lambda\text{-edge-connected }k\text{-subgraph}$ with metric costs

MohammadAli Safari and Mohammad R. Salavatipour

Dept. of Computing Science University of Alberta

August, 2008

MohammadAli Safari and Mohammad R. Salavatipour Approximation algorithm for minimum λ -edge-connected k-sub

•0000 0000 00	Introduction	Obtaining a low cost $(k - O(\lambda), \lambda)$ -subgraph	From size $k - O(\lambda)$ to size k	Conclusion
	0000	0000	00	
Problem definition	Problem definition			

 (k, λ) -subgraph problem:

- Input: Given a weighted undirected graph G and integer parameters k and λ
- **Output:** Find a minimum weight λ-edge-connected subgraph of *G* containing at least *k* nodes.

Introduction	Obtaining a low cost $(k - O(\lambda), \lambda)$ -subgraph	From size $k - O(\lambda)$ to size k	Conclusion
0000	0000	00	
Problem definition			

 (k, λ) -subgraph problem:

- Input: Given a weighted undirected graph G and integer parameters k and λ
- **Output:** Find a minimum weight λ-edge-connected subgraph of *G* containing at least *k* nodes.

Generalizes many classical problems:

- k-MST \equiv (k, 1)-subgraph problem. Approximation factor: \sqrt{k} [13], $O(\log^2 k)$ [1], $O(\log n)$ [12], constant [3, 8] and 2 [9].
- min-cost λ -edge-connected spanning graph $\equiv (|V(G)|, \lambda)$ -subgraph problem

Introduction •••••	Obtaining a low cost $(k - O(\lambda), \lambda)$ -subgraph 0000	From size $k - O(\lambda)$ to size k	Conclusion
Known results			

 (k, λ) -subgraph problem in general graphs:

- Introduced recently by Lau et al. [11].
- They obtain an $O(\log^2 n)$ -approximation for (k, 2)-subgraph problem.

Introduction •••••	Obtaining a low cost $(k - O(\lambda), \lambda)$ -subgraph 0000	From size $k - O(\lambda)$ to size k	Conclusion
Known results			

 (k, λ) -subgraph problem in general graphs:

- Introduced recently by Lau et al. [11].
- They obtain an $O(\log^2 n)$ -approximation for (k, 2)-subgraph problem.
- For arbitrary λ : as hard as the *k*-densest subgraph problem [11]; best known approximation factor is $O(n^{\frac{1}{3}-\epsilon})$ for some $\epsilon > 0$.

Introduction •••••	Obtaining a low cost $(k - O(\lambda), \lambda)$ -subgraph 0000	From size $k - O(\lambda)$ to size k	Conclusion
Known results			

 (k, λ) -subgraph problem in general graphs:

- Introduced recently by Lau et al. [11].
- They obtain an $O(\log^2 n)$ -approximation for (k, 2)-subgraph problem.
- For arbitrary λ : as hard as the *k*-densest subgraph problem [11]; best known approximation factor is $O(n^{\frac{1}{3}-\epsilon})$ for some $\epsilon > 0$.
- Chekuri and Korula [5]: $O(\log^2 n)$ -approx for (k, 2)-subgraph problem with *node-connectivity constraint*.

Introduction	Obtaining a low cost $(k - O(\lambda), \lambda)$ -subgraph	From size $k - O(\lambda)$ to size k	Conclusion
0000	0000	00	
Our result			

Theorem: For the (k, λ) -subgraph problem on metric graphs, there is an O(1)-approximation algorithm.

Introduction	Obtaining a low cost $(k - O(\lambda), \lambda)$ -subgraph	From size $k - O(\lambda)$ to size k	Conclusion
0000	0000	00	
Our result			

Theorem: For the (k, λ) -subgraph problem on metric graphs, there is an O(1)-approximation algorithm.

• Note that the constant factor approximation algorithms for *k*-MST and *k*-TSP are on graphs with metric cost function.

Introduction	Obtaining a low cost $(k - O(\lambda), \lambda)$ -subgraph 0000	From size $k - O(\lambda)$ to size k	Conclusion
Our result			

Theorem: For the (k, λ) -subgraph problem on metric graphs, there is an O(1)-approximation algorithm.

- Note that the constant factor approximation algorithms for *k*-MST and *k*-TSP are on graphs with metric cost function.
- The constant in the O(1) term is between 400-500.

Introduction	Obtaining a low cost $(k - O(\lambda), \lambda)$ -subgraph	From size $k - O(\lambda)$ to size k	Conclusion
Our result			

Theorem: For the (k, λ) -subgraph problem on metric graphs, there is an O(1)-approximation algorithm.

- Note that the constant factor approximation algorithms for *k*-MST and *k*-TSP are on graphs with metric cost function.
- The constant in the O(1) term is between 400-500.
- Our algorithm is inspired by the work of Cheriyan and Vetta [4] for subset-node-connectivity problem.

Introduction	Obtaining a low cost $(k - O(\lambda), \lambda)$ -subgraph	From size $k - O(\lambda)$ to size k	Conclusion
00000	0000	00	
Observation			

Introduction	Obtaining a low cost $(k - O(\lambda), \lambda)$ -subgraph	From size $k - O(\lambda)$ to size k	Conclusion
00000	0000	00	
Observation			

1. Minimum Spanning Tree of G^* Using the cut-constraint in the IP-formulation of MST: $\frac{\lambda}{2} \sum_{e \in T^*} c_e \leq \text{OPT}$

Introduction	Obtaining a low cost $(k - O(\lambda), \lambda)$ -subgraph	From size $k - O(\lambda)$ to size k	Conclusion
00000	0000	00	
Observation			

1. Minimum Spanning Tree of G^* Using the cut-constraint in the IP-formulation of MST: $\frac{\lambda}{2} \sum_{e \in T^*} c_e \leq \text{OPT}$

2. λ nearest neighbors

if S_u is the set of λ nearest neighbors of u and s_u is their total distance to u then $\frac{1}{2} \sum_{u \in T^*} s_u \leq \text{OPT}$

Introduction	Obtaining a low cost $(k - O(\lambda), \lambda)$ -subgraph	From size $k - O(\lambda)$ to size k	Conclusion
00000	0000	00	
Observation			

1. Minimum Spanning Tree of G^* Using the cut-constraint in the IP-formulation of MST: $\frac{\lambda}{2} \sum_{e \in T^*} c_e \leq \text{OPT}$

2. λ nearest neighbors

if S_u is the set of λ nearest neighbors of u and s_u is their total distance to u then $\frac{1}{2} \sum_{u \in T^*} s_u \leq \text{OPT}$

Our algorithm presents a solution whose cost is bounded within an O(1)-factor of these two bounds.

Introduction	Obtaining a low cost $(k - O(\lambda), \lambda)$ -subgraph	From size $k - O(\lambda)$ to size k	Conclusion
General steps			

The algorithm has two main phases.

Introduction	Obtaining a low cost $(k - O(\lambda), \lambda)$ -subgraph	From size $k - O(\lambda)$ to size k	Conclusion
00000	0000	00	
General steps			

The algorithm has two main phases.

In Phase 1, we obtain a (k - λ/7, λ)-subgraph, call it H, which has cost O(OPT).

Introduction	Obtaining a low cost $(k - O(\lambda), \lambda)$ -subgraph	From size $k - O(\lambda)$ to size k	Conclusion
00000	0000	00	
General steps			

The algorithm has two main phases.

- In Phase 1, we obtain a $(k \lambda/7, \lambda)$ -subgraph, call it H, which has cost O(OPT).
- In Phase 2, we show how to expand H to a (k, λ) -subgraph, while keeping the cost within O(OPT).

To find a low cost $(k - O(\lambda), \lambda)$ -subgraph:

• Create a new graph $G'(V \cup V', E')$ from G by creating a new vertex u' for each $u \in G$ and $E' = E \cup \{uu' | u \in V\}$, $c(uu') = s_u$.

To find a low cost $(k - O(\lambda), \lambda)$ -subgraph:

- Create a new graph $G'(V \cup V', E')$ from G by creating a new vertex u' for each $u \in G$ and $E' = E \cup \{uu' | u \in V\}$, $c(uu') = s_u$.
- For every other edge in G' multiply its weight by λ .

From size $k - O(\lambda)$ to size k

Conclusion

To find a low cost $(k - O(\lambda), \lambda)$ -subgraph:

- Create a new graph $G'(V \cup V', E')$ from G by creating a new vertex u' for each $u \in G$ and $E' = E \cup \{uu' | u \in V\}$, $c(uu') = s_u$.
- For every other edge in G' multiply its weight by λ .
- Using a ρ-approx alg, say ST-alg, for k-Steiner tree, find a k-Steiner tree T' in G' on terminal set V'.

From size $k - O(\lambda)$ to size k

Conclusion

To find a low cost $(k - O(\lambda), \lambda)$ -subgraph:

- Create a new graph $G'(V \cup V', E')$ from G by creating a new vertex u' for each $u \in G$ and $E' = E \cup \{uu' | u \in V\}$, $c(uu') = s_u$.
- For every other edge in G' multiply its weight by λ .
- Using a ρ-approx alg, say ST-alg, for k-Steiner tree, find a k-Steiner tree T' in G' on terminal set V'.
- Note that T' minimizes (approximately) $\sum_{u \in T'} s_u + \lambda \sum_{e \in T'} c_e$, and has at least k nodes of G.

Introduction	Obtaining a low cost $(k - O(\lambda), \lambda)$ -subgraph	From size $k - O(\lambda)$ to size k	Conclusion
00000	0000	00	
Algorithm for Ph	ase 1		

- Using the two lower bounds mentioned, it is easy to show that: $Claim:c(T') = 4\rho OPT.$
 - Let $T_0 \subseteq G$ be the tree obtained by deleting dummy vertices of T'.

Introduction	Obtaining a low cost $(k - O(\lambda), \lambda)$ -subgraph	From size $k - O(\lambda)$ to size k	Conclusion
00000	0000	00	
Algorithm for Dh	aca 1		

• Using the two lower bounds mentioned, it is easy to show that: $Claim:c(T') = 4\rho OPT.$

Let $T_0 \subseteq G$ be the tree obtained by deleting dummy vertices of T'.

 We'll pick some vertices v ∈ T₀ such that |∪_v s_v| ≈ k. Make a clique of each such vertex v together with its neighbors in S_v.

Introduction	Obtaining a low cost $(k - O(\lambda), \lambda)$ -subgraph	From size $k - O(\lambda)$ to size k	Conclusion
00000	0000	00	
Algorithm for Dh	aca 1		

• Using the two lower bounds mentioned, it is easy to show that: $Claim:c(T') = 4\rho OPT.$

Let $T_0 \subseteq G$ be the tree obtained by deleting dummy vertices of T'.

- We'll pick some vertices v ∈ T₀ such that | ∪_v s_v | ≈ k. Make a clique of each such vertex v together with its neighbors in S_v.
- For every $(u, v) \in T_0$ put a matching between the vertices in $S_u S_v$ and $S_v S_u$ to obtain λ -edge-connectivity.

Introduction	Obtaining a low cost $(k - O(\lambda), \lambda)$ -subgraph	From size $k - O(\lambda)$ to size k	Conclusion
00000	0000	00	
Algorithm for Phas	e 1		

• Let v_1, \ldots, v_k be an ordering of vertices of T_0 s.t.

 $s_{v_1} \leq s_{v_2} \leq \ldots s_{v_k}.$

Introduction	Obtaining a low cost $(k - O(\lambda), \lambda)$ -subgraph	From size $k - O(\lambda)$ to size k	Conclusion
00000	0000	00	
Algorithm for Phas	se 1		

- Let v_1, \ldots, v_k be an ordering of vertices of T_0 s.t. $s_{v_1} \leq s_{v_2} \leq \ldots s_{v_k}$.
- We call the set S_{v_i} the ball with center v_i and $B_{v_i} \subseteq S_{v_i}$, called the core, is the set of nodes with distance at most $2s_{v_i}/\lambda$ to v_i .

Introduction	Obtaining a low cost $(k - O(\lambda), \lambda)$ -subgraph	From size $k - O(\lambda)$ to size k	Conclusion
00000	0000	00	
Algorithm for Phas	e 1		

- Let v_1, \ldots, v_k be an ordering of vertices of T_0 s.t. $s_{v_1} \leq s_{v_2} \leq \ldots s_{v_k}$.
- We call the set S_{v_i} the ball with center v_i and $B_{v_i} \subseteq S_{v_i}$, called the core, is the set of nodes with distance at most $2s_{v_i}/\lambda$ to v_i .
- We use a clustering to obtain a set of Active/Inactive balls:
 - Active vs. Inactive Balls: Every vertex is active unless it is close to an active ball with smaller *s*_u value.
 - The cores of active balls are disjoint.

Introduction	Obtaining a low cost $(k - O(\lambda), \lambda)$ -subgraph	From size $k - O(\lambda)$ to size k	Conclusion
00000	0000	00	
Algorithm for Phas	e 1		

- Let v_1, \ldots, v_k be an ordering of vertices of T_0 s.t. $s_{v_1} \leq s_{v_2} \leq \ldots s_{v_k}$.
- We call the set S_{v_i} the ball with center v_i and $B_{v_i} \subseteq S_{v_i}$, called the core, is the set of nodes with distance at most $2s_{v_i}/\lambda$ to v_i .
- We use a clustering to obtain a set of Active/Inactive balls:
 - Active vs. Inactive Balls: Every vertex is active unless it is close to an active ball with smaller *s*_u value.
 - The cores of active balls are disjoint.
- Let i^* be the smallest index such that $U_{i^*} = \bigcup_{\text{active } v_j, j \leq i^*} S_{v_j}$ has at least $k - \lambda/7$ nodes. We discard vertices v_i with $j > i^*$.

Introduction	Obtaining a low cost $(k - O(\lambda), \lambda)$ -subgraph	From size $k - O(\lambda)$ to size k	Conclusion
Algorithm for Phase	0000 e 1	00	

- Let v_1, \ldots, v_k be an ordering of vertices of T_0 s.t. $s_{v_1} \leq s_{v_2} \leq \ldots s_{v_k}$.
- We call the set S_{v_i} the ball with center v_i and $B_{v_i} \subseteq S_{v_i}$, called the core, is the set of nodes with distance at most $2s_{v_i}/\lambda$ to v_i .
- We use a clustering to obtain a set of Active/Inactive balls:
 - Active vs. Inactive Balls: Every vertex is active unless it is close to an active ball with smaller *s*_u value.
 - The cores of active balls are disjoint.
- Let i^* be the smallest index such that $U_{i^*} = \bigcup_{\text{active } v_j, j \leq i^*} S_{v_j}$ has at least $k - \lambda/7$ nodes. We discard vertices v_j with $j > i^*$. Note that $k - \frac{\lambda}{7} \leq |U_{i^*}| \leq k + \frac{6\lambda}{7}$.

• By short-cutting over non-active nodes in T_0 , we obtain tree T_1 . Then for each active nodes $v_j \in U_{i*}$ make a clique on S_{v_i} .

- Is short-cutting over non-active nodes in T₀, we obtain tree T₁. Then for each active nodes v_j ∈ U_{i*} make a clique on S_{v_i}.
- For every $(u, v) \in T_1$ put a matching between the vertices in $S_u S_v$ and $S_v S_u$ to obtain λ -edge-connectivity.

- Is short-cutting over non-active nodes in T₀, we obtain tree T₁. Then for each active nodes v_j ∈ U_{i*} make a clique on S_{v_i}.
- For every $(u, v) \in T_1$ put a matching between the vertices in $S_u S_v$ and $S_v S_u$ to obtain λ -edge-connectivity.
- It can be shown that the resulting graph H is λ-edge-connected, has at least k - λ/7 nodes and has cost at most 28ρOPT.

Introduction	Obtaining a low cost $(k - O(\lambda), \lambda)$ -subgraph 0000	From size $k - O(\lambda)$ to size $k \in O(\lambda)$	Conclusion
Two ways to augme	ent <i>H</i> to size <i>k</i> in Phase 2		
Phase 2			

How to expand H to have size k.

 $\forall u \in G \setminus H$: let d(u, H) be the distance between u and H.

Introduction	Obtaining a low cost $(k - O(\lambda), \lambda)$ -subgraph
00000	0000

From size $k - O(\lambda)$ to size k = 0

Conclusion

Two ways to augment H to size k in Phase 2

Phase 2:

How to expand H to have size k.

 $\forall u \in G \setminus H$: let d(u, H) be the distance between u and H.

Case 1

If there is a set $A \subseteq G \setminus H$ of k - |H| vertices s.t. has a low-cost matching between A and H then we can augment H with small cost.

roduction	Obtaining a low	cost	(k -	$O(\lambda),$
0000	0000			

From size $k - O(\lambda)$ to size k = 0

Conclusion

Two ways to augment H to size k in Phase 2

Phase 2:

Int

How to expand H to have size k.

 $\forall u \in G \setminus H$: let d(u, H) be the distance between u and H.

Case 1

If there is a set $A \subseteq G \setminus H$ of k - |H| vertices s.t. has a low-cost matching between A and H then we can augment H with small cost.

 λ)-subgraph

• connect each u_i to $S_{M(u_i)}$ to obtain λ -edge-connectivity. Total cost added: $\lambda c(M) + 2c(H)$

• Show if $|G^* \setminus H| \le \lambda/3$, then this can be done with $c(M) \le \frac{6\text{OPT}}{\lambda}$

Approximation algorithm for minimum λ -edge-connected k-sub

Introduction	Obtaining a low cost $(k - O(\lambda), \lambda)$ -subgraph
00000	0000

From size $k - O(\lambda)$ to size $k \\ \circ \bullet$

Conclusion

Two ways to augment *H* to size *k* in Phase 2

Case 2

If there is a vertex $u \in G \setminus H$ s.t. $s_u + d(u, H)$ is small and S_u contains at least $\lambda/7$ vertices in $G \setminus H$ then we can augment H with small cost.

- It can be shown that if $|G^* \setminus H| > \lambda/3$, i.e. Case 1 does not happen, then this happens
- The cost of augmenting *H* in this case is
 ≤ 120PT + 3c(H).

Introduction	Obtaining a low cost $(k - O(\lambda), \lambda)$ -subgraph 0000	From size $k - O(\lambda)$ to size k	Conclusion		
Conclus	ion				

- So we can extend H to a (k, λ) -subgraph by spending a total of at most 12OPT + 3c(H).
- Recalling that c(H) = O(OPT), the total approximation ratio is $18 + 108\rho$ with $\rho \le 4$ being the ratio for k-Steiner tree.
- Getting a small constant factor approximation seems challenging, for general values of λ.
- For general cost functions, even for the special case of $\lambda = 3$, there is no known non-trivial approximation algorithm or lower bound.

Introduction

Obtaining a low cost $(k - O(\lambda), \lambda)$ -subgraph 0000

From size $k - O(\lambda)$ to size k00 Conclusion

- B. Awerbuch, Y. Azar, A. Blum and S. Vempala, *New approximation guarantees for minimum-weight k-trees and prize-collecting salesmen*, SIAM J. Computing 28(1):254-262, 1999.
- A. Blum, S. Chawla, D. Karger, T. Lane, A. Meyerson, and M. Minkoff, *Approximation Algorithms for Orienteering and Discounted-Reward TSP*, SIAM J. on Computing 28(1):254-262, 1999. Earlier version in Proc of STOC 1995.
- A. Blum, R. Ravi, and S. Vempala, *A constant-factor approximation algorithm for the k-MST problem*, J. Comput. Syst. Sci. 58(1): 101-108, 1999. Earlier in Proceedings of the 28th Annual ACM Symposium on the Theory of Computing (STOC '96), pp. 442-448.
- J. Cheriyan and A. Vetta, *Approximation algorithms for network design with metric costs*, In Proceedings of the

Approximation algorithm for minimum λ -edge-connected k-sub

	n	t	r	0	d	u	С	t	i	0	n	l	
ç	С	С	0	2	0	0							

Obtaining a low cost $(k - O(\lambda), \lambda)$ -subgraph 0000

From size $k - O(\lambda)$ to size k00 Conclusion

thirty-seventh annual ACM symposium on Theory of computing (STOC) 2005, 167–175.

- C. Chekuri and N. Korula, Min-Cost 2-Connected Subgraphs with k Terminals, manuscript 2008, available at http://arxiv.org/abs/0802.2528.
- C. Chekuri, N. Korula, and M. Pál, Improved Algorithms for Orienteering and Related Problems, In Proc of ACM-SIAM SODA, 2008.
- F. Chudak, T. Roughgarden, and D. P. Williamson, Approximate MSTs and Steiner trees via the primal-dual method and Lagrangean relaxation, Math. Program. 100(2):411-421, 2004.

N. Garg, A 3-Approximation for the minim tree spanning k vertices, In Proceedings of the 37th Annual Symposium on Foundations of Computer Science (FOCS), 302-309, 1996.

Introduction

Obtaining a low cost $(k - O(\lambda), \lambda)$ -subgraph 0000

From size $k - O(\lambda)$ to size k00 Conclusion

- N. Garg, Saving an epsilon: a 2-approximation for the k-MST problem in graphs, In Proceedings of the thirty-seventh annual ACM symposium on Theory of computing (STOC), 396 402, 2005.
- K. Jain, A factor 2 approximation algorithm for the generalized Steiner network problem, Combinatorica, 21:39-60, 2001.
- L. Lau, S. Naor, M. Salavatipour, and M. Singh, *Survivable Network Design with Degree or Order Constraints*, To appear in SIAM J. on Computing. Earlier version in Proceedings of the thirty-nineth annual ACM symposium on Theory of computing (STOC), 2007.
- S. Rajagopalan and V. Vazirani, *Logarithmic approximation of minimum weight k trees*, unpublished manuscript, 1995.

Introduction	
00000	

Obtaining a low cost $(k - O(\lambda), \lambda)$ -subgraph 0000

From size $k - O(\lambda)$ to size k00 Conclusion

R. Ravi, R. Sundaram, M.V. Marathe, D.J. Rosenkrants, and S.S. Ravi, *Spanning trees short or small*, SIAM Journal on Discrete Mathematics, 9(2):178-200, 1996.

A. Schrijver, Combinatorial Optimization, Springer, 2003.

MohammadAli Safari and Mohammad R. Salavatipour Approximation algorithm for minimum λ -edge-connected k-sub