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What is the Local Lemma?

Lov ász Local Lemma: A = {A1, . . . , An} a set of random events, Ai has
probability at most p and is mutually independent of all but at most d other
events. If ep(d + 1) ≤ 1, where e = 2.7182 . . ., then

Pr(A1 ∧ . . . ∧An) > 0.

Extremely powerful; has several applications in:

• Combinatorics and Graph Theory

• Packet routing problems

• Job shop scheduling

• Finding disjoint paths in expander graphs
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The most typical example of applications of the LLL is:

Theorem 1: If H(V,E) is a k-uniform hypergraph and each edge intersects
less than 2k−1

e other edges, then H is 2-colorable.

Proof:

• Color V with {Red, Blue} uniformly randomly.

• Let Ai be the event that Ei is monochromatic.

• Pr(Ai) = 2
2k = 2(1−k)

• ep(d + 1) ≤ e2(1−k)(2k−1

e ) = 1

There is a more general form of the LLL, by which we can show:

Theorem 2: If H(V,E) is non-uniform and each edge Ei has size at least 3
and intersects at most 2O(k) other edges of size k, then H is 2-colorable.
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• The only drawback of the LLL: it is non-constructive

• Furthermore, the probability gauranteed in LLL is exponentially small.

• The method of conditional probability (by Erdös) doesn’t give polytime
algorithm.

The first algorithmic version of the LLL:

Theorem 3 [Beck 1991]: If H(V,E) is k-uniform and each edge intersects at
most d = 2ck other edges, c ≤ 1

48, there is an algorithm which runs in
O(Poly(n, m)) that finds a 2-coloring of H.

• Alon [FOCS’91] gave parallel version of this theorem with c ≈ 1
500.

• Molloy & Reed [STOC’98] gave more general algorithmic version of the
LLL, which applies to a wider range of applications.

• None of these algorithms work for the case that H is non-uniform.
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non-uniform H(V,E), as long as no edge e ∈ E intersects more than
O(|e|2O(k)) edges of size at most k.
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Theorem 4 [Czumaj & Scheideler SODA’00]: We can find a 2-coloring of a
non-uniform H(V,E), as long as no edge e ∈ E intersects more than
O(|e|2O(k)) edges of size at most k.

Problem: Try to find a 2-coloring s.t. the number of Red and Blue vertices are
almost equal. (hypergraph partitioning problem).

That is, if R(Ei) (B(Ei)) is the number of Red (Blue) vertices in Ei:

∀i : (1− ε)
|Ei|
2

≤ R(Ei) ≤ (1 + ε)
|Ei|
2

• One of the applications of this problem is in splitting expander graphs
[Frieze & Molloy’00]

• Theorem 4 does not extend to hypergraph partitioning
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For uniform hypergraphs:
Theorem 5 [Beck 1991]: If H(V,E) is k-uniform and each edge intersects at
most O(2O(k)) other edges, then there is a polytime algorithm that finds a
“partitioning” of H.

Theorem 6 [Czumaj & Scheideler STOC’00]: We can find a partitioning of a
“non-uniform” hypergraph, as long as no edge e ∈ E intersects more than
O(2o(k)) edges of size at most k.

We extend Theorem 6 to match Theorem 5 for non-uniform hypergraphs:

Theorem 7 [This talk]: We can find a partitioning of a “non-uniform”
hypergraph, as long as no edge e ∈ E intersects more than O(2O(k)) edges of
size at most k.

• Both Theorems 6 and 7 are proved in more general settings.

• Algorithm is Randomized; Expected Running time is linear in size of H.

• Algorithm is simple; proof of correctness is too complicated to present here.
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Goal: given a non-uniform hypergraph H(V,E), find a 2-coloring of V with
{R,B}, s.t.

∀Ei : (1− 6ε)
|Ei|
2

≤ R(Ei) ≤ (1 + 6ε)
|Ei|
2

High Level Algorithm

• Color each vertex uniformly at random with Red/Blue.

• We may break each edge Ei into 3 smaller edges: E1
i , E2

i , E3
i .

• Edge Ej
i is bad if the difference of Red/Blue vertices in Ej

i is ≥ ε|Ei|
2 .

• So, if |Ej
i | ≤ ε|Ei|

2 , it cannot be bad, even if Ej
i is monochromatic.

• Find connected components of bad edges.

• Recolor the vertices of these components by exhaustive search, s.t. no bad
remains. Such a coloring exists by the LLL.

• This 2-coloring satisfies:

∀Ei : R(Ei) = R(E1
i ) + R(E2

i ) + R(E3
i ) ≈ (1± 3ε)

|Ei|
2
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• The connected components of bad
edges are called 1-components.

• Each edge that is not bad but is
intersecting too many
1-components is dangerous.

• Re-coloring 1-components that are
intersecting a common dangerous
edge may create a new bad edge.

• Therefore, we find maximal connected components of 1-components and
dangerous edges; These are 2-components.

• We can consider each 2-component independently.

• Using the LLL there exists a partitioning of the edges of 2-components.

• With prob at least 1− 1
mε, no 1-component has size larger than O(log m).

• We repeat the same procedure on the new 2-components; with high
probability all 2-components will have size O(log log m).
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Open problems

• All the known algorithms have a loss in exponent of dependencies.

Example:

? For a k-uniform hypergraph: a 2-coloring exists with 2k−3 dependencies.
? We can find a 2-coloring with only 2

k
16 dependencies.

Find an algorithm that finds a 2-coloring when the number of dependencies
is 2k−O(1).

• These algorithms work when the number of colors is O(Polylog(m + n)).
What if not?

• How about other problems that none of these algorithms apply directly?

• How about a completely different approach?


