A $(1+\epsilon)$-Approximation Algorithm for Partitioning Hypergraphs Using A New Algorithmic Version of the Lovász Local Lemma

Mohammad R. Salavatipour

Department of Computer Science
University of Toronto
mreza@cs.toronto.edu

What is the Local Lemma?

What is the Local Lemma?

Lovász Local Lemma: $\mathcal{A}=\left\{A_{1}, \ldots, A_{n}\right\}$ a set of random events, A_{i} has probability at most p and is mutually independent of all but at most d other events. If $e p(d+1) \leq 1$, where $e=2.7182 \ldots$, then

$$
\operatorname{Pr}\left(\bar{A}_{1} \wedge \ldots \wedge \bar{A}_{n}\right)>0
$$

What is the Local Lemma?

Lovász Local Lemma: $\mathcal{A}=\left\{A_{1}, \ldots, A_{n}\right\}$ a set of random events, A_{i} has probability at most p and is mutually independent of all but at most d other events. If $e p(d+1) \leq 1$, where $e=2.7182 \ldots$, then

$$
\operatorname{Pr}\left(\bar{A}_{1} \wedge \ldots \wedge \bar{A}_{n}\right)>0 .
$$

Extremely powerful; has several applications in:

- Combinatorics and Graph Theory

What is the Local Lemma?

Lovász Local Lemma: $\mathcal{A}=\left\{A_{1}, \ldots, A_{n}\right\}$ a set of random events, A_{i} has probability at most p and is mutually independent of all but at most d other events. If $e p(d+1) \leq 1$, where $e=2.7182 \ldots$, then

$$
\operatorname{Pr}\left(\bar{A}_{1} \wedge \ldots \wedge \bar{A}_{n}\right)>0 .
$$

Extremely powerful; has several applications in:

- Combinatorics and Graph Theory
- Packet routing problems

What is the Local Lemma?

Lovász Local Lemma: $\mathcal{A}=\left\{A_{1}, \ldots, A_{n}\right\}$ a set of random events, A_{i} has probability at most p and is mutually independent of all but at most d other events. If $e p(d+1) \leq 1$, where $e=2.7182 \ldots$, then

$$
\operatorname{Pr}\left(\bar{A}_{1} \wedge \ldots \wedge \bar{A}_{n}\right)>0 .
$$

Extremely powerful; has several applications in:

- Combinatorics and Graph Theory
- Packet routing problems
- Job shop scheduling

What is the Local Lemma?

Lovász Local Lemma: $\mathcal{A}=\left\{A_{1}, \ldots, A_{n}\right\}$ a set of random events, A_{i} has probability at most p and is mutually independent of all but at most d other events. If $e p(d+1) \leq 1$, where $e=2.7182 \ldots$, then

$$
\operatorname{Pr}\left(\bar{A}_{1} \wedge \ldots \wedge \bar{A}_{n}\right)>0 .
$$

Extremely powerful; has several applications in:

- Combinatorics and Graph Theory
- Packet routing problems
- Job shop scheduling
- Finding disjoint paths in expander graphs

The most typical example of applications of the LLL is:
Theorem 1: If $H(V, E)$ is a k-uniform hypergraph and each edge intersects less than $\frac{2^{k-1}}{e}$ other edges, then H is 2 -colorable.

The most typical example of applications of the LLL is:
Theorem 1: If $H(V, E)$ is a k-uniform hypergraph and each edge intersects less than $\frac{2^{k-1}}{e}$ other edges, then H is 2 -colorable.

Proof:

- Color V with $\{$ Red, Blue $\}$ uniformly randomly.

The most typical example of applications of the LLL is:
Theorem 1: If $H(V, E)$ is a k-uniform hypergraph and each edge intersects less than $\frac{2^{k-1}}{e}$ other edges, then H is 2 -colorable.

Proof:

- Color V with $\{$ Red, Blue $\}$ uniformly randomly.
- Let A_{i} be the event that E_{i} is monochromatic.

The most typical example of applications of the LLL is:
Theorem 1: If $H(V, E)$ is a k-uniform hypergraph and each edge intersects less than $\frac{2^{k-1}}{e}$ other edges, then H is 2 -colorable.

Proof:

- Color V with $\{$ Red, Blue $\}$ uniformly randomly.
- Let A_{i} be the event that E_{i} is monochromatic.
- $\operatorname{Pr}\left(A_{i}\right)=\frac{2}{2^{k}}=2^{(1-k)}$

The most typical example of applications of the LLL is:
Theorem 1: If $H(V, E)$ is a k-uniform hypergraph and each edge intersects less than $\frac{2^{k-1}}{e}$ other edges, then H is 2 -colorable.

Proof:

- Color V with $\{$ Red, Blue $\}$ uniformly randomly.
- Let A_{i} be the event that E_{i} is monochromatic.
- $\operatorname{Pr}\left(A_{i}\right)=\frac{2}{2^{k}}=2^{(1-k)}$
- $e p(d+1) \leq e 2^{(1-k)}\left(\frac{2^{k-1}}{e}\right)=1$

The most typical example of applications of the LLL is:
Theorem 1: If $H(V, E)$ is a k-uniform hypergraph and each edge intersects less than $\frac{2^{k-1}}{e}$ other edges, then H is 2 -colorable.

Proof:

- Color V with $\{$ Red, Blue $\}$ uniformly randomly.
- Let A_{i} be the event that E_{i} is monochromatic.
- $\operatorname{Pr}\left(A_{i}\right)=\frac{2}{2^{k}}=2^{(1-k)}$
- $e p(d+1) \leq e 2^{(1-k)}\left(\frac{2^{k-1}}{e}\right)=1$

There is a more general form of the LLL, by which we can show:

The most typical example of applications of the LLL is:
Theorem 1: If $H(V, E)$ is a k-uniform hypergraph and each edge intersects less than $\frac{2^{k-1}}{e}$ other edges, then H is 2 -colorable.

Proof:

- Color V with $\{$ Red, Blue $\}$ uniformly randomly.
- Let A_{i} be the event that E_{i} is monochromatic.
- $\operatorname{Pr}\left(A_{i}\right)=\frac{2}{2^{k}}=2^{(1-k)}$
- $e p(d+1) \leq e 2^{(1-k)}\left(\frac{2^{k-1}}{e}\right)=1$

There is a more general form of the LLL, by which we can show:

Theorem 2: If $H(V, E)$ is non-uniform and each edge E_{i} has size at least 3 and intersects at most $2^{O(k)}$ other edges of size k, then H is 2-colorable.

The only drawback of the LLL: it is non-constructive

- The only drawback of the LLL: it is non-constructive
- Furthermore, the probability gauranteed in LLL is exponentially small.
- The only drawback of the LLL: it is non-constructive
- Furthermore, the probability gauranteed in LLL is exponentially small.
- The method of conditional probability (by Erdös) doesn't give polytime algorithm.

The only drawback of the LLL: it is non-constructive

- Furthermore, the probability gauranteed in LLL is exponentially small.
- The method of conditional probability (by Erdös) doesn’t give polytime algorithm.

The first algorithmic version of the LLL:
Theorem 3 [Beck 1991]: If $H(V, E)$ is k-uniform and each edge intersects at most $d=2^{c k}$ other edges, $c \leq \frac{1}{48}$, there is an algorithm which runs in $O(\operatorname{Poly}(n, m))$ that finds a 2-coloring of H.

The only drawback of the LLL: it is non-constructive

- Furthermore, the probability gauranteed in LLL is exponentially small.
- The method of conditional probability (by Erdös) doesn’t give polytime algorithm.

The first algorithmic version of the LLL:
Theorem 3 [Beck 1991]: If $H(V, E)$ is k-uniform and each edge intersects at most $d=2^{c k}$ other edges, $c \leq \frac{1}{48}$, there is an algorithm which runs in $O($ Poly $(n, m))$ that finds a 2-coloring of H.

- Alon [FOCS'91] gave parallel version of this theorem with $c \approx \frac{1}{500}$.

The only drawback of the LLL: it is non-constructive

- Furthermore, the probability gauranteed in LLL is exponentially small.
- The method of conditional probability (by Erdös) doesn't give polytime algorithm.

The first algorithmic version of the LLL:
Theorem 3 [Beck 1991]: If $H(V, E)$ is k-uniform and each edge intersects at most $d=2^{c k}$ other edges, $c \leq \frac{1}{48}$, there is an algorithm which runs in $O($ Poly $(n, m))$ that finds a 2-coloring of H.

- Alon [FOCS'91] gave parallel version of this theorem with $c \approx \frac{1}{500}$.
- Molloy \& Reed [STOC'98] gave more general algorithmic version of the LLL, which applies to a wider range of applications.

The only drawback of the LLL: it is non-constructive

- Furthermore, the probability gauranteed in LLL is exponentially small.
- The method of conditional probability (by Erdös) doesn't give polytime algorithm.

The first algorithmic version of the LLL:
Theorem 3 [Beck 1991]: If $H(V, E)$ is k-uniform and each edge intersects at most $d=2^{c k}$ other edges, $c \leq \frac{1}{48}$, there is an algorithm which runs in $O($ Poly $(n, m))$ that finds a 2-coloring of H.

- Alon [FOCS'91] gave parallel version of this theorem with $c \approx \frac{1}{500}$.
- Molloy \& Reed [STOC'98] gave more general algorithmic version of the LLL, which applies to a wider range of applications.
- None of these algorithms work for the case that H is non-uniform.

The first algorithmic version for non-uniform hypergraphs:
Theorem 4 [Czumaj \& Scheideler SODA'00]: We can find a 2-coloring of a non-uniform $H(V, E)$, as long as no edge $e \in E$ intersects more than $O\left(|e| 2^{O(k)}\right)$ edges of size at most k.

The first algorithmic version for non-uniform hypergraphs:
Theorem 4 [Czumaj \& Scheideler SODA'00]: We can find a 2-coloring of a non-uniform $H(V, E)$, as long as no edge $e \in E$ intersects more than $O\left(|e| 2^{O(k)}\right)$ edges of size at most k.

Problem: Try to find a 2-coloring s.t. the number of Red and Blue vertices are almost equal. (hypergraph partitioning problem).

The first algorithmic version for non-uniform hypergraphs:
Theorem 4 [Czumaj \& Scheideler SODA'00]: We can find a 2-coloring of a non-uniform $H(V, E)$, as long as no edge $e \in E$ intersects more than $O\left(|e| 2^{O(k)}\right)$ edges of size at most k.

Problem: Try to find a 2-coloring s.t. the number of Red and Blue vertices are almost equal. (hypergraph partitioning problem).

That is, if $R\left(E_{i}\right)\left(B\left(E_{i}\right)\right)$ is the number of Red (Blue) vertices in E_{i} :

$$
\forall i:(1-\epsilon) \frac{\left|E_{i}\right|}{2} \leq R\left(E_{i}\right) \leq(1+\epsilon) \frac{\left|E_{i}\right|}{2}
$$

The first algorithmic version for non-uniform hypergraphs:
Theorem 4 [Czumaj \& Scheideler SODA'00]: We can find a 2-coloring of a non-uniform $H(V, E)$, as long as no edge $e \in E$ intersects more than $O\left(|e| 2^{O(k)}\right)$ edges of size at most k.

Problem: Try to find a 2-coloring s.t. the number of Red and Blue vertices are almost equal. (hypergraph partitioning problem).

That is, if $R\left(E_{i}\right)\left(B\left(E_{i}\right)\right)$ is the number of Red (Blue) vertices in E_{i} :

$$
\forall i:(1-\epsilon) \frac{\left|E_{i}\right|}{2} \leq R\left(E_{i}\right) \leq(1+\epsilon) \frac{\left|E_{i}\right|}{2}
$$

- One of the applications of this problem is in splitting expander graphs [Frieze \& Molloy'00]

The first algorithmic version for non-uniform hypergraphs:
Theorem 4 [Czumaj \& Scheideler SODA'00]: We can find a 2-coloring of a non-uniform $H(V, E)$, as long as no edge $e \in E$ intersects more than $O\left(|e| 2^{O(k)}\right)$ edges of size at most k.

Problem: Try to find a 2-coloring s.t. the number of Red and Blue vertices are almost equal. (hypergraph partitioning problem).

That is, if $R\left(E_{i}\right)$ ($B\left(E_{i}\right)$) is the number of Red (Blue) vertices in E_{i} :

$$
\forall i:(1-\epsilon) \frac{\left|E_{i}\right|}{2} \leq R\left(E_{i}\right) \leq(1+\epsilon) \frac{\left|E_{i}\right|}{2}
$$

- One of the applications of this problem is in splitting expander graphs [Frieze \& Molloy'00]
- Theorem 4 does not extend to hypergraph partitioning

For uniform hypergraphs:
Theorem 5 [Beck 1991]: If $H(V, E)$ is k-uniform and each edge intersects at most $O\left(2^{O(k)}\right)$ other edges, then there is a polytime algorithm that finds a "partitioning" of H.

For uniform hypergraphs:
Theorem 5 [Beck 1991]: If $H(V, E)$ is k-uniform and each edge intersects at most $O\left(2^{O(k)}\right)$ other edges, then there is a polytime algorithm that finds a "partitioning" of H.

Theorem 6 [Czumaj \& Scheideler STOC'00]: We can find a partitioning of a "non-uniform" hypergraph, as long as no edge $e \in E$ intersects more than edges of size at most k.

For uniform hypergraphs:
Theorem 5 [Beck 1991]: If $H(V, E)$ is k-uniform and each edge intersects at most $O\left(2^{O(k)}\right)$ other edges, then there is a polytime algorithm that finds a "partitioning" of H.

Theorem 6 [Czumaj \& Scheideler STOC'00]: We can find a partitioning of a "non-uniform" hypergraph, as long as no edge $e \in E$ intersects more than edges of size at most k.

We extend Theorem 6 to match Theorem 5 for non-uniform hypergraphs:

For uniform hypergraphs:
Theorem 5 [Beck 1991]: If $H(V, E)$ is k-uniform and each edge intersects at most $O\left(2^{O(k)}\right)$ other edges, then there is a polytime algorithm that finds a "partitioning" of H.

Theorem 6 [Czumaj \& Scheideler STOC'00]: We can find a partitioning of a "non-uniform" hypergraph, as long as no edge $e \in E$ intersects more than edges of size at most k.

We extend Theorem 6 to match Theorem 5 for non-uniform hypergraphs:

Theorem 7 [This talk]: We can find a partitioning of a "non-uniform" hypergraph, as long as no edge $e \in E$ intersects more than $O\left(2^{O(k)}\right)$ edges of size at most k.

For uniform hypergraphs:
Theorem 5 [Beck 1991]: If $H(V, E)$ is k-uniform and each edge intersects at most $O\left(2^{O(k)}\right)$ other edges, then there is a polytime algorithm that finds a "partitioning" of H.

Theorem 6 [Czumaj \& Scheideler STOC'00]: We can find a partitioning of a "non-uniform" hypergraph, as long as no edge $e \in E$ intersects more than edges of size at most k.

We extend Theorem 6 to match Theorem 5 for non-uniform hypergraphs:

Theorem 7 [This talk]: We can find a partitioning of a "non-uniform" hypergraph, as long as no edge $e \in E$ intersects more than $O\left(2^{O(k)}\right)$ edges of size at most k.

- Both Theorems 6 and 7 are proved in more general settings.

For uniform hypergraphs:
Theorem 5 [Beck 1991]: If $H(V, E)$ is k-uniform and each edge intersects at most $O\left(2^{O(k)}\right)$ other edges, then there is a polytime algorithm that finds a "partitioning" of H.

Theorem 6 [Czumaj \& Scheideler STOC'00]: We can find a partitioning of a "non-uniform" hypergraph, as long as no edge $e \in E$ intersects more than edges of size at most k.

We extend Theorem 6 to match Theorem 5 for non-uniform hypergraphs:

Theorem 7 [This talk]: We can find a partitioning of a "non-uniform" hypergraph, as long as no edge $e \in E$ intersects more than $O\left(2^{O(k)}\right)$ edges of size at most k.

- Both Theorems 6 and 7 are proved in more general settings.
- Algorithm is Randomized; Expected Running time is linear in size of H.

For uniform hypergraphs:
Theorem 5 [Beck 1991]: If $H(V, E)$ is k-uniform and each edge intersects at most $O\left(2^{O(k)}\right)$ other edges, then there is a polytime algorithm that finds a "partitioning" of H.

Theorem 6 [Czumaj \& Scheideler STOC'00]: We can find a partitioning of a "non-uniform" hypergraph, as long as no edge $e \in E$ intersects more than edges of size at most k.

We extend Theorem 6 to match Theorem 5 for non-uniform hypergraphs:

Theorem 7 [This talk]: We can find a partitioning of a "non-uniform" hypergraph, as long as no edge $e \in E$ intersects more than $O\left(2^{O(k)}\right)$ edges of size at most k.

- Both Theorems 6 and 7 are proved in more general settings.
- Algorithm is Randomized; Expected Running time is linear in size of H.
- Algorithm is simple; proof of correctness is too complicated to present here.

Goal: given a non-uniform hypergraph $H(V, E)$, find a 2-coloring of V with $\{R, B\}$, s.t.

$$
\forall E_{i}:(1-6 \epsilon) \frac{\left|E_{i}\right|}{2} \leq R\left(E_{i}\right) \leq(1+6 \epsilon) \frac{\left|E_{i}\right|}{2}
$$

Goal: given a non-uniform hypergraph $H(V, E)$, find a 2-coloring of V with $\{R, B\}$, s.t.

$$
\forall E_{i}:(1-6 \epsilon) \frac{\left|E_{i}\right|}{2} \leq R\left(E_{i}\right) \leq(1+6 \epsilon) \frac{\left|E_{i}\right|}{2}
$$

High Level Algorithm

- Color each vertex uniformly at random with Red/Blue.

Goal: given a non-uniform hypergraph $H(V, E)$, find a 2-coloring of V with $\{R, B\}$, s.t.

$$
\forall E_{i}:(1-6 \epsilon) \frac{\left|E_{i}\right|}{2} \leq R\left(E_{i}\right) \leq(1+6 \epsilon) \frac{\left|E_{i}\right|}{2}
$$

High Level Algorithm

- Color each vertex uniformly at random with Red/Blue.
- We may break each edge E_{i} into 3 smaller edges: $E_{i}^{1}, E_{i}^{2}, E_{i}^{3}$.

Goal: given a non-uniform hypergraph $H(V, E)$, find a 2-coloring of V with $\{R, B\}$, s.t.

$$
\forall E_{i}:(1-6 \epsilon) \frac{\left|E_{i}\right|}{2} \leq R\left(E_{i}\right) \leq(1+6 \epsilon) \frac{\left|E_{i}\right|}{2}
$$

High Level Algorithm

- Color each vertex uniformly at random with Red/Blue.
- We may break each edge E_{i} into 3 smaller edges: $E_{i}^{1}, E_{i}^{2}, E_{i}^{3}$.
- Edge E_{i}^{j} is bad if the difference of Red/Blue vertices in E_{i}^{j} is $\geq \epsilon \frac{\left|E_{i}\right|}{2}$.

Goal: given a non-uniform hypergraph $H(V, E)$, find a 2-coloring of V with $\{R, B\}$, s.t.

$$
\forall E_{i}:(1-6 \epsilon) \frac{\left|E_{i}\right|}{2} \leq R\left(E_{i}\right) \leq(1+6 \epsilon) \frac{\left|E_{i}\right|}{2}
$$

High Level Algorithm

- Color each vertex uniformly at random with Red/Blue.
- We may break each edge E_{i} into 3 smaller edges: $E_{i}^{1}, E_{i}^{2}, E_{i}^{3}$.
- Edge E_{i}^{j} is bad if the difference of Red/Blue vertices in E_{i}^{j} is $\geq \epsilon \frac{\left|E_{i}\right|}{2}$.
- So, if $\left|E_{i}^{j}\right| \leq \epsilon \frac{\left|E_{i}\right|}{2}$, it cannot be bad, even if E_{i}^{j} is monochromatic.

Goal: given a non-uniform hypergraph $H(V, E)$, find a 2-coloring of V with $\{R, B\}$, s.t.

$$
\forall E_{i}:(1-6 \epsilon) \frac{\left|E_{i}\right|}{2} \leq R\left(E_{i}\right) \leq(1+6 \epsilon) \frac{\left|E_{i}\right|}{2}
$$

High Level Algorithm

- Color each vertex uniformly at random with Red/Blue.
- We may break each edge E_{i} into 3 smaller edges: $E_{i}^{1}, E_{i}^{2}, E_{i}^{3}$.
- Edge E_{i}^{j} is bad if the difference of Red/Blue vertices in E_{i}^{j} is $\geq \epsilon \frac{\left|E_{i}\right|}{2}$.
- So, if $\left|E_{i}^{j}\right| \leq \epsilon \frac{\left|E_{i}\right|}{2}$, it cannot be bad, even if E_{i}^{j} is monochromatic.
- Find connected components of bad edges.

Goal: given a non-uniform hypergraph $H(V, E)$, find a 2-coloring of V with $\{R, B\}$, s.t.

$$
\forall E_{i}:(1-6 \epsilon) \frac{\left|E_{i}\right|}{2} \leq R\left(E_{i}\right) \leq(1+6 \epsilon) \frac{\left|E_{i}\right|}{2}
$$

High Level Algorithm

- Color each vertex uniformly at random with Red/Blue.
- We may break each edge E_{i} into 3 smaller edges: $E_{i}^{1}, E_{i}^{2}, E_{i}^{3}$.
- Edge E_{i}^{j} is bad if the difference of Red/Blue vertices in E_{i}^{j} is $\geq \epsilon \frac{\left|E_{i}\right|}{2}$.
- So, if $\left|E_{i}^{j}\right| \leq \epsilon \frac{\left|E_{i}\right|}{2}$, it cannot be bad, even if E_{i}^{j} is monochromatic.
- Find connected components of bad edges.
- Recolor the vertices of these components by exhaustive search, s.t. no bad remains. Such a coloring exists by the LLL.

Goal: given a non-uniform hypergraph $H(V, E)$, find a 2-coloring of V with $\{R, B\}$, s.t.

$$
\forall E_{i}:(1-6 \epsilon) \frac{\left|E_{i}\right|}{2} \leq R\left(E_{i}\right) \leq(1+6 \epsilon) \frac{\left|E_{i}\right|}{2}
$$

High Level Algorithm

- Color each vertex uniformly at random with Red/Blue.
- We may break each edge E_{i} into 3 smaller edges: $E_{i}^{1}, E_{i}^{2}, E_{i}^{3}$.
- Edge E_{i}^{j} is bad if the difference of Red/Blue vertices in E_{i}^{j} is $\geq \epsilon \frac{\left|E_{i}\right|}{2}$.
- So, if $\left|E_{i}^{j}\right| \leq \epsilon \frac{\left|E_{i}\right|}{2}$, it cannot be bad, even if E_{i}^{j} is monochromatic.
- Find connected components of bad edges.
- Recolor the vertices of these components by exhaustive search, s.t. no bad remains. Such a coloring exists by the LLL.
- This 2-coloring satisfies:

$$
\forall E_{i}: R\left(E_{i}\right)=R\left(E_{i}^{1}\right)+R\left(E_{i}^{2}\right)+R\left(E_{i}^{3}\right) \approx(1 \pm 3 \epsilon) \frac{\left|E_{i}\right|}{2}
$$

The connected components of bad edges are called 1-components.

- The connected components of bad edges are called 1-components.

- The connected components of bad edges are called 1-components.
- Each edge that is not bad but is intersecting too many 1 -components is dangerous.

- The connected components of bad edges are called 1-components.
- Each edge that is not bad but is intersecting too many 1 -components is dangerous.

- The connected components of bad edges are called 1-components.
- Each edge that is not bad but is intersecting too many 1 -components is dangerous.
- Re-coloring 1-components that are intersecting a common dangerous edge may create a new bad edge.

- The connected components of bad edges are called 1-components.
- Each edge that is not bad but is intersecting too many 1 -components is dangerous.
- Re-coloring 1-components that are intersecting a common dangerous edge may create a new bad edge.

- Therefore, we find maximal connected components of 1-components and dangerous edges; These are 2-components.
- The connected components of bad edges are called 1-components.
- Each edge that is not bad but is intersecting too many 1 -components is dangerous.
- Re-coloring 1-components that are intersecting a common dangerous edge may create a new bad edge.

- Therefore, we find maximal connected components of 1-components and dangerous edges; These are 2-components.
- We can consider each 2-component independently.
- The connected components of bad edges are called 1-components.
- Each edge that is not bad but is intersecting too many 1 -components is dangerous.
- Re-coloring 1-components that are intersecting a common dangerous edge may create a new bad edge.

- Therefore, we find maximal connected components of 1-components and dangerous edges; These are 2-components.
- We can consider each 2-component independently.
- Using the LLL there exists a partitioning of the edges of 2-components.
- The connected components of bad edges are called 1-components.
- Each edge that is not bad but is intersecting too many 1 -components is dangerous.
- Re-coloring 1-components that are intersecting a common dangerous edge may create a new bad edge.

- Therefore, we find maximal connected components of 1-components and dangerous edges; These are 2-components.
- We can consider each 2-component independently.
- Using the LLL there exists a partitioning of the edges of 2-components.
- With prob at least $1-\frac{1}{m^{c}}$, no 1-component has size larger than $O(\log m)$.
- The connected components of bad edges are called 1-components.
- Each edge that is not bad but is intersecting too many 1 -components is dangerous.
- Re-coloring 1-components that are intersecting a common dangerous edge may create a new bad edge.

- Therefore, we find maximal connected components of 1-components and dangerous edges; These are 2-components.
- We can consider each 2-component independently.
- Using the LLL there exists a partitioning of the edges of 2-components.
- With prob at least $1-\frac{1}{m^{c}}$, no 1-component has size larger than $O(\log m)$.
- We repeat the same procedure on the new 2-components; with high probability all 2 -components will have size $O(\log \log m)$.

Open problems

All the known algorithms have a loss in exponent of dependencies.

Open problems

All the known algorithms have a loss in exponent of dependencies.

Example:

\star For a k-uniform hypergraph: a 2 -coloring exists with 2^{k-3} dependencies.
\star We can find a 2-coloring with only $2^{\frac{k}{16}}$ dependencies.

Open problems

All the known algorithms have a loss in exponent of dependencies.
Example:
\star For a k-uniform hypergraph: a 2 -coloring exists with 2^{k-3} dependencies.
\star We can find a 2 -coloring with only $2^{\frac{k}{16}}$ dependencies.

Find an algorithm that finds a 2-coloring when the number of dependencies is $2^{k-O(1)}$.

Open problems

All the known algorithms have a loss in exponent of dependencies.

Example:

\star For a k-uniform hypergraph: a 2 -coloring exists with 2^{k-3} dependencies.
\star We can find a 2 -coloring with only $2^{\frac{k}{16}}$ dependencies.

Find an algorithm that finds a 2-coloring when the number of dependencies is $2^{k-O(1)}$.

- These algorithms work when the number of colors is $O(\operatorname{Polylog}(m+n))$. What if not?

Open problems

All the known algorithms have a loss in exponent of dependencies.

Example:

\star For a k-uniform hypergraph: a 2 -coloring exists with 2^{k-3} dependencies.
\star We can find a 2 -coloring with only $2^{\frac{k}{16}}$ dependencies.

Find an algorithm that finds a 2-coloring when the number of dependencies is $2^{k-O(1)}$.

- These algorithms work when the number of colors is $O(\operatorname{Polylog}(m+n))$. What if not?
- How about other problems that none of these algorithms apply directly?

Open problems

All the known algorithms have a loss in exponent of dependencies.

Example:

\star For a k-uniform hypergraph: a 2-coloring exists with 2^{k-3} dependencies.
\star We can find a 2 -coloring with only $2^{\frac{k}{16}}$ dependencies.

Find an algorithm that finds a 2-coloring when the number of dependencies is $2^{k-O(1)}$.

- These algorithms work when the number of colors is $O(\operatorname{Polylog}(m+n))$. What if not?
- How about other problems that none of these algorithms apply directly?
- How about a completely different approach?

