A (1 + e)-Approximation Algorithm for Partitioning
Hypergraphs Using A New Algorithmic Version of
the Lov asz Local Lemma

Mohammad R. Salavatipour

Department of Computer Science
University of Toronto
mreza@cs.toronto.edu



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

What is the Local Lemma?



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

What is the Local Lemma?

Lovasz Local Lemma: A= {A,..., A,} asetof random events, A, has
probability at most p and is mutually independent of all but at most d other
events. If ep(d + 1) < 1, where e = 2.7182. ., then



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

What is the Local Lemma?

Lovasz Local Lemma: A= {A,..., A,} asetof random events, A, has
probability at most p and is mutually independent of all but at most d other
events. If ep(d + 1) < 1, where e = 2.7182. ., then

Extremely powerful; has several applications in:

Combinatorics and Graph Theory



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

What is the Local Lemma?

Lovasz Local Lemma: A= {A,..., A,} asetof random events, A, has
probability at most p and is mutually independent of all but at most d other
events. If ep(d + 1) < 1, where e = 2.7182. ., then

Extremely powerful; has several applications in:

Combinatorics and Graph Theory

Packet routing problems



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

What is the Local Lemma?

Lovasz Local Lemma: A= {A,..., A,} asetof random events, A, has
probability at most p and is mutually independent of all but at most d other
events. If ep(d + 1) < 1, where e = 2.7182. ., then

Extremely powerful; has several applications in:

Combinatorics and Graph Theory
Packet routing problems

Job shop scheduling



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

What is the Local Lemma?

Lovasz Local Lemma: A= {A,..., A,} asetof random events, A, has
probability at most p and is mutually independent of all but at most d other
events. If ep(d + 1) < 1, where e = 2.7182. ., then

Extremely powerful; has several applications in:

Combinatorics and Graph Theory
Packet routing problems
Job shop scheduling

Finding disjoint paths in expander graphs



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

The most typical example of applications of the LLL is:

Theorem 1: If H(V, ) is a k-uniform hypergraph and each edge intersects
less than ? other edges, then H is 2-colorable.



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

The most typical example of applications of the LLL is:

Theorem 1: If H(V, ) is a k-uniform hypergraph and each edge intersects
less than ? other edges, then H is 2-colorable.

Proof:

Color V' with { Red, Blue} uniformly randomly.



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

The most typical example of applications of the LLL is:

Theorem 1: If H(V, ) is a k-uniform hypergraph and each edge intersects
less than ? other edges, then H is 2-colorable.

Proof:

Color V' with { Red, Blue} uniformly randomly.

Let A, be the event that £; Is monochromatic.



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

The most typical example of applications of the LLL is:

Theorem 1: If H(V, ) is a k-uniform hypergraph and each edge intersects
less than ? other edges, then H is 2-colorable.

Proof:

Color V' with { Red, Blue} uniformly randomly.
Let A, be the event that £; Is monochromatic.

PI‘(AJ = 2% = 2(1_k)



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

The most typical example of applications of the LLL is:

Theorem 1: If H(V, ) is a k-uniform hypergraph and each edge intersects
less than ? other edges, then H is 2-colorable.

Proof:

Color V' with { Red, Blue} uniformly randomly.

Let A, be the event that £; Is monochromatic.

(1—k)

o
=
VS
N

~.

N——"
I

?v|[\-"
I



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

The most typical example of applications of the LLL is:

Theorem 1: If H(V, ) is a k-uniform hypergraph and each edge intersects
less than ? other edges, then H is 2-colorable.

Proof:

Color V' with { Red, Blue} uniformly randomly.

Let A, be the event that £; Is monochromatic.

(1—k)

o
=
VS
N

~.

N——"
I

?v|[\3
I

ep(d+1) < 62(1_1{:)(%) =3

There is a more general form of the LLL, by which we can show:



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

The most typical example of applications of the LLL is:

Theorem 1: If H(V, ) is a k-uniform hypergraph and each edge intersects
less than ? other edges, then H is 2-colorable.

Proof:

Color V' with { Red, Blue} uniformly randomly.

Let A, be the event that £; Is monochromatic.

(1—k)

o
=
VS
N

~.

N——"
I

?v|[\3
I

ep(d+1) < 62(1_1{:)(%) =3

There is a more general form of the LLL, by which we can show:

Theorem 2: If H(V, F) is non-uniform and each edge E; has size at least 3
and intersects at most 29%) other edges of size k, then H is 2-colorable.



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

The only drawback of the LLL: it is non-constructive



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

The only drawback of the LLL: it is non-constructive

Furthermore, the probability gauranteed in LLL is exponentially small.



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

The only drawback of the LLL: it is non-constructive
Furthermore, the probability gauranteed in LLL is exponentially small.

The method of conditional probability (by Erdos) doesn’t give polytime
algorithm.



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

The only drawback of the LLL: it is non-constructive
Furthermore, the probability gauranteed in LLL is exponentially small.

The method of conditional probability (by Erdos) doesn’t give polytime
algorithm.

The first algorithmic version of the LLL:

Theorem 3 [Beck 1991]: If H(V. E) is k-uniform and each edge intersects at

most d = 2°* other edges, ¢ < 3, there is an algorithm which runs in

O(Poly(n,m)) that finds a 2-coloring of H.



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

The only drawback of the LLL: it is non-constructive
Furthermore, the probability gauranteed in LLL is exponentially small.

The method of conditional probability (by Erdos) doesn’t give polytime
algorithm.

The first algorithmic version of the LLL:

Theorem 3 [Beck 1991]: If H(V. E) is k-uniform and each edge intersects at

most d = 2°* other edges, ¢ < 3, there is an algorithm which runs in

O(Poly(n,m)) that finds a 2-coloring of H.

Alon [FOCS’91] gave parallel version of this theorem with ¢ ~ Wlo



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

The only drawback of the LLL: it is non-constructive
Furthermore, the probability gauranteed in LLL is exponentially small.

The method of conditional probability (by Erdos) doesn’t give polytime
algorithm.

The first algorithmic version of the LLL:

Theorem 3 [Beck 1991]: If H(V. E) is k-uniform and each edge intersects at
most d = 2°* other edges, ¢ < 3, there is an algorithm which runs in
O(Poly(n,m)) that finds a 2-coloring of H.

Alon [FOCS’91] gave parallel version of this theorem with ¢ ~ Wlo

Molloy & Reed [STOC’98] gave more general algorithmic version of the
LLL, which applies to a wider range of applications.



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

The only drawback of the LLL: it is non-constructive
Furthermore, the probability gauranteed in LLL is exponentially small.

The method of conditional probability (by Erdos) doesn’t give polytime
algorithm.

The first algorithmic version of the LLL:

Theorem 3 [Beck 1991]: If H(V. E) is k-uniform and each edge intersects at
most d = 2°* other edges, ¢ < 3, there is an algorithm which runs in
O(Poly(n,m)) that finds a 2-coloring of H.

Alon [FOCS’91] gave parallel version of this theorem with ¢ ~ Wlo

Molloy & Reed [STOC’98] gave more general algorithmic version of the
LLL, which applies to a wider range of applications.

None of these algorithms work for the case that A is non-uniform.



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

The first algorithmic version for non-uniform hypergraphs:

Theorem 4 [Czumaj & Scheideler SODA’'00]:  We can find a 2-coloring of a
non-uniform H (V. E/), as long as no edge ¢ € E intersects more than
O(|e|29(")) edges of size at most £.



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

The first algorithmic version for non-uniform hypergraphs:

Theorem 4 [Czumaj & Scheideler SODA’'00]:  We can find a 2-coloring of a
non-uniform H (V. E/), as long as no edge ¢ € E intersects more than
O(|e|29(")) edges of size at most £.

Problem: Try to find a 2-coloring s.t. the number of Red and Blue vertices are
almost equal. (hypergraph partitioning problem).



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

The first algorithmic version for non-uniform hypergraphs:

Theorem 4 [Czumaj & Scheideler SODA’'00]:  We can find a 2-coloring of a
non-uniform H (V. E/), as long as no edge ¢ € E intersects more than
O(|e|29(")) edges of size at most £.

Problem: Try to find a 2-coloring s.t. the number of Red and Blue vertices are
almost equal. (hypergraph partitioning problem).

That is, if R(E;) (B(E;)) is the number of Red (Blue) vertices in E;:

Jizs [
vi:(1- gl £

2

< R(E;) < (1+¢)



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

The first algorithmic version for non-uniform hypergraphs:

Theorem 4 [Czumaj & Scheideler SODA’00]:  We can find a 2-coloring of a
non-uniform H (V. E/), as long as no edge ¢ € E intersects more than
O(|e|29(")) edges of size at most £.

Problem: Try to find a 2-coloring s.t. the number of Red and Blue vertices are
almost equal. (hypergraph partitioning problem).

That is, if R(E;) (B(E;)) is the number of Red (Blue) vertices in E;:

Jizs [
vi:(1- gl =

2

< R(E;) < (1+¢)

One of the applications of this problem is in splitting expander graphs
[Frieze & Molloy’00]



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

The first algorithmic version for non-uniform hypergraphs:

Theorem 4 [Czumaj & Scheideler SODA’00]:  We can find a 2-coloring of a
non-uniform H (V. E/), as long as no edge ¢ € E intersects more than
O(|e|29(")) edges of size at most £.

Problem: Try to find a 2-coloring s.t. the number of Red and Blue vertices are
almost equal. (hypergraph partitioning problem).

That is, if R(E;) (B(E;)) is the number of Red (Blue) vertices in E;:

Jizs [
vi:(1- gl =

2

< R(E;) < (1+¢)

One of the applications of this problem is in splitting expander graphs
[Frieze & Molloy’00]

Theorem 4 does not extend to hypergraph partitioning



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

For uniform hypergraphs:

Theorem 5 [Beck 1991]. If H(V, E) is k-uniform and each edge intersects at
most other edges, then there is a polytime algorithm that finds a
“partitioning” of H.



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

For uniform hypergraphs:

Theorem 5 [Beck 1991]. If H(V, E) is k-uniform and each edge intersects at
most other edges, then there is a polytime algorithm that finds a
“partitioning” of H.

Theorem 6 [Czumaj & Scheideler STOC’00]: We can find a partitioning of a
“non-uniform” hypergraph, as long as no edge ¢ € E intersects more than
edges of size at most k.



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

For uniform hypergraphs:

Theorem 5 [Beck 1991]. If H(V, E) is k-uniform and each edge intersects at
most other edges, then there is a polytime algorithm that finds a
“partitioning” of H.

Theorem 6 [Czumaj & Scheideler STOC’00]: We can find a partitioning of a
“non-uniform” hypergraph, as long as no edge ¢ € E intersects more than
edges of size at most k.

We extend Theorem 6 to match Theorem 5 for non-uniform hypergraphs:



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

For uniform hypergraphs:

Theorem 5 [Beck 1991]. If H(V, E) is k-uniform and each edge intersects at
most other edges, then there is a polytime algorithm that finds a
“partitioning” of H.

Theorem 6 [Czumaj & Scheideler STOC’00]: We can find a partitioning of a
“non-uniform” hypergraph, as long as no edge ¢ € E intersects more than
edges of size at most k.

We extend Theorem 6 to match Theorem 5 for non-uniform hypergraphs:

Theorem 7 [This talk]: We can find a partitioning of a “non-uniform”
hypergraph, as long as no edge e € E intersects more than edges of
Size at most k.



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

For uniform hypergraphs:

Theorem 5 [Beck 1991]. If H(V, E) is k-uniform and each edge intersects at
most other edges, then there is a polytime algorithm that finds a
“partitioning” of H.

Theorem 6 [Czumaj & Scheideler STOC’00]: We can find a partitioning of a
“non-uniform” hypergraph, as long as no edge ¢ € E intersects more than
edges of size at most k.

We extend Theorem 6 to match Theorem 5 for non-uniform hypergraphs:

Theorem 7 [This talk]: We can find a partitioning of a “non-uniform”
hypergraph, as long as no edge e € E intersects more than edges of
Size at most k.

Both Theorems 6 and 7 are proved in more general settings.



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

For uniform hypergraphs:

Theorem 5 [Beck 1991]. If H(V, E) is k-uniform and each edge intersects at
most other edges, then there is a polytime algorithm that finds a
“partitioning” of H.

Theorem 6 [Czumaj & Scheideler STOC’00]: We can find a partitioning of a
“non-uniform” hypergraph, as long as no edge e € E intersects more than
edges of size at most k.

We extend Theorem 6 to match Theorem 5 for non-uniform hypergraphs:

Theorem 7 [This talk]: We can find a partitioning of a “non-uniform”
hypergraph, as long as no edge e € E intersects more than edges of
Size at most k.

Both Theorems 6 and 7 are proved in more general settings.

Algorithm is Randomized; Expected Running time is linear in size of H.



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

For uniform hypergraphs:

Theorem 5 [Beck 1991]. If H(V, E) is k-uniform and each edge intersects at
most other edges, then there is a polytime algorithm that finds a
“partitioning” of H.

Theorem 6 [Czumaj & Scheideler STOC’00]: We can find a partitioning of a
“non-uniform” hypergraph, as long as no edge e € E intersects more than
edges of size at most k.

We extend Theorem 6 to match Theorem 5 for non-uniform hypergraphs:

Theorem 7 [This talk]: We can find a partitioning of a “non-uniform”
hypergraph, as long as no edge e € E intersects more than edges of
Size at most k.

Both Theorems 6 and 7 are proved in more general settings.
Algorithm is Randomized; Expected Running time is linear in size of H.

Algorithm is simple; proof of correctness is too complicated to present here.



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

given a non-uniform hypergraph H (V, E'), find a 2-coloring of I with
{R, B}, s.t.
|E;]
2

< R(E;) <(1+ 66)’Ei|

\V/EZ . (1 — 66) 5



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

given a non-uniform hypergraph H (V, E'), find a 2-coloring of I with
{R, B}, s.t.
| £
2

< R(E;) <(1+ GE)IEJ

\V/EZ . (1 — 66) 5

High Level Algorithm

Color each vertex uniformly at random with Red/Blue.



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

given a non-uniform hypergraph H (V, E'), find a 2-coloring of I with
{R, B}, s.t.
| £
2

< R(E;) <(1+ 66)’Eé,

\V/EZ . (1 — 66) 5

High Level Algorithm

Color each vertex uniformly at random with Red/Blue.

We may break each edge F; into 3 smaller edges: E!, F?, E?.

1



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

given a non-uniform hypergraph H (V, E'), find a 2-coloring of I with
{R, B}, s.t.
| £
2

Fi

High Level Algorithm

Color each vertex uniformly at random with Red/Blue.

We may break each edge F; into 3 smaller edges: E!, F?, E?.

1

Edge £/ is bad if the difference of Red/Blue vertices in £’ is > e%



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

given a non-uniform hypergraph H (V, E'), find a 2-coloring of I with
{R, B}, s.t.
| £
2

| B

2

\V/EZ . (1 — 66)
High Level Algorithm

< R(E;) < (1 + 6e€)

Color each vertex uniformly at random with Red/Blue.

We may break each edge F; into 3 smaller edges: E!, F?, E?.

Edge £/ is bad if the difference of Red/Blue vertices in £’ is > e%

So, if |F/| < e'E , it cannot be bad, even if £’ is monochromatic.



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

given a non-uniform hypergraph H (V, E'), find a 2-coloring of I with
{R, B}, s.t.
| £
2

< R(E)) < (1+ 6¢) 24

\V/EZ . (1 — 66) 5

High Level Algorithm

Color each vertex uniformly at random with Red/Blue.

We may break each edge F; into 3 smaller edges: E!, F?, E?.

Edge £/ is bad if the difference of Red/Blue vertices in £’ is > e%

So, if |F/| < e'E , it cannot be bad, even if £’ is monochromatic.

Find connected components of bad edges.



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

given a non-uniform hypergraph H (V, E'), find a 2-coloring of I with
{R, B}, s.t.

| B
2

< R(E)) < (1+ 6¢) 24

\V/EZ . (1 — 66) 5

High Level Algorithm

Color each vertex uniformly at random with Red/Blue.

We may break each edge F; into 3 smaller edges: E!, F?, E?.

Edge £/ is bad if the difference of Red/Blue vertices in £’ is > e%

So, if |F/| < e'E , it cannot be bad, even if £’ is monochromatic.
Find connected components of bad edges.

Recolor the vertices of these components by exhaustive search, s.t. no bad
remains. Such a coloring exists by the LLL.



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

given a non-uniform hypergraph H (V, E'), find a 2-coloring of I with
{R, B}, s.t.

| B
2

< R(E)) < (1+ 6¢) 24

\V/EZ . (1 — 66) 5

High Level Algorithm

Color each vertex uniformly at random with Red/Blue.

We may break each edge F; into 3 smaller edges: E!, F?, E?.

Edge £/ is bad if the difference of Red/Blue vertices in £’ is > e%

So, if |F/| < e'E , it cannot be bad, even if £’ is monochromatic.
Find connected components of bad edges.

Recolor the vertices of these components by exhaustive search, s.t. no bad
remains. Such a coloring exists by the LLL.

This 2-coloring satisfies:

VE; : R(E;) = R(E;}) + R(E?) + R(E;) = (1 £ 3¢) ‘b;?‘



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

The connected components of bad
edges are called 1-components.



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

The connected components of bad R
edges are called 1-components. il [ —component

e

Bad edge




A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

The connected components of bad R
edges are called 1-components. il [ —component

e

Bad edge

Each edge that is not bad but is
Intersecting too many
1-components is dangerous.




A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

The connected components of bad ]
edges are called 1-components. i . 1 —component

e

Bad edge

Each edge that is not bad but is
Intersecting too many
1-components is dangerous.

Dangerous edge




A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

The connected components of bad ]
edges are called 1-components. i 1 —component

e

Bad edge

Each edge that is not bad but is
Intersecting too many
1-components is dangerous.

Re-coloring 1-components that are
Intersecting a common dangerous
edge may create a new bad edge.

Dangerous edge




A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

The connected components of bad ]
edges are called 1-components. i .f 1 —component

e

Each edge that is not bad but is 1 = Bad edge
Intersecting too many “
1-components is dangerous.

Re-coloring 1-components that are
Intersecting a common dangerous
edge may create a new bad edge. Bonseraus adee

Therefore, we find maximal connected components of 1-components and
dangerous edges; These are 2-components.



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

The connected components of bad o
edges are called 1-components. G .f /I—-:?mr?pc}m?rrr
Each edge that is not bad but is 1 - Bad edge

Intersecting too many “
1-components is dangerous.

Re-coloring 1-components that are
Intersecting a common dangerous
edge may create a new bad edge. Bonseraus adee

Therefore, we find maximal connected components of 1-components and
dangerous edges; These are 2-components.

We can consider each 2-component independently.



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

The connected components of bad

edges are called 1-components. e /I—-:?mr?pc}m?rrr
Each edge that is not bad but is = Bad edge

Intersecting too many
1-components is dangerous.

Re-coloring 1-components that are
Intersecting a common dangerous
edge may create a new bad edge.

Dangerous edge

Therefore, we find maximal connected components of 1-components and
dangerous edges; These are 2-components.

We can consider each 2-component independently.

Using the LLL there exists a partitioning of the edges of 2-components.



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

The connected components of bad

edges are called 1-components. e /I—-:?mr?pc}m?rrr
Each edge that is not bad but is = Bad edge

Intersecting too many
1-components is dangerous.

Re-coloring 1-components that are
Intersecting a common dangerous
edge may create a new bad edge.

Dangerous edge

Therefore, we find maximal connected components of 1-components and
dangerous edges; These are 2-components.

We can consider each 2-component independently.
Using the LLL there exists a partitioning of the edges of 2-components.

With prob at least 1 — mi no 1-component has size larger than O(logm.).



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

The connected components of bad o
edges are called 1-components. il .' 1 —component

e

Bad edge

b
w
|
i
&
-

Each edge that is not bad but is
Intersecting too many
1-components is dangerous.

Re-coloring 1-components that are
Intersecting a common dangerous
edge may create a new bad edge. Bonseraus adee

Therefore, we find maximal connected components of 1-components and
dangerous edges; These are 2-components.

We can consider each 2-component independently.
Using the LLL there exists a partitioning of the edges of 2-components.
With prob at least 1 — mi no 1-component has size larger than O(logm.).

We repeat the same procedure on the new 2-components; with high
probability all 2-components will have size O(log logm).



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

Open problems

All the known algorithms have a loss in exponent of dependencies.



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

Open problems

All the known algorithms have a loss in exponent of dependencies.

Example:

x For a k-uniform hypergraph: a 2-coloring exists with 22 dependencies.
* We can find a 2-coloring with only 215 dependencies.



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

Open problems

All the known algorithms have a loss in exponent of dependencies.

Example:

x For a k-uniform hypergraph: a 2-coloring exists with 22 dependencies.
* We can find a 2-coloring with only 215 dependencies.

Find an algorithm that finds a 2-coloring when the number of dependencies
is 2k—0O(1),



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

Open problems

All the known algorithms have a loss in exponent of dependencies.

Example:

x For a k-uniform hypergraph: a 2-coloring exists with 22 dependencies.
* We can find a 2-coloring with only 215 dependencies.

Find an algorithm that finds a 2-coloring when the number of dependencies
is 2k—0O(1),

These algorithms work when the number of colors is O(Polylog(m + n)).
What if not?



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

Open problems

All the known algorithms have a loss in exponent of dependencies.
Example:

x For a k-uniform hypergraph: a 2-coloring exists with 22 dependencies.
* We can find a 2-coloring with only 215 dependencies.

Find an algorithm that finds a 2-coloring when the number of dependencies
is 2k—0O(1),

These algorithms work when the number of colors is O(Polylog(m + n)).
What if not?

How about other problems that none of these algorithms apply directly?



A (1 + €)-APPROXIMATION ALGORITHM FOR PARTITIONING HYPERGRAPHS

Open problems

All the known algorithms have a loss in exponent of dependencies.

Example:

x For a k-uniform hypergraph: a 2-coloring exists with 22 dependencies.
* We can find a 2-coloring with only 215 dependencies.

Find an algorithm that finds a 2-coloring when the number of dependencies
is 2k—0O(1),

These algorithms work when the number of colors is O(Polylog(m + n)).
What if not?

How about other problems that none of these algorithms apply directly?

How about a completely different approach?



