## A $(1 + \epsilon)$ -Approximation Algorithm for Partitioning Hypergraphs Using A New Algorithmic Version of the Lovász Local Lemma

Mohammad R. Salavatipour

Department of Computer Science University of Toronto mreza@cs.toronto.edu

**Lovász Local Lemma:**  $A = \{A_1, \ldots, A_n\}$  a set of random events,  $A_i$  has probability at most p and is mutually independent of all but at most d other events. If  $ep(d+1) \le 1$ , where e = 2.7182..., then

 $\Pr(\overline{A}_1 \wedge \ldots \wedge \overline{A}_n) > 0.$ 

**Lovász Local Lemma:**  $A = \{A_1, \ldots, A_n\}$  a set of random events,  $A_i$  has probability at most p and is mutually independent of all but at most d other events. If  $ep(d+1) \le 1$ , where e = 2.7182..., then

$$\Pr(\overline{A}_1 \wedge \ldots \wedge \overline{A}_n) > 0.$$

Extremely powerful; has several applications in:

Combinatorics and Graph Theory

**Lovász Local Lemma:**  $A = \{A_1, \ldots, A_n\}$  a set of random events,  $A_i$  has probability at most p and is mutually independent of all but at most d other events. If  $ep(d+1) \le 1$ , where e = 2.7182..., then

$$\Pr(\overline{A}_1 \wedge \ldots \wedge \overline{A}_n) > 0.$$

Extremely powerful; has several applications in:

- Combinatorics and Graph Theory
- Packet routing problems

**Lovász Local Lemma:**  $A = \{A_1, \ldots, A_n\}$  a set of random events,  $A_i$  has probability at most p and is mutually independent of all but at most d other events. If  $ep(d+1) \le 1$ , where e = 2.7182..., then

$$\Pr(\overline{A}_1 \wedge \ldots \wedge \overline{A}_n) > 0.$$

Extremely powerful; has several applications in:

- Combinatorics and Graph Theory
- Packet routing problems
- Job shop scheduling

**Lovász Local Lemma:**  $A = \{A_1, \ldots, A_n\}$  a set of random events,  $A_i$  has probability at most p and is mutually independent of all but at most d other events. If  $ep(d+1) \le 1$ , where e = 2.7182..., then

$$\Pr(\overline{A}_1 \wedge \ldots \wedge \overline{A}_n) > 0.$$

Extremely powerful; has several applications in:

- Combinatorics and Graph Theory
- Packet routing problems
- Job shop scheduling
- Finding disjoint paths in expander graphs

**Theorem 1:** If H(V, E) is a k-uniform hypergraph and each edge intersects less than  $\frac{2^{k-1}}{e}$  other edges, then H is 2-colorable.

**Theorem 1:** If H(V, E) is a k-uniform hypergraph and each edge intersects less than  $\frac{2^{k-1}}{e}$  other edges, then H is 2-colorable.

#### **Proof:**

• Color V with  $\{Red, Blue\}$  uniformly randomly.

**Theorem 1:** If H(V, E) is a k-uniform hypergraph and each edge intersects less than  $\frac{2^{k-1}}{e}$  other edges, then H is 2-colorable.

#### **Proof:**

- Color V with  $\{Red, Blue\}$  uniformly randomly.
- Let  $A_i$  be the event that  $E_i$  is monochromatic.

**Theorem 1:** If H(V, E) is a k-uniform hypergraph and each edge intersects less than  $\frac{2^{k-1}}{e}$  other edges, then H is 2-colorable.

#### **Proof:**

- Color V with  $\{Red, Blue\}$  uniformly randomly.
- Let  $A_i$  be the event that  $E_i$  is monochromatic.
- $\Pr(A_i) = \frac{2}{2^k} = 2^{(1-k)}$

**Theorem 1:** If H(V, E) is a k-uniform hypergraph and each edge intersects less than  $\frac{2^{k-1}}{e}$  other edges, then H is 2-colorable.

#### **Proof:**

- Color V with  $\{Red, Blue\}$  uniformly randomly.
- Let  $A_i$  be the event that  $E_i$  is monochromatic.
- $\Pr(A_i) = \frac{2}{2^k} = 2^{(1-k)}$
- $ep(d+1) \le e2^{(1-k)}(\frac{2^{k-1}}{e}) = 1$

**Theorem 1:** If H(V, E) is a k-uniform hypergraph and each edge intersects less than  $\frac{2^{k-1}}{e}$  other edges, then H is 2-colorable.

#### **Proof:**

- Color V with  $\{Red, Blue\}$  uniformly randomly.
- Let  $A_i$  be the event that  $E_i$  is monochromatic.
- $\Pr(A_i) = \frac{2}{2^k} = 2^{(1-k)}$
- $ep(d+1) \le e2^{(1-k)}(\frac{2^{k-1}}{e}) = 1$

There is a more general form of the LLL, by which we can show:

**Theorem 1:** If H(V, E) is a k-uniform hypergraph and each edge intersects less than  $\frac{2^{k-1}}{e}$  other edges, then H is 2-colorable.

#### **Proof:**

- Color V with  $\{Red, Blue\}$  uniformly randomly.
- Let  $A_i$  be the event that  $E_i$  is monochromatic.
- $\Pr(A_i) = \frac{2}{2^k} = 2^{(1-k)}$
- $ep(d+1) \le e^{2^{(1-k)}(\frac{2^{k-1}}{e})} = 1$

There is a more general form of the LLL, by which we can show:

**Theorem 2:** If H(V, E) is non-uniform and each edge  $E_i$  has size at least 3 and intersects at most  $2^{O(k)}$  other edges of size k, then H is 2-colorable.

• The only drawback of the LLL: *it is non-constructive* 

- The only drawback of the LLL: it is non-constructive
- Furthermore, the probability gauranteed in LLL is exponentially small.

- The only drawback of the LLL: it is non-constructive
- Furthermore, the probability gauranteed in LLL is exponentially small.
- The method of conditional probability (by Erdös) doesn't give polytime algorithm.

- The only drawback of the LLL: it is non-constructive
- Furthermore, the probability gauranteed in LLL is exponentially small.
- The method of conditional probability (by Erdös) doesn't give polytime algorithm.

**Theorem 3 [Beck 1991]:** If H(V, E) is *k*-uniform and each edge intersects at most  $d = 2^{ck}$  other edges,  $c \leq \frac{1}{48}$ , there is an algorithm which runs in O(Poly(n, m)) that finds a 2-coloring of *H*.

- The only drawback of the LLL: it is non-constructive
- Furthermore, the probability gauranteed in LLL is exponentially small.
- The method of conditional probability (by Erdös) doesn't give polytime algorithm.

**Theorem 3 [Beck 1991]:** If H(V, E) is *k*-uniform and each edge intersects at most  $d = 2^{ck}$  other edges,  $c \leq \frac{1}{48}$ , there is an algorithm which runs in O(Poly(n, m)) that finds a 2-coloring of *H*.

• Alon [FOCS'91] gave parallel version of this theorem with  $c \approx \frac{1}{500}$ .

- The only drawback of the LLL: it is non-constructive
- Furthermore, the probability gauranteed in LLL is exponentially small.
- The method of conditional probability (by Erdös) doesn't give polytime algorithm.

**Theorem 3 [Beck 1991]:** If H(V, E) is *k*-uniform and each edge intersects at most  $d = 2^{ck}$  other edges,  $c \leq \frac{1}{48}$ , there is an algorithm which runs in O(Poly(n, m)) that finds a 2-coloring of *H*.

• Alon [FOCS'91] gave parallel version of this theorem with  $c \approx \frac{1}{500}$ .

 Molloy & Reed [STOC'98] gave more general algorithmic version of the LLL, which applies to a wider range of applications.

- The only drawback of the LLL: it is non-constructive
- Furthermore, the probability gauranteed in LLL is exponentially small.
- The method of conditional probability (by Erdös) doesn't give polytime algorithm.

**Theorem 3 [Beck 1991]:** If H(V, E) is *k*-uniform and each edge intersects at most  $d = 2^{ck}$  other edges,  $c \leq \frac{1}{48}$ , there is an algorithm which runs in O(Poly(n, m)) that finds a 2-coloring of *H*.

- Alon [FOCS'91] gave parallel version of this theorem with  $c \approx \frac{1}{500}$ .
- Molloy & Reed [STOC'98] gave more general algorithmic version of the LLL, which applies to a wider range of applications.
- None of these algorithms work for the case that H is non-uniform.

**Theorem 4 [Czumaj & Scheideler SODA'00]:** We can find a 2-coloring of a non-uniform H(V, E), as long as no edge  $e \in E$  intersects more than  $O(|e|2^{O(k)})$  edges of size at most k.

**Theorem 4 [Czumaj & Scheideler SODA'00]:** We can find a 2-coloring of a non-uniform H(V, E), as long as no edge  $e \in E$  intersects more than  $O(|e|2^{O(k)})$  edges of size at most k.

**Problem:** Try to find a 2-coloring s.t. the number of *Red* and *Blue* vertices are almost equal. (*hypergraph partitioning* problem).

**Theorem 4 [Czumaj & Scheideler SODA'00]:** We can find a 2-coloring of a non-uniform H(V, E), as long as no edge  $e \in E$  intersects more than  $O(|e|2^{O(k)})$  edges of size at most k.

**Problem:** Try to find a 2-coloring s.t. the number of *Red* and *Blue* vertices are almost equal. (*hypergraph partitioning* problem).

That is, if  $R(E_i)$  ( $B(E_i)$ ) is the number of Red (Blue) vertices in  $E_i$ :

$$\forall i : (1-\epsilon)\frac{|E_i|}{2} \le R(E_i) \le (1+\epsilon)\frac{|E_i|}{2}$$

**Theorem 4 [Czumaj & Scheideler SODA'00]:** We can find a 2-coloring of a non-uniform H(V, E), as long as no edge  $e \in E$  intersects more than  $O(|e|2^{O(k)})$  edges of size at most k.

**Problem:** Try to find a 2-coloring s.t. the number of *Red* and *Blue* vertices are almost equal. (*hypergraph partitioning* problem).

That is, if  $R(E_i)$  ( $B(E_i)$ ) is the number of Red (Blue) vertices in  $E_i$ :

$$\forall i: (1-\epsilon)\frac{|E_i|}{2} \le R(E_i) \le (1+\epsilon)\frac{|E_i|}{2}$$

 One of the applications of this problem is in splitting expander graphs [Frieze & Molloy'00]

**Theorem 4 [Czumaj & Scheideler SODA'00]:** We can find a 2-coloring of a non-uniform H(V, E), as long as no edge  $e \in E$  intersects more than  $O(|e|2^{O(k)})$  edges of size at most k.

**Problem:** Try to find a 2-coloring s.t. the number of *Red* and *Blue* vertices are almost equal. (*hypergraph partitioning* problem).

That is, if  $R(E_i)$  ( $B(E_i)$ ) is the number of Red (Blue) vertices in  $E_i$ :

$$\forall i: (1-\epsilon)\frac{|E_i|}{2} \le R(E_i) \le (1+\epsilon)\frac{|E_i|}{2}$$

 One of the applications of this problem is in splitting expander graphs [Frieze & Molloy'00]

Theorem 4 does not extend to hypergraph partitioning

**Theorem 6 [Czumaj & Scheideler STOC'00]:** We can find a partitioning of a *"non-uniform"* hypergraph, as long as no edge  $e \in E$  intersects more than  $O(2^{o(k)})$  edges of size at most k.

**Theorem 6 [Czumaj & Scheideler STOC'00]:** We can find a partitioning of a *"non-uniform"* hypergraph, as long as no edge  $e \in E$  intersects more than  $O(2^{o(k)})$  edges of size at most k.

We extend Theorem 6 to match Theorem 5 for non-uniform hypergraphs:

**Theorem 6 [Czumaj & Scheideler STOC'00]:** We can find a partitioning of a *"non-uniform"* hypergraph, as long as no edge  $e \in E$  intersects more than  $O(2^{o(k)})$  edges of size at most k.

We extend Theorem 6 to match Theorem 5 for non-uniform hypergraphs:

**Theorem 7 [This talk]:** We can find a partitioning of a "non-uniform" hypergraph, as long as no edge  $e \in E$  intersects more than  $O(2^{O(k)})$  edges of size at most k.

**Theorem 6 [Czumaj & Scheideler STOC'00]:** We can find a partitioning of a *"non-uniform"* hypergraph, as long as no edge  $e \in E$  intersects more than  $O(2^{o(k)})$  edges of size at most k.

We extend Theorem 6 to match Theorem 5 for non-uniform hypergraphs:

**Theorem 7 [This talk]:** We can find a partitioning of a "non-uniform" hypergraph, as long as no edge  $e \in E$  intersects more than  $O(2^{O(k)})$  edges of size at most k.

• Both Theorems 6 and 7 are proved in more general settings.

**Theorem 6 [Czumaj & Scheideler STOC'00]:** We can find a partitioning of a *"non-uniform"* hypergraph, as long as no edge  $e \in E$  intersects more than  $O(2^{o(k)})$  edges of size at most k.

We extend Theorem 6 to match Theorem 5 for non-uniform hypergraphs:

**Theorem 7 [This talk]:** We can find a partitioning of a "non-uniform" hypergraph, as long as no edge  $e \in E$  intersects more than  $O(2^{O(k)})$  edges of size at most k.

- Both Theorems 6 and 7 are proved in more general settings.
- Algorithm is Randomized; Expected Running time is linear in size of H.

**Theorem 6 [Czumaj & Scheideler STOC'00]:** We can find a partitioning of a *"non-uniform"* hypergraph, as long as no edge  $e \in E$  intersects more than  $O(2^{o(k)})$  edges of size at most k.

We extend Theorem 6 to match Theorem 5 for non-uniform hypergraphs:

**Theorem 7 [This talk]:** We can find a partitioning of a "non-uniform" hypergraph, as long as no edge  $e \in E$  intersects more than  $O(2^{O(k)})$  edges of size at most k.

- Both Theorems 6 and 7 are proved in more general settings.
- Algorithm is Randomized; Expected Running time is linear in size of H.
- Algorithm is simple; proof of correctness is too complicated to present here.

$$\forall E_i : (1 - 6\epsilon) \frac{|E_i|}{2} \le R(E_i) \le (1 + 6\epsilon) \frac{|E_i|}{2}$$

$$\forall E_i : (1 - 6\epsilon) \frac{|E_i|}{2} \le R(E_i) \le (1 + 6\epsilon) \frac{|E_i|}{2}$$

#### **High Level Algorithm**

Color each vertex uniformly at random with Red/Blue.

$$\forall E_i : (1 - 6\epsilon) \frac{|E_i|}{2} \le R(E_i) \le (1 + 6\epsilon) \frac{|E_i|}{2}$$

- Color each vertex uniformly at random with Red/Blue.
- We may break each edge  $E_i$  into 3 smaller edges:  $E_i^1$ ,  $E_i^2$ ,  $E_i^3$ .

$$\forall E_i : (1 - 6\epsilon) \frac{|E_i|}{2} \le R(E_i) \le (1 + 6\epsilon) \frac{|E_i|}{2}$$

- Color each vertex uniformly at random with Red/Blue.
- We may break each edge  $E_i$  into 3 smaller edges:  $E_i^1$ ,  $E_i^2$ ,  $E_i^3$ .
- Edge  $E_i^j$  is *bad* if the difference of Red/Blue vertices in  $E_i^j$  is  $\geq \epsilon \frac{|E_i|}{2}$ .

$$\forall E_i : (1 - 6\epsilon) \frac{|E_i|}{2} \le R(E_i) \le (1 + 6\epsilon) \frac{|E_i|}{2}$$

- Color each vertex uniformly at random with Red/Blue.
- We may break each edge  $E_i$  into 3 smaller edges:  $E_i^1$ ,  $E_i^2$ ,  $E_i^3$ .
- Edge  $E_i^j$  is *bad* if the difference of Red/Blue vertices in  $E_i^j$  is  $\geq \epsilon \frac{|E_i|}{2}$ .
- So, if  $|E_i^j| \le \epsilon \frac{|E_i|}{2}$ , it cannot be bad, even if  $E_i^j$  is monochromatic.

$$\forall E_i : (1 - 6\epsilon) \frac{|E_i|}{2} \le R(E_i) \le (1 + 6\epsilon) \frac{|E_i|}{2}$$

- Color each vertex uniformly at random with Red/Blue.
- We may break each edge  $E_i$  into 3 smaller edges:  $E_i^1$ ,  $E_i^2$ ,  $E_i^3$ .
- Edge  $E_i^j$  is *bad* if the difference of Red/Blue vertices in  $E_i^j$  is  $\geq \epsilon \frac{|E_i|}{2}$ .
- So, if  $|E_i^j| \le \epsilon \frac{|E_i|}{2}$ , it cannot be bad, even if  $E_i^j$  is monochromatic.
- Find connected components of *bad* edges.

$$\forall E_i : (1 - 6\epsilon) \frac{|E_i|}{2} \le R(E_i) \le (1 + 6\epsilon) \frac{|E_i|}{2}$$

- Color each vertex uniformly at random with Red/Blue.
- We may break each edge  $E_i$  into 3 smaller edges:  $E_i^1$ ,  $E_i^2$ ,  $E_i^3$ .
- Edge  $E_i^j$  is *bad* if the difference of Red/Blue vertices in  $E_i^j$  is  $\geq \epsilon \frac{|E_i|}{2}$ .
- So, if  $|E_i^j| \le \epsilon \frac{|E_i|}{2}$ , it cannot be bad, even if  $E_i^j$  is monochromatic.
- Find connected components of *bad* edges.
- Recolor the vertices of these components by exhaustive search, s.t. no bad remains. Such a coloring exists by the LLL.

$$\forall E_i : (1 - 6\epsilon) \frac{|E_i|}{2} \le R(E_i) \le (1 + 6\epsilon) \frac{|E_i|}{2}$$

- Color each vertex uniformly at random with Red/Blue.
- We may break each edge  $E_i$  into 3 smaller edges:  $E_i^1$ ,  $E_i^2$ ,  $E_i^3$ .
- Edge  $E_i^j$  is *bad* if the difference of Red/Blue vertices in  $E_i^j$  is  $\geq \epsilon \frac{|E_i|}{2}$ .
- So, if  $|E_i^j| \le \epsilon \frac{|E_i|}{2}$ , it cannot be bad, even if  $E_i^j$  is monochromatic.
- Find connected components of *bad* edges.
- Recolor the vertices of these components by exhaustive search, s.t. no bad remains. Such a coloring exists by the LLL.
- This 2-coloring satisfies:

$$\forall E_i : R(E_i) = R(E_i^1) + R(E_i^2) + R(E_i^3) \approx (1 \pm 3\epsilon) \frac{|E_i|}{2}$$

 The connected components of bad edges are called 1-components.  The connected components of bad edges are called 1-components.



- The connected components of bad edges are called 1-components.
- Each edge that is not bad but is intersecting too many <u>1-components is dangerous</u>.



- The connected components of bad edges are called 1-components.
- Each edge that is not bad but is intersecting too many <u>1-components is *dangerous*.</u>



- The connected components of bad edges are called 1-components.
- Each edge that is not bad but is intersecting too many 1-components is *dangerous*.
- Re-coloring 1-components that are intersecting a common dangerous edge may create a new bad edge.



- The connected components of bad edges are called 1-components.
- Each edge that is not bad but is intersecting too many 1-components is *dangerous*.
- Re-coloring 1-components that are intersecting a common dangerous edge may create a new bad edge.



 Therefore, we find maximal connected components of 1-components and dangerous edges; These are 2-components.

- The connected components of bad edges are called 1-components.
- Each edge that is not bad but is intersecting too many 1-components is *dangerous*.
- Re-coloring 1-components that are intersecting a common dangerous edge may create a new bad edge.



- Therefore, we find maximal connected components of 1-components and dangerous edges; These are 2-components.
- We can consider each 2-component independently.

- The connected components of bad edges are called 1-components.
- Each edge that is not bad but is intersecting too many 1-components is *dangerous*.
- Re-coloring 1-components that are intersecting a common dangerous edge may create a new bad edge.



- Therefore, we find maximal connected components of 1-components and dangerous edges; These are 2-components.
- We can consider each 2-component independently.
- Using the LLL there exists a partitioning of the edges of 2-components.

- The connected components of bad edges are called 1-components.
- Each edge that is not bad but is intersecting too many 1-components is *dangerous*.
- Re-coloring 1-components that are intersecting a common dangerous edge may create a new bad edge.



- Therefore, we find maximal connected components of 1-components and dangerous edges; These are 2-components.
- We can consider each 2-component independently.
- Using the LLL there exists a partitioning of the edges of 2-components.
- With prob at least  $1 \frac{1}{m^{\epsilon}}$ , no 1-component has size larger than  $O(\log m)$ .

- The connected components of bad edges are called 1-components.
- Each edge that is not bad but is intersecting too many 1-components is *dangerous*.
- Re-coloring 1-components that are intersecting a common dangerous edge may create a new bad edge.



- Therefore, we find maximal connected components of 1-components and dangerous edges; These are 2-components.
- We can consider each 2-component independently.
- Using the LLL there exists a partitioning of the edges of 2-components.
- With prob at least  $1 \frac{1}{m^{\epsilon}}$ , no 1-component has size larger than  $O(\log m)$ .
- We repeat the same procedure on the new 2-components; with high probability all 2-components will have size  $O(\log \log m)$ .

• All the known algorithms have a loss in exponent of dependencies.

- All the known algorithms have a loss in exponent of dependencies.
  Example:
  - ★ For a k-uniform hypergraph: a 2-coloring exists with  $2^{k-3}$  dependencies.
  - **\*** We can find a 2-coloring with only  $2\frac{k}{16}$  dependencies.

- All the known algorithms have a loss in exponent of dependencies.
  Example:
  - **\star** For a k-uniform hypergraph: a 2-coloring exists with  $2^{k-3}$  dependencies.
  - **\*** We can find a 2-coloring with only  $2\frac{k}{16}$  dependencies.

Find an algorithm that finds a 2-coloring when the number of dependencies is  $2^{k-O(1)}$ .

- All the known algorithms have a loss in exponent of dependencies.
  Example:
  - ★ For a k-uniform hypergraph: a 2-coloring exists with  $2^{k-3}$  dependencies.
  - **\*** We can find a 2-coloring with only  $2^{\frac{k}{16}}$  dependencies.

Find an algorithm that finds a 2-coloring when the number of dependencies is  $2^{k-O(1)}$ .

• These algorithms work when the number of colors is O(Polylog(m+n)). What if not?

- All the known algorithms have a loss in exponent of dependencies.
  Example:
  - ★ For a k-uniform hypergraph: a 2-coloring exists with  $2^{k-3}$  dependencies.
  - \* We can find a 2-coloring with only  $2^{\frac{k}{16}}$  dependencies.

Find an algorithm that finds a 2-coloring when the number of dependencies is  $2^{k-O(1)}$ .

- These algorithms work when the number of colors is O(Polylog(m+n)). What if not?
- How about other problems that none of these algorithms apply directly?

- All the known algorithms have a loss in exponent of dependencies.
  Example:
  - ★ For a k-uniform hypergraph: a 2-coloring exists with  $2^{k-3}$  dependencies.
  - \* We can find a 2-coloring with only  $2^{\frac{k}{16}}$  dependencies.

Find an algorithm that finds a 2-coloring when the number of dependencies is  $2^{k-O(1)}$ .

- These algorithms work when the number of colors is O(Polylog(m+n)). What if not?
- How about other problems that none of these algorithms apply directly?
- How about a completely different approach?