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U = {e1, . . . , en} universe of elements
S = {S1, . . . , Sm} a collection of subsets of U

Goal: Find a subcollection S ′ ⊆ S to maximize number of elements “uniquely
covered” (i.e. appear in exactly one set in S ′)

maximum unique coverage size = 6
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General case:

• If a client is within range of i stations −→ service qualities is si,
with s0 = 0, s1 ≥ s2 ≥ . . .

• we assume si 6= 0 only for small values of i

• A cost Ci ≥ 0 for building station i

• A total budget B to build stations

• maximize total (average) service quality with budget B



APPROXIMABILITY OF UNIQUE COVERAGE 4

2) Envy-free pricing

• There is a single seller to price m different products/items p1, . . . , pm



APPROXIMABILITY OF UNIQUE COVERAGE 4

2) Envy-free pricing

• There is a single seller to price m different products/items p1, . . . , pm

• Each product/item has a quantity



APPROXIMABILITY OF UNIQUE COVERAGE 4

2) Envy-free pricing

• There is a single seller to price m different products/items p1, . . . , pm

• Each product/item has a quantity

• There are n buyers, each wants to by a subset of products (bundle)



APPROXIMABILITY OF UNIQUE COVERAGE 4

2) Envy-free pricing

• There is a single seller to price m different products/items p1, . . . , pm

• Each product/item has a quantity

• There are n buyers, each wants to by a subset of products (bundle)

• Seller knows (more or less) the price each buyer is willing to pay for each
bundle (valuation of buyer for that bundle)



APPROXIMABILITY OF UNIQUE COVERAGE 4

2) Envy-free pricing

• There is a single seller to price m different products/items p1, . . . , pm

• Each product/item has a quantity

• There are n buyers, each wants to by a subset of products (bundle)

• Seller knows (more or less) the price each buyer is willing to pay for each
bundle (valuation of buyer for that bundle)

• Buyer’s utility = valuation - price paid (how much you save!)



APPROXIMABILITY OF UNIQUE COVERAGE 4

2) Envy-free pricing

• There is a single seller to price m different products/items p1, . . . , pm

• Each product/item has a quantity

• There are n buyers, each wants to by a subset of products (bundle)

• Seller knows (more or less) the price each buyer is willing to pay for each
bundle (valuation of buyer for that bundle)

• Buyer’s utility = valuation - price paid (how much you save!)

Goal: set the prices and decide which bundles to be sold s.t. it is envy-free:
each buyer is sold a bundle with maximum utility for him/her. We want to
maximize seller’s profit.



APPROXIMABILITY OF UNIQUE COVERAGE 4

2) Envy-free pricing

• There is a single seller to price m different products/items p1, . . . , pm

• Each product/item has a quantity

• There are n buyers, each wants to by a subset of products (bundle)

• Seller knows (more or less) the price each buyer is willing to pay for each
bundle (valuation of buyer for that bundle)

• Buyer’s utility = valuation - price paid (how much you save!)

Goal: set the prices and decide which bundles to be sold s.t. it is envy-free:
each buyer is sold a bundle with maximum utility for him/her. We want to
maximize seller’s profit.

special case: unlimited-supply single-minded buyer
Each buyer considers only one particular bundle; buys it if the cost ≤ valuation



APPROXIMABILITY OF UNIQUE COVERAGE 4

2) Envy-free pricing

• There is a single seller to price m different products/items p1, . . . , pm

• Each product/item has a quantity

• There are n buyers, each wants to by a subset of products (bundle)

• Seller knows (more or less) the price each buyer is willing to pay for each
bundle (valuation of buyer for that bundle)

• Buyer’s utility = valuation - price paid (how much you save!)

Goal: set the prices and decide which bundles to be sold s.t. it is envy-free:
each buyer is sold a bundle with maximum utility for him/her. We want to
maximize seller’s profit.

special case: unlimited-supply single-minded buyer
Each buyer considers only one particular bundle; buys it if the cost ≤ valuation

This case is APX-hard and has an O(log n + log m)-approx [GHKKKM’05]
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Proposition: U.C. is a special case of envy-free pricing.
proof:

• We reduce U.C. to unlimited-supply single-minded (envy-free) pricing

• For each set Si we have a product pi

• For each element ei ∈ U there is a buyer bi

• Buyer bi has valuation one for one bundle: {pj|ei ∈ Sj}

• We can assume all prices are either 0 or 1 (at a loss of constant factor in
profit)

• Each buyer will buy his/her bundle if at most one item is priced at 1

• We have to assign 0/1 to items (i.e. sets) to maximize the number of
bundles (i.e. elements) with exactly one item priced 1.

• The profit is exactly the number of bundles sold at price 1

Corollary: our hardness results for U.C. imply the same hardness of
approximation for envy-free pricing.
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• Given G(V,E), find a cut S, S, S ⊆ V , S = V − S with maximum number of
edges

• Max-cut is a special case of U.C.:
sets in U.C.←→ neighborhoods of vertices;
elements←→ edges

• So U.C. is at least as hard as Max-cut.
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Related problems/results

Set Cover: universe U = {e1, . . . , en} and subsets S = {S1, . . . , Sm}, Si ⊆ U

Goal: Find minimum size S ′ ⊆ S that covers U

upper bound: simple greedy −→ lnn-approx

Hardness: no (1− ε) lnn-approx unless NP ⊆ DTIME(nO(lg lg n)) [Feige’98]

Maximum Coverage (budgeted): the input is the same as in set cover + each
subset Si has a cost and each element a weight; a total “budget” is also given

Find a collection S ′ ⊆ S, with total cost ≤ B with max weight of covered
elements

upper bound: it has a simple greedy (1− 1
e)-approx

Hardness: no (1− 1
e − ε)-approx unless NP ⊆ DTIME(nO(lg lg n))

Unlike set cover and maximum coverage, the greedy doesn’t seem to work for
U.C. (all immediate algorithms have ratio Ω(n)).
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Related problems/results (cont’d)

Radio Broadcast: A classical problem, studied extensively,

• A network of processors that communicate in rounds

• initially one node has a message;

• at each round every node that has already received the message can either
send it to all its neighbors or do nothing

• A node receives a message (in a round) if exactly one of its neighbors
transmits in that round

Goal: Propagate the message to all the nodes in minimum number of rounds

The U.C. can be seen as a single round of a greedy alg. for radio broadcast

upper bound: can do in D + O(log2 n) rounds (randomly) and D + O(log3 n)
rounds deterministically, where D is the diameter of network [GPX’05]

Hardness: Elkin and Kortsarz prove (multiplicative) Ω(log n) and additive
Ω(log2 n) hardness, assuming NP 6⊆ DTIME(nO(lg lg n))
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Our results

Theorem 1: There is an O(log n)-approx for U.C. even for the more general
case with budget, costs on the sets, and weights on the elements.

Theorem 2: Assuming that NP 6⊆ BTIME(2nε
), U.C. is Ω(logσ(ε) n)-hard, for

some σ(ε) > 0.

Our reduction for Theorem 2 also shows:

Theorem 3: U.C. is Ω(1/ log1/3−ε n)-hard for any ε > 0, assuming that refuting
random instances of 3SAT is hard on average.

Remark: the known algorithms for Radio broadcast implicitly imply an
O(log n)-approx for the (simple) U.C.
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Approximation Algorithm

• Consider any minimal set cover solution S ′ ⊆ S

• Cluster elements into log m
groups:

• element e is in group i←→
e is covered between 2i and
2i+1 − 1 times

• let i be the group with max
number of elements

• Delete sets from S ′ randomly, keep each with prob 1
2i

• we expect a constant fraction of the elements in group i be u.c.

• So the expected number of elements u.c. is at least
1
e2 × [size of group i] ∈ Ω( n

log n)
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• Let G(A ∪B,E) be a bip graph with |A| = |B| = n

• Finding largest independent set in G is easy

• Suppose we are also given nA

and nB

• Want to see if G has an ind. set
I with |A∩ I| ≥ nA, |B ∩ I| ≥ nB

This question, called Balanced Bip. Ind. Set turns out to be difficult.
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Hardness result (cont’d)

Main Theorem: There is a reduction from BBIS to U.C. such that given
G(A ∪B,E) and 0 < γ′ < γ ≤ 1, 0 ≤ δ < δ′ ≤ 1, constructs in randomized
polytime an instance H(U ∪ S, F ) of U.C. with |U | ∈ Θ((γ − γ′)n log n) and
|S| = n, s.t.

• Yes: if G is a Yes instance for BBIS(γ, γ′, δ, δ′), then H has a solution of
size Ω((γ − γ′)n log1−δ n)

• No: if G is a No instance then every solution of H has size
O((γ − γ′)n log1−δ′ n).

Corollary: Assuming that BBIS(γ, γ′, δ, δ′) is “hard” then U.C. has a hardness
of factor Ω(logδ′−δ n).



APPROXIMABILITY OF UNIQUE COVERAGE 14

Reduction from BBIS(γ, γ′, δ, δ′)

• Given G(A ∪B,E) with |A| = |B| = n, let p = c · log n for some const c > 0



APPROXIMABILITY OF UNIQUE COVERAGE 14

Reduction from BBIS(γ, γ′, δ, δ′)

• Given G(A ∪B,E) with |A| = |B| = n, let p = c · log n for some const c > 0

• We construct instance H(U ∪ S, F )
with |U | = p · n and |S| = n



APPROXIMABILITY OF UNIQUE COVERAGE 14

Reduction from BBIS(γ, γ′, δ, δ′)

• Given G(A ∪B,E) with |A| = |B| = n, let p = c · log n for some const c > 0

• We construct instance H(U ∪ S, F )
with |U | = p · n and |S| = n

• H consists of p smaller graphs:
H =

⋃p
i=1 Hi, Hi(Ui ∪ S, Fi),



APPROXIMABILITY OF UNIQUE COVERAGE 14

Reduction from BBIS(γ, γ′, δ, δ′)

• Given G(A ∪B,E) with |A| = |B| = n, let p = c · log n for some const c > 0

• We construct instance H(U ∪ S, F )
with |U | = p · n and |S| = n

• H consists of p smaller graphs:
H =

⋃p
i=1 Hi, Hi(Ui ∪ S, Fi),



APPROXIMABILITY OF UNIQUE COVERAGE 14

Reduction from BBIS(γ, γ′, δ, δ′)

• Given G(A ∪B,E) with |A| = |B| = n, let p = c · log n for some const c > 0

• We construct instance H(U ∪ S, F )
with |U | = p · n and |S| = n

• H consists of p smaller graphs:
H =

⋃p
i=1 Hi, Hi(Ui ∪ S, Fi),

• Each Hi will have n in each part,
|Ui| = n



APPROXIMABILITY OF UNIQUE COVERAGE 14

Reduction from BBIS(γ, γ′, δ, δ′)

• Given G(A ∪B,E) with |A| = |B| = n, let p = c · log n for some const c > 0

• We construct instance H(U ∪ S, F )
with |U | = p · n and |S| = n

• H consists of p smaller graphs:
H =

⋃p
i=1 Hi, Hi(Ui ∪ S, Fi),

• Each Hi will have n in each part,
|Ui| = n

• initially, H1 = G,



APPROXIMABILITY OF UNIQUE COVERAGE 14

Reduction from BBIS(γ, γ′, δ, δ′)

• Given G(A ∪B,E) with |A| = |B| = n, let p = c · log n for some const c > 0

• We construct instance H(U ∪ S, F )
with |U | = p · n and |S| = n

• H consists of p smaller graphs:
H =

⋃p
i=1 Hi, Hi(Ui ∪ S, Fi),

• Each Hi will have n in each part,
|Ui| = n

• initially, H1 = G,

• to go from Hi to Hi+1: delete every
edge with probability 1

2



APPROXIMABILITY OF UNIQUE COVERAGE 14

Reduction from BBIS(γ, γ′, δ, δ′)

• Given G(A ∪B,E) with |A| = |B| = n, let p = c · log n for some const c > 0

• We construct instance H(U ∪ S, F )
with |U | = p · n and |S| = n

• H consists of p smaller graphs:
H =

⋃p
i=1 Hi, Hi(Ui ∪ S, Fi),

• Each Hi will have n in each part,
|Ui| = n

• initially, H1 = G,

• to go from Hi to Hi+1: delete every
edge with probability 1

2

• We will add another set of random edges to each Hi
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Reduction from BBIS(γ, γ′, δ, δ′) (cont’d)

• Let G′(A′ ∪B′, E′) with |A′| = |B′| = n be a random graph with edge prob.
1

nγ ; so expect degree in G′ is n1−γ.

• Add G′ on top of each Hi; this will be
the graph Hi

• So each Hi has two types of edges:

Type 1: random edges coming from G′

Type 2: edges that were originally from
G and are left in Hi (with probability 1

2i

for Hi).

This completes the construction of H from graph G.
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2. If G has a (nγ, n

logδ n
)-BIS (Yes case)

then type 1 edges (those coming from
G′) uniquely cover Ω( n

logδ n
) vertices in

each Ui −→ a total of Ω(n log1−δ n) u.c.
elements

3. If G has no (nγ′, n

logδ′ n
)-BIS (No case)

then type 1 edges (from G′) uniquely
cover at most O( n

logδ′ n
) vertices in each

Ui −→ a total of O(n log1−δ′ n)
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Details of the proof
Lemma 1: type 2 edges (coming from G) uniquely cover at most O(n)
vertices out of Ω(p · n) vertices.

Proof:
• Choose b ∈ B arbitrarily; let e1, . . . , ep be the

vertices in U1, . . . , Up corresponding to b

• Assuming that ej is uniquely covered by a
type 2 edge, the prob. that ej, . . . , ej+i−1 are
all u.c. by that edge is: 1

2i

• So we expect only a few copies of e1, . . . , ep

be uniquely covered by a type 2 edge

• Let Xb= number of ei’s that are u.c. by a type 2 edge

X =
∑

b∈B Xb number of vertices u.c. by type 2 edges

E[X] = n

p∑
i=1

i

2i
∈ O(n)
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Details of the proof (cont’d)

Lemma 2: If G has a (nγ, n

logδ n
)-BIS (Yes case) then type 1 edges (those
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) vertices in each Ui (a total of

Ω(n log1−δ n)).
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• Note there is no type 2 edges between S∗, U∗
i (for any i)

• Also recall that every edge is present between A′, B′ with probability 1
nγ

• Let’s count the number of vertices b ∈ B′ with degree 1 (by a type 1 edge)

• Say Xb = 1 iff b has degree 1; set X =
∑

b Xb

E[X] =
∑
b∈B′

Pr[Xb = 1] = |B′|
(
|A′|
1

)
1
nγ

(
1− 1

nγ

)|A′|−1

∈ Ω(
n

logδ n
)
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Details of the proof (cont’d)

Lemma 3: If G has no (nγ′, n

logδ′ n
)-BIS then w.h.p. every u.c. solution of H
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Details of the proof (cont’d)

Lemma 3: If G has no (nγ′, n

logδ′ n
)-BIS then w.h.p. every u.c. solution of H

has size O(n log1−δ′ n).

Remark 1: By Lemma 1, type 2 edges
never u.c. more than O(n) −→ only need
to consider type 1 edges.

Remark 2: Since edges (of type 2) are delete
in Hi  Hi+1, if set W ⊆ Ui is u.c. (by type
1 edges) they are also u.c. in Ui+1.

We bound size of a set like W in Up
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Completing proof of the main theorem

From Lemmas 1, 2, and 3 follows:

• If G has (nγ, n

logδ n
)-BIS −→ Sol of H has size ∈ Ω(log1−δ n)

• If G has no (nγ′, n

logδ′ n
)-BIS −→ Sol of H has size ∈ O(log1−δ′ n)

−→ hardness factor for U.C. Ω(logδ′−δ n)

How to prove hardness for BBIS?

Theorem [khot’04]: Let ε > 0 be some const. and Φ an instance of SAT with n
variables. For some constants α = α(ε) > β = β(ε), and N = 2nε

, we can
build a bip graph G(A ∪B,E), |A| = |B| = N , s.t.

• if Φ is SAT −→ G has a (αN, αN)-BIS

• if Φ is not SAT −→ G has no (βN, βN)-BIS

But we need much larger gap (here it is only a constant!)
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To prove hardness for BBIS

• Use the (standard) technique of graph products to boost the gap

• Given G construct GkA,kB(A′ ∪B′, E′) where

? in A′, every vertex is a vector of length kA from vertices of A
? in B′, every vertex is a vector of length kB from vertices of B

(a1, . . . , akA
) ∈ A′, (b1, . . . , bkB

) ∈ B′ are adjacent⇐⇒
(ai, bj) ∈ E(G), for all 1 ≤ i ≤ kA, 1 ≤ j ≤ kB

• For suitable kA, kB we can show:

Theorem: Unless NP ⊆ BPTIME(2nε
) it is hard to distinguish between:

? GkA,kB has a (nγ, n

logδ n
)-BIS

? GkA,kB has no (nγ′, n

logδ′ n
)-BIS
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What next (Open problems)

The hardness result is not matching the approximation algorithm ratio
(O(log n) v.s Ω(logδ n)) and it requires relatively strong assumption (i.e.
NP 6⊆ 2nε

).

Hypothesis: Given a bipartite graph G(A ∪B,E), |A| = |B| = n, for some
0 < γ′ < γ ≤ 1, it is hard to distinguish between:

• Yes: G has an (nγ,Ω(n))-BIS

• No: G has no (nγ′, n
log n)-BIS

This would imply an Ω(log n)-hardness for U.C.
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For the Radio Broadcast problem:

• We know [GPX’05] how to find a schedule of size D + O(log2 n) (rounds).

• For the case that the diameter is constant, e.g. say a bipartite graph plus
another node (source) connected to all the vertices in one part, this gives
an upper bound of D + O(log2 n)

• There are such graphs [ABLP’91] that need Ω(log2 n) rounds.

• On the other hand [EK’04] showed that deciding between the following two
is hard:

? G has a schedule with O(log n) rounds
? every schedule of G has Ω(log2 n) rounds

This implies a (multiplicative) Ω(log n) and additive Ω(log2 n) hardness

• Question: Can we prove an Ω(log2 n)-hardness?

• Proposition: An Ω(log1+δ n)-hardness for Radio Broadcast implies an
Ω(logδ n)-hardness for U.C. (easy!).


