# **Approximability of the Unique Coverage Problem**

Mohammad R. Salavatipour Department of Computing Science University of Alberta

joint with

Erik Demaine (MIT)

Uriel Feige (MSR & Weizmann Inst)

MohammadTaghi Hajiaghayi (MIT)

 $U = \{e_1, \dots, e_n\} \text{ universe of elements} \\ S = \{S_1, \dots, S_m\} \text{ a collection of subsets of } U$ 

 $U = \{e_1, \dots, e_n\} \text{ universe of elements} \\ S = \{S_1, \dots, S_m\} \text{ a collection of subsets of } U$ 

**Goal:** Find a subcollection  $S' \subseteq S$  to maximize number of elements "uniquely covered" (i.e. appear in exactly one set in S')



 $U = \{e_1, \dots, e_n\} \text{ universe of elements} \\ S = \{S_1, \dots, S_m\} \text{ a collection of subsets of } U$ 

**Goal:** Find a subcollection  $S' \subseteq S$  to maximize number of elements "uniquely covered" (i.e. appear in exactly one set in S')



 $U = \{e_1, \dots, e_n\} \text{ universe of elements} \\ S = \{S_1, \dots, S_m\} \text{ a collection of subsets of } U$ 

**Goal:** Find a subcollection  $S' \subseteq S$  to maximize number of elements "uniquely covered" (i.e. appear in exactly one set in S')

maximum unique coverage size = 6



1) Wireless networks:

Given a region for mobile clients + collection of candidates for base stations

1) Wireless networks:

Given a region for mobile clients + collection of candidates for base stations

Each base station will have a certain range of coverage



1) Wireless networks:

Given a region for mobile clients + collection of candidates for base stations

Each base station will have a certain range of coverage

Choose a set of base stations subject to:



1) Wireless networks:

Given a region for mobile clients + collection of candidates for base stations

Each base station will have a certain range of coverage

Choose a set of base stations subject to:

A client is serviced if it is within range of i > 0 stations with small i, best case when i = 1;



1) Wireless networks:

Given a region for mobile clients + collection of candidates for base stations

Each base station will have a certain range of coverage

Choose a set of base stations subject to:

A client is serviced if it is within range of i > 0 stations with small i, best case when i = 1; larger  $i \longrightarrow$  signal interference



1) Wireless networks:

Given a region for mobile clients + collection of candidates for base stations

Each base station will have a certain range of coverage

Choose a set of base stations subject to:

A client is serviced if it is within range of i > 0 stations with small i, best case when i = 1; larger  $i \longrightarrow$  signal interference

Goal: maximize the region (number of clients) that are served by "a few" ( $\approx 1$ ) stations



1) Wireless networks:

Given a region for mobile clients + collection of candidates for base stations

Each base station will have a certain range of coverage

Choose a set of base stations subject to:

A client is serviced if it is within range of i > 0 stations with small i, best case when i = 1; larger  $i \longrightarrow$  signal interference

Goal: maximize the region (number of clients) that are served by "a few" ( $\approx 1$ ) stations



• If a client is within range of *i* stations  $\longrightarrow$  service qualities is  $s_i$ , with  $s_0 = 0, s_1 \ge s_2 \ge \ldots$ 

- If a client is within range of *i* stations  $\longrightarrow$  service qualities is  $s_i$ , with  $s_0 = 0, s_1 \ge s_2 \ge \dots$
- we assume  $s_i \neq 0$  only for small values of i

- If a client is within range of *i* stations  $\longrightarrow$  service qualities is  $s_i$ , with  $s_0 = 0$ ,  $s_1 \ge s_2 \ge \ldots$
- we assume  $s_i \neq 0$  only for small values of i
- A cost  $C_i \ge 0$  for building station i

- If a client is within range of *i* stations  $\longrightarrow$  service qualities is  $s_i$ , with  $s_0 = 0$ ,  $s_1 \ge s_2 \ge \ldots$
- we assume  $s_i \neq 0$  only for small values of i
- A cost  $C_i \ge 0$  for building station i
- A total budget *B* to build stations

- If a client is within range of *i* stations  $\longrightarrow$  service qualities is  $s_i$ , with  $s_0 = 0, s_1 \ge s_2 \ge \dots$
- we assume  $s_i \neq 0$  only for small values of i
- A cost  $C_i \ge 0$  for building station i
- A total budget *B* to build stations
- maximize total (average) service quality with budget B

• There is a single seller to price m different products/items  $p_1, \ldots, p_m$ 

- There is a single seller to price m different products/items  $p_1, \ldots, p_m$
- Each product/item has a quantity

- There is a single seller to price m different products/items  $p_1, \ldots, p_m$
- Each product/item has a quantity
- There are *n* buyers, each wants to by a subset of products (*bundle*)

- There is a single seller to price m different products/items  $p_1, \ldots, p_m$
- Each product/item has a quantity
- There are *n* buyers, each wants to by a subset of products (*bundle*)
- Seller knows (more or less) the price each buyer is willing to pay for each bundle (*valuation* of buyer for that bundle)

- There is a single seller to price m different products/items  $p_1, \ldots, p_m$
- Each product/item has a quantity
- There are *n* buyers, each wants to by a subset of products (*bundle*)
- Seller knows (more or less) the price each buyer is willing to pay for each bundle (*valuation* of buyer for that bundle)
- Buyer's utility = valuation price paid (how much you save!)

- There is a single seller to price m different products/items  $p_1, \ldots, p_m$
- Each product/item has a quantity
- There are *n* buyers, each wants to by a subset of products (*bundle*)
- Seller knows (more or less) the price each buyer is willing to pay for each bundle (*valuation* of buyer for that bundle)
- Buyer's utility = valuation price paid (how much you save!)

Goal: set the prices and decide which bundles to be sold s.t. it is *envy-free:* each buyer is sold a bundle with maximum utility for him/her. We want to maximize seller's profit.

- There is a single seller to price m different products/items  $p_1, \ldots, p_m$
- Each product/item has a quantity
- There are *n* buyers, each wants to by a subset of products (*bundle*)
- Seller knows (more or less) the price each buyer is willing to pay for each bundle (*valuation* of buyer for that bundle)
- Buyer's utility = valuation price paid (how much you save!)

Goal: set the prices and decide which bundles to be sold s.t. it is *envy-free:* each buyer is sold a bundle with maximum utility for him/her. We want to maximize seller's profit.

special case: unlimited-supply single-minded buyer Each buyer considers only one particular bundle; buys it if the cost  $\leq$  valuation

- There is a single seller to price m different products/items  $p_1, \ldots, p_m$
- Each product/item has a quantity
- There are *n* buyers, each wants to by a subset of products (*bundle*)
- Seller knows (more or less) the price each buyer is willing to pay for each bundle (*valuation* of buyer for that bundle)
- Buyer's utility = valuation price paid (how much you save!)

Goal: set the prices and decide which bundles to be sold s.t. it is *envy-free:* each buyer is sold a bundle with maximum utility for him/her. We want to maximize seller's profit.

special case: unlimited-supply single-minded buyer Each buyer considers only one particular bundle; buys it if the cost  $\leq$  valuation

This case is APX-hard and has an  $O(\log n + \log m)$ -approx [GHKKKM'05]

• We reduce U.C. to unlimited-supply single-minded (envy-free) pricing

- We reduce U.C. to unlimited-supply single-minded (envy-free) pricing
- For each set  $S_i$  we have a product  $p_i$

- We reduce U.C. to unlimited-supply single-minded (envy-free) pricing
- For each set  $S_i$  we have a product  $p_i$
- For each element  $e_i \in U$  there is a buyer  $b_i$

- We reduce U.C. to unlimited-supply single-minded (envy-free) pricing
- For each set  $S_i$  we have a product  $p_i$
- For each element  $e_i \in U$  there is a buyer  $b_i$
- Buyer  $b_i$  has valuation one for one bundle:  $\{p_j | e_i \in S_j\}$

- We reduce U.C. to unlimited-supply single-minded (envy-free) pricing
- For each set  $S_i$  we have a product  $p_i$
- For each element  $e_i \in U$  there is a buyer  $b_i$
- Buyer  $b_i$  has valuation one for one bundle:  $\{p_j | e_i \in S_j\}$
- We can assume all prices are either 0 or 1 (at a loss of constant factor in profit)

- We reduce U.C. to unlimited-supply single-minded (envy-free) pricing
- For each set  $S_i$  we have a product  $p_i$
- For each element  $e_i \in U$  there is a buyer  $b_i$
- Buyer  $b_i$  has valuation one for one bundle:  $\{p_j | e_i \in S_j\}$
- We can assume all prices are either 0 or 1 (at a loss of constant factor in profit)
- Each buyer will buy his/her bundle if at most one item is priced at 1

- We reduce U.C. to unlimited-supply single-minded (envy-free) pricing
- For each set  $S_i$  we have a product  $p_i$
- For each element  $e_i \in U$  there is a buyer  $b_i$
- Buyer  $b_i$  has valuation one for one bundle:  $\{p_j | e_i \in S_j\}$
- We can assume all prices are either 0 or 1 (at a loss of constant factor in profit)
- Each buyer will buy his/her bundle if at most one item is priced at 1
- We have to assign 0/1 to items (i.e. sets) to maximize the number of bundles (i.e. elements) with exactly one item priced 1.

- We reduce U.C. to unlimited-supply single-minded (envy-free) pricing
- For each set  $S_i$  we have a product  $p_i$
- For each element  $e_i \in U$  there is a buyer  $b_i$
- Buyer  $b_i$  has valuation one for one bundle:  $\{p_j | e_i \in S_j\}$
- We can assume all prices are either 0 or 1 (at a loss of constant factor in profit)
- Each buyer will buy his/her bundle if at most one item is priced at 1
- We have to assign 0/1 to items (i.e. sets) to maximize the number of bundles (i.e. elements) with exactly one item priced 1.
- The profit is exactly the number of bundles sold at price 1

- We reduce U.C. to unlimited-supply single-minded (envy-free) pricing
- For each set  $S_i$  we have a product  $p_i$
- For each element  $e_i \in U$  there is a buyer  $b_i$
- Buyer  $b_i$  has valuation one for one bundle:  $\{p_j | e_i \in S_j\}$
- We can assume all prices are either 0 or 1 (at a loss of constant factor in profit)
- Each buyer will buy his/her bundle if at most one item is priced at 1
- We have to assign 0/1 to items (i.e. sets) to maximize the number of bundles (i.e. elements) with exactly one item priced 1.
- The profit is exactly the number of bundles sold at price 1

**Corollary:** our hardness results for U.C. imply the same hardness of approximation for envy-free pricing.

### 3) Max-cut:

• Given G(V, E), find a cut  $S, \overline{S}, S \subseteq V, \overline{S} = V - S$  with maximum number of edges
#### 3) Max-cut:

- Given G(V, E), find a cut  $S, \overline{S}, S \subseteq V, \overline{S} = V S$  with maximum number of edges
- Max-cut is a special case of U.C.: sets in U.C. ←→ neighborhoods of vertices; elements ←→ edges

#### 3) Max-cut:

- Given G(V, E), find a cut  $S, \overline{S}$ ,  $S \subseteq V$ ,  $\overline{S} = V S$  with maximum number of edges
- Max-cut is a special case of U.C.: sets in U.C. ←→ neighborhoods of vertices; elements ←→ edges



#### 3) Max-cut:

- Given G(V, E), find a cut  $S, \overline{S}$ ,  $S \subseteq V$ ,  $\overline{S} = V S$  with maximum number of edges
- Max-cut is a special case of U.C.: sets in U.C. ←→ neighborhoods of vertices; elements ←→ edges
- So U.C. is at least as hard as Max-cut.



Set Cover: universe  $U = \{e_1, \ldots, e_n\}$  and subsets  $S = \{S_1, \ldots, S_m\}$ ,  $S_i \subseteq U$ 

**Goal:** Find minimum size  $\mathcal{S}' \subseteq S$  that covers U

Set Cover: universe  $U = \{e_1, \ldots, e_n\}$  and subsets  $S = \{S_1, \ldots, S_m\}$ ,  $S_i \subseteq U$ 

**Goal:** Find minimum size  $\mathcal{S}' \subseteq S$  that covers U

upper bound: simple greedy  $\longrightarrow \ln n$ -approx

Set Cover: universe  $U = \{e_1, \ldots, e_n\}$  and subsets  $S = \{S_1, \ldots, S_m\}$ ,  $S_i \subseteq U$ 

- **Goal:** Find minimum size  $\mathcal{S}' \subseteq S$  that covers U
- upper bound: simple greedy  $\longrightarrow \ln n$ -approx

Hardness: no  $(1 - \epsilon) \ln n$ -approx unless  $NP \subseteq DTIM E(n^{O(\lg \lg n)})$  [Feige'98]

Set Cover: universe  $U = \{e_1, \ldots, e_n\}$  and subsets  $S = \{S_1, \ldots, S_m\}$ ,  $S_i \subseteq U$ 

- **Goal:** Find minimum size  $\mathcal{S}' \subseteq S$  that covers U
- upper bound: simple greedy  $\longrightarrow \ln n$ -approx

Hardness: no  $(1 - \epsilon) \ln n$ -approx unless  $NP \subseteq DTIM E(n^{O(\lg \lg n)})$  [Feige'98]

**Maximum Coverage (budgeted):** the input is the same as in set cover + each subset  $S_i$  has a cost and each element a weight; a total "budget" is also given

Set Cover: universe  $U = \{e_1, \ldots, e_n\}$  and subsets  $S = \{S_1, \ldots, S_m\}$ ,  $S_i \subseteq U$ 

- **Goal:** Find minimum size  $\mathcal{S}' \subseteq S$  that covers U
- upper bound: simple greedy  $\longrightarrow \ln n$ -approx

Hardness: no  $(1 - \epsilon) \ln n$ -approx unless  $NP \subseteq DTIME(n^{O(\lg \lg n)})$  [Feige'98]

**Maximum Coverage (budgeted):** the input is the same as in set cover + each subset  $S_i$  has a cost and each element a weight; a total "budget" is also given

Find a collection  $S' \subseteq S$ , with total cost  $\leq B$  with max weight of covered elements

Set Cover: universe  $U = \{e_1, \ldots, e_n\}$  and subsets  $S = \{S_1, \ldots, S_m\}$ ,  $S_i \subseteq U$ 

- **Goal:** Find minimum size  $\mathcal{S}' \subseteq S$  that covers U
- upper bound: simple greedy  $\longrightarrow \ln n$ -approx

Hardness: no  $(1 - \epsilon) \ln n$ -approx unless  $NP \subseteq DTIME(n^{O(\lg \lg n)})$  [Feige'98]

**Maximum Coverage (budgeted):** the input is the same as in set cover + each subset  $S_i$  has a cost and each element a weight; a total "budget" is also given

Find a collection  $S' \subseteq S$ , with total cost  $\leq B$  with max weight of covered elements

upper bound: it has a simple greedy  $(1 - \frac{1}{e})$ -approx

Set Cover: universe  $U = \{e_1, \ldots, e_n\}$  and subsets  $S = \{S_1, \ldots, S_m\}$ ,  $S_i \subseteq U$ 

- **Goal:** Find minimum size  $\mathcal{S}' \subseteq S$  that covers U
- upper bound: simple greedy  $\longrightarrow \ln n$ -approx

Hardness: no  $(1 - \epsilon) \ln n$ -approx unless  $NP \subseteq DTIME(n^{O(\lg \lg n)})$  [Feige'98]

**Maximum Coverage (budgeted):** the input is the same as in set cover + each subset  $S_i$  has a cost and each element a weight; a total "budget" is also given

Find a collection  $S' \subseteq S$ , with total cost  $\leq B$  with max weight of covered elements

upper bound: it has a simple greedy  $(1 - \frac{1}{e})$ -approx

Hardness: no  $(1 - \frac{1}{e} - \epsilon)$ -approx unless  $NP \subseteq DTIME(n^{O(\lg \lg n)})$ 

Set Cover: universe  $U = \{e_1, \ldots, e_n\}$  and subsets  $S = \{S_1, \ldots, S_m\}$ ,  $S_i \subseteq U$ 

- **Goal:** Find minimum size  $\mathcal{S}' \subseteq S$  that covers U
- upper bound: simple greedy  $\longrightarrow \ln n$ -approx

Hardness: no  $(1 - \epsilon) \ln n$ -approx unless  $NP \subseteq DTIME(n^{O(\lg \lg n)})$  [Feige'98]

**Maximum Coverage (budgeted):** the input is the same as in set cover + each subset  $S_i$  has a cost and each element a weight; a total "budget" is also given

Find a collection  $S' \subseteq S$ , with total cost  $\leq B$  with max weight of covered elements

upper bound: it has a simple greedy  $(1 - \frac{1}{e})$ -approx

Hardness: no  $(1 - \frac{1}{e} - \epsilon)$ -approx unless  $NP \subseteq DTIME(n^{O(\lg \lg n)})$ 

Unlike set cover and maximum coverage, the greedy doesn't seem to work for U.C. (all immediate algorithms have ratio  $\Omega(n)$ ).

Radio Broadcast: A classical problem, studied extensively,

• A network of processors that communicate in rounds

Radio Broadcast: A classical problem, studied extensively,

- A network of processors that communicate in rounds
- initially one node has a message;

Radio Broadcast: A classical problem, studied extensively,

- A network of processors that communicate in rounds
- initially one node has a message;
- at each round every node that has already received the message can either send it to all its neighbors or do nothing

Radio Broadcast: A classical problem, studied extensively,

- A network of processors that communicate in rounds
- initially one node has a message;
- at each round every node that has already received the message can either send it to all its neighbors or do nothing
- A node receives a message (in a round) if exactly one of its neighbors transmits in that round

Radio Broadcast: A classical problem, studied extensively,

- A network of processors that communicate in rounds
- initially one node has a message;
- at each round every node that has already received the message can either send it to all its neighbors or do nothing
- A node receives a message (in a round) if exactly one of its neighbors transmits in that round

Goal: Propagate the message to all the nodes in minimum number of rounds

Radio Broadcast: A classical problem, studied extensively,

- A network of processors that communicate in rounds
- initially one node has a message;
- at each round every node that has already received the message can either send it to all its neighbors or do nothing
- A node receives a message (in a round) if exactly one of its neighbors transmits in that round

Goal: Propagate the message to all the nodes in minimum number of rounds

The U.C. can be seen as a single round of a greedy alg. for radio broadcast

Radio Broadcast: A classical problem, studied extensively,

- A network of processors that communicate in rounds
- initially one node has a message;
- at each round every node that has already received the message can either send it to all its neighbors or do nothing
- A node receives a message (in a round) if exactly one of its neighbors transmits in that round

Goal: Propagate the message to all the nodes in minimum number of rounds

The U.C. can be seen as a single round of a greedy alg. for radio broadcast

upper bound: can do in  $D + O(\log^2 n)$  rounds (randomly) and  $D + O(\log^3 n)$  rounds deterministically, where D is the diameter of network [GPX'05]

Radio Broadcast: A classical problem, studied extensively,

- A network of processors that communicate in rounds
- initially one node has a message;
- at each round every node that has already received the message can either send it to all its neighbors or do nothing
- A node receives a message (in a round) if exactly one of its neighbors transmits in that round

Goal: Propagate the message to all the nodes in minimum number of rounds

The U.C. can be seen as a single round of a greedy alg. for radio broadcast

upper bound: can do in  $D + O(\log^2 n)$  rounds (randomly) and  $D + O(\log^3 n)$  rounds deterministically, where D is the diameter of network [GPX'05]

Hardness: Elkin and Kortsarz prove (multiplicative)  $\Omega(\log n)$  and additive  $\Omega(\log^2 n)$  hardness, assuming  $NP \not\subseteq DTIME(n^{O(\lg \lg n)})$ 

#### **Our results**

Theorem 1: There is an  $O(\log n)$ -approx for U.C. even for the more general case with budget, costs on the sets, and weights on the elements.

#### **Our results**

Theorem 1: There is an  $O(\log n)$ -approx for U.C. even for the more general case with budget, costs on the sets, and weights on the elements.

Theorem 2: Assuming that  $NP \not\subseteq BTIME(2^{n^{\epsilon}})$ , U.C. is  $\Omega(\log^{\sigma(\epsilon)} n)$ -hard, for some  $\sigma(\epsilon) > 0$ .

Our reduction for Theorem 2 also shows:

**Theorem 3:** U.C. is  $\Omega(1/\log^{1/3-\epsilon} n)$ -hard for any  $\epsilon > 0$ , assuming that refuting random instances of 3SAT is hard on average.

#### **Our results**

Theorem 1: There is an  $O(\log n)$ -approx for U.C. even for the more general case with budget, costs on the sets, and weights on the elements.

Theorem 2: Assuming that  $NP \not\subseteq BTIME(2^{n^{\epsilon}})$ , U.C. is  $\Omega(\log^{\sigma(\epsilon)} n)$ -hard, for some  $\sigma(\epsilon) > 0$ .

Our reduction for Theorem 2 also shows:

**Theorem 3:** U.C. is  $\Omega(1/\log^{1/3-\epsilon} n)$ -hard for any  $\epsilon > 0$ , assuming that refuting random instances of 3SAT is hard on average.

**Remark:** the known algorithms for Radio broadcast implicitly imply an  $O(\log n)$ -approx for the (simple) U.C.

• Consider any minimal set cover solution  $\mathcal{S}' \subseteq \mathcal{S}$ 

- Consider any minimal set cover solution  $\mathcal{S}' \subseteq \mathcal{S}$
- Cluster elements into  $\log m$  groups:

- Consider any minimal set cover solution  $\mathcal{S}' \subseteq \mathcal{S}$
- Cluster elements into  $\log m$  groups:
- element e is in group  $i \leftrightarrow and e$  is covered between  $2^i$  and  $2^{i+1} 1$  times

- Consider any minimal set cover solution  $\mathcal{S}' \subseteq \mathcal{S}$
- Cluster elements into  $\log m$  groups:
- element *e* is in group  $i \leftrightarrow and e$  is covered between  $2^i$  and  $2^{i+1} 1$  times



- Consider any minimal set cover solution  $\mathcal{S}' \subseteq \mathcal{S}$
- Cluster elements into  $\log m$  groups:
- element e is in group  $i \longleftrightarrow$ e is covered between  $2^i$  and  $2^{i+1} - 1$  times
- let *i* be the group with max number of elements



- Consider any minimal set cover solution  $\mathcal{S}' \subseteq \mathcal{S}$
- Cluster elements into  $\log m$  groups:
- element e is in group  $i \longleftrightarrow$ e is covered between  $2^i$  and  $2^{i+1} - 1$  times
- let *i* be the group with max number of elements
- $\frac{1}{2^{i}...2^{i+1}-1 \text{ times}}$

52

• Delete sets from S' randomly, keep each with prob  $\frac{1}{2^i}$ 

 $\boldsymbol{U}$ 

- Consider any minimal set cover solution  $\mathcal{S}' \subseteq \mathcal{S}$
- Cluster elements into  $\log m$  groups:
- element e is in group  $i \longleftrightarrow$ e is covered between  $2^i$  and  $2^{i+1} - 1$  times
- let i be the group with max number of elements



- Delete sets from  $\mathcal{S}'$  randomly, keep each with prob  $\frac{1}{2^i}$
- we expect a constant fraction of the elements in group *i* be u.c.

- Consider any minimal set cover solution  $\mathcal{S}' \subseteq \mathcal{S}$
- Cluster elements into  $\log m$  groups:
- element e is in group  $i \longleftrightarrow$ e is covered between  $2^i$  and  $2^{i+1} - 1$  times
- let i be the group with max number of elements



- Delete sets from  $\mathcal{S}'$  randomly, keep each with prob  $\frac{1}{2^i}$
- we expect a constant fraction of the elements in group *i* be u.c.
- So the expected number of elements u.c. is at least  $\frac{1}{e^2} \times [\text{size of group } i] \in \Omega(\frac{n}{\log n})$

• Let  $G(A \cup B, E)$  be a bip graph with |A| = |B| = n

- Let  $G(A \cup B, E)$  be a bip graph with |A| = |B| = n
- Finding largest independent set in *G* is easy

- Let  $G(A \cup B, E)$  be a bip graph with |A| = |B| = n
- Finding largest independent set in *G* is easy

- Suppose we are also given  $n_A$  and  $n_B$ 

- Let  $G(A \cup B, E)$  be a bip graph with |A| = |B| = n
- Finding largest independent set in *G* is easy

- Suppose we are also given  $n_A$  and  $n_B$
- Want to see if *G* has an ind. set *I* with  $|A \cap I| \ge n_A$ ,  $|B \cap I| \ge n_B$

- Let  $G(A \cup B, E)$  be a bip graph with |A| = |B| = n
- Finding largest independent set in *G* is easy

- Suppose we are also given  $n_A$  and  $n_B$
- Want to see if *G* has an ind. set *I* with  $|A \cap I| \ge n_A$ ,  $|B \cap I| \ge n_B$



• Let  $G(A \cup B, E)$  be a bip graph with |A| = |B| = n

• Finding largest independent set in *G* is easy



• Want to see if *G* has an ind. set *I* with  $|A \cap I| \ge n_A$ ,  $|B \cap I| \ge n_B$ 



This question, called *Balanced Bip. Ind. Set* turns out to be difficult.
# Definition: Given bip graph $G(A \cup B, E)$ with |A| = |B| = n, $0 < \gamma' < \gamma \le 1$ , $0 \le \delta < \delta' \le 1$ , $BBIS(\gamma, \gamma', \delta, \delta')$ , is to decide between:

Definition: Given bip graph  $G(A \cup B, E)$  with |A| = |B| = n,  $0 < \gamma' < \gamma \le 1$ ,  $0 \le \delta < \delta' \le 1$ ,  $BBIS(\gamma, \gamma', \delta, \delta')$ , is to decide between:

• Yes instance: *G* has an ind. set with size  $n^{\gamma}$  on *A* side and  $\frac{n}{\log^{\delta} n}$  on *B* side, i.e. a  $(n^{\gamma}, \frac{n}{\log^{\delta} n})$ -BIS

Definition: Given bip graph  $G(A \cup B, E)$  with |A| = |B| = n,  $0 < \gamma' < \gamma \le 1$ ,  $0 \le \delta < \delta' \le 1$ ,  $BBIS(\gamma, \gamma', \delta, \delta')$ , is to decide between:

- Yes instance: *G* has an ind. set with size  $n^{\gamma}$  on *A* side and  $\frac{n}{\log^{\delta} n}$  on *B* side, i.e. a  $(n^{\gamma}, \frac{n}{\log^{\delta} n})$ -BIS
- No instance: G has no  $(n^{\gamma'}, \frac{n}{\log^{\delta'} n})$ -BIS



Main Theorem: There is a reduction from BBIS to U.C. such that given  $G(A \cup B, E)$  and  $0 < \gamma' < \gamma \le 1$ ,  $0 \le \delta < \delta' \le 1$ , constructs in randomized polytime an instance  $H(U \cup S, F)$  of U.C. with  $|U| \in \Theta((\gamma - \gamma')n \log n)$  and |S| = n, s.t.

Main Theorem: There is a reduction from BBIS to U.C. such that given  $G(A \cup B, E)$  and  $0 < \gamma' < \gamma \le 1$ ,  $0 \le \delta < \delta' \le 1$ , constructs in randomized polytime an instance  $H(U \cup S, F)$  of U.C. with  $|U| \in \Theta((\gamma - \gamma')n \log n)$  and |S| = n, s.t.

• Yes: if G is a Yes instance for  $BBIS(\gamma, \gamma', \delta, \delta')$ , then H has a solution of size  $\Omega((\gamma - \gamma')n \log^{1-\delta} n)$ 

Main Theorem: There is a reduction from BBIS to U.C. such that given  $G(A \cup B, E)$  and  $0 < \gamma' < \gamma \le 1$ ,  $0 \le \delta < \delta' \le 1$ , constructs in randomized polytime an instance  $H(U \cup S, F)$  of U.C. with  $|U| \in \Theta((\gamma - \gamma')n \log n)$  and |S| = n, s.t.

- Yes: if G is a Yes instance for  $BBIS(\gamma, \gamma', \delta, \delta')$ , then H has a solution of size  $\Omega((\gamma \gamma')n \log^{1-\delta} n)$
- No: if G is a No instance then every solution of H has size  $O((\gamma \gamma')n \log^{1-\delta'} n)$ .

Main Theorem: There is a reduction from BBIS to U.C. such that given  $G(A \cup B, E)$  and  $0 < \gamma' < \gamma \le 1$ ,  $0 \le \delta < \delta' \le 1$ , constructs in randomized polytime an instance  $H(U \cup S, F)$  of U.C. with  $|U| \in \Theta((\gamma - \gamma')n \log n)$  and |S| = n, s.t.

- Yes: if G is a Yes instance for  $BBIS(\gamma, \gamma', \delta, \delta')$ , then H has a solution of size  $\Omega((\gamma \gamma')n \log^{1-\delta} n)$
- No: if G is a No instance then every solution of H has size  $O((\gamma \gamma')n \log^{1-\delta'} n)$ .

Corollary: Assuming that  $BBIS(\gamma, \gamma', \delta, \delta')$  is "hard" then U.C. has a hardness of factor  $\Omega(\log^{\delta'-\delta} n)$ .

• Given  $G(A \cup B, E)$  with |A| = |B| = n, let  $p = c \cdot \log n$  for some const c > 0

- Given  $G(A \cup B, E)$  with |A| = |B| = n, let  $p = c \cdot \log n$  for some const c > 0
- We construct instance  $H(U \cup S, F)$ with  $|U| = p \cdot n$  and |S| = n

- Given  $G(A \cup B, E)$  with |A| = |B| = n, let  $p = c \cdot \log n$  for some const c > 0
- We construct instance  $H(U \cup S, F)$ with  $|U| = p \cdot n$  and |S| = n
- H consists of p smaller graphs:  $H = \bigcup_{i=1}^{p} H_i$ ,  $H_i(U_i \cup S, F_i)$ ,

- Given  $G(A \cup B, E)$  with |A| = |B| = n, let  $p = c \cdot \log n$  for some const c > 0
- We construct instance  $H(U \cup S, F)$ with  $|U| = p \cdot n$  and |S| = n
- H consists of p smaller graphs:  $H = \bigcup_{i=1}^{p} H_i, H_i(U_i \cup S, F_i),$



- Given  $G(A \cup B, E)$  with |A| = |B| = n, let  $p = c \cdot \log n$  for some const c > 0
- We construct instance  $H(U \cup S, F)$ with  $|U| = p \cdot n$  and |S| = n
- H consists of p smaller graphs:  $H = \bigcup_{i=1}^{p} H_i$ ,  $H_i(U_i \cup S, F_i)$ ,
- Each  $H_i$  will have n in each part,  $|U_i| = n$



- Given  $G(A \cup B, E)$  with |A| = |B| = n, let  $p = c \cdot \log n$  for some const c > 0
- We construct instance  $H(U \cup S, F)$ with  $|U| = p \cdot n$  and |S| = n
- H consists of p smaller graphs:  $H = \bigcup_{i=1}^{p} H_i$ ,  $H_i(U_i \cup S, F_i)$ ,
- Each  $H_i$  will have n in each part,  $|U_i| = n$
- initially,  $H_1 = G$ ,



- Given  $G(A \cup B, E)$  with |A| = |B| = n, let  $p = c \cdot \log n$  for some const c > 0
- We construct instance  $H(U \cup S, F)$ with  $|U| = p \cdot n$  and |S| = n
- H consists of p smaller graphs:  $H = \bigcup_{i=1}^{p} H_i$ ,  $H_i(U_i \cup S, F_i)$ ,
- Each  $H_i$  will have n in each part,  $|U_i| = n$
- initially,  $H_1 = G$ ,
- to go from  $H_i$  to  $H_{i+1}$ : delete every edge with probability  $\frac{1}{2}$



- Given  $G(A \cup B, E)$  with |A| = |B| = n, let  $p = c \cdot \log n$  for some const c > 0
- We construct instance  $H(U \cup S, F)$ with  $|U| = p \cdot n$  and |S| = n
- H consists of p smaller graphs:  $H = \bigcup_{i=1}^{p} H_i$ ,  $H_i(U_i \cup S, F_i)$ ,
- Each  $H_i$  will have n in each part,  $|U_i| = n$
- initially,  $H_1 = G$ ,
- to go from  $H_i$  to  $H_{i+1}$ : delete every edge with probability  $\frac{1}{2}$



• We will add another set of random edges to each  $H_i$ 

• Let  $G'(A' \cup B', E')$  with |A'| = |B'| = n be a random graph with edge prob.  $\frac{1}{n^{\gamma}}$ ; so expect degree in G' is  $n^{1-\gamma}$ .

• Let  $G'(A' \cup B', E')$  with |A'| = |B'| = n be a random graph with edge prob.  $\frac{1}{n^{\gamma}}$ ; so expect degree in G' is  $n^{1-\gamma}$ .

• Add G' on top of each  $H_i$ ; this will be the graph  $H_i$ 

• Let  $G'(A' \cup B', E')$  with |A'| = |B'| = n be a random graph with edge prob.  $\frac{1}{n^{\gamma}}$ ; so expect degree in G' is  $n^{1-\gamma}$ .

• Add G' on top of each  $H_i$ ; this will be the graph  $H_i$ 



• Let  $G'(A' \cup B', E')$  with |A'| = |B'| = n be a random graph with edge prob.  $\frac{1}{n^{\gamma}}$ ; so expect degree in G' is  $n^{1-\gamma}$ .

- Add G' on top of each  $H_i$ ; this will be the graph  $H_i$
- So each  $H_i$  has two types of edges:

Type 1: random edges coming from G'

Type 2: edges that were originally from G and are left in  $H_i$  (with probability  $\frac{1}{2^i}$  for  $H_i$ ).



• Let  $G'(A' \cup B', E')$  with |A'| = |B'| = n be a random graph with edge prob.  $\frac{1}{n^{\gamma}}$ ; so expect degree in G' is  $n^{1-\gamma}$ .

- Add G' on top of each  $H_i$ ; this will be the graph  $H_i$
- So each  $H_i$  has two types of edges:

Type 1: random edges coming from G'

Type 2: edges that were originally from G and are left in  $H_i$  (with probability  $\frac{1}{2^i}$  for  $H_i$ ).



This completes the construction of H from graph G.

We will show (details to follow):



We will show (details to follow):

1. Type 2 edges (originally in *G*) uniquely cover at most O(n) vertices (out of  $p \cdot n \approx n \log n$  vertices) of *U* 



We will show (details to follow):

- 1. Type 2 edges (originally in *G*) uniquely cover at most O(n) vertices (out of  $p \cdot n \approx n \log n$  vertices) of *U*
- 2. If *G* has a  $(n^{\gamma}, \frac{n}{\log^{\delta} n})$ -BIS (Yes case) then type 1 edges (those coming from *G'*) uniquely cover  $\Omega(\frac{n}{\log^{\delta} n})$  vertices in each  $U_i \longrightarrow$  a total of  $\Omega(n \log^{1-\delta} n)$  u.c. elements



We will show (details to follow):

- 1. Type 2 edges (originally in *G*) uniquely cover at most O(n) vertices (out of  $p \cdot n \approx n \log n$  vertices) of *U*
- 2. If *G* has a  $(n^{\gamma}, \frac{n}{\log^{\delta} n})$ -BIS (Yes case) then type 1 edges (those coming from *G'*) uniquely cover  $\Omega(\frac{n}{\log^{\delta} n})$  vertices in each  $U_i \longrightarrow$  a total of  $\Omega(n \log^{1-\delta} n)$  u.c. elements
- 3. If *G* has no  $(n^{\gamma'}, \frac{n}{\log^{\delta'} n})$ -BIS (No case) then type 1 edges (from *G'*) uniquely cover at most  $O(\frac{n}{\log^{\delta'} n})$  vertices in each  $U_i \longrightarrow$  a total of  $O(n \log^{1-\delta'} n)$



## **Details of the proof Lemma 1:** type 2 edges (coming from *G*) uniquely cover at most O(n) vertices out of $\Omega(p \cdot n)$ vertices.

**Lemma 1:** type 2 edges (coming from *G*) uniquely cover at most O(n) vertices out of  $\Omega(p \cdot n)$  vertices.

## **Proof:**

• Choose  $b \in B$  arbitrarily; let  $e_1, \ldots, e_p$  be the vertices in  $U_1, \ldots, U_p$  corresponding to b

## **Details of the proof Lemma 1:** type 2 edges (coming from *G*) uniquely cover at most O(n) vertices out of $\Omega(p \cdot n)$ vertices.

**Proof:** 

• Choose  $b \in B$  arbitrarily; let  $e_1, \ldots, e_p$  be the vertices in  $U_1, \ldots, U_p$  corresponding to b



**Lemma 1:** type 2 edges (coming from *G*) uniquely cover at most O(n) vertices out of  $\Omega(p \cdot n)$  vertices.

## **Proof:**

- Choose  $b \in B$  arbitrarily; let  $e_1, \ldots, e_p$  be the vertices in  $U_1, \ldots, U_p$  corresponding to b
- Assuming that e<sub>j</sub> is uniquely covered by a type 2 edge, the prob. that e<sub>j</sub>, ..., e<sub>j+i-1</sub> are all u.c. by that edge is: <sup>1</sup>/<sub>2<sup>i</sup></sub>



**Lemma 1:** type 2 edges (coming from *G*) uniquely cover at most O(n) vertices out of  $\Omega(p \cdot n)$  vertices.

## **Proof:**

- Choose  $b \in B$  arbitrarily; let  $e_1, \ldots, e_p$  be the vertices in  $U_1, \ldots, U_p$  corresponding to b
- Assuming that  $e_j$  is uniquely covered by a type 2 edge, the prob. that  $e_j, \ldots, e_{j+i-1}$  are all u.c. by that edge is:  $\frac{1}{2^i}$
- So we expect only a few copies of  $e_1, \ldots, e_p$  be uniquely covered by a type 2 edge



**Lemma 1:** type 2 edges (coming from *G*) uniquely cover at most O(n) vertices out of  $\Omega(p \cdot n)$  vertices.

## **Proof:**

- Choose  $b \in B$  arbitrarily; let  $e_1, \ldots, e_p$  be the vertices in  $U_1, \ldots, U_p$  corresponding to b
- Assuming that  $e_j$  is uniquely covered by a type 2 edge, the prob. that  $e_j, \ldots, e_{j+i-1}$  are all u.c. by that edge is:  $\frac{1}{2^i}$
- So we expect only a few copies of  $e_1, \ldots, e_p$  be uniquely covered by a type 2 edge



• Let  $X_b$  = number of  $e_i$ 's that are u.c. by a type 2 edge

**Lemma 1:** type 2 edges (coming from *G*) uniquely cover at most O(n) vertices out of  $\Omega(p \cdot n)$  vertices.

## **Proof:**

- Choose  $b \in B$  arbitrarily; let  $e_1, \ldots, e_p$  be the vertices in  $U_1, \ldots, U_p$  corresponding to b
- Assuming that  $e_j$  is uniquely covered by a type 2 edge, the prob. that  $e_j, \ldots, e_{j+i-1}$  are all u.c. by that edge is:  $\frac{1}{2^i}$
- So we expect only a few copies of  $e_1, \ldots, e_p$  be uniquely covered by a type 2 edge



• Let  $X_b$  = number of  $e_i$ 's that are u.c. by a type 2 edge

 $X = \sum_{b \in B} X_b$  number of vertices u.c. by type 2 edges

$$\mathbf{E}[X] = n \sum_{i=1}^{p} \frac{i}{2^{i}} \in O(n)$$

#### Details of the proof (cont'd)

Lemma 2: If G has a  $(n^{\gamma}, \frac{n}{\log^{\delta} n})$ -BIS (Yes case) then type 1 edges (those coming from G') uniquely cover  $\Omega(\frac{n}{\log^{\delta} n})$  vertices in each  $U_i$  (a total of  $\Omega(n \log^{1-\delta} n)$ ).

#### Details of the proof (cont'd)

**Lemma 2:** If G has a  $(n^{\gamma}, \frac{n}{\log^{\delta} n})$ -BIS (Yes case) then type 1 edges (those coming from G') uniquely cover  $\Omega(\frac{n}{\log^{\delta} n})$  vertices in each  $U_i$  (a total of  $\Omega(n \log^{1-\delta} n)$ ).

### **Proof:**

Assume A<sup>\*</sup> ∪ B<sup>\*</sup> (A<sup>\*</sup> ⊆ A, B<sup>\*</sup> ⊆ B) is a (n<sup>γ</sup>, n/log<sup>δ</sup> n)-BIS; consider corresponding sets A', B' in G' and S<sup>\*</sup>, U<sup>\*</sup><sub>i</sub> in H<sub>i</sub>

#### Details of the proof (cont'd)

**Lemma 2:** If G has a  $(n^{\gamma}, \frac{n}{\log^{\delta} n})$ -BIS (Yes case) then type 1 edges (those coming from G') uniquely cover  $\Omega(\frac{n}{\log^{\delta} n})$  vertices in each  $U_i$  (a total of  $\Omega(n \log^{1-\delta} n)$ ).

#### **Proof:**

Assume A<sup>\*</sup> ∪ B<sup>\*</sup> (A<sup>\*</sup> ⊆ A, B<sup>\*</sup> ⊆ B) is a (n<sup>γ</sup>, n/log<sup>δ</sup> n)-BIS; consider corresponding sets A', B' in G' and S<sup>\*</sup>, U<sup>\*</sup><sub>i</sub> in H<sub>i</sub>



#### APPROXIMABILITY OF UNIQUE COVERAGE



• Note there is no type 2 edges between  $S^*, U_i^*$  (for any *i*)


- Note there is no type 2 edges between  $S^*, U_i^*$  (for any *i*)
- Also recall that every edge is present between A', B' with probability  $\frac{1}{n^{\gamma}}$



- Note there is no type 2 edges between  $S^*, U_i^*$  (for any *i*)
- Also recall that every edge is present between A', B' with probability  $\frac{1}{n\gamma}$
- Let's count the number of vertices  $b \in B'$  with degree 1 (by a type 1 edge)



- Note there is no type 2 edges between  $S^*, U_i^*$  (for any *i*)
- Also recall that every edge is present between A', B' with probability  $\frac{1}{n^{\gamma}}$
- Let's count the number of vertices  $b \in B'$  with degree 1 (by a type 1 edge)
- Say  $X_b = 1$  iff b has degree 1; set  $X = \sum_b X_b$



- Note there is no type 2 edges between  $S^*, U_i^*$  (for any *i*)
- Also recall that every edge is present between A', B' with probability  $\frac{1}{n\gamma}$
- Let's count the number of vertices  $b \in B'$  with degree 1 (by a type 1 edge)
- Say  $X_b = 1$  iff b has degree 1; set  $X = \sum_b X_b$

$$E[X] = \sum_{b \in B'} \Pr[X_b = 1] = |B'| \binom{|A'|}{1} \frac{1}{n^{\gamma}} \left(1 - \frac{1}{n^{\gamma}}\right)^{|A'| - 1} \in \Omega(\frac{n}{\log^{\delta} n})$$

**Lemma 3:** If *G* has no  $(n^{\gamma'}, \frac{n}{\log^{\delta'} n})$ -BIS then w.h.p. every u.c. solution of *H* has size  $O(n \log^{1-\delta'} n)$ .

**Lemma 3:** If *G* has no  $(n^{\gamma'}, \frac{n}{\log^{\delta'} n})$ -BIS then w.h.p. every u.c. solution of *H* has size  $O(n \log^{1-\delta'} n)$ .

**Remark 1:** By Lemma 1, type 2 edges never u.c. more than  $O(n) \longrightarrow$  only need to consider type 1 edges.

**Lemma 3:** If *G* has no  $(n^{\gamma'}, \frac{n}{\log^{\delta'} n})$ -BIS then w.h.p. every u.c. solution of *H* has size  $O(n \log^{1-\delta'} n)$ .

**Remark 1:** By Lemma 1, type 2 edges never u.c. more than  $O(n) \rightarrow$  only need to consider type 1 edges.

Remark 2: Since edges (of type 2) are delete in  $H_i \rightsquigarrow H_{i+1}$ , if set  $W \subseteq U_i$  is u.c. (by type 1 edges) they are also u.c. in  $U_{i+1}$ .

**Lemma 3:** If *G* has no  $(n^{\gamma'}, \frac{n}{\log^{\delta'} n})$ -BIS then w.h.p. every u.c. solution of *H* has size  $O(n \log^{1-\delta'} n)$ .

**Remark 1:** By Lemma 1, type 2 edges never u.c. more than  $O(n) \rightarrow$  only need to consider type 1 edges.

**Remark 2:** Since edges (of type 2) are delete in  $H_i \rightsquigarrow H_{i+1}$ , if set  $W \subseteq U_i$  is u.c. (by type 1 edges) they are also u.c. in  $U_{i+1}$ .



**Lemma 3:** If G has no  $(n^{\gamma'}, \frac{n}{\log^{\delta'} n})$ -BIS then w.h.p. every u.c. solution of H has size  $O(n \log^{1-\delta'} n)$ .

**Remark 1:** By Lemma 1, type 2 edges never u.c. more than  $O(n) \longrightarrow$  only need to consider type 1 edges.

Remark 2: Since edges (of type 2) are delete in  $H_i \rightsquigarrow H_{i+1}$ , if set  $W \subseteq U_i$  is u.c. (by type 1 edges) they are also u.c. in  $U_{i+1}$ .

We bound size of a set like W in  $U_p$ 



From Lemmas 1, 2, and 3 follows:

From Lemmas 1, 2, and 3 follows:

• If G has  $(n^{\gamma}, \frac{n}{\log^{\delta} n})$ -BIS  $\longrightarrow$  Sol of H has size  $\in \Omega(\log^{1-\delta} n)$ 

From Lemmas 1, 2, and 3 follows:

- If G has  $(n^{\gamma}, \frac{n}{\log^{\delta} n})$ -BIS  $\longrightarrow$  Sol of H has size  $\in \Omega(\log^{1-\delta} n)$
- If G has no  $(n^{\gamma'}, \frac{n}{\log^{\delta'} n})$ -BIS  $\longrightarrow$  Sol of H has size  $\in O(\log^{1-\delta'} n)$

From Lemmas 1, 2, and 3 follows:

- If G has  $(n^{\gamma}, \frac{n}{\log^{\delta} n})$ -BIS  $\longrightarrow$  Sol of H has size  $\in \Omega(\log^{1-\delta} n)$
- If G has no  $(n^{\gamma'}, \frac{n}{\log^{\delta'} n})$ -BIS  $\longrightarrow$  Sol of H has size  $\in O(\log^{1-\delta'} n)$
- $\longrightarrow$  hardness factor for U.C.  $\Omega(\log^{\delta'-\delta} n)$

## How to prove hardness for BBIS?

From Lemmas 1, 2, and 3 follows:

- If G has  $(n^{\gamma}, \frac{n}{\log^{\delta} n})$ -BIS  $\longrightarrow$  Sol of H has size  $\in \Omega(\log^{1-\delta} n)$
- If G has no  $(n^{\gamma'}, \frac{n}{\log^{\delta'} n})$ -BIS  $\longrightarrow$  Sol of H has size  $\in O(\log^{1-\delta'} n)$
- $\longrightarrow$  hardness factor for U.C.  $\Omega(\log^{\delta'-\delta} n)$

### How to prove hardness for BBIS?

Theorem [khot'04]: Let  $\epsilon > 0$  be some const. and  $\Phi$  an instance of SAT with n variables. For some constants  $\alpha = \alpha(\epsilon) > \beta = \beta(\epsilon)$ , and  $N = 2^{n^{\epsilon}}$ , we can build a bip graph  $G(A \cup B, E)$ , |A| = |B| = N, s.t.

From Lemmas 1, 2, and 3 follows:

- If G has  $(n^{\gamma}, \frac{n}{\log^{\delta} n})$ -BIS  $\longrightarrow$  Sol of H has size  $\in \Omega(\log^{1-\delta} n)$
- If G has no  $(n^{\gamma'}, \frac{n}{\log^{\delta'} n})$ -BIS  $\longrightarrow$  Sol of H has size  $\in O(\log^{1-\delta'} n)$
- $\longrightarrow$  hardness factor for U.C.  $\Omega(\log^{\delta'-\delta} n)$

### How to prove hardness for BBIS?

Theorem [khot'04]: Let  $\epsilon > 0$  be some const. and  $\Phi$  an instance of SAT with n variables. For some constants  $\alpha = \alpha(\epsilon) > \beta = \beta(\epsilon)$ , and  $N = 2^{n^{\epsilon}}$ , we can build a bip graph  $G(A \cup B, E)$ , |A| = |B| = N, s.t.

• if  $\Phi$  is SAT  $\longrightarrow G$  has a  $(\alpha N, \alpha N)$ -BIS

From Lemmas 1, 2, and 3 follows:

- If G has  $(n^{\gamma}, \frac{n}{\log^{\delta} n})$ -BIS  $\longrightarrow$  Sol of H has size  $\in \Omega(\log^{1-\delta} n)$
- If G has no  $(n^{\gamma'}, \frac{n}{\log^{\delta'} n})$ -BIS  $\longrightarrow$  Sol of H has size  $\in O(\log^{1-\delta'} n)$
- $\longrightarrow$  hardness factor for U.C.  $\Omega(\log^{\delta'-\delta} n)$

#### How to prove hardness for BBIS?

**Theorem [khot'04]:** Let  $\epsilon > 0$  be some const. and  $\Phi$  an instance of SAT with n variables. For some constants  $\alpha = \alpha(\epsilon) > \beta = \beta(\epsilon)$ , and  $N = 2^{n^{\epsilon}}$ , we can build a bip graph  $G(A \cup B, E)$ , |A| = |B| = N, s.t.

- if  $\Phi$  is SAT  $\longrightarrow G$  has a  $(\alpha N, \alpha N)$ -BIS
- if  $\Phi$  is not SAT  $\longrightarrow G$  has no  $(\beta N, \beta N)$ -BIS

But we need much larger gap (here it is only a constant!)

• Use the (standard) technique of graph products to boost the gap

- Use the (standard) technique of graph products to boost the gap
- Given G construct  $G^{k_A,k_B}(A' \cup B',E')$  where

★ in A', every vertex is a vector of length  $k_A$  from vertices of A ★ in B', every vertex is a vector of length  $k_B$  from vertices of B

- Use the (standard) technique of graph products to boost the gap
- Given G construct  $G^{k_A,k_B}(A' \cup B',E')$  where

★ in A', every vertex is a vector of length  $k_A$  from vertices of A★ in B', every vertex is a vector of length  $k_B$  from vertices of B

 $(a_1, \ldots, a_{k_A}) \in A', (b_1, \ldots, b_{k_B}) \in B'$  are adjacent  $\iff$  $(a_i, b_j) \in E(G)$ , for all  $1 \le i \le k_A$ ,  $1 \le j \le k_B$ 

• Use the (standard) technique of graph products to boost the gap

• Given G construct  $G^{k_A,k_B}(A' \cup B',E')$  where

★ in A', every vertex is a vector of length  $k_A$  from vertices of A★ in B', every vertex is a vector of length  $k_B$  from vertices of B

 $(a_1, \ldots, a_{k_A}) \in A', (b_1, \ldots, b_{k_B}) \in B'$  are adjacent  $\iff$  $(a_i, b_j) \in E(G)$ , for all  $1 \le i \le k_A$ ,  $1 \le j \le k_B$ 

• For suitable  $k_A, k_B$  we can show:

**Theorem:** Unless  $NP \subseteq BPTIME(2^{n^{\epsilon}})$  it is hard to distinguish between:

★ 
$$G^{k_A,k_B}$$
 has a  $(n^{\gamma}, \frac{n}{\log^{\delta} n})$ -BIS  
★  $G^{k_A,k_B}$  has no  $(n^{\gamma'}, \frac{n}{\log^{\delta'} n})$ -BIS

# What next (Open problems)

The hardness result is not matching the approximation algorithm ratio  $(O(\log n) \text{ v.s } \Omega(\log^{\delta} n))$  and it requires relatively strong assumption (i.e.  $NP \not\subseteq 2^{n^{\epsilon}}$ ).

# What next (Open problems)

The hardness result is not matching the approximation algorithm ratio  $(O(\log n) \text{ v.s } \Omega(\log^{\delta} n))$  and it requires relatively strong assumption (i.e.  $NP \not\subseteq 2^{n^{\epsilon}}$ ).

**Hypothesis:** Given a bipartite graph  $G(A \cup B, E)$ , |A| = |B| = n, for some  $0 < \gamma' < \gamma \le 1$ , it is hard to distinguish between:

- Yes: G has an  $(n^{\gamma}, \Omega(n))$ -BIS
- No: G has no  $(n^{\gamma'}, \frac{n}{\log n})$ -BIS

# What next (Open problems)

The hardness result is not matching the approximation algorithm ratio  $(O(\log n) \text{ v.s } \Omega(\log^{\delta} n))$  and it requires relatively strong assumption (i.e.  $NP \not\subseteq 2^{n^{\epsilon}}$ ).

**Hypothesis:** Given a bipartite graph  $G(A \cup B, E)$ , |A| = |B| = n, for some  $0 < \gamma' < \gamma \le 1$ , it is hard to distinguish between:

- Yes: G has an  $(n^{\gamma}, \Omega(n))$ -BIS
- No: G has no  $(n^{\gamma'}, \frac{n}{\log n})$ -BIS

This would imply an  $\Omega(\log n)$ -hardness for U.C.

• We know [GPX'05] how to find a schedule of size  $D + O(\log^2 n)$  (rounds).

- We know [GPX'05] how to find a schedule of size  $D + O(\log^2 n)$  (rounds).
- For the case that the diameter is constant, e.g. say a bipartite graph plus another node (source) connected to all the vertices in one part, this gives an upper bound of  $D + O(\log^2 n)$

- We know [GPX'05] how to find a schedule of size  $D + O(\log^2 n)$  (rounds).
- For the case that the diameter is constant, e.g. say a bipartite graph plus another node (source) connected to all the vertices in one part, this gives an upper bound of  $D + O(\log^2 n)$
- There are such graphs [ABLP'91] that need  $\Omega(\log^2 n)$  rounds.

- We know [GPX'05] how to find a schedule of size  $D + O(\log^2 n)$  (rounds).
- For the case that the diameter is constant, e.g. say a bipartite graph plus another node (source) connected to all the vertices in one part, this gives an upper bound of  $D + O(\log^2 n)$
- There are such graphs [ABLP'91] that need  $\Omega(\log^2 n)$  rounds.
- On the other hand [EK'04] showed that deciding between the following two is hard:
  - \* G has a schedule with  $O(\log n)$  rounds
  - **\*** every schedule of G has  $\Omega(\log^2 n)$  rounds

This implies a (multiplicative)  $\Omega(\log n)$  and *additive*  $\Omega(\log^2 n)$  hardness

- We know [GPX'05] how to find a schedule of size  $D + O(\log^2 n)$  (rounds).
- For the case that the diameter is constant, e.g. say a bipartite graph plus another node (source) connected to all the vertices in one part, this gives an upper bound of  $D + O(\log^2 n)$
- There are such graphs [ABLP'91] that need  $\Omega(\log^2 n)$  rounds.
- On the other hand [EK'04] showed that deciding between the following two is hard:
  - \* G has a schedule with  $O(\log n)$  rounds
  - **\*** every schedule of G has  $\Omega(\log^2 n)$  rounds

This implies a (multiplicative)  $\Omega(\log n)$  and additive  $\Omega(\log^2 n)$  hardness

• Question: Can we prove an  $\Omega(\log^2 n)$ -hardness?

- We know [GPX'05] how to find a schedule of size  $D + O(\log^2 n)$  (rounds).
- For the case that the diameter is constant, e.g. say a bipartite graph plus another node (source) connected to all the vertices in one part, this gives an upper bound of  $D + O(\log^2 n)$
- There are such graphs [ABLP'91] that need  $\Omega(\log^2 n)$  rounds.
- On the other hand [EK'04] showed that deciding between the following two is hard:
  - \* G has a schedule with  $O(\log n)$  rounds
  - **\*** every schedule of G has  $\Omega(\log^2 n)$  rounds

This implies a (multiplicative)  $\Omega(\log n)$  and additive  $\Omega(\log^2 n)$  hardness

- Question: Can we prove an  $\Omega(\log^2 n)$ -hardness?
- Proposition: An  $\Omega(\log^{1+\delta} n)$ -hardness for Radio Broadcast implies an  $\Omega(\log^{\delta} n)$ -hardness for U.C. (easy!).