
Approximation Algorithms and Hardness of

Approximation

IPM, Jan 2006

Mohammad R. Salavatipour

Department of Computing Science

University of Alberta

1

Introduction

• For NP-hard optimization problems, we want to:

1. find the optimal solution,

2. find the solution fast, often in polynomial time

3. find solutions for any instance

• Assuming P 6= NP, we cannot have all the above
simultaneously.

• If we

1. relax (3), then we are into study of special cases.

2. relax (2), we will be in the field of integer pro-
gramming (branch-and-bound, etc).

3. relax (1), we are into study of heuristics and
approximation algorithms.

• We are going to focus on approximation algorithms:

– finding solutions that are within a guaranteed
factor of the optimal solutions, and

– We want to find this solution fast (i.e. polyno-
mial time).

2

Introduction

• An NP optimization problem, Π, is a minimization
(maximization) problem which consists of the fol-
lowing items:

Valid instances: each valid instance I is recogniz-
able in polytime; DΠ is set of all valid instances.

Feasible solutions: Each I ∈ DΠ has a set SΠ(I)
of feasible solutions and for each solution s ∈
SΠ(I), |s| is polynomial (in |I|).

Objective function: A polytime computable func-
tion f(s, I) that assigns a ≥ 0 rational value to
each feasible solution.

Typically, want a solution whose value is minimized
(maximized): it is called the optimal solution.

• Example: Minimum Spanning Tree (MST):

A connected graph G(V,E), each (u, v) ∈ E has a
weight w(u, v),
Goal: find an acyclic connected subset T ⊆ E whose
total weight is minimized.

valid instances : a graph with weighted edges.

feasible solutions : all the spanning trees of the
given weighted graph.

objective functions : minimizing the total weight
of a spanning tree.

3

Introduction

• Approximation algorithms: An α-approximation al-
gorithm is a polytime algorithm whose solution is
always within factor α of optimal solution.

• For a minimization problem Π, algorithm A has fac-
tor α ≥ 1 if for its solution s: f(s, I) ≤ α(|I|) ·
OPT(I).
α can be a constant or a function of the size of the
instance.

• Example: Vertex-Cover Problem

– Input: undirected graph G = (V,E) and a cost
function c : V → Q+

– Goal: find a minimum cost vertex cover, i.e.
a set V ′ ⊆ V s.t. every edge has at least one
endpoint in V ′.

• The special case, in which all vertices are of unit
cost: cardinality vertex cover problem.

• V.C. is NP-hard.

• Let’s look for an approximation

4

Vertex Cover

• Perhaps the most natural greedy algorithm for this
problem is:

Algorithm VC1:
S ← ∅
While E 6= ∅ do

let v be a vertex of maximum degree in G
S ← S ∪ {v}
remove v and all its edges from G

return S

• Easy to see that it finds a VC. What about the
approximation ratio?

• It can be shown that the approximation ratio is
O(log∆), where ∆ is the maximum degree in G.

• The second approximation algorithm V C2 appears
to be counter-intuitive at first glance:

Algorithm VC2:
S ← ∅
While E 6= ∅ do

let (u, v) ∈ E be any edge
S ← S ∪ {u, v}
delete u,v and all their edges from G

return S

5

Vertex Cover

• Lemma 1 VC2 returns a vertex cover of G.

Proof: V C2 loops until every edge in G has been
covered by some vertex in S.

• Lemma 2 VC2 is a 2-approximation algorithm.

Proof:

– Let A denote the set of edges selected by V C2.

– Note that A forms a matching, i.e. no two edges
selected share an end-point

– Therefore, in order to cover the edges of A,
any vertex cover must include at least one end-
point of each edge in A.

– So does any optimal V.C. S∗, i.e. |S∗| ≥ |A|.
– Since |S|= 2|A|, we have |S| ≤ 2|S∗|.

• Lemma 3 The analysis of V C2 is tight.

A complete bipartite graph Kn,n. V C2 picks all the
2n vertices, but optimal picks one part only.

• Major Open question: Is there a 2−O(1)-approx
algorithm for V.C.?

6

Set Cover

• Theorem 4 (Hastad 97) Unless P = NP, there
is no approximation algorithm with ratio < 7

6
for

Vertex-Cover problem.

Set Cover

• Set-cover is perhaps the single most important (and
very well-studied) problem in the field of approxima-
tion algorithms.

Set-Cover Problem

– Input

∗ U : a universe of n elements e1, . . . , en,

∗ S = {S1, S2, · · · , Sk} a collection of subsets of
U ,

∗ c : S → Q+ a cost function

– Goal: find a min cost subcollection of S that
covers all the elements of U , i.e. I ⊆ {1,2, · · · , k}
with min

∑
i∈I c(Si) such that

⋃
i∈I Si = U

• V.C. problem is a special case of Set-Cover: for a
graph G(V,E), let U = E, and
Si = {e ∈ E|e is incident within vi}

7

Set Cover

• We will give an (lnn)-approx greedy algorithm for
Set Cover.

• Rather than greedily picking the set which covers
maximum number of elements, we have to take the
cost into account at the same time.

• We pick the most cost-effective set and remove the
covered elements until all elements are covered.

Definition 5 The cost-effectiveness of a set Si is
the average cost at which it covers new element,

i.e., α = c(Si)
Si−C , where C is the set of elements already

covered.
We Define the price of an element to be the cost
at which it is covered.

• Greedy Set-Cover algorithm
C ← ∅, T ← ∅
While C 6= U do

choose a Si with the smallest α
add Si to T
for each element e ∈ Si − C, set price(e) = α
C ← C ∪ {Si}

return T

• when a set Si is picked, its cost is distributed equally
among the new elements covered

8

Set Cover: Greedy

• Theorem 6 The Greedy Set-Cover algorithm is an
Hn factor approximation algorithm for the minimum
set cover problem, where Hn = 1 + 1

2
+ 1

3
+ · · ·+ 1

n
.

Note that Hn ≈ lnn.

• Proof:

– Let e1, e2, · · · , en be the order at which the ele-
ments are covered

– It can be seen that:

∑

Si∈T
c(Si) =

n∑

k=1

price(ek)

– We try to estimate price(ek) (at this stage, we
have covered e1, e2, · · · , ek−1, and have n− k+ 1
uncovered elements).

– Let TOPT be an opt solution and COPT be its
cost.

– At any point of time, we can cover the elements
in U − C at a cost of at most COPT .

– Thus among the sets not selected, ∃ a set with
cost-effectiveness ≤ COPT

|U−C|

– In the iteration in which element ek was covered,
|U − C|= n− k+ 1.

9

Set Cover: Greedy

• Since ek was covered by the most cost-effective set
in this iteration:

price(ek) ≤
COPT

n− k+ 1

• As the cost of each set picked is distributed among
the new elements covered, the total cost of the set
cover picked is:

∑

Si∈T
c(Si) =

n∑

k=1

price(ek)

≤ COPT

n∑

k=1

1

n− k+ 1

= Hn · COPT

• The analysis of this greedy algorithm is tight:
Example: each e1, e2, · · · , en by itself is a set, with
cost 1

n
, 1
n−1

, · · · ,1 respectively;

one set contains all of U with cost 1 + ε for some
ε > 0.

– the greedy solution picks n singleton sets; costs
1
n
+ 1

n−1
+ · · ·+ 1 = Hn.

– The optimal cover has cost 1 + ε.

10

Set Cover: Greedy

• Theorem 7 Based on the results of Lund and Yan-
nakakis 92, Feige 86, Raz 98, Safra 97, Suduan 97:

– There is a constant 0 < c < 1 such that if
there is a (c lnn)-approximation algorithm for
Set-Cover problem, then P = NP.

– For any constant ε > 0, if there is a (1− ε) lnn-
approximation algorithm for Set-Cover then NP ⊆
DTIME(nO(ln lnn)).

• Next we give another algorithm for Set Cover using
Linear Programming (LP).

• First, forumlate Set Cover as an IP.
We have one indicator variable xs for every set S:

minimize
∑

s∈S csxs
subject to ∀e ∈ U :

∑
s:e∈S xs ≥ 1

xs ∈ {0,1}

• Now relax the integrality constraint to obtain the
corresponding LP.
Although IP is NP-hard, there are polytime algo-
rithms for solving LP.

• Solution to an LP-relaxation is usually called the
fractional solution and is denoted by OPTf .

11

Set Cover: Randomized Rounding

• We give another O(logn)-approximation for Set Cover
using a powerful technique called randomized round-
ing.

• The general idea is to start with the optimal frac-
tional solution (solution to the LP) and then round
the fractional values to 1 with some appropriate
probabilities.

• Randomized Rounding Alg for Set cover:

– Take the LP relaxation and solve it.

– For each set S, pick S with probability Ps = x∗s
(i.e. round x∗s up to 1 with probability x∗s), let’s
call the integer value x̂s),

Consider the collection C = {Sj | x̂Sj = 1}:

•
E[cost(C)] =

∑

Sj∈S
Pr[Sj is picked]·cSj =

∑
x∗Sj ·cSj = OPTf

(1)

• Let α be large enough s.t. (1
e
)α logn ≤ 1

4n
.

• Repeat the algorithm above α logn times and let
C ′ =

⋃α logn
i=1 Ci be the final solution, where Ci is the

collection obtained after round i of the algorithm.

12

Set Cover: Randomized Rounding

• Suppose ej belongs to S1, ...Sq.

• By the constraint for ej, in any fractional feasible
solution:

xS1
+ xS2

+ ...+ xSq ≥ 1

• It can be shown that the probability that ej is cov-
ered is minimized when

xS1
= xS2

= ... = xSq =
1
q

⇒ Pr[ej is not covered in Ci] ≤ (1− 1
q
)q < 1

e

⇒ Pr[ej /∈ C ′] ≤ (1
e
)α logn ≤ 1

4n

• Sum over all ej:

Pr[∃ej, ej /∈ C ′, (i.e. C′ is not a set cover)] ≤ n· 1
4n
≤ 1

4

• Let’s call the event “C ′ is not a Set Cover”, E1.
By above:

Pr[E1] ≤
1

4
. (2)

• On the other hand, by (1) and by summing over all
rounds:

E[cost(C ′)] ≤ α logn ·OPTf

13

Set Cover: Randomized Rounding

• Markov’s inequality says for any random variable X:

Pr[X ≥ t] ≤ E[X]
t

.

• Define the bad event E2 to be the event that
cost(C ′) > 4α logn ·OPT . Thus:

Pr[E2] = Pr[cost(C ′) > 4α logn ·OPT]

≤ α logn ·OPTf
4α logn ·OPTf

≤ 1

4

• The probability that either C ′ is not a set cover (i.e.
E1 happens) or that C ′ is a set cover with large cost
(i.e. E2 happens) is at most: Pr[E1] + Pr[E2] ≤ 1

2
.

• Therefore, with probability ≥ 1
2
, C ′ is a set cover

with cost(C ′) ≤ 4α logn ·OPTf ≤ 4α logn ·OPT .

• Repeating this algorithm t times, the probability of
failure at all rounds is at most 1

2t.

• So, the probability of success for at least one run
of the algorithm is 1− 1

2t.

14

Section 2:

Hardness of Approximation

15

Hardness of Approximation

• We are familiar with the theory of NP-completeness.
When we prove that a problem is NP-hard it implies
that, assuming P 6= NP there is no polynomail time
algorithm that solves the problem (exactly).

• For example, for SAT, deciding between Yes/No is
hard (again assuming P 6= NP).

• We would like to show that even deciding between
those instances that are (almost) satisfiable and
those that are far from being satisfiable is also hard.

• In other words, create a gap between Yes instances
and No instances. These kinds of gaps imply hard-
ness of approximation for optimization version of
NP-hard problems.

• As SAT is the canonical problem for NP-hardness,
Max-SAT is the canonical problem for hardness of
approximation:

Max-SAT:

– Input: A boolean formula Φ over variables x1, . . . , xn
in CNF which has clauses C1, . . . , CM .

– Question: Find a truth assignment to maxi-
mizes the number of satisfied clauses.

16

Hardness of Approximation

• The PCP theorem implies that Max-SAT is NP-
hard to approximate within a factor of (1− ε0), for
some fixed ε0 > 0.

• For proving a hardness of approximation, for exam-
ple for vertex cover, we prove a reduction like the
following:

Given a formula ϕ for Max-SAT, we build a graph
G(V,E) in polytime such that:

– if ϕ is a yes-instance, then G has a vertex cover
of size ≤ 2

3
|V |;

– if ϕ is a no-instance, then every vertex cover of
G has a size > α2

3
|V | for some fixed α > 1.

• Corollary 8 The vertex cover problem cannot be
approximated with a factor of α unless P = NP.

• In this reduction we have created a gap of size α
between yes/no instances.

17

Hardness of Approximation

• Suppose L is NP-complete and π is a minimization
problem.

• Let g be a function computable in polytime that
maps Yes-instances of L into a set S1 of instances
of π and No-instances of L into a set S2.

• Assume that there is a polytime computable func-
tion h such that:

– for every Yes-instance x of L: OPT(g(x)) ≤
h(g(x));

– for every No-instance x of L: OPT(g(x)) >
αh(g(x)).

Then g is called a gap-introducing reduction from
L to π and α is the size of the gap.

• This implies π is hard to approximate within factor
α.

18

Max-SNP and PCP

• Many problems, such as Bin Packing and Knapsack,
have PTAS’s, i.e. a (1 + ε)-approximation for any
constant ε > 0.

• A major open question was: does Max-3SAT have
a PTAS?

• A significant result on this line was by Papadimitriou
and M. Yannakakis (’92); they defined the class
Max-SNP. All problems in Max-SNP have constant
approximation algorithms.

• They also defined the notion of completeness for
this class and showed if a Max-SNP-complete prob-
lem has a PTAS then every Max-SNP problem has
a PTAS.

• Several well-known problems including Max-3SAT
and TSP are Max-SNP-complete.

• The celeberated PCP theorem states that there is
no PTAS for Max-SNP problems.

• It also give another characterization of NP.

19

PCP

• Definition 9 A language L ∈ NP if and only if there
is a deterministic polynomial time verifier (i.e. al-
gorithm) V that takes an input x and a proof y with
|y| = |x|c for a constant c > 0 and it satisfies the
following:

– Completeness: if x ∈ L ⇒ ∃ y s.t. V (x, y) = 1.

– Soundness: if x /∈ L ⇒ ∀y, V (x, y) = 0.

• Definition 10 An (r(n), b(n))-restricted verifier is
a randomized verifier that uses at most r(n) random
bits. It runs in probabilistic polynomial time and
reads/queries at most b(n) bits of the proof.

• Definition 11 For 0 ≤ s < c ≤ 1, a language L ∈
PCPc,s(r(n), b(n)) if and only if there is a (r(n), b(n))-
restricted verifier V such that given an input x with
length |x|= n and a proof π, it satisfies the follow-
ing:

– Completeness: if x ∈ L ⇒ ∃ a proof π such that
Pr[V (x, π) = 1] ≥ C.

– Soundness: if x /∈ L ⇒ ∀π, Pr[V (x, π) = 1] ≤ S.

20

PCP

• The probabilities in completeness and soundness
given in definition above are typically C = 1 and
S = 1

2
, respectively.

• From the definition, for any 0 ≤ s < c ≤ 1:

NP ⊆ PCPc,s(0,poly(n)) ⊆ PCPc,s(O(logn),poly(n)).

• Lemma 12 PCPc,s(O(logn),poly(n)) ⊆ NP

• Proof: Let L be a language in PCPc,s(O(logn),poly(n))
with a verifier V .

• We construct a non-deterministic polytime Turing
machine M for L.

• Starting with an input x, M guesses a proof π and
simulates V on all 2O(logn) = poly(n) possible ran-
dom strings.

• M accepts if at least a fraction c of all these runs
accept, rejects otherwise.

21

PCP Theorem

• Thus:

– if x ∈ L ⇒ V (x, π) accepts with probability at
least c; thus at least a fraction c of random
strings cause the verifier V and therefore M to
accept.

– if x 6∈ L then the verifier accepts with probability
at most s which is smaller than c; thus for only
a fraction of < c of random strings verifier V
accepts; M rejects.

• Since there are O(poly(n)) random strings of length
O(logn) and each simulation takes polytime, the
running time of M is polytime.

• This lemma and the observation before it implies
that

PCPc,s(O(logn),poly(n)) = NP.

• The remarkable PCP theorem, proved by Arora/Safra
[92] and Arora/Lund/Motwani/Sudan/Szegedy[92]
states:

Theorem 13 (PCP Theorem)

NP = PCP1,1
2
(O(logn), O(1))

22

PCP to Max-3SAT

• The original proof of PCP theorem was extremely
difficult. There is a new a much simpler proof of
PCP theorem using a different technique by Dinur
[2005].

• Basically, the PCP theorem says that for every prob-
lem in NP there is a verifier that queries only a
constant number of bits of the proof (regardless of
the length of the proof) and with sufficiently high
probability gives a correct answer.

• Starting from the PCP theorem, we show that ap-
proximating Max-3SAT within some constant factor
is NP-hard.

• Before that note that there is a trivial 7
8
-approximation

for Max-3SAT.

• Given a 3SAT formula Φ for Max-3SAT with

– 3-clauses C1, . . . , Cm and

– variables x1, . . . , xn,

assign each xi True/False u.r. with probability 1
2
.

• This is a 7
8
-approximation for Max-3SAT:

23

Max-3SAT

• For each clause Ci = (x5 ∧ x1 ∧ x3), the probability
that Ci is not satisfied is:

Pr[x5 = F]×Pr[x1 = T]×Pr[x3 = F] =
1

8

• Thus each clause Ci is satisfied with probability 7
8
;

so the expected number of satisfied clauses is at
least 7

8
m (this can be easily de-randomized).

• Theorem 14 For some absolute constant ε > 0,
there is a gap-introducing reduction from SAT to
Max-3SAT such that it transforms a boolean for-
mula φ for SAT to a boolean formula ψ with m
clauses for Max-3SAT such that:

– if φ is satisfiable, then OPT(ψ) = m.

– if φ is a NO-instance, then OPT(ψ) ≤ (1− ε)m.

• Corollary 15 Approximating Max-3SAT with a fac-
tor better then (1−ε) is NP-hard for some constant
ε > 0.

24

Max-3SAT

Proof of Theorem 14:

• By PCP theorem, SAT has a PCP1,1
2

(O(logn), O(1))

verifier V . Let us assume that it is PCP1,1
2
(d logn, k)

where d and k are some constants.

• Let r1, . . . , rnd be all the possible random bits (of
length d logn) that can be given as seed to V .

• We will construct a formula fi for every possible ran-
dom bit ri. Thus we will have formulas f1, . . . , fnd.

• For any particular choice of random bits, the ver-
ifier reads k positions of the proof; each of these
positions is determined by the value read in previous
position and the random bits.

• So it can be considered to evaluate a boolean binary
decision tree of height at most k; where the decision
to go left or right is based on the value read from
the proof.

25

Max-3SAT

X_j

Accept

X_k

0
 1

Reject

0
 0
1
 1

Reject

X_l

Accept

• Here suppose k = 2 and we have a fixed random
bit string.

• Based on the first random bit the position we read
is xj,

• if it returns 0 we get the second random bit and
based on that we read position xk,

• else if xj was 1 we read position xl.

• So we can use four variables xj, xk, xj, xl to form a
formula encoding this tree

26

• In general, this decision tree can be encoded as a
boolean formula with at most 2k variables and 2k

clauses each of length k.

• Think of every node as a variable and every path
from root to leaf forms a clause.

• It is easy to see that the formula is satisfied if and
only if the path that the verifier traverses on the
tree ends at an “accept” leaf.

• Any truth assignment to the variables i.e. any
proof, will give a unique path for each decision tree.

• If for a fixed random bit string and a proof (truth
assignment) the path ends in an “accept” it means
that the verifier accepts the proof, otherwise it re-
jects the proof.

• If φ is a YES-instance,⇒ there is a truth assignment
that works/accpets with probability of 1 (i.e., for
any random bits it will accept)

• ⇒ the corresponding truth assignment will give a
path from root to an “accept” leaf in every decision
tree (corresponding to a random bit string); so it
satisfies all formulas f1, . . . , fnd.

PCP and Max-3SAT

• If φ is a NO-instance ⇒ for any proof (truth assign-
ment) V accepts with probability ≤ 1

2
(this is from

the PCP definition)

• ⇒ for at least half of the decision trees, the truth
assignment will give a root to leaf path that ends
in “reject”, i.e. the formula is not satisfied.

• Therefore, among all nd formulas, at least nd

2
of

them are not satisfied.

• Now on we can transform all formulas f1, . . . , fnd
into 3-CNF formulas f ′1, . . . , f

′
nd such that that f ′i is

satisfiable if and only if fi is.

• This theorem showed that PCP theorem implies a
gap-introducing reduction from SAT to Max-3SAT.

• The oposite is also true; i.e. assuming the existence
of a gap-introducing reduction from SAT to Max-
3SAT we can prove the PCP theorem, as follows.

• Suppose that for each L ∈ NP there is a polytime
computable g from L to instances of MAX-3SAT,
such that

– for Yes-instance y ∈ L, all 3-clauses in g(y) can
be satisfied;

27

– for No-instance y ∈ L, at most 1
2
of the 3-clauses

of g(y) can be satisfied.

• Define a proof that y ∈ L to be a truth assignment
satisfying g(y).

• We define a randomized verifier V for L.

• V runs in polynomial time and

– takes y and the “new” proof π;

– accept iff π satisfies a 3-clause selected uni-
formly and randomly from g(y).

• If y ∈ L then there is a proof (truth assignment)
such that all the 3-clauses in g(y) can be satisfied.
For that proof Verifier V (y, π) accepts with proba-
bility 1.

• If y 6∈ L then every truth assignment satisfies no
more than 1

2
of clauses in g(y). So verifier V (y, π)

will reject with probability at least 1
2
.

• This, together with Theorem 14 implies that the
PCP theorem is in fact equivalent to: “There is no
PTAS for Max-3SAT.”

Section 3:

Improved Hardness results

28

Improved PCP’s

• Recall that PCP theorem says:

NP = PCP1,1
2
(O(logn), O(1)).

• Goal: reduce the number of query bits and also
decrease the the probability of failure.

• Theorem 16 For some s < 1 :

NP = PCP1,s(O(logn),3).

• Proof: Let L ∈ NP be an arbitrary language; y be
an instance of L.

• By PCP, we can construct a 3CNF formula F such
that:

– if y ∈ L =⇒ ∃ a truth assignment for F s.t. all
clauses of F are satisfied.

– if y /∈ L =⇒ for any truth assignment for F at
most (1− ε) fractions of clauses are satisfied.

• We assume that the proof π given for y is the truth
assignment to formula F above.

29

Improved PCP’s

• Verifier V given y and proof π, computes F in poly-
time, then uses O(logn) bits to pick a random
clause of F and query the truth assignment to its
3 variables.

• The verifier accepts if and only if the clause is sat-
isfied.

• It is easy to see that:

– If y ∈ L then there is a proof π s.t. V accepts
with probability 1.

– If y 6∈ L then for any proof π, V accepts with
probability at most 1− ε.

• Theorem 17 (Guruswami,Sudan,Lewin,Trevisan’93)
For all ε > 0

NP = PCP1,1
2
+ε(O(logn),3).

Note that the 3 bits of the proof are selected by
the verifier adaptively.

• Theorem 18 (Karloff/Zwick, 97)

P = PCP1,1
2

(O(logn),3).

30

Improved PCP’s

• Theorem 19 (Hástad’97)

NP = PCP1−ε,1
2
+ε(O(logn),3)

where the verifier selects the 3 bits of the proof
a priori. That is, the verifier uses O(logn) random
bits to choose 3 positions, i1, i2, i3 of the proof and a
bit b and accepts if and only if π(i1)⊕π(i2)⊕π(i3) =
b.

• Corollary 20 For any ε > 0, it is NP-hard to ap-
proximate:

– Max-3SAT within a factor of (7
8
+ ε),

– Vertex cover within a factor of (7
6
+ ε),

• Recall that the simple algorithm we gave for Max-
3SAT has approximation factor 7

8
.

• The best Hardness factor for VC is 10
√

5 − 21 ≈
1.3606.

31

Hardness of Clique

• Definition 21 (MAX-CLIQUE) Given a graph with
n vertices, find a maximum size clique in it, i.e. a
complete subgraph of maximum size.

• The best known algorithm has a factor of O(n·log log2 n
log3 n

).

• Clique and Max-3SAT are both NP-hard, but why
the approximation for clique is so bad?

• Hástad: for any ε > 0 there is no polytime ap-
proximation algorithm for clique with factor n

1

2
−ε (if

P 6= NP) or n1−ε (if ZPP6= NP).

• Our goal is to prove a polynomial hardness for clique.

• We start with a constant hardness result for Clique.

• Then show that it is hard to approximate Clique
within any constant factor. Finally, we show how
to improve this to a polynomial.

32

Hardness of Clique

• Consider a PCP1,1
2

(d logn, q) verifier F for SAT, where

d and q are constants (V exists by PCP).

• Let r1, r2, ..., rnd be the set of all possible random
strings to F .

• Given an instance φ of SAT, we construct a graph
G from F and φ which will be an instance of Clique.

• G has one vertex vri,σ for each pair (i, σ), where ri
is one of the the random strings ri and σ is a truth
assignment to q variables. G has nd2q vertices.

• An accepting transcript for F on φ with random
string ri is q pairs (p1, a1), . . . , (pq, aq) s.t. for every
truth assignment that has values a1, . . . , aq for vari-
ables p1, . . . , pq, verifier F given ri checks positions
p1, . . . , pq in that order and accepts.

• Once we have φ, ri, a1, . . . , aq it is easy to compute
p1, . . . , pq. For each transcript we have a vertex.

• Two vertices (i, σ) and (i′, σ′) are adjacent iff σ, σ′

don’t assign different values to same variable, i.e.
they are consistent, and both are accepting.

33

Hardness of Clique

• If φ is a yes instance then there is a proof (truth
assignment) π such that F accepts (given π) on all
random strings.

• For each ri, there is a corresponding σ (which has
the same answers as in π) and is an accepting tran-
script.

• We have nd random strings and therefore there are
nd vertices of G (corresponding to those). They
form a clique because they come from the same
truth assignment and so are consistent;

• Therefore G has a clique of size ≥ nd.

• For the case φ is a no instance we want to show

that every clique in G has size at most nd

2
.

• By way of contradiction suppose we have a clique
C of size c > nd

2
.

• Assume that (i1, σ1)...(ic, σc) are the vertices in this
clique. Therefore the transcripts σ1...σc (partial truth
assignments) are all consistent.

• We can extend this truth assignment to a whole
proof (truth assignment) such that on random strings
i1, ..., ic, verifier V accepts.

34

Hardness of Clique

• Therefore the verifier accepts for more than nd

2
strings,

which contradicts the assumption that φ is a no in-
stance.

• So it is NP-hard to decide whether:

– G has a clique of size nd

– G every clique of G has size < nd

2

• Note that the gap created here is exactly the sound-
ness probability of the verifier; so the the smaller S
is, the larger gap we get.

• By simulating a PCP1,1
2

(d logn, q) verifier V for k

times and accepting iff all of those simulations ac-
cept, we get a PCP1, 1

2k
(k · d logn, k · q) verifier V ′.

• Note that in this case the size of the construction
G is nkd2kq, which is polynomial as long as k is con-
stant.

• This will show a hardness of 2k, which is a constant.

Corollary 22 For any constant S, it is NP-hard to
approximation clique within a factor of S (say S =
1/2k in the above).

35

Hardness of Clique

• To get an nδ gap, we need S to be polynomially
small, and for that we need to repeat k = Ω(logn)
times.

• Therefore, k · q = O(logn) which is Ok. But the
length of random string becomes k logn = Ω(log2 n),

and the size of G becomes 2Ω(log2 n), which is super-
polynomial.

• To get a polynomial hardness we need a

PCP1, 1
n
(O(logn), O(logn))

verifier.

• The trick here is to start with only O(logn) random
bits and use random walks on expander graphs to
generate O(logn) random strings, each of length
about logn.

Definition 23 (Expander Graph) Every vertex has
the same constant degree, say d, and for every non-
empty set S ⊂ V , |E(S,S)| ≥ min{|S|, |S|}.

36

Hardness of Clique

• There are explicit construction of expander graphs.

• Let H be an expander graph with nd nodes. To
each node we assign a label which is a binary string
of length d logn.

• We can generate a random walk in H using only
O(logn) random bits:

– need d logn bits to choose the first vertex, and

– need constant number of random bits to choose
one neighbor at every step.

• Therefore, to have a random walk of length O(logn)
in H we need only O(logn) bits.

• Theorem 24 For any set S of vertices of H with
< nd

2
vertices, there is a constant k such that the

probability that a random walk of length k logn lies
entirely in S is < 1

n
.

• Proof outline: By definition, if you have a set S of
vertices, we expect a constant fraction of edges out
of the vertices of S be going into S.

• Therefore, if you start a random walk from a vertex
in S, at every step, there is a constant probability
that this walk jumps into S.

37

Hardness of Clique

• So the probability that a random walk of length
Ω(logn) stays entirely within S is polynomially small.

• Theorem 25

PCP1,1
2

(d logn, q) ⊆ PCP1, 1
n
(O(logn), O(logn)).

• Proof: Let L ∈ PCP1,1
2
(d logn, q) and F be a verifier

for L.

• We give a PCP1, 1
n
(O(logn), O(logn)) verifier F ′ for

L.

• F ′ builds the expander graph H of Theorem 24,
then creates a random walk of length k logn using
only O(logn) bits for some constant k

• This random walk yields k logn “random” string
of length d logn each, which are the labels of the
vertices of the walk.

• Then F ′ simulates F on each of these strings and
accepts if and only if all these simulations accept.

• If y ∈ L is a “yes” instance, then there is a proof
π s.t. F accepts with probability 1 given π; so F ′
accepts.

38

• If y ∈ L is a “no” instance, then F accepts on at

most nd

2
of the random strings.

• Let S be the set of vertices of H with those labels.

• Note that |S| ≤ nd

2
. This means that F ′ accepts

(wrongly) y only if the entire random walk is inside
S.

• Now, based on Theorem 24 the probability that a
random walk remains entirely in S is at most 1

n

• Therefore, the probability that F ′ accepts y is at
most 1

n
.

• This completes the proof of

PCP1,1
2

(d logn, q) ⊆ PCP1, 1
n
(O(logn), O(logn)).

Max-3SAT

• Theorem 26 For some δ > 0, it is NP-hard to ap-
proximate clique within a factor of Ω(nδ).

• Proof: Given a SAT formula φ, let F be a
PCP1, 1

n
(d logn, q logn) verifier for it for some con-

stants d and q.

• Construct the graph G from F in the same manner
as we did earlier for the constant factor hardness.

• So the size of G is nd2q logn = nd+q and the gap
created is equal to soundness probability, i.e. 1

n
.

• we have:

– If φ is a yes instance then G has a clique of size
nd.

– If φ is a no instance then every clique of G has
size at most nd−1.

This creates a gap of nδ with δ = 1
d+q

.

39

Section 4:

Hardness of Set Cover

40

Hardness of Set Cover

Hardness of Set Cover

• Our final lecture is the outline of the proof of a
hardness of O(logn) for Set cover.

• We need to define another problem: Label Cover.

• This is a graph theoric representation of another
proof system for NP (2 prover 1 round proof sys-
tem).

• An instance of label cover consists of the followings:

– G(V ∪W,E) is a bipartite graph.

– [N] = {1...N}, [M] = {1...M} are 2 sets of la-
bels, [N] for the vertices in V and [M] for the
vertices in W .

– {Πv,w}(v,w)∈E denotes a (partial) function on ev-
ery edge (v,w) such that Πv,w : [M]→ [N]

• A labeling l : V → [N],W → [M] is said to cover
edge (v,w) if Πv,w(l(w)) = l(v).

• Goal: Given an instance of label cover, find a la-
beling that covers maximum fraction of the edge.

41

Hardness of Set Cover: Label cover

• It follows from PCP theorem that:

Theorem 27 There is an absolute ε > 0 s.t. given
an instance L(G,M = 7, N = 2, {Πv,w}) it is NP-
hard to decide if

– opt(L) = 1, or

– opt(L) ≤ 1− ε

• From an instance L(G(V,W, E), [M], [N], {Πvw}), we
obtain the k-power as following.

• we build Lk(G′(V ′,W ′, E′), [M ′], [N ′], {Π’vw}) where:

– V ′ = V k (k-tuples of V)

– W ′ = W k

– [M]′ = [M]k

– [N]′ = [N]k

– (V ′,W ′) ∈ E′ ⇔ (vij, wij) ∈ E, ∀i, j 1 ≤ j ≤ k
(V ′ = (vi1, . . . , vik),W

′ = (wi1, . . . , wik))

– Π′vw(b1, . . . , bk) = Πvi1,wi1
(b1),Πvi2,wi2

(b2), . . . ,Πvik ,wik
(bk)

42

Hardness of Set Cover: Label cover

• Theorem 27, together with a strong result of Raz’98
implies the following:

Theorem 28 There is a reduction from SAT to
an instance L(G(V,W,E), [7k], [2k], {Πvw}) of label
cover such that:

– if φ is a yes instance → OPT(L) = 1

– if φ is a no instance → OPT(L) = 2−ck for some
constant c < 1

and L = nO(k)

• We need one more definition.

A set-system with parameters m and l consists of:

– U a universe (of elements)

– C1, . . . , Cm, C̄1, . . . , C̄m are subsets of U

– For any set of ` subsets from Ci’s and C̄i’s that
does not include a Cj’s and C̄j together, the
union does not cover U .

• Theorem 29 Given m, ` there are explicit con-
structions for a set system with |U |= O(`·logm·2`).

43

Hardness of Set Cover

• Consider a label cover instance L(G(V,W,E),M =
[7k], N = [2k], {Πv,w}).

• Let’s assume |V | = |W |. We build an instance of
set cover S such that:

– If opt(L) = 1, then opt(S) ≤ |V |+ |W |.

– If opt(L) < 2
l2
, then opt(S) > l

16
(|V |+ |W |).

• Consider a set system with m = N = 2k and l to be
specified later.

• For every e = (v,w) ∈ G, we have a (disjoint) (m, l)-
set system with universe Ue.

• Let Cvw
1 , · · · , Cvw

N=m be the subsets of Ue.

• The union of all U ′es (for all the edges e) is the
universe of the set cover instance, denoted as

U =
⋃

(v,w)∈G
Uvw.

• Now we define the subsets. For every v ∈ V (w ∈
W) and every label i ∈ [2k] (j ∈ [7k]), we have a set

Sv,i =
⋃

w:(v,w)∈E
Cvw
i Sw,j =

⋃

v:(v,w)∈E
Cvw

Πvw(j)

44

• This completes the construction of S from L.

• Lemma 30 If opt(L) = 1, then opt(S) ≤ |V |+ |W |.

• Proof: Consider an optimal labeling l : V → [2k],W →
[7k] for L.

• Because it is covering every edge (v,w) ∈ E,
Πvw(l(w)) = l(v).

• This labeling defines a label for every vertex and
every pair of vertex/label corresponds to a set in S.

• From Cvw
l(v)
⊆ Sv,l(v) and Cvw

l(v)
= Cvw

Πvw(l(w))
⊆ Sw,l(w):

Sv,l(v) ∪ Sw,l(w) ⊇ Uvw.

• Because all Ue’s for e ∈ E are covered, U is covered.
So we have a set cover of size |V |+ |W |.

• Lemma 31 if opt(S) ≤ l
16

(|V |+ |W |), then

opt(L) ≥ 2
l2
.

• Proof: From the set cover solution, we assign labels
(maybe more than one label) to the vertices.

• If Sv,i is in the solution, v gets label i.

• Since there are ≤ l
16

(|V |+ |W |) sets and |V |+ |W |
vertices, the average number of labels per vertex is
≤ l

16
.

• We discard vertices with > l
2

labels.

• ≤ |V |
4

vertices from each of V and W are discarded.

Let V ′ and W ′ be the vertices remaining.

• so |V ′| > 3
4
|V | and |W ′| > 3

4
|W |.

• Pick an edge e = (v,w) from G randomly.

Pr[v ∈ V ′ and w ∈W ′] ≥ 1− (
1

4
+

1

4
) =

1

2
.

• so ≥ 1
2

edges of G are between V ′ and W ′.

• Define

Tv = {Sv,i : i is a label of v}
Tw = {Sw,j : j is a label of w}.

• We have |Tv| ≤ l
2

and |Tw| ≤ l
2
.

Hardness of Set Cover

• Note that sets in Tv ∪ Tw cover Uvw, i.e.

X1 = {Cvw
i : i is a label of v} ∪

X2 = {Cvw
Πvw(j)

: j is a label of w}
covers universe Uvw

• Since |X1| ≤ l
2

and |X2| ≤ l
2
, ∃ a set Cvw

i ∈ X1 and

Cvw
Πvw(j)

∈ X2 that are in X1 ∪X2.

• Because we pick labels of v and w randomly, with
probability ≥ (2

l
)2 = 4

l2
we have set Cvw

i for v and

Cvw
j for w i.e. the labels i for v and j for w cover

edge e ∈ E.

• Thus the expected fraction of edges between V ′

and W ′ that are covered is ≥ 4
l2
.

• Therefore, at least a fraction of 2
l2

of edges of G are
covered.

• This lemma is equivalent to saying that if opt(L) < 2
l2

then opt(S) > l
16

(|V |+ |W |).

• Thus we have:

45

– If opt(L) = 1, then opt(S) ≤ |V |+ |W |.

– If opt(L) < 2
l2
, then opt(S) > l

16
(|V |+ |W |).

• Let l ∈Θ(2
δk

2). Then, l2 ∈Θ(2δk).

• We get a hardness of Ω(l) for S. The size of S is
nO(k) ·O(l · logm · 2l).

• If k = c log logn for sufficiently large c,
l = O(2O(log logn)) ≥ logn log logn.

• Thus log |S|= O(log logn·logn+log l+log log logn+
l) = Θ(l).

We have the following hardness result for set cover:

Theorem 32 Unless NP ⊆ DTIME(nO(log logn)), set
cover has no o(logn)-approximation algorithm.

