Approximation Algorithms and Hardness of Approximation

IPM, Jan 2006

Mohammad R. Salavatipour Department of Computing Science
University of Alberta

Introduction

- For NP-hard optimization problems, we want to:

1. find the optimal solution,
2. find the solution fast, often in polynomial time
3. find solutions for any instance

- Assuming $P \neq N P$, we cannot have all the above simultaneously.
- If we

1. relax (3), then we are into study of special cases.
2. relax (2), we will be in the field of integer programming (branch-and-bound, etc).
3. relax (1), we are into study of heuristics and approximation algorithms.

- We are going to focus on approximation algorithms:
- finding solutions that are within a guaranteed factor of the optimal solutions, and
- We want to find this solution fast (i.e. polynomial time).
- An NP optimization problem, Π, is a minimization (maximization) problem which consists of the following items:

Valid instances: each valid instance I is recognizable in polytime; D_{\square} is set of all valid instances.
Feasible solutions: Each $I \in D_{\Pi}$ has a set $S_{\Pi}(I)$ of feasible solutions and for each solution $s \in$ $S_{\square}(I),|s|$ is polynomial (in $|I|$).
Objective function: A polytime computable function $f(s, I)$ that assigns a ≥ 0 rational value to each feasible solution.

Typically, want a solution whose value is minimized (maximized): it is called the optimal solution.

- Example: Minimum Spanning Tree (MST):

A connected graph $G(V, E)$, each $(u, v) \in E$ has a weight $w(u, v)$,
Goal: find an acyclic connected subset $T \subseteq E$ whose total weight is minimized.
valid instances: a graph with weighted edges.
feasible solutions : all the spanning trees of the given weighted graph.
objective functions : minimizing the total weight of a spanning tree.

- Approximation algorithms: An α-approximation algorithm is a polytime algorithm whose solution is always within factor α of optimal solution.
- For a minimization problem Π, algorithm A has factor $\alpha \geq 1$ if for its solution $s: f(s, I) \leq \alpha(|I|)$. $O P T(I)$.
α can be a constant or a function of the size of the instance.
- Example: Vertex-Cover Problem
- Input: undirected graph $G=(V, E)$ and a cost function $c: V \rightarrow Q^{+}$
- Goal: find a minimum cost vertex cover, i.e. a set $V^{\prime} \subseteq V$ s.t. every edge has at least one endpoint in V^{\prime}.
- The special case, in which all vertices are of unit cost: cardinality vertex cover problem.
- V.C. is NP-hard.
- Let's look for an approximation
- Perhaps the most natural greedy algorithm for this problem is:

Algorithm VC1:
$S \leftarrow \emptyset$
While $E \neq \emptyset$ do let v be a vertex of maximum degree in G $S \leftarrow S \cup\{v\}$
remove v and all its edges from G return S

- Easy to see that it finds a VC. What about the approximation ratio?
- It can be shown that the approximation ratio is $O(\log \Delta)$, where Δ is the maximum degree in G.
- The second approximation algorithm $V C 2$ appears to be counter-intuitive at first glance:

Algorithm VC2:
$S \leftarrow \emptyset$
While $E \neq \emptyset$ do
let $(u, v) \in E$ be any edge
$S \leftarrow S \cup\{u, v\}$
delete u, v and all their edges from G return S

- Lemma 1 VC2 returns a vertex cover of G.

Proof: $V C 2$ loops until every edge in G has been covered by some vertex in S.

- Lemma 2 VC2 is a 2-approximation algorithm.

Proof:

- Let A denote the set of edges selected by $V C 2$.
- Note that A forms a matching, i.e. no two edges selected share an end-point
- Therefore, in order to cover the edges of A, any vertex cover must include at least one endpoint of each edge in A.
- So does any optimal V.C. S^{*}, i.e. $\left|S^{*}\right| \geq|A|$.
- Since $|S|=2|A|$, we have $|S| \leq 2\left|S^{*}\right|$.
- Lemma 3 The analysis of $V C 2$ is tight.

A complete bipartite graph $K_{n, n}$. VC2 picks all the $2 n$ vertices, but optimal picks one part only.

- Major Open question: Is there a $2-O(1)$-approx algorithm for V.C.?
- Theorem 4 (Hastad 97) Unless P = NP, there is no approximation algorithm with ratio $<\frac{7}{6}$ for Vertex-Cover problem.

Set Cover

- Set-cover is perhaps the single most important (and very well-studied) problem in the field of approximation algorithms.

Set-Cover Problem

- Input
* U : a universe of n elements e_{1}, \ldots, e_{n},
* $S=\left\{S_{1}, S_{2}, \cdots, S_{k}\right\}$ a collection of subsets of U,
* $c: S \rightarrow Q^{+}$a cost function
- Goal: find a min cost subcollection of S that covers all the elements of U, i.e. $I \subseteq\{1,2, \cdots, k\}$ with min $\sum_{i \in I} c\left(S_{i}\right)$ such that $\bigcup_{i \in I} S_{i}=U$
- V.C. problem is a special case of Set-Cover: for a graph $G(V, E)$, let $U=E$, and $S_{i}=\left\{e \in E \mid e\right.$ is incident within $\left.v_{i}\right\}$
- We will give an (In n)-approx greedy algorithm for Set Cover.
- Rather than greedily picking the set which covers maximum number of elements, we have to take the cost into account at the same time.
- We pick the most cost-effective set and remove the covered elements until all elements are covered.

Definition 5 The cost-effectiveness of a set S_{i} is the average cost at which it covers new element, i.e., $\alpha=\frac{c\left(S_{i}\right)}{S_{i}-C}$, where C is the set of elements already covered.
We Define the price of an element to be the cost at which it is covered.

- Greedy Set-Cover algorithm

$$
C \leftarrow \emptyset, T \leftarrow \emptyset
$$

$$
\text { While } C \neq U \text { do }
$$

choose a S_{i} with the smallest α add S_{i} to T
for each element $e \in S_{i}-C$, set price $(e)=\alpha$ $C \leftarrow C \cup\left\{S_{i}\right\}$
return T

- when a set S_{i} is picked, its cost is distributed equally among the new elements covered
- Theorem 6 The Greedy Set-Cover algorithm is an H_{n} factor approximation algorithm for the minimum set cover problem, where $H_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$. Note that $H_{n} \approx \ln n$.

- Proof:

- Let $e_{1}, e_{2}, \cdots, e_{n}$ be the order at which the elements are covered
- It can be seen that:

$$
\sum_{S_{i} \in T} c\left(S_{i}\right)=\sum_{k=1}^{n} \operatorname{price}\left(e_{k}\right)
$$

- We try to estimate price $\left(e_{k}\right)$ (at this stage, we have covered $e_{1}, e_{2}, \cdots, e_{k-1}$, and have $n-k+1$ uncovered elements).
- Let $T_{O P T}$ be an opt solution and $C_{O P T}$ be its cost.
- At any point of time, we can cover the elements in $U-C$ at a cost of at most $C_{O P T}$.
- Thus among the sets not selected, \exists a set with cost-effectiveness $\leq \frac{C_{o p r}}{|U-C|}$
- In the iteration in which element e_{k} was covered, $|U-C|=n-k+1$.
- Since e_{k} was covered by the most cost-effective set in this iteration:

$$
\operatorname{price}\left(e_{k}\right) \leq \frac{C_{O P T}}{n-k+1}
$$

- As the cost of each set picked is distributed among the new elements covered, the total cost of the set cover picked is:

$$
\begin{aligned}
\sum_{S_{i} \in T} c\left(S_{i}\right) & =\sum_{k=1}^{n} \operatorname{price}\left(e_{k}\right) \\
& \leq C_{O P T} \sum_{k=1}^{n} \frac{1}{n-k+1} \\
& =H_{n} \cdot C_{O P T}
\end{aligned}
$$

- The analysis of this greedy algorithm is tight: Example: each $e_{1}, e_{2}, \cdots, e_{n}$ by itself is a set, with cost $\frac{1}{n}, \frac{1}{n-1}, \cdots, 1$ respectively; one set contains all of U with cost $1+\epsilon$ for some $\epsilon>0$.
- the greedy solution picks n singleton sets; costs $\frac{1}{n}+\frac{1}{n-1}+\cdots+1=H_{n}$.
- The optimal cover has cost $1+\epsilon$.
- Theorem 7 Based on the results of Lund and Yannakakis 92, Feige 86, Raz 98, Safra 97, Suduan 97:
- There is a constant $0<c<1$ such that if there is a $(c \ln n)$-approximation algorithm for Set-Cover problem, then $\mathrm{P}=\mathrm{NP}$.
- For any constant $\epsilon>0$, if there is a $(1-\epsilon) \ln n-$ approximation algorithm for Set-Cover then NP \subseteq $\operatorname{DTIME}\left(n^{O(\ln \ln n)}\right)$.
- Next we give another algorithm for Set Cover using Linear Programming (LP).
- First, forumlate Set Cover as an IP.

We have one indicator variable x_{s} for every set S :

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{s \in S} c_{s} x_{s} \\
\text { subject to } & \forall e \in U: \\
& x_{s} \in\{0,1\}
\end{array} \quad \sum_{s: e \in S} x_{s} \geq 1
$$

- Now relax the integrality constraint to obtain the corresponding LP.
Although IP is NP-hard, there are polytime algorithms for solving LP.
- Solution to an LP-relaxation is usually called the fractional solution and is denoted by $O P T_{f}$.
- We give another $O(\log n)$-approximation for Set Cover using a powerful technique called randomized rounding.
- The general idea is to start with the optimal fractional solution (solution to the LP) and then round the fractional values to 1 with some appropriate probabilities.
- Randomized Rounding Alg for Set cover:
- Take the LP relaxation and solve it.
- For each set S, pick S with probability $P_{s}=x_{s}^{*}$ (i.e. round x_{s}^{*} up to 1 with probability x_{s}^{*}), let's call the integer value \widehat{x}_{s}),

Consider the collection $C=\left\{S_{j} \mid \widehat{x}_{S_{j}}=1\right\}$:

$$
\begin{equation*}
\mathrm{E}[\operatorname{cost}(C)]=\sum_{S_{j} \in \mathcal{S}} \operatorname{Pr}\left[S_{j} \text { is picked }\right] \cdot c_{S_{j}}=\sum x_{S_{j}}^{*} \cdot c_{S_{j}}=O P T_{f} \tag{1}
\end{equation*}
$$

- Let α be large enough s.t. $\left(\frac{1}{e}\right)^{\alpha \log n} \leq \frac{1}{4 n}$.
- Repeat the algorithm above $\alpha \log n$ times and let $C^{\prime}=\bigcup_{i=1}^{\alpha \log n} C_{i}$ be the final solution, where C_{i} is the collection obtained after round i of the algorithm.
- Suppose e_{j} belongs to $S_{1}, \ldots S_{q}$.
- By the constraint for e_{j}, in any fractional feasible solution:

$$
x_{S_{1}}+x_{S_{2}}+\ldots+x_{S_{q}} \geq 1
$$

- It can be shown that the probability that e_{j} is covered is minimized when

$$
\begin{aligned}
& x_{S_{1}}=x_{S_{2}}=\ldots=x_{S_{q}}=\frac{1}{q} \\
\Rightarrow & \operatorname{Pr}\left[e_{j} \text { is not covered in } C_{i}\right] \leq\left(1-\frac{1}{q}\right)^{q}<\frac{1}{e} \\
\Rightarrow & \operatorname{Pr}\left[e_{j} \notin C^{\prime}\right] \leq\left(\frac{1}{e}\right)^{\alpha \log n} \leq \frac{1}{4 n}
\end{aligned}
$$

- Sum over all e_{j} :

$$
\operatorname{Pr}\left[\exists e_{j}, e_{j} \notin C^{\prime}, \text { (i.e. } C^{\prime} \text { is not a set cover) }\right] \leq \mathrm{n} \cdot \frac{1}{4 \mathrm{n}} \leq \frac{1}{4}
$$

- Let's call the event " C^{\prime} is not a Set Cover", $E 1$. By above:

$$
\begin{equation*}
\operatorname{Pr}\left[E_{1}\right] \leq \frac{1}{4} \tag{2}
\end{equation*}
$$

- On the other hand, by (1) and by summing over all rounds:

$$
\mathbb{E}\left[\operatorname{cost}\left(C^{\prime}\right)\right] \leq \alpha \log n \cdot O P T_{f}
$$

- Markov's inequality says for any random variable X : $\operatorname{Pr}[X \geq t] \leq \frac{\mathrm{E}[X]}{t}$.
- Define the bad event E_{2} to be the event that $\operatorname{cost}\left(C^{\prime}\right)>4 \alpha \log n \cdot O P T$. Thus:

$$
\begin{aligned}
\operatorname{Pr}\left[E_{2}\right] & =\operatorname{Pr}\left[\operatorname{cost}\left(C^{\prime}\right)>4 \alpha \log n \cdot O P T\right] \\
& \leq \frac{\alpha \log n \cdot O P T_{f}}{4 \alpha \log n \cdot O P T_{f}} \\
& \leq \frac{1}{4}
\end{aligned}
$$

- The probability that either C^{\prime} is not a set cover (i.e. E_{1} happens) or that C^{\prime} is a set cover with large cost (i.e. E_{2} happens) is at most: $\operatorname{Pr}\left[E_{1}\right]+\operatorname{Pr}\left[E_{2}\right] \leq \frac{1}{2}$.
- Therefore, with probability $\geq \frac{1}{2}, C^{\prime}$ is a set cover with $\operatorname{cost}\left(C^{\prime}\right) \leq 4 \alpha \log n \cdot O P T_{f} \leq 4 \alpha \log n \cdot O P T$.
- Repeating this algorithm t times, the probability of failure at all rounds is at most $\frac{1}{2^{2}}$.
- So, the probability of success for at least one run of the algorithm is $1-\frac{1}{2^{t}}$.

Section 2:

Hardness of Approximation

- We are familiar with the theory of NP-completeness. When we prove that a problem is NP-hard it implies that, assuming $P \neq N P$ there is no polynomail time algorithm that solves the problem (exactly).
- For example, for SAT, deciding between Yes/No is hard (again assuming $P \neq N P$).
- We would like to show that even deciding between those instances that are (almost) satisfiable and those that are far from being satisfiable is also hard.
- In other words, create a gap between Yes instances and No instances. These kinds of gaps imply hardness of approximation for optimization version of NP-hard problems.
- As SAT is the canonical problem for NP-hardness, Max-SAT is the canonical problem for hardness of approximation:

Max-SAT:

- Input: A boolean formula Φ over variables x_{1}, \ldots, x_{n} in CNF which has clauses C_{1}, \ldots, C_{M}.
- Question: Find a truth assignment to maximizes the number of satisfied clauses.
- The PCP theorem implies that Max-SAT is NPhard to approximate within a factor of $\left(1-\epsilon_{0}\right)$, for some fixed $\epsilon_{0}>0$.
- For proving a hardness of approximation, for example for vertex cover, we prove a reduction like the following:
Given a formula φ for Max-SAT, we build a graph $G(V, E)$ in polytime such that:
- if φ is a yes-instance, then G has a vertex cover of size $\leq \frac{2}{3}|V|$;
- if φ is a no-instance, then every vertex cover of G has a size $>\alpha \frac{2}{3}|V|$ for some fixed $\alpha>1$.
- Corollary 8 The vertex cover problem cannot be approximated with a factor of α unless $P=N P$.
- In this reduction we have created a gap of size α between yes/no instances.

Hardness of Approximation

- Suppose L is NP-complete and π is a minimization problem.
- Let g be a function computable in polytime that maps Yes-instances of L into a set S_{1} of instances of π and No-instances of L into a set S_{2}.
- Assume that there is a polytime computable function h such that:
- for every Yes-instance x of L : $O P T(g(x)) \leq$ $h(g(x))$;
- for every No-instance x of $L: \quad \operatorname{OPT}(g(x))>$ $\alpha h(g(x))$.
Then g is called a gap-introducing reduction from L to π and α is the size of the gap.
- This implies π is hard to approximate within factor α.
- Many problems, such as Bin Packing and Knapsack, have PTAS's, i.e. a $(1+\epsilon)$-approximation for any constant $\epsilon>0$.
- A major open question was: does Max-3SAT have a PTAS?
- A significant result on this line was by Papadimitriou and M. Yannakakis ('92); they defined the class Max-SNP. All problems in Max-SNP have constant approximation algorithms.
- They also defined the notion of completeness for this class and showed if a Max-SNP-complete problem has a PTAS then every Max-SNP problem has a PTAS.
- Several well-known problems including Max-3SAT and TSP are Max-SNP-complete.
- The celeberated PCP theorem states that there is no PTAS for Max-SNP problems.
- It also give another characterization of NP.

PCP

- Definition 9 A language $L \in$ NP if and only if there is a deterministic polynomial time verifier (i.e. algorithm) V that takes an input x and a proof y with $|y|=|x|^{c}$ for a constant $c>0$ and it satisfies the following:
- Completeness: if $x \in L \Rightarrow \exists y$ s.t. $V(x, y)=1$.
- Soundness: if $x \notin L \Rightarrow \forall y, V(x, y)=0$.
- Definition 10 An $(r(n), b(n))$-restricted verifier is a randomized verifier that uses at most $r(n)$ random bits. It runs in probabilistic polynomial time and reads/queries at most $b(n)$ bits of the proof.
- Definition 11 For $0 \leq s<c \leq 1$, a language $L \in$ $\mathrm{PCP}_{c, s}(r(n), b(n))$ if and only if there is a $(r(n), b(n))-$ restricted verifier V such that given an input x with length $|x|=n$ and a proof π, it satisfies the following:
- Completeness: if $x \in L \Rightarrow \exists$ a proof π such that $\operatorname{Pr}[V(x, \pi)=1] \geq C$.
- Soundness: if $x \notin L \Rightarrow \forall \pi, \operatorname{Pr}[V(x, \pi)=1] \leq S$.

PCP

- The probabilities in completeness and soundness given in definition above are typically $C=1$ and $S=\frac{1}{2}$, respectively.
- From the definition, for any $0 \leq s<c \leq 1$: $\mathrm{NP} \subseteq \mathrm{PCP}_{c, s}(0, \operatorname{poly}(n)) \subseteq \mathrm{PCP}_{c, s}(O(\log n), \operatorname{poly}(n))$.
- Lemma $12 \mathrm{PCP}_{c, s}(O(\log n), \operatorname{poly}(n)) \subseteq \mathrm{NP}$
- Proof: Let L be a language in $\mathrm{PCP}_{c, s}(O(\log n), \operatorname{poly}(n))$ with a verifier V.
- We construct a non-deterministic polytime Turing machine M for L.
- Starting with an input x, M guesses a proof π and simulates V on all $2^{O(\log n)}=\operatorname{poly}(n)$ possible random strings.
- M accepts if at least a fraction c of all these runs accept, rejects otherwise.
- Thus:
- if $x \in L \Rightarrow V(x, \pi)$ accepts with probability at least c; thus at least a fraction c of random strings cause the verifier V and therefore M to accept.
- if $x \notin L$ then the verifier accepts with probability at most s which is smaller than c; thus for only a fraction of $<c$ of random strings verifier V accepts; M rejects.
- Since there are $O(\operatorname{poly}(n))$ random strings of length $O(\log n)$ and each simulation takes polytime, the running time of M is polytime.
- This lemma and the observation before it implies that

$$
\mathrm{PCP}_{c, s}(O(\log n), \operatorname{poly}(n))=\mathrm{NP} .
$$

- The remarkable PCP theorem, proved by Arora/Safra [92] and Arora/Lund/Motwani/Sudan/Szegedy[92] states:

Theorem 13 (PCP Theorem)

$$
\mathrm{NP}=\mathrm{PCP}_{1, \frac{1}{2}}(O(\log n), O(1))
$$

- The original proof of PCP theorem was extremely difficult. There is a new a much simpler proof of PCP theorem using a different technique by Dinur [2005].
- Basically, the PCP theorem says that for every problem in NP there is a verifier that queries only a constant number of bits of the proof (regardless of the length of the proof) and with sufficiently high probability gives a correct answer.
- Starting from the PCP theorem, we show that approximating Max-3SAT within some constant factor is NP-hard.
- Before that note that there is a trivial $\frac{7}{8}$-approximation for Max-3SAT.
- Given a 3SAT formula Φ for Max-3SAT with
- 3-clauses C_{1}, \ldots, C_{m} and
- variables x_{1}, \ldots, x_{n},
assign each x_{i} True/False u.r. with probability $\frac{1}{2}$.
- This is a $\frac{7}{8}$-approximation for Max-3SAT:
- For each clause $C_{i}=\left(x_{5} \wedge \overline{x_{1}} \wedge x_{3}\right)$, the probability that C_{i} is not satisfied is:

$$
\operatorname{Pr}\left[x_{5}=F\right] \times \operatorname{Pr}\left[x_{1}=T\right] \times \operatorname{Pr}\left[x_{3}=F\right]=\frac{1}{8}
$$

- Thus each clause C_{i} is satisfied with probability $\frac{7}{8}$; so the expected number of satisfied clauses is at least $\frac{7}{8} m$ (this can be easily de-randomized).
- Theorem 14 For some absolute constant $\epsilon>0$, there is a gap-introducing reduction from SAT to Max-3SAT such that it transforms a boolean formula ϕ for SAT to a boolean formula ψ with m clauses for Max-3SAT such that:
- if ϕ is satisfiable, then $\operatorname{OPT}(\psi)=m$.
- if ϕ is a NO-instance, then $O P T(\psi) \leq(1-\epsilon) m$.
- Corollary 15 Approximating Max-3SAT with a factor better then $(1-\epsilon)$ is NP-hard for some constant $\epsilon>0$.
- By PCP theorem, SAT has a $P C P_{1, \frac{1}{2}}(O(\log n), O(1))$ verifier V. Let us assume that it is $P C P_{1, \frac{1}{2}}(d \log n, k)$ where d and k are some constants.
- Let $r_{1}, \ldots, r_{n^{d}}$ be all the possible random bits (of length $d \log n$) that can be given as seed to V.
- We will construct a formula f_{i} for every possible random bit r_{i}. Thus we will have formulas $f_{1}, \ldots, f_{n^{d}}$.
- For any particular choice of random bits, the verifier reads k positions of the proof; each of these positions is determined by the value read in previous position and the random bits.
- So it can be considered to evaluate a boolean binary decision tree of height at most k; where the decision to go left or right is based on the value read from the proof.

- Here suppose $k=2$ and we have a fixed random bit string.
- Based on the first random bit the position we read is x_{j},
- if it returns 0 we get the second random bit and based on that we read position x_{k},
- else if x_{j} was 1 we read position x_{l}.
- So we can use four variables $\overline{x_{j}}, \overline{x_{k}}, x_{j}, x_{l}$ to form a formula encoding this tree
- In general, this decision tree can be encoded as a boolean formula with at most 2^{k} variables and 2^{k} clauses each of length k.
- Think of every node as a variable and every path from root to leaf forms a clause.
- It is easy to see that the formula is satisfied if and only if the path that the verifier traverses on the tree ends at an "accept" leaf.
- Any truth assignment to the variables i.e. any proof, will give a unique path for each decision tree.
- If for a fixed random bit string and a proof (truth assignment) the path ends in an "accept" it means that the verifier accepts the proof, otherwise it rejects the proof.
- If ϕ is a YES-instance, \Rightarrow there is a truth assignment that works/accpets with probability of 1 (i.e., for any random bits it will accept)
- \Rightarrow the corresponding truth assignment will give a path from root to an "accept" leaf in every decision tree (corresponding to a random bit string); so it satisfies all formulas $f_{1}, \ldots, f_{n^{d}}$.
- If ϕ is a NO -instance \Rightarrow for any proof (truth assignment) V accepts with probability $\leq \frac{1}{2}$ (this is from the $P C P$ definition)
- \Rightarrow for at least half of the decision trees, the truth assignment will give a root to leaf path that ends in "reject", i.e. the formula is not satisfied.
- Therefore, among all n^{d} formulas, at least $\frac{n^{d}}{2}$ of them are not satisfied.
- Now on we can transform all formulas $f_{1}, \ldots, f_{n^{d}}$ into 3-CNF formulas $f_{1}^{\prime}, \ldots, f_{n^{d}}^{\prime}$ such that that f_{i}^{\prime} is satisfiable if and only if f_{i} is.
- This theorem showed that PCP theorem implies a gap-introducing reduction from SAT to Max-3SAT.
- The oposite is also true; i.e. assuming the existence of a gap-introducing reduction from SAT to Max3SAT we can prove the PCP theorem, as follows.
- Suppose that for each $L \in N P$ there is a polytime computable g from L to instances of MAX-3SAT, such that
- for Yes-instance $y \in L$, all 3-clauses in $g(y)$ can be satisfied;
- for No-instance $y \in L$, at most $\frac{1}{2}$ of the 3-clauses of $g(y)$ can be satisfied.
- Define a proof that $y \in L$ to be a truth assignment satisfying $g(y)$.
- We define a randomized verifier V for L.
- V runs in polynomial time and
- takes y and the "new" proof π;
- accept iff π satisfies a 3-clause selected uniformly and randomly from $g(y)$.
- If $y \in L$ then there is a proof (truth assignment) such that all the 3-clauses in $g(y)$ can be satisfied. For that proof Verifier $V(y, \pi)$ accepts with probability 1.
- If $y \notin L$ then every truth assignment satisfies no more than $\frac{1}{2}$ of clauses in $g(y)$. So verifier $V(y, \pi)$ will reject with probability at least $\frac{1}{2}$.
- This, together with Theorem 14 implies that the PCP theorem is in fact equivalent to: "There is no PTAS for Max-3SAT."

Section 3:

Improved Hardness results

- Recall that PCP theorem says:

$$
N P=P C P_{1, \frac{1}{2}}(O(\log n), O(1))
$$

- Goal: reduce the number of query bits and also decrease the the probability of failure.
- Theorem 16 For some $s<1$:

$$
N P=P C P_{1, s}(O(\log n), 3)
$$

- Proof: Let $L \in N P$ be an arbitrary language; y be an instance of L.
- By PCP, we can construct a 3CNF formula F such that:
- if $y \in L \Longrightarrow \exists$ a truth assignment for F s.t. all clauses of F are satisfied.
- if $y \notin L \Longrightarrow$ for any truth assignment for F at most ($1-\epsilon$) fractions of clauses are satisfied.
- We assume that the proof π given for y is the truth assignment to formula F above.
- Verifier V given y and proof π, computes F in polytime, then uses $O(\log n)$ bits to pick a random clause of F and query the truth assignment to its 3 variables.
- The verifier accepts if and only if the clause is satisfied.
- It is easy to see that:
- If $y \in L$ then there is a proof π s.t. V accepts with probability 1.
- If $y \notin L$ then for any proof π, V accepts with probability at most $1-\epsilon$.
- Theorem 17 (Guruswami,Sudan,Lewin,Trevisan'93) For all $\epsilon>0$

$$
N P=P C P_{1, \frac{1}{2}+\epsilon}(O(\log n), 3)
$$

Note that the 3 bits of the proof are selected by the verifier adaptively.

- Theorem 18 (Karloff/Zwick, 97)

$$
P=P C P_{1, \frac{1}{2}}(O(\log n), 3)
$$

- Theorem 19 (Hástad'97)

$$
N P=P C P_{1-\epsilon, \frac{1}{2}+\epsilon}(O(\log n), 3)
$$

where the verifier selects the 3 bits of the proof a priori. That is, the verifier uses $O(\log n)$ random bits to choose 3 positions, i_{1}, i_{2}, i_{3} of the proof and a bit b and accepts if and only if $\pi\left(i_{1}\right) \oplus \pi\left(i_{2}\right) \oplus \pi\left(i_{3}\right)=$ b.

- Corollary 20 For any $\epsilon>0$, it is NP-hard to approximate:
- Max-3SAT within a factor of $\left(\frac{7}{8}+\epsilon\right)$,
- Vertex cover within a factor of $\left(\frac{7}{6}+\epsilon\right)$,
- Recall that the simple algorithm we gave for Max3SAT has approximation factor $\frac{7}{8}$.
- The best Hardness factor for VC is $10 \sqrt{5}-21 \approx$ 1.3606 .
- Definition 21 (MAX-CLIQUE) Given a graph with n vertices, find a maximum size clique in it, i.e. a complete subgraph of maximum size.
- The best known algorithm has a factor of $O\left(\frac{n \cdot \log \log ^{2} n}{\log ^{3} n}\right)$.
- Clique and Max-3SAT are both NP-hard, but why the approximation for clique is so bad?
- Hástad: for any $\epsilon>0$ there is no polytime approximation algorithm for clique with factor $n^{\frac{1}{2}-\epsilon}$ (if $P \neq N P$) or $n^{1-\epsilon}($ if $Z P P \neq N P)$.
- Our goal is to prove a polynomial hardness for clique.
- We start with a constant hardness result for Clique.
- Then show that it is hard to approximate Clique within any constant factor. Finally, we show how to improve this to a polynomial.
- Consider a $\mathrm{PCP}_{1, \frac{1}{2}}(d \log n, q)$ verifier F for SAT, where d and q are constants (V exists by PCP).
- Let $r_{1}, r_{2}, \ldots, r_{n^{d}}$ be the set of all possible random strings to F.
- Given an instance ϕ of SAT, we construct a graph G from F and ϕ which will be an instance of Clique.
- G has one vertex $v_{r_{i}, \sigma}$ for each pair (i, σ), where r_{i} is one of the the random strings r_{i} and σ is a truth assignment to q variables. G has $n^{d} 2^{q}$ vertices.
- An accepting transcript for F on ϕ with random string r_{i} is q pairs $\left(p_{1}, a_{1}\right), \ldots,\left(p_{q}, a_{q}\right)$ s.t. for every truth assignment that has values a_{1}, \ldots, a_{q} for variables p_{1}, \ldots, p_{q}, verifier F given r_{i} checks positions p_{1}, \ldots, p_{q} in that order and accepts.
- Once we have $\phi, r_{i}, a_{1}, \ldots, a_{q}$ it is easy to compute p_{1}, \ldots, p_{q}. For each transcript we have a vertex.
- Two vertices (i, σ) and ($i^{\prime}, \sigma^{\prime}$) are adjacent iff σ, σ^{\prime} don't assign different values to same variable, i.e. they are consistent, and both are accepting.
- If ϕ is a yes instance then there is a proof (truth assignment) π such that F accepts (given π) on all random strings.
- For each r_{i}, there is a corresponding σ (which has the same answers as in π) and is an accepting transcript.
- We have n^{d} random strings and therefore there are n^{d} vertices of G (corresponding to those). They form a clique because they come from the same truth assignment and so are consistent;
- Therefore G has a clique of size $\geq n^{d}$.
- For the case ϕ is a no instance we want to show that every clique in G has size at most $\frac{n^{d}}{2}$.
- By way of contradiction suppose we have a clique C of size $c>\frac{n^{d}}{2}$.
- Assume that $\left(i_{1}, \sigma_{1}\right) \ldots\left(i_{c}, \sigma_{c}\right)$ are the vertices in this clique. Therefore the transcripts $\sigma_{1} \ldots \sigma_{c}$ (partial truth assignments) are all consistent.
- We can extend this truth assignment to a whole proof (truth assignment) such that on random strings i_{1}, \ldots, i_{c}, verifier V accepts.
- Therefore the verifier accepts for more than $\frac{n^{d}}{2}$ strings, which contradicts the assumption that ϕ is a no instance.
- So it is NP-hard to decide whether:
- G has a clique of size n^{d}
$-G$ every clique of G has size $<\frac{n^{d}}{2}$
- Note that the gap created here is exactly the soundness probability of the verifier; so the the smaller S is, the larger gap we get.
- By simulating a $\mathrm{PCP}_{1, \frac{1}{2}}(d \log n, q)$ verifier V for k times and accepting iff all of those simulations accept, we get a $\mathrm{PCP}_{1, \frac{1}{2^{k}}}(k \cdot d \log n, k \cdot q)$ verifier V^{\prime}.
- Note that in this case the size of the construction G is $n^{k d} 2^{k q}$, which is polynomial as long as k is constant.
- This will show a hardness of 2^{k}, which is a constant.

Corollary 22 For any constant S, it is NP-hard to approximation clique within a factor of S (say $S=$ $1 / 2^{k}$ in the above).

- To get an n^{δ} gap, we need S to be polynomially small, and for that we need to repeat $k=\Omega(\log n)$ times.
- Therefore, $k \cdot q=O(\log n)$ which is Ok. But the length of random string becomes $k \log n=\Omega\left(\log ^{2} n\right)$, and the size of G becomes $2^{\Omega\left(\log ^{2} n\right)}$, which is superpolynomial.
- To get a polynomial hardness we need a

$$
\mathrm{PCP}_{1, \frac{1}{n}}(O(\log n), O(\log n))
$$

verifier.

- The trick here is to start with only $O(\log n)$ random bits and use random walks on expander graphs to generate $O(\log n)$ random strings, each of length about $\log n$.

Definition 23 (Expander Graph) Every vertex has the same constant degree, say d, and for every nonempty set $S \subset V,|E(S, \bar{S})| \geq \min \{|S|,|\bar{S}|\}$.

- There are explicit construction of expander graphs.
- Let H be an expander graph with n^{d} nodes. To each node we assign a label which is a binary string of length $d \log n$.
- We can generate a random walk in H using only $O(\log n)$ random bits:
- need $d \log n$ bits to choose the first vertex, and
- need constant number of random bits to choose one neighbor at every step.
- Therefore, to have a random walk of length $O(\log n)$ in H we need only $O(\log n)$ bits.
- Theorem 24 For any set S of vertices of H with $<\frac{n^{d}}{2}$ vertices, there is a constant k such that the probability that a random walk of length $k \log n$ lies entirely in S is $<\frac{1}{n}$.
- Proof outline: By definition, if you have a set S of vertices, we expect a constant fraction of edges out of the vertices of S be going into \bar{S}.
- Therefore, if you start a random walk from a vertex in S, at every step, there is a constant probability that this walk jumps into \bar{S}.
- So the probability that a random walk of length $\Omega(\log n)$ stays entirely within S is polynomially small.
- Theorem 25

$$
\mathrm{PCP}_{1, \frac{1}{2}}(d \log n, q) \subseteq \mathrm{PCP}_{1, \frac{1}{n}}(O(\log n), O(\log n))
$$

- Proof: Let $L \in \operatorname{PCP}_{1, \frac{1}{2}}(d \log n, q)$ and \mathcal{F} be a verifier for L.
- We give a $\mathrm{PCP}_{1, \frac{1}{n}}(O(\log n), O(\log n))$ verifier \mathcal{F}^{\prime} for L.
- \mathcal{F}^{\prime} builds the expander graph H of Theorem 24, then creates a random walk of length $k \log n$ using only $O(\log n)$ bits for some constant k
- This random walk yields $k \log n$ "random" string of length $d \log n$ each, which are the labels of the vertices of the walk.
- Then \mathcal{F}^{\prime} simulates \mathcal{F} on each of these strings and accepts if and only if all these simulations accept.
- If $y \in L$ is a "yes" instance, then there is a proof π s.t. \mathcal{F} accepts with probability 1 given π; so \mathcal{F}^{\prime} accepts.
- If $y \in L$ is a "no" instance, then \mathcal{F} accepts on at most $\frac{n^{d}}{2}$ of the random strings.
- Let S be the set of vertices of H with those labels.
- Note that $|S| \leq \frac{n^{d}}{2}$. This means that \mathcal{F}^{\prime} accepts (wrongly) y only if the entire random walk is inside S.
- Now, based on Theorem 24 the probability that a random walk remains entirely in S is at most $\frac{1}{n}$
- Therefore, the probability that \mathcal{F}^{\prime} accepts y is at most $\frac{1}{n}$.
- This completes the proof of

$$
\mathrm{PCP}_{1, \frac{1}{2}}(d \log n, q) \subseteq \mathrm{PCP}_{1, \frac{1}{n}}(O(\log n), O(\log n))
$$

- Theorem 26 For some $\delta>0$, it is NP-hard to approximate clique within a factor of $\Omega\left(n^{\delta}\right)$.
- Proof: Given a SAT formula ϕ, let F be a $\mathrm{PCP}_{1, \frac{1}{n}}(d \log n, q \log n)$ verifier for it for some constants d and q.
- Construct the graph G from F in the same manner as we did earlier for the constant factor hardness.
- So the size of G is $n^{d} 2^{q \log n}=n^{d+q}$ and the gap created is equal to soundness probability, i.e. $\frac{1}{n}$.
- we have:
- If ϕ is a yes instance then G has a clique of size n^{d}.
- If ϕ is a no instance then every clique of G has size at most n^{d-1}.

This creates a gap of n^{δ} with $\delta=\frac{1}{d+q}$.

Section 4:
Hardness of Set Cover

Hardness of Set Cover

- Our final lecture is the outline of the proof of a hardness of $O(\log n)$ for Set cover.
- We need to define another problem: Label Cover.
- This is a graph theoric representation of another proof system for NP (2 prover 1 round proof system).
- An instance of label cover consists of the followings:
- $G(V \cup W, E)$ is a bipartite graph.
$-[N]=\{1 \ldots N\},[M]=\{1 \ldots M\}$ are 2 sets of labels, [N] for the vertices in V and [M] for the vertices in W.
- $\left\{\Pi_{v, w}\right\}_{(v, w) \in E}$ denotes a (partial) function on every edge (v, w) such that $\Pi_{v, w}:[M] \rightarrow[N]$
- A labeling $l: V \rightarrow[N], W \rightarrow[M]$ is said to cover edge (v, w) if $\Pi_{v, w}(l(w))=l(v)$.
- Goal: Given an instance of label cover, find a labeling that covers maximum fraction of the edge.
- It follows from PCP theorem that:

Theorem 27 There is an absolute $\epsilon>0$ s.t. given an instance $\mathcal{L}\left(G, M=7, N=2,\left\{\Pi_{v, w}\right\}\right)$ it is NPhard to decide if

$$
\begin{aligned}
& -\operatorname{opt}(\mathcal{L})=1, \text { or } \\
& -\operatorname{opt}(\mathcal{L}) \leq 1-\epsilon
\end{aligned}
$$

- From an instance $\mathcal{L}\left(\mathcal{G}(\mathcal{V}, \mathcal{W}, \mathcal{E}),[\mathcal{M}],[\mathcal{N}],\left\{\Pi_{v w}\right\}\right)$, we obtain the k-power as following.
- we build $\mathcal{L}^{k}\left(G^{\prime}\left(V^{\prime}, W^{\prime}, E^{\prime}\right),\left[M^{\prime}\right],\left[N^{\prime}\right],\left\{\Pi^{\prime}{ }_{v w}\right\}\right)$ where:

$$
-V^{\prime}=V^{k}(k \text {-tuples of } V)
$$

$$
-W^{\prime}=W^{k}
$$

$$
-[M]^{\prime}=[M]^{k}
$$

$$
-[N]^{\prime}=[N]^{k}
$$

$$
-\left(V^{\prime}, W^{\prime}\right) \in E^{\prime} \Leftrightarrow\left(v_{i_{i}}, w_{i_{j}}\right) \in E, \forall i, j 1 \leq j \leq k
$$

$$
\left(V^{\prime}=\left(v_{i_{1}}, \ldots, v_{i_{k}}\right), W^{\prime}=\left(w_{i_{1}}, \ldots, w_{i_{k}}\right)\right)
$$

$-\Pi_{v w}^{\prime}\left(b_{1}, \ldots, b_{k}\right)=\Pi_{v_{i_{1}}, w_{i_{1}}}\left(b_{1}\right), \Pi_{v_{i_{2}}, w_{i_{2}}}\left(b_{2}\right), \ldots, \Pi_{v_{i_{k}}, w_{i_{k}}}\left(b_{k}\right)$

- Theorem 27, together with a strong result of Raz'98 implies the following:

Theorem 28 There is a reduction from SAT to an instance $\mathcal{L}\left(G(V, W, E),\left[7^{k}\right],\left[2^{k}\right],\left\{\Pi_{v w}\right\}\right)$ of label cover such that:

- if ϕ is a yes instance $\rightarrow \operatorname{OPT}(\mathcal{L})=1$
- if ϕ is a no instance $\rightarrow \operatorname{OPT}(\mathcal{L})=2^{-c k}$ for some constant $c<1$
and $\mathcal{L}=n^{O(k)}$
- We need one more definition.

A set-system with parameters m and l consists of:

- U a universe (of elements)
- $C_{1}, \ldots, C_{m}, \overline{C_{1}}, \ldots, \overline{C_{m}}$ are subsets of U
- For any set of ℓ subsets from C_{i} 's and \bar{C}_{i} 's that does not include a C_{j} 's and \bar{C}_{j} together, the union does not cover U.
- Theorem 29 Given m, ℓ there are explicit constructions for a set system with $|U|=O\left(\ell \cdot \log m \cdot 2^{\ell}\right)$.
- Consider a label cover instance $\mathcal{L}(G(V, W, E), M=$ $\left.\left[7^{k}\right], N=\left[2^{k}\right],\left\{\Pi_{v, w}\right\}\right)$.
- Let's assume $|V|=|W|$. We build an instance of set cover \mathcal{S} such that:
- If $\operatorname{opt}(\mathcal{L})=1$, then $\operatorname{opt}(S) \leq|V|+|W|$.
- If $\operatorname{opt}(\mathcal{L})<\frac{2}{l^{2}}$, then $\operatorname{opt}(\mathcal{S})>\frac{l}{16}(|V|+|W|)$.
- Consider a set system with $m=N=2^{k}$ and l to be specified later.
- For every $e=(v, w) \in G$, we have a (disjoint) (m, l)set system with universe U_{e}.
- Let $C_{1}^{v w}, \cdots, C_{N=m}^{v w}$ be the subsets of U_{e}.
- The union of all $U_{e}^{\prime} s$ (for all the edges e) is the universe of the set cover instance, denoted as

$$
U=\bigcup_{(v, w) \in G} U_{v w}
$$

- Now we define the subsets. For every $v \in V$ ($w \in$ $W)$ and every label $i \in\left[2^{k}\right]\left(j \in\left[7^{k}\right]\right)$, we have a set

$$
S_{v, i}=\bigcup_{w:(v, w) \in E} C_{i}^{v w} \quad S_{w, j}=\bigcup_{v:(v, w) \in E} \overline{C_{\Pi_{v w}(j)}^{v w}}
$$

- This completes the construction of \mathcal{S} from \mathcal{L}.
- Lemma 30 If $\operatorname{opt}(\mathcal{L})=1$, then $\operatorname{opt}(\mathcal{S}) \leq|V|+|W|$.
- Proof: Consider an optimal labeling $l: V \rightarrow\left[2^{k}\right], W \rightarrow$ [7^{k}] for \mathcal{L}.
- Because it is covering every edge $(v, w) \in E$, $\Pi_{v w}(l(w))=l(v)$.
- This labeling defines a label for every vertex and every pair of vertex/label corresponds to a set in \mathcal{S}.
- From $C_{l(v)}^{v w} \subseteq S_{v, l(v)}$ and $\overline{C_{l(v)}^{v w}}=\overline{C_{\Pi_{v w}(l(w))}^{v w}} \subseteq S_{w, l(w)}$:

$$
S_{v, l(v)} \cup S_{w, l(w)} \supseteq U_{v w}
$$

- Because all U_{e} 's for $e \in E$ are covered, U is covered. So we have a set cover of size $|V|+|W|$.
- Lemma 31 if $\operatorname{opt}(\mathcal{S}) \leq \frac{l}{16}(|V|+|W|)$, then $\operatorname{opt}(\mathcal{L}) \geq \frac{2}{l^{2}}$.
- Proof: From the set cover solution, we assign labels (maybe more than one label) to the vertices.
- If $S_{v, i}$ is in the solution, v gets label i.
- Since there are $\leq \frac{l}{16}(|V|+|W|)$ sets and $|V|+|W|$ vertices, the average number of labels per vertex is $\leq \frac{l}{16}$.
- We discard vertices with $>\frac{l}{2}$ labels.
- $\leq \frac{|V|}{4}$ vertices from each of V and W are discarded. Let V^{\prime} and W^{\prime} be the vertices remaining.
- so $\left|V^{\prime}\right|>\frac{3}{4}|V|$ and $\left|W^{\prime}\right|>\frac{3}{4}|W|$.
- Pick an edge $e=(v, w)$ from G randomly.

$$
\operatorname{Pr}\left[v \in V^{\prime} \text { and } w \in W^{\prime}\right] \geq 1-\left(\frac{1}{4}+\frac{1}{4}\right)=\frac{1}{2} .
$$

- so $\geq \frac{1}{2}$ edges of G are between V^{\prime} and W^{\prime}.
- Define

$$
\begin{gathered}
T_{v}=\left\{S_{v, i}: i \text { is a label of } v\right\} \\
T_{w}=\left\{S_{w, j}: j \text { is a label of } w\right\} .
\end{gathered}
$$

- We have $\left|T_{v}\right| \leq \frac{l}{2}$ and $\left|T_{w}\right| \leq \frac{l}{2}$.
- Note that sets in $T_{v} \cup T_{w}$ cover $U_{v w}$, i.e.

$$
\begin{gathered}
X_{1}=\left\{C_{i v}^{v w}: i \text { is a label of } v\right\} \cup \\
X_{2}=\left\{\bar{C}_{\Pi_{w w}(j)}^{v w}: j \text { is a label of } \mathrm{w}\right\}
\end{gathered}
$$

covers universe $U_{v w}$

- Since $\left|X_{1}\right| \leq \frac{l}{2}$ and $\left|X_{2}\right| \leq \frac{l}{2}, \exists$ a set $C_{i}^{v w} \in X_{1}$ and $\overline{C_{\Pi_{v w}}^{v w}(j)} \in X_{2}$ that are in $X_{1} \cup X_{2}$.
- Because we pick labels of v and w randomly, with probability $\geq\left(\frac{2}{l}\right)^{2}=\frac{4}{l^{2}}$ we have set $C_{i}^{v w}$ for v and $\overline{C_{j}^{v w}}$ for w i.e. the labels i for v and j for w cover edge $e \in E$.
- Thus the expected fraction of edges between V^{\prime} and W^{\prime} that are covered is $\geq \frac{4}{l^{2}}$.
- Therefore, at least a fraction of $\frac{2}{l^{2}}$ of edges of G are covered.
- This lemma is equivalent to saying that if $\operatorname{opt}(\mathcal{L})<\frac{2}{l^{2}}$ then $\operatorname{opt}(\mathcal{S})>\frac{l}{16}(|V|+|W|)$.
- Thus we have:

$$
\begin{aligned}
& \text { - If } \operatorname{opt}(\mathcal{L})=1, \text { then } \operatorname{opt}(S) \leq|V|+|W| \\
& \text { - If } \operatorname{opt}(\mathcal{L})<\frac{2}{l^{2}}, \text { then } \operatorname{opt}(\mathcal{S})>\frac{l}{16}(|V|+|W|)
\end{aligned}
$$

- Let $l \in \Theta\left(2^{\frac{d k}{2}}\right)$. Then, $l^{2} \in \Theta\left(2^{\delta k}\right)$.
- We get a hardness of $\Omega(l)$ for \mathcal{S}. The size of \mathcal{S} is $n^{O(k)} \cdot O\left(l \cdot \log m \cdot 2^{l}\right)$.
- If $k=c \log \log n$ for sufficiently large c, $l=O\left(2^{O(\log \log n)}\right) \geq \log n \log \log n$.
- Thus $\log |\mathcal{S}|=O(\log \log n \cdot \log n+\log l+\log \log \log n+$ $l)=\Theta(l)$.
We have the following hardness result for set cover:
Theorem 32 Unless NP \subseteq DTIME $\left(n^{O(\log \log n)}\right)$, set cover has no o $(\log n)$-approximation algorithm.

