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A Network Problem

A network N with a broadcaster, we want to send some streams of video to
some users

Users (terminals): a subset of nodes that have requested these streams,

Routers: every node (including the users) can pass the data,

Broadcaster

Each stream of video traverses a tree in NV
that contains broadcaster and users, called
Steiner tree.

Goal: Find the maximum number of
edge-disjoint Steiner trees.
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Vertices in V' — 1" are called Steiner nodes. Find max number of edge-disjoint
Steiner trees.

Observation: All leaves in a Steiner tree are terminals
(otherwise, remove it).

Packing Edge-disjoint Undirected (PEU):

For T° C V, T-edge-connectivity is the minimum
number of edges whose removal disconnects two
vertices of 7.

Theorem (Nash-Williams & Tutte): If G has V-edge-connectivity at least 2k,
then there are at least & edge-disjoint spanning trees in G.

Conjecture [Kriesell’99]: If G has T-edge-connectivity at least 2k, then there
are at least £ edge-disjoint Steiner trees in G. (Open for k& > 2)

Theorem [Frank, Kiraly, Kriesell'O1]: If G — T is independent set and the
T-edge-connectivity of GG Is 3k, then there are k£ edge-disjoint Steiner trees in
(. This also yields a polynomial time algorithm.
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Fractional PEU is the corresponding LP. The separation oracle for the dual LP
IS the min. Steiner Tree problem.
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Our results:

By a reduction form a variation of SAT:
Given G and T C V, itis NP-hard to decide if G has two edge-disjoint Steiner
trees (independently by Kaski'04).

Theorem 1: PEU is APX-hard even with 4 termianls, I.e. there is an absolute
constant ¢ > 1 s.t. there is no c-approximation algorithm for PEU even if
'T| =4, unless P = NP.

Proof idea:

A reduction from Bounded 3-Dimensional-Matching (B3DM).
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Packing Vertex-disjoint Undirected Steiner trees (PVU): Given undirected
graph G and terminals 7" C V, find max number of Steiner trees that are
internally vertex disjoint (i.e. on Steiner nodes).

The same results we proved for PEU also hold for PVU:

Theorem 2: Given G and 1" C V/, it is NP-hard to decide if G has two
vertex-disjoint Steiner trees.

Theorem 3: PVU is APX-hard even if | T'| is constant.

We can also define the same problems in the directed version.

Packing Edge-disjoint Direct Steiner trees (PED): Given directed graph G and
terminals 7' C V containing a root r, find max number of edge-disjoint (rooted)
Steiner trees.

Packing Vertex-disjoint Direct Steiner trees (PVD): Similar to PED, except that
trees have to be disjoint on Steiner nodes.
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By easy reductions, we can show that PED and PVD are equally hard:

Theorem 4: There are poly. time approximation preserving reductions from
PED to PVD and from PVD to PED.

Therefore, we only focus on finding algorithms and proving hardness for PED.

Lau showed that there is a 26-approx algorithm for PEU. How about PED?

Theorem 5: For any ¢ > 0, there is an O(m%“)-approximation for PED, with m
being the number of edges.

The basic idea is:
1. Formulate PED as an ILP and relax it to LP (i.e. take fractional PED)

2. Try to solve this LP (maybe approximately)

3. Use randomized rounding to obtain an integral solution.
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The separation oracle for the dual is min directed Steiner tree problem.

Min Directed Steiner: Given directed weighted graph G and " C V' containing
a root r, find min weight (rooted) Steiner tree.

This is NP-hard, even hard to approximate within O(log®~“n) factor (Halperin
& Krauthgamer '03). But ...

Theorem (Charikar, Chekuri, Cheung, Dal, Goel, Guha, & Li'99): Min. directed
Steiner tree can be approximated within O(n°), for any € > 0.

The result of Jain, Mahdian, and Salavatipour can be extended to prove:

Theorem 6: There is an a-approx algorithm for fractional PED iff there is an
a-approx algorithm for min directed Steiner tree.

Corollary: There is an O(n°)-approx algorithm for fractional PED.

Simple randomized rounding yields an O(m%+€)-approximation.
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Theorem 7: Unless P = N P, any approximation algorithm for PED has
approximation factor Q(m%—e), for any e > 0.

We sketch the proof of a weaker version:
Theorem: Unless P = N P, any approx algorithm for PED has factor Q(mi—e).
Remark: The roof does not rely on PCP theorem.

We use the following NP-hard problem, as the building block of our reduction:

PROBLEM: 2DIRPATH

INSTANCE: A directed graph G(V, E), distinct vertices x1, y1, x2,y2 € V.
QUESTION: Are there two edge-disjoint directed paths, one from x; to y; and
the other from x5 to y5?

Let I = (G, x1,y1, 22, y2) be an instance of 2DIRPATH and
e > 0 be given.

We construct a digraph H which has several copies of G.
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With N = ]E(G)\%, create two sets of vertices A = {a1,...,ax} and
B ={by,...,bn}.

Create a;b;, forall 1 <i# 57 < N.

At each intersection put a copy of G.

Create a root » and connect it to
{ai,...,an}, and now put edges
a;b;, forl <i:< N

All edges are directed top to bottom.
LetT:TU{bl,...,bN}.

Lemma 1: If G is a “yes” instance of
2DIRPATH then H has N
edge-disjoint Steiner trees.

Lemma 2: If G is a “no” instance of 2DIRPATH then H has no more than 1
edge-disjoint Steiner tree.

Thus deciding between 1 and N Steiner trees in H is NP-hard.
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Since H has O(N*) copies of G and N = |E(G)|c: m = E(H) = O(N**°).
So it is NP-hard to decide between 1 and O(m%—el) Steiner trees.

Using a similar reduction:

Theorem 8: It is NP-hard to approximate PVD within Q(n%—e) factor.

On the other hand, an algorithm similar to the one presented for PED yields:
Theorem 9: There is an O(n2"<)-approximation for PVD.

Back to the undirected setting ...

We showed that PEU and PVU are APX-hard for constnat |7'| and Lau gave
26-approximation for PEU. What about PVU?

Theorem 10: PVU cannot be approximated with ratio (1 — €) Inn, for any € > 0,
unless NP C DTIM E(n'oglogn),

Theorem 11: We can approximate PVU within O(log n+/n).
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Close the gap for PEU.

We know PEU with 4 terminals
Is APX-hard. What about 3
terminals? Is it NP-complete?

We have found an O(logn)
approx for PVU.
Is there an O(logn) approx?

What is the integrality gap for
PVU?

Thanks!
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