Hardness and Approximation Results for Packing
Steiner Trees

Mohammad R. Salavatipour

Department of Computing Science
University of Alberta

joint with

Joseph Cheriyan

Department of Combinatorics and Optimization
University of Waterloo

A Network Problem

A network N with a broadcaster, we want to send some streams of video to
some users

A Network Problem

A network N with a broadcaster, we want to send some streams of video to
some users

Users (terminals): a subset of nodes that have requested these streams,

Routers: every node (including the users) can pass the data,

A Network Problem

A network N with a broadcaster, we want to send some streams of video to
some users

Users (terminals): a subset of nodes that have requested these streams,

Routers: every node (including the users) can pass the data,

A Network Problem

A network N with a broadcaster, we want to send some streams of video to
some users

Users (terminals): a subset of nodes that have requested these streams,

Routers: every node (including the users) can pass the data,

Each stream of video traverses a tree in NV
that contains broadcaster and users, called
Steiner tree.

A Network Problem

A network N with a broadcaster, we want to send some streams of video to
some users

Users (terminals): a subset of nodes that have requested these streams,

Routers: every node (including the users) can pass the data,

Broadcaster

Each stream of video traverses a tree in NV
that contains broadcaster and users, called
Steiner tree.

A Network Problem

A network N with a broadcaster, we want to send some streams of video to
some users

Users (terminals): a subset of nodes that have requested these streams,

Routers: every node (including the users) can pass the data,

Broadcaster

Each stream of video traverses a tree in NV
that contains broadcaster and users, called
Steiner tree.

Goal: Find the maximum number of
edge-disjoint Steiner trees.

To Graph Theory
Given a (directed/undirectied) graph G(V, F) and a set of terminals 7" C V.
Vertices in V' — 1" are called Steiner nodes.

To Graph Theory
Given a (directed/undirectied) graph G(V, F) and a set of terminals 7" C V.
Vertices in V' — 1" are called Steiner nodes. Find max number of edge-disjoint
Steiner trees.

To Graph Theory
Given a (directed/undirectied) graph G(V, F) and a set of terminals 7" C V.
Vertices in V' — T" are called Steiner nodes. Find max number of edge-disjoint
Steiner trees.

Observation: All leaves in a Steiner tree are terminals
(otherwise, remove it).

To Graph Theory
Given a (directed/undirectied) graph G(V, F) and a set of terminals 7" C V.
Vertices in V' — 1" are called Steiner nodes. Find max number of edge-disjoint
Steiner trees.

Observation: All leaves in a Steiner tree are terminals
(otherwise, remove it).

Packing Edge-disjoint Undirected (PEU):

To Graph Theory
Given a (directed/undirectied) graph G(V, F) and a set of terminals 7" C V.
Vertices in V' — 1" are called Steiner nodes. Find max number of edge-disjoint
Steiner trees.

Observation: All leaves in a Steiner tree are terminals
(otherwise, remove it).

Packing Edge-disjoint Undirected (PEU):

For T' C V, T-edge-connectivity is the minimum

number of edges whose removal disconnects two
vertices of 7.

To Graph Theory
Given a (directed/undirectied) graph G(V, F) and a set of terminals 7" C V.
Vertices in V' — 1" are called Steiner nodes. Find max number of edge-disjoint
Steiner trees.

Broadcaster ,~—

Observation: All leaves in a Steiner tree are terminals
(otherwise, remove it).
Packing Edge-disjoint Undirected (PEU): | \—i/

For T' C V, T-edge-connectivity is the minimum \‘l'/'gf
number of edges whose removal disconnects two
vertices of 7.

Theorem (Nash-Williams & Tutte): If G has V-edge-connectivity at least 2k,
then there are at least & edge-disjoint spanning trees in G.

To Graph Theory
Given a (directed/undirectied) graph G(V, F) and a set of terminals 7" C V.
Vertices in V' — 1" are called Steiner nodes. Find max number of edge-disjoint
Steiner trees.

Broadcaster ,~—

Observation: All leaves in a Steiner tree are terminals
(otherwise, remove it).

Packing Edge-disjoint Undirected (PEU): | \—i/

For T' C V, T-edge-connectivity is the minimum \‘l'/'gf
number of edges whose removal disconnects two
vertices of 7.

Theorem (Nash-Williams & Tutte): If G has V-edge-connectivity at least 2k,
then there are at least & edge-disjoint spanning trees in G.

Conjecture [Kriesell’99]: If G has T-edge-connectivity at least 2k, then there
are at least £ edge-disjoint Steiner trees in G.

To Graph Theory
Given a (directed/undirectied) graph G(V, F) and a set of terminals 7" C V.
Vertices in V' — 1" are called Steiner nodes. Find max number of edge-disjoint
Steiner trees.

Observation: All leaves in a Steiner tree are terminals
(otherwise, remove it).

Packing Edge-disjoint Undirected (PEU):

For T° C V, T-edge-connectivity is the minimum
number of edges whose removal disconnects two
vertices of 7.

Theorem (Nash-Williams & Tutte): If G has V-edge-connectivity at least 2k,
then there are at least & edge-disjoint spanning trees in G.

Conjecture [Kriesell’99]: If G has T-edge-connectivity at least 2k, then there
are at least £ edge-disjoint Steiner trees in G. (Open for k& > 2)

To Graph Theory
Given a (directed/undirectied) graph G(V, F) and a set of terminals 7" C V.
Vertices in V' — 1" are called Steiner nodes. Find max number of edge-disjoint
Steiner trees.

Observation: All leaves in a Steiner tree are terminals
(otherwise, remove it).

Packing Edge-disjoint Undirected (PEU):

For T° C V, T-edge-connectivity is the minimum
number of edges whose removal disconnects two
vertices of 7.

Theorem (Nash-Williams & Tutte): If G has V-edge-connectivity at least 2k,
then there are at least & edge-disjoint spanning trees in G.

Conjecture [Kriesell’99]: If G has T-edge-connectivity at least 2k, then there
are at least £ edge-disjoint Steiner trees in G. (Open for k& > 2)

Theorem [Frank, Kiraly, Kriesell'O1]: If G — T is independent set and the
T-edge-connectivity of GG Is 3k, then there are k£ edge-disjoint Steiner trees in
G.

To Graph Theory
Given a (directed/undirectied) graph G(V, F) and a set of terminals 7" C V.
Vertices in V' — 1" are called Steiner nodes. Find max number of edge-disjoint
Steiner trees.

Observation: All leaves in a Steiner tree are terminals
(otherwise, remove it).

Packing Edge-disjoint Undirected (PEU):

For T° C V, T-edge-connectivity is the minimum
number of edges whose removal disconnects two
vertices of 7.

Theorem (Nash-Williams & Tutte): If G has V-edge-connectivity at least 2k,
then there are at least & edge-disjoint spanning trees in G.

Conjecture [Kriesell’99]: If G has T-edge-connectivity at least 2k, then there
are at least £ edge-disjoint Steiner trees in G. (Open for k& > 2)

Theorem [Frank, Kiraly, Kriesell'O1]: If G — T is independent set and the
T-edge-connectivity of GG Is 3k, then there are k£ edge-disjoint Steiner trees in
(. This also yields a polynomial time algorithm.

Results on PEU (cont'd)...

Theorem (Jain & Mahdian & S. '03): If |[T'| = 3 and G has T-edge-connectivity
at least %k, then we can find k& edge-disjoint Steiner trees in G and this Is

sharp.

Results on PEU (cont'd)...

Theorem (Jain & Mahdian & S. '03): If |[T'| = 3 and G has T-edge-connectivity
at least %k, then we can find k& edge-disjoint Steiner trees in G and this Is

sharp.
Theorem (Jain & Mahdian & S. '03): PEU is APX-hard.

Results on PEU (cont'd)...

Theorem (Jain & Mahdian & S. '03): If |[T'| = 3 and G has T-edge-connectivity
at least %k, then we can find k& edge-disjoint Steiner trees in G and this Is

sharp.
Theorem (Jain & Mahdian & S. '03): PEU is APX-hard.

Theorem (Lau’04): If G has T-edge-connectivity at least 26k, then we can find
k edge-disjoint Steiner trees in poly. time.

Results on PEU (cont'd)...

Theorem (Jain & Mahdian & S. '03): If |[T'| = 3 and G has T-edge-connectivity
at least %k, then we can find k& edge-disjoint Steiner trees in G and this Is
sharp.

Theorem (Jain & Mahdian & S. '03): PEU is APX-hard.

Theorem (Lau’04): If G has T-edge-connectivity at least 26k, then we can find
k edge-disjoint Steiner trees in poly. time.

LP formulation and fractional packing

We can formulate PEU as an ILP. Let 7 be the set of all Steiner trees and c,
the capacity of edge e.

Results on PEU (cont'd)...

Theorem (Jain & Mahdian & S. '03): If |[T'| = 3 and G has T-edge-connectivity
at least %k, then we can find k& edge-disjoint Steiner trees in G and this Is
sharp.

Theorem (Jain & Mahdian & S. '03): PEU is APX-hard.

Theorem (Lau’04): If G has T-edge-connectivity at least 26k%, then we can find
k edge-disjoint Steiner trees in poly. time.

LP formulation and fractional packing

We can formulate PEU as an ILP. Let 7 be the set of all Steiner trees and c,
the capacity of edge e.

maximize) .., xT
subjectto Ve€e E:) ;. ro7 < ce
vI'eT: x7€{0,1}

Results on PEU (cont'd)...

Theorem (Jain & Mahdian & S. '03): If |[T'| = 3 and G has T-edge-connectivity
at least %k, then we can find k& edge-disjoint Steiner trees in G and this Is
sharp.

Theorem (Jain & Mahdian & S. '03): PEU is APX-hard.

Theorem (Lau’04): If G has T-edge-connectivity at least 26k, then we can find
k edge-disjoint Steiner trees in poly. time.

LP formulation and fractional packing

We can formulate PEU as an ILP. Let 7 be the set of all Steiner trees and c,
the capacity of edge e.

maximize) .., xT
subjectto Ve€e E:) ;. ro7 < ce
vI'eT: x7€{0,1}

Fractional PEU is the corresponding LP. The separation oracle for the dual LP
IS the min. Steiner Tree problem.

Theorem (Jain & Mahdian & S.03): There is an a-approx algorithm for
fractional PEU iff there is an a-approx algorithm for min Steiner tree.

Theorem (Jain & Mahdian & S.03): There is an a-approx algorithm for
fractional PEU iff there is an a-approx algorithm for min Steiner tree.

Corollary: Fractional PEU is APX-hard and has a 1.55-approx algorithm.

Theorem (Jain & Mahdian & S.03): There is an a-approx algorithm for
fractional PEU iff there is an a-approx algorithm for min Steiner tree.

Corollary: Fractional PEU is APX-hard and has a 1.55-approx algorithm.
This theorem holds in more general settings and we will use this later.
Our results:

By a reduction form a variation of SAT:
Given G and T C V, itis NP-hard to decide if G has two edge-disjoint Steiner
trees (independently by Kaski'04).

Theorem (Jain & Mahdian & S.03): There is an a-approx algorithm for
fractional PEU iff there is an a-approx algorithm for min Steiner tree.

Corollary: Fractional PEU is APX-hard and has a 1.55-approx algorithm.
This theorem holds in more general settings and we will use this later.
Our results:

By a reduction form a variation of SAT:
Given G and T C V, itis NP-hard to decide if G has two edge-disjoint Steiner
trees (independently by Kaski'04).

Theorem 1: PEU is APX-hard even with 4 termianls, I.e. there is an absolute
constant ¢ > 1 s.t. there is no c-approximation algorithm for PEU even if
'T| =4, unless P = NP.

Theorem (Jain & Mahdian & S.03): There is an a-approx algorithm for
fractional PEU iff there is an a-approx algorithm for min Steiner tree.

Corollary: Fractional PEU is APX-hard and has a 1.55-approx algorithm.
This theorem holds in more general settings and we will use this later.
Our results:

By a reduction form a variation of SAT:
Given G and T C V, itis NP-hard to decide if G has two edge-disjoint Steiner
trees (independently by Kaski'04).

Theorem 1: PEU is APX-hard even with 4 termianls, I.e. there is an absolute
constant ¢ > 1 s.t. there is no c-approximation algorithm for PEU even if
'T| =4, unless P = NP.

Proof idea:

A reduction from Bounded 3-Dimensional-Matching (B3DM).

Other variations

Packing Vertex-disjoint Undirected Steiner trees (PVU): Given undirected
graph G and terminals 7" C V, find max number of Steiner trees that are
internally vertex disjoint (i.e. on Steiner nodes).

Other variations

Packing Vertex-disjoint Undirected Steiner trees (PVU): Given undirected
graph G and terminals 7" C V, find max number of Steiner trees that are

internally vertex disjoint (i.e. on Steiner nodes).

The same results we proved for PEU also hold for PVU:

Other variations

Packing Vertex-disjoint Undirected Steiner trees (PVU): Given undirected
graph G and terminals 7" C V, find max number of Steiner trees that are

internally vertex disjoint (i.e. on Steiner nodes).

The same results we proved for PEU also hold for PVU:

Theorem 2: Given G and 1" C V/, it is NP-hard to decide if G has two
vertex-disjoint Steiner trees.

Other variations

Packing Vertex-disjoint Undirected Steiner trees (PVU): Given undirected
graph G and terminals 7" C V, find max number of Steiner trees that are

internally vertex disjoint (i.e. on Steiner nodes).

The same results we proved for PEU also hold for PVU:

Theorem 2: Given G and 1" C V/, it is NP-hard to decide if G has two
vertex-disjoint Steiner trees.

Theorem 3: PVU is APX-hard even if | T'| is constant.

Other variations

Packing Vertex-disjoint Undirected Steiner trees (PVU): Given undirected
graph G and terminals 7" C V, find max number of Steiner trees that are
internally vertex disjoint (i.e. on Steiner nodes).

The same results we proved for PEU also hold for PVU:

Theorem 2: Given G and 1" C V/, it is NP-hard to decide if G has two
vertex-disjoint Steiner trees.

Theorem 3: PVU is APX-hard even if | T'| is constant.

We can also define the same problems in the directed version.

Packing Edge-disjoint Direct Steiner trees (PED): Given directed graph G and
terminals 7' C V containing a root r, find max number of edge-disjoint (rooted)
Steiner trees.

Other variations

Packing Vertex-disjoint Undirected Steiner trees (PVU): Given undirected
graph G and terminals 7" C V, find max number of Steiner trees that are
internally vertex disjoint (i.e. on Steiner nodes).

The same results we proved for PEU also hold for PVU:

Theorem 2: Given G and 1" C V/, it is NP-hard to decide if G has two
vertex-disjoint Steiner trees.

Theorem 3: PVU is APX-hard even if | T'| is constant.

We can also define the same problems in the directed version.

Packing Edge-disjoint Direct Steiner trees (PED): Given directed graph G and
terminals 7' C V containing a root r, find max number of edge-disjoint (rooted)
Steiner trees.

Packing Vertex-disjoint Direct Steiner trees (PVD): Similar to PED, except that
trees have to be disjoint on Steiner nodes.

By easy reductions, we can show that PED and PVD are equally hard:

By easy reductions, we can show that PED and PVD are equally hard:

Theorem 4: There are poly. time approximation preserving reductions from
PED to PVD and from PVD to PED.

Therefore, we only focus on finding algorithms and proving hardness for PED.

By easy reductions, we can show that PED and PVD are equally hard:

Theorem 4: There are poly. time approximation preserving reductions from
PED to PVD and from PVD to PED.

Therefore, we only focus on finding algorithms and proving hardness for PED.

Lau showed that there is a 26-approx algorithm for PEU. How about PED?

By easy reductions, we can show that PED and PVD are equally hard:

Theorem 4: There are poly. time approximation preserving reductions from
PED to PVD and from PVD to PED.

Therefore, we only focus on finding algorithms and proving hardness for PED.

Lau showed that there is a 26-approx algorithm for PEU. How about PED?

Theorem 5: For any ¢ > 0, there is an O(m%“)-approximation for PED, with m
being the number of edges.

By easy reductions, we can show that PED and PVD are equally hard:

Theorem 4: There are poly. time approximation preserving reductions from
PED to PVD and from PVD to PED.

Therefore, we only focus on finding algorithms and proving hardness for PED.

Lau showed that there is a 26-approx algorithm for PEU. How about PED?

Theorem 5: For any ¢ > 0, there is an O(m%“)-approximation for PED, with m
being the number of edges.

The basic idea is:
1. Formulate PED as an ILP and relax it to LP (i.e. take fractional PED)

By easy reductions, we can show that PED and PVD are equally hard:

Theorem 4: There are poly. time approximation preserving reductions from
PED to PVD and from PVD to PED.

Therefore, we only focus on finding algorithms and proving hardness for PED.

Lau showed that there is a 26-approx algorithm for PEU. How about PED?

Theorem 5: For any ¢ > 0, there is an O(m%“)-approximation for PED, with m
being the number of edges.

The basic idea is:
1. Formulate PED as an ILP and relax it to LP (i.e. take fractional PED)

2. Try to solve this LP (maybe approximately)

By easy reductions, we can show that PED and PVD are equally hard:

Theorem 4: There are poly. time approximation preserving reductions from
PED to PVD and from PVD to PED.

Therefore, we only focus on finding algorithms and proving hardness for PED.

Lau showed that there is a 26-approx algorithm for PEU. How about PED?

Theorem 5: For any ¢ > 0, there is an O(m%“)-approximation for PED, with m
being the number of edges.

The basic idea is:
1. Formulate PED as an ILP and relax it to LP (i.e. take fractional PED)

2. Try to solve this LP (maybe approximately)

3. Use randomized rounding to obtain an integral solution.

Take the LP corresponding to Fractional PED and and consider the dual LP.

Take the LP corresponding to Fractional PED and and consider the dual LP.

The separation oracle for the dual is min directed Steiner tree problem.

Take the LP corresponding to Fractional PED and and consider the dual LP.
The separation oracle for the dual is min directed Steiner tree problem.

Min Directed Steiner: Given directed weighted graph G and " C V' containing
a root r, find min weight (rooted) Steiner tree.

Take the LP corresponding to Fractional PED and and consider the dual LP.
The separation oracle for the dual is min directed Steiner tree problem.

Min Directed Steiner: Given directed weighted graph G and " C V' containing
a root r, find min weight (rooted) Steiner tree.

This is NP-hard, even hard to approximate within O(log®~“n) factor (Halperin
& Krauthgamer '03). But ...

Take the LP corresponding to Fractional PED and and consider the dual LP.
The separation oracle for the dual is min directed Steiner tree problem.

Min Directed Steiner: Given directed weighted graph G and " C V' containing
a root r, find min weight (rooted) Steiner tree.

This is NP-hard, even hard to approximate within O(log®~“n) factor (Halperin
& Krauthgamer '03). But ...

Theorem (Charikar, Chekuri, Cheung, Dal, Goel, Guha, & Li'99): Min. directed
Steiner tree can be approximated within O(n°), for any € > 0.

Take the LP corresponding to Fractional PED and and consider the dual LP.
The separation oracle for the dual is min directed Steiner tree problem.

Min Directed Steiner: Given directed weighted graph G and " C V' containing
a root r, find min weight (rooted) Steiner tree.

This is NP-hard, even hard to approximate within O(log®~“n) factor (Halperin
& Krauthgamer '03). But ...

Theorem (Charikar, Chekuri, Cheung, Dal, Goel, Guha, & Li'99): Min. directed
Steiner tree can be approximated within O(n°), for any € > 0.

The result of Jain, Mahdian, and Salavatipour can be extended to prove:

Theorem 6: There is an a-approx algorithm for fractional PED iff there is an
a-approx algorithm for min directed Steiner tree.

Take the LP corresponding to Fractional PED and and consider the dual LP.
The separation oracle for the dual is min directed Steiner tree problem.

Min Directed Steiner: Given directed weighted graph G and " C V' containing
a root r, find min weight (rooted) Steiner tree.

This is NP-hard, even hard to approximate within O(log®~“n) factor (Halperin
& Krauthgamer '03). But ...

Theorem (Charikar, Chekuri, Cheung, Dal, Goel, Guha, & Li'99): Min. directed
Steiner tree can be approximated within O(n°), for any € > 0.

The result of Jain, Mahdian, and Salavatipour can be extended to prove:

Theorem 6: There is an a-approx algorithm for fractional PED iff there is an
a-approx algorithm for min directed Steiner tree.

Corollary: There is an O(n°)-approx algorithm for fractional PED.

Take the LP corresponding to Fractional PED and and consider the dual LP.
The separation oracle for the dual is min directed Steiner tree problem.

Min Directed Steiner: Given directed weighted graph G and " C V' containing
a root r, find min weight (rooted) Steiner tree.

This is NP-hard, even hard to approximate within O(log®~“n) factor (Halperin
& Krauthgamer '03). But ...

Theorem (Charikar, Chekuri, Cheung, Dal, Goel, Guha, & Li'99): Min. directed
Steiner tree can be approximated within O(n°), for any € > 0.

The result of Jain, Mahdian, and Salavatipour can be extended to prove:

Theorem 6: There is an a-approx algorithm for fractional PED iff there is an
a-approx algorithm for min directed Steiner tree.

Corollary: There is an O(n°)-approx algorithm for fractional PED.

Simple randomized rounding yields an O(m%+€)-approximation.

There is a huge gap between the approximation ratio for PEU (26) and PED
(O(mz+o)!

There is a huge gap between the approximation ratio for PEU (26) and PED
(O(m%“))!! Is it just because the algorithm we gave is too dumb?

There is a huge gap between the approximation ratio for PEU (26) and PED
(O(m%“))!! Is it just because the algorithm we gave is too dumb?

Theorem 7: Unless P = N P, any approximation algorithm for PED has
approximation factor Q(m%—e), for any e > 0.

There is a huge gap between the approximation ratio for PEU (26) and PED
(O(m%“))!! Is it just because the algorithm we gave is too dumb?

Theorem 7: Unless P = N P, any approximation algorithm for PED has
approximation factor Q(m%—e), for any e > 0.

We sketch the proof of a weaker version:

Theorem: Unless P = N P, any approx algorithm for PED has factor Q(mi—e).

There is a huge gap between the approximation ratio for PEU (26) and PED
(O(m%“))!! Is it just because the algorithm we gave is too dumb?

Theorem 7: Unless P = N P, any approximation algorithm for PED has
approximation factor Q(m%—e), for any e > 0.

We sketch the proof of a weaker version:
Theorem: Unless P = N P, any approx algorithm for PED has factor Q(mi—e).

Remark: The roof does not rely on PCP theorem.

There is a huge gap between the approximation ratio for PEU (26) and PED
(O(m%“))!! Is it just because the algorithm we gave is too dumb?

Theorem 7: Unless P = N P, any approximation algorithm for PED has
approximation factor Q(m%—e), for any e > 0.

We sketch the proof of a weaker version:
Theorem: Unless P = N P, any approx algorithm for PED has factor Q(mi—e).
Remark: The roof does not rely on PCP theorem.

We use the following NP-hard problem, as the building block of our reduction:

There is a huge gap between the approximation ratio for PEU (26) and PED
(O(m%“))!! Is it just because the algorithm we gave is too dumb?

Theorem 7: Unless P = N P, any approximation algorithm for PED has
approximation factor Q(m%—e), for any e > 0.

We sketch the proof of a weaker version:
Theorem: Unless P = N P, any approx algorithm for PED has factor Q(mi—e).
Remark: The roof does not rely on PCP theorem.

We use the following NP-hard problem, as the building block of our reduction:

PROBLEM: 2DIRPATH

INSTANCE: A directed graph G(V, E), distinct vertices x1, y1, x2,y2 € V.
QUESTION: Are there two edge-disjoint directed paths, one from x; to y; and
the other from x5 to y5?

There is a huge gap between the approximation ratio for PEU (26) and PED
(O(m%“))!! Is it just because the algorithm we gave is too dumb?

Theorem 7: Unless P = N P, any approximation algorithm for PED has
approximation factor Q(m%—e), for any e > 0.

We sketch the proof of a weaker version:
Theorem: Unless P = N P, any approx algorithm for PED has factor Q(mi—e).
Remark: The roof does not rely on PCP theorem.

We use the following NP-hard problem, as the building block of our reduction:

PROBLEM: 2DIRPATH

INSTANCE: A directed graph G(V, E), distinct vertices x1, y1, x2,y2 € V.
QUESTION: Are there two edge-disjoint directed paths, one from x; to y; and
the other from x5 to y5?

Let I = (G, x1,y1, 22, y2) be an instance of 2DIRPATH and
e > 0 be given.

There is a huge gap between the approximation ratio for PEU (26) and PED
(O(m%“))!! Is it just because the algorithm we gave is too dumb?

Theorem 7: Unless P = N P, any approximation algorithm for PED has
approximation factor Q(m%—e), for any e > 0.

We sketch the proof of a weaker version:
Theorem: Unless P = N P, any approx algorithm for PED has factor Q(mi—e).
Remark: The roof does not rely on PCP theorem.

We use the following NP-hard problem, as the building block of our reduction:

PROBLEM: 2DIRPATH

INSTANCE: A directed graph G(V, E), distinct vertices x1, y1, x2,y2 € V.
QUESTION: Are there two edge-disjoint directed paths, one from x; to y; and
the other from x5 to y5?

Let I = (G, x1,y1, 22, y2) be an instance of 2DIRPATH and
e > 0 be given.

We construct a digraph H which has several copies of G.

With N = \E(G)\%, create two sets of vertices A = {a1,...,ax} and
B ={by,...,bn}.

With N =]E(G)\%, create two sets of vertices A = {a1,...,ax} and
B ={by,...,bn}.

With N =]E(G)\%, create two sets of vertices A = {a1,...,ax} and
B ={by,...,bn}.

Create a;b;, forall 1 <i# 57 < N.

With N =]E(G)\%, create two sets of vertices A = {a1,...,ax} and
B ={by,...,bn}.

Create a;b;, forall 1 <i# 57 < N.

With N =]E(G)\%, create two sets of vertices A = {a1,...,ax} and
B ={by,...,bn}.

Create a;b;, forall 1 <i# 57 < N.

At each intersection put a copy of G.

With N =]E(G)\%, create two sets of vertices A = {a1,...,ax} and
B ={by,...,bn}.

Create a;b;, forall 1 <i# 57 < N.

At each intersection put a copy of G.

With N =]E(G)\%, create two sets of vertices A = {a1,...,ax} and
B ={by,...,bn}.

Create a;b;, forall 1 <i# 57 < N.

At each intersection put a copy of G.

Create a root » and connect it to
{ai,...,an}, and now put edges
a;b;, forl <i:< N

With N =]E(G)\%, create two sets of vertices A = {a1,...,ax} and
B ={by,...,bn}.

Create a;b;, forall 1 <i# 57 < N.

At each intersection put a copy of G.

Create a root » and connect it to
{ai,...,an}, and now put edges
a;b;, forl <i:< N

With N =]E(G)\%, create two sets of vertices A = {a1,...,ax} and
B ={by,...,bn}.

Create a;b;, forall 1 <i# 57 < N.

At each intersection put a copy of G.

Create a root » and connect it to
{ai,...,an}, and now put edges
a;b;, forl <i:< N

All edges are directed top to bottom.
LetT:TU{bl,...,bN}.

With N =]E(G)\%, create two sets of vertices A = {a1,...,ax} and
B ={by,...,bn}.

Create a;b;, forall 1 <i# 57 < N.

At each intersection put a copy of G.

Create a root » and connect it to
{ai,...,an}, and now put edges
a;b;, forl <i:< N

All edges are directed top to bottom.
LetT:TU{bl,...,bN}.

Lemma 1: If G is a “yes” instance of
2DIRPATH then H has N
edge-disjoint Steiner trees.

With N =]E(G)\%, create two sets of vertices A = {a1,...,ax} and
B ={by,...,bn}.

Create a;b;, forall 1 <i# 57 < N.

At each intersection put a copy of G.

Create a root » and connect it to
{ai,...,an}, and now put edges
a;b;, forl <i:< N

All edges are directed top to bottom.
LetT:TU{bl,...,bN}.

Lemma 1: If G is a “yes” instance of
2DIRPATH then H has N
edge-disjoint Steiner trees.

With N =]E(G)\%, create two sets of vertices A = {a1,...,ax} and
B ={by,...,bn}.

Create a;b;, forall 1 <i# 57 < N.

At each intersection put a copy of G.

Create a root » and connect it to
{ai,...,an}, and now put edges
a;b;, forl <i:< N

All edges are directed top to bottom.
LetT:TU{bl,...,bN}.

Lemma 1: If G is a “yes” instance of
2DIRPATH then H has N
edge-disjoint Steiner trees.

Lemma 2: If G is a “no” instance of 2DIRPATH then H has no more than 1
edge-disjoint Steiner tree.

With N =]E(G)\%, create two sets of vertices A = {a1,...,ax} and
B ={by,...,bn}.

Create a;b;, forall 1 <i# 57 < N.

At each intersection put a copy of G.

Create a root » and connect it to
{ai,...,an}, and now put edges
a;b;, forl <i:< N

All edges are directed top to bottom.
LetT:TU{bl,...,bN}.

Lemma 1: If G is a “yes” instance of
2DIRPATH then H has N
edge-disjoint Steiner trees.

Lemma 2: If G is a “no” instance of 2DIRPATH then H has no more than 1
edge-disjoint Steiner tree.

Thus deciding between 1 and N Steiner trees in H is NP-hard.

Since H has O(N%) copies of G and N = |E(G)|c: m = E(H) = O(N4+¢).

1

Since H has O(N*) copies of G and N = |E(G)|c: m = E(H) = O(N**°).

So it is NP-hard to decide between 1 and O(mi—el) Steiner trees.

10

1

Since H has O(N*) copies of G and N = |E(G)|c: m = E(H) = O(N**°).

So it is NP-hard to decide between 1 and O(mi—el) Steiner trees.
Using a similar reduction:

Theorem 8: It is NP-hard to approximate PVD within Q(n%—e) factor.

10

1

Since H has O(N*) copies of G and N = |E(G)|c: m = E(H) = O(N**°).
So it is NP-hard to decide between 1 and O(mi—el) Steiner trees.

Using a similar reduction:

Theorem 8: It is NP-hard to approximate PVD within Q(n%—e) factor.

On the other hand, an algorithm similar to the one presented for PED yields:

Theorem 9: There is an O(n%“)-approximation for PVD.

10

1

Since H has O(N*) copies of G and N = |E(G)|c: m = E(H) = O(N**°).
So it is NP-hard to decide between 1 and O(mi—el) Steiner trees.
Using a similar reduction:

Theorem 8: It is NP-hard to approximate PVD within Q(n%—e) factor.

On the other hand, an algorithm similar to the one presented for PED yields:

Theorem 9: There is an O(n%“)-approximation for PVD.
Back to the undirected setting ...

We showed that PEU and PVU are APX-hard for constnat |7'| and Lau gave
26-approximation for PEU. What about PVU?

10

10

1

Since H has O(N*) copies of G and N = |E(G)|c: m = E(H) = O(N**°).
So it is NP-hard to decide between 1 and O(m%—el) Steiner trees.

Using a similar reduction:

Theorem 8: It is NP-hard to approximate PVD within Q(n%—e) factor.

On the other hand, an algorithm similar to the one presented for PED yields:
Theorem 9: There is an O(n2"<)-approximation for PVD.

Back to the undirected setting ...

We showed that PEU and PVU are APX-hard for constnat |7'| and Lau gave
26-approximation for PEU. What about PVU?

Theorem 10: PVU cannot be approximated with ratio (1 — €) Inn, for any € > 0,
unless NP C DTIM E(n'oglogn),

10

1

Since H has O(N*) copies of G and N = |E(G)|c: m = E(H) = O(N**°).
So it is NP-hard to decide between 1 and O(m%—el) Steiner trees.

Using a similar reduction:

Theorem 8: It is NP-hard to approximate PVD within Q(n%—e) factor.

On the other hand, an algorithm similar to the one presented for PED yields:
Theorem 9: There is an O(n2"<)-approximation for PVD.

Back to the undirected setting ...

We showed that PEU and PVU are APX-hard for constnat |7'| and Lau gave
26-approximation for PEU. What about PVU?

Theorem 10: PVU cannot be approximated with ratio (1 — €) Inn, for any € > 0,
unless NP C DTIM E(n'oglogn),

Theorem 11: We can approximate PVU within O(log n+/n).

Summary of results and Open problems

Problems | Approx. Alg | Hardness
PEU 26 (L. Lau) | 1+ ¢€g
for |T| =4
PVU O(lognv/n) Q(logn)
PED O(m2+) Q(m3—¢)
PVD O(nz'te) Q(n3—°)

11

Summary of results and Open problems

Problems | Approx. Alg | Hardness
PEU 26 (L. Lau) | 1+ €
for |T| =4
PVU O(lognv/n) Q(logn)
PED O(m2+) Q(m3—¢)
PVD O(nz'te) Q(n3—°)

Close the gap for PEU.

11

Summary of results and Open problems

Problems | Approx. Alg | Hardness
PEU 26 (L. Lau) | 1+ €

for |T'| =4

PVU O(lognv/n) Q(logn)

PED O(m2+) Q(m3—¢)

PVD O(nz'te) Q(n3—°)

Close the gap for PEU.

We know PEU with 4 terminals
Is APX-hard. What about 3
terminals? Is it NP-complete?

11

Summary of results and Open problems

Problems | Approx. Alg | Hardness
PEU 26 (L. Lau) | 1+ e

for |T'| =4

PVU O(lognv/n) Q(logn)

PED O(m2+) Q(m3—¢)

PVD O(nz'te) Q(n3—°)

Close the gap for PEU.

We know PEU with 4 terminals
Is APX-hard. What about 3
terminals? Is it NP-complete?

We have found an O(logn)
approx for PVU.

11

Summary of results and Open problems

Problems | Approx. Alg | Hardness
PEU 26 (L. Lau) | 1+ e

for |T'| =4

PVU O(lognv/n) Q(logn)

PED O(m2+) Q(m3—¢)

PVD O(nz'te) Q(n3—°)

Close the gap for PEU.

We know PEU with 4 terminals
Is APX-hard. What about 3
terminals? Is it NP-complete?

We have found an O(logn)
approx for PVU.
Is there an O(logn) approx?

11

Summary of results and Open problems

Problems | Approx. Alg | Hardness
PEU 26 (L. Lau) | 1+ e

for |T'| =4

PVU O(lognv/n) Q(logn)

PED O(m2+) Q(m3—¢)

PVD O(nz'te) Q(n3—°)

Close the gap for PEU.

We know PEU with 4 terminals
Is APX-hard. What about 3
terminals? Is it NP-complete?

We have found an O(logn)
approx for PVU.
Is there an O(logn) approx?

What is the integrality gap for
PVU?

11

Summary of results and Open problems

Problems | Approx. Alg | Hardness
PEU 26 (L. Lau) | 1+ e

for |T'| =4

PVU O(lognv/n) Q(logn)

PED O(m2+) Q(m3—¢)

PVD O(nz'te) Q(n3—°)

Close the gap for PEU.

We know PEU with 4 terminals
Is APX-hard. What about 3
terminals? Is it NP-complete?

We have found an O(logn)
approx for PVU.
Is there an O(logn) approx?

What is the integrality gap for
PVU?

Thanks!

11

