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A Network Problem
A network N , a special node, called broadcaster, and we want to broadcast
some streams of video to some users

• Users (terminals): Are those nodes which have requested these streams,

• Routers: All nodes can pass the data,

Each stream of video traverses a tree in N ,
rooted at the broadcaster, called Steiner
tree.

Goal: Find maximum number of
edge-disjoint Steiner trees.
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To Graph Theory
Given a graph G(V,E) and a set of terminals T ⊆ V . Vertices in V − T are
called Steiner nodes.

Find maximum number of edge-disjoint Steiner trees in G.

The two extreme cases of the problem are fundamental theorems:

If |T | = 2 =⇒ Steiner trees are basically paths between two nodes =⇒
Theorem (Menger 1920’s): The number of edge-disjoint paths between two
vertices u and v is equal to the minimum number of edges whose removal
disconnects u and v, and we can easily find the solution in linear time.

If S = V (G) =⇒ Steiner trees are spanning trees =⇒
Theorem (Nash-Williams & Tutte 1960’s): G has k edge-disjoint spanning
trees iff for every partition P = {V1, . . . , Vp} of V :

EG(P) ≥ k(p− 1),

where EG(P) is the number of edges between classes of P.
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For T ⊆ V , T -edge-connectivity is the minimum number of edges whose
removal disconnects two vertices of T .

Corollary: If G has V -edge-connectivity at least 2k, then there are at least k
edge-disjoint spanning trees in G.

Conjecture [Kriesell’99]: If G has T -edge-connectivity at least 2k, then there
are at least k edge-disjoint Steiner trees in G.(Open for k ≥ 2!)

Theorem [Petingi, Rodriguez’00]: If G has T -edge-connectivity at least
2(3/2)|V (G)−T |.k, then there are k edge-disjoint Steiner trees in G.

Theorem [Frank, Király, Kriesell’01]: If G− T is independent set and the
T -edge-connectivity of G is 3k, then there are k edge-disjoint Steiner trees in
G.This also gives a polynomial. time algorithm.

Theorem 1 (Jain & Mahdian & S.’03): If |T | = t and G has
T -edge-connectivity at least ( t

4 + o(t))k, then we can find k edge-disjoint
Steiner trees in poly. time.
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Theorem 2 (Jain & Mahdian & S. ’03): If |T | = 3 and G has
T -edge-connectivity at least 4

3k, then we can find k edge-disjoint Steiner trees
in G.

Example showing tightness: For this graph T = V and it is
2r-edge-connected; number of Steiner trees is 3r

2 = 3
4 × 2r.

Theorem (Lau’04, unpublished): If G has T -edge-connectivity at least 26k,
then we can find k edge-disjoint Steiner trees in poly. time.
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Let PEU denote the problem of finding maximum number of Edge-disjoint
Undirected Steiner trees.

Not surprisingly, the problem is NP-complete:
Theorem 3 (Cheriyan & S.): Given G and T ⊆ V , it is NP-hard to decide if G
has two edge-disjoint Steiner trees.

How about when |T | is constant?

Theorem 4 (Cheriyan & S.): There is an absolute constant c > 1 s.t. there is
no c-approximation algorithm for PEU even if |T | = 4, unless P = NP , (i.e. it
is APX-hard).

Proof idea: A reduction from Bounded 3-Dimensional-Matching (B3DM).
Given instance G of B3DM with m edges construct H with 4 terminals s.t.

• if G has a perfect matching then H has m Steiner trees.

• if max matching of G is ≤ (1− ε)m then H has at most (1− ε
100)m trees.
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minimize
∑

e∈E ceye

subject to ∀T ∈ T :
∑

e∈T ye ≥ 1
∀e ∈ E : ye ≥ 0

The separation oracle for the dual LP is the min. Steiner Tree problem:

Given weighted graph G and set T find a min weight Steiner tree.

Theorem 5 (Jain & Mahdian & S.’03): There is an α-approx algorithm for
fractional PEU iff there is an α-approx algorithm for min Steiner tree.

Corollary: Fractional PEU is APX-hard and has an 1.59-approx algorithm.
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graph G and terminals T ⊆ V , find max number of Steiner trees that are
internally vertex disjoint (i.e. on Steiner nodes).

The same results we proved for PEU also hold for PVU:

Theorem 6 (Cheriyan & S.): Given G and T ⊆ V , it is NP-hard to decide if G
has two vertex-disjoint Steiner trees.

Theorem 7 (Cheriyan & S.): PVU is APX-hard even if |T | = 4.

Will come back to PVU at the end of the talk.

We can also define the same problems in the directed version.

Packing Edge-disjoint Direct Steiner trees (PED): Given directed graph G and
terminals T ⊆ V containing a root r, find max number of edge-disjoint (rooted)
Steiner trees.

Packing Vertex-disjoint Direct Steiner trees (PVD): Similar to PED, except that
trees have to be disjoint on Steiner nodes.
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Theorem 8 (Cheriyan & S.): Given an instance I = (G, k) of PED, there is an
instance I ′ = (G′, k) of PVD with |G′| = poly(|G|), such that G has k
edge-disjoint directed Steiner trees iff G′ has k vertex-disjoint Steiner trees.

Proof: Basic idea is let G′ be the line graph of G.

G′ contains all the terminals of G as terminals (and root as root), and

one Steiner node vxy for every
edge xy ∈ E(G).

For each s ∈ V (G) we add the
following edge to G′:

edge-disjoint Steiner trees in G
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Theorem 8 (Cheriyan & S.): Given an instance I = (G, k) of PED, there is an
instance I ′ = (G′, k) of PVD with |G′| = poly(|G|), such that G has k
edge-disjoint directed Steiner trees iff G′ has k vertex-disjoint Steiner trees.

Proof: Basic idea is let G′ be the line graph of G.

G′ contains all the terminals of G as terminals (and root as root), and

one Steiner node vxy for every
edge xy ∈ E(G).

For each s ∈ V (G) we add the
following edge to G′:

edge-disjoint Steiner trees in G
correspond to vertex-disjoint
Steiner trees in G′, and vice versa.

Similarly, we can reduce PVD to PED.

Therefore, we only focus on finding algorithms and proving hardness for PED.
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How about PED?

Theorem 9 (Cheriyan & S.): For any ε > 0, there is an O(m
1
2+ε)-approximation

for PED, with m being the number of edges.

The basic idea is:

1. Formulate PED as an ILP

2. Relax it to LP (i.e. consider the fractional PED)

3. Try to solve this LP (maybe approximately)

4. use randomized rounding to obtain an integral solution.

Take the LP corresponding to Fractional PED and and consider the dual LP.

The separation oracle for the dual is min directed Steiner tree problem.

Min Directed Steiner: Given directed weighted graph G and T ⊆ V containing
a root r, find min weight (rooted) Steiner tree.
This is NP-hard, even hard to approximate within O(log2 n) factor.
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solution to the fractional instance If , then we can find a solution to I with
value at least O( ϕ√

m
).

Proof: If ϕ ≤
√

m simply find one Steiner tree and return it.

Else, for every tree T ∈ T with xT > 0, pick it with prob. xT/
√

m.

Define XT = 1 iff we pick tree T , and let X =
∑

T∈T XT .
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∑
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T∈T
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∏
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Pr[Ae] ≥ (1− 10
m

)m ≥ e−10.

Also, by Chernoff bound, Pr[X < E[X]
10 ] ≤ e−100ϕ/2

√
m ≤ e−50

Thus: Pr[(X < E[X]
10 ) ∨ (∃e ∈ E : Ae)] < e−50 + 1− e−10 < 1− e−9,

So there is an outcome of XT ’s, s.t.
(∧

e∈E Ae

)
∧

(
X ≥ ϕ

10
√

m

)
. We can

derandomize this using the method of conditional probabilities.
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INSTANCE: A directed graph G(V,E), distinct vertices x1, y1, x2, y2 ∈ V .
QUESTION: Are there two edge-disjoint directed paths, one from x1 to y1 and
the other from x2 to y2 in G?

Let I = (G, x1, y1, x2, y2) be an instance of 2DIRPATH and
ε > 0 be given.

We construct a digraph H which has several copies of G.
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Create a root r and connect it to
{a1, . . . , aN}, and now put edges
aibi, for 1 ≤ i ≤ N

All edges are directed top to bottom.
Let T = r ∪ {b1, . . . , bN}.

Lemma 1: If G is a “yes” instance of
2DIRPATH then H has N
edge-disjoint Steiner trees.

Lemma 2: If G is a “no” instance of 2DIRPATH then H has no more than 1
edge-disjoint Steiner tree.

Thus deciding between 1 and N Steiner trees in H is NP-hard.
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algorithm for PVD.

Back to the undirected setting

we showed that both PEU and PVU are APX-hard even for constant number
of terminals and we have constant approximation for PEU.

What about approximation algorithms for PVU?

We prove that PVU is significantly harder than PEU:

Theorem (Cheriyan & S.): PVU cannot be approximated with ratio (1− ε) ln n,
for any ε > 0, unless NP ⊆ DTIME(nlog log n).

proof: Reduction from Set-Cover Packing.
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Given G(V1 ∪ V2, E), add vertex t0 and connect to V1. Let T = V2 ∪ {t0}.

If S1, . . . , Sp form a set-cover then Ti = t0 ∪ Si ∪ V2 (for 1 ≤ i ≤ p form a set of
V.D. Steiner trees.

Conversely, if T1, . . . , Tp are V.D. Steiner trees, because V2 is independent set,
there is a set Si ⊂ V (Ti) s.t. covers V2.
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• Formulate PVU as an ILP, relax it to an LP, and consider the dual.

• The separation oracle for dual is minimum node-weighted Steiner tree
problem.

Theorem (Guha & Khuller’03): Min. node-weighted Steiner tree can be
approximated within O(log n).

• We can also prove:
Theorem: There is an α-approx algorithm for fractional PVU iff there is an
α-approx algorithm for min node-weighted Steiner tree.=⇒

Corollary: There is an O(log n) approx algorithm for fractional PVU.

• Use randomized rounding to get an O(log n
√

n) approximation.



18

Summary of results and Open problems

Problems Approx. Alg Hardness

PEU 26 (L. Lau) 1 + ε0

PVU O(log n
√

n) Ω(log n)

PED O(m
1
2+ε) Ω(m

1
3−ε)

PVD O(n
1
2+ε) Ω(n

1
3−ε)



18

Summary of results and Open problems

Problems Approx. Alg Hardness

PEU 26 (L. Lau) 1 + ε0

PVU O(log n
√

n) Ω(log n)

PED O(m
1
2+ε) Ω(m

1
3−ε)

PVD O(n
1
2+ε) Ω(n

1
3−ε)

• Close the gap for PEU.



18

Summary of results and Open problems

Problems Approx. Alg Hardness

PEU 26 (L. Lau) 1 + ε0

PVU O(log n
√

n) Ω(log n)

PED O(m
1
2+ε) Ω(m

1
3−ε)

PVD O(n
1
2+ε) Ω(n

1
3−ε)

• Close the gap for PEU.

• We know PEU with 4 terminals
is APX-hard. What about 3
terminals? Is it NP-complete?



18

Summary of results and Open problems

Problems Approx. Alg Hardness

PEU 26 (L. Lau) 1 + ε0

PVU O(log n
√

n) Ω(log n)

PED O(m
1
2+ε) Ω(m

1
3−ε)

PVD O(n
1
2+ε) Ω(n

1
3−ε)

• Close the gap for PEU.

• We know PEU with 4 terminals
is APX-hard. What about 3
terminals? Is it NP-complete?

• The gap for PVU is not even
within the same class!



18

Summary of results and Open problems

Problems Approx. Alg Hardness

PEU 26 (L. Lau) 1 + ε0

PVU O(log n
√

n) Ω(log n)

PED O(m
1
2+ε) Ω(m

1
3−ε)

PVD O(n
1
2+ε) Ω(n

1
3−ε)

• Close the gap for PEU.

• We know PEU with 4 terminals
is APX-hard. What about 3
terminals? Is it NP-complete?

• The gap for PVU is not even
within the same class!
Is there an O(logk n) approx. for
PVU?



18

Summary of results and Open problems

Problems Approx. Alg Hardness

PEU 26 (L. Lau) 1 + ε0

PVU O(log n
√

n) Ω(log n)

PED O(m
1
2+ε) Ω(m

1
3−ε)

PVD O(n
1
2+ε) Ω(n

1
3−ε)

• Close the gap for PEU.

• We know PEU with 4 terminals
is APX-hard. What about 3
terminals? Is it NP-complete?

• The gap for PVU is not even
within the same class!
Is there an O(logk n) approx. for
PVU?

• What is the integrality gap for
PVU?



18

Summary of results and Open problems

Problems Approx. Alg Hardness

PEU 26 (L. Lau) 1 + ε0

PVU O(log n
√

n) Ω(log n)

PED O(m
1
2+ε) Ω(m

1
3−ε)

PVD O(n
1
2+ε) Ω(n

1
3−ε)

• Close the gap for PEU.

• We know PEU with 4 terminals
is APX-hard. What about 3
terminals? Is it NP-complete?

• The gap for PVU is not even
within the same class!
Is there an O(logk n) approx. for
PVU?

• What is the integrality gap for
PVU?

Thanks!


