
On Sum Coloring of Graphs

Mohammad R. Salavatipour

Department of Computer Science, University of Toronto

10 King's College Road, Toronto, Ontario M5S 3G4, Canada

mreza@cs.toronto.edu

Abstract

The sum coloring problem asks to �nd a vertex coloring of a given graph G, using natural

numbers, such that the total sum of the colors is minimized. A coloring which achieves this total

sum is called an optimum coloring and the minimum number of colors needed in any optimum

coloring of a graph is called the strength of the graph. We prove the NP-hardness of �nding the

vertex strength for graphs with � = 6. Polynomial time algorithms are presented for the sum

coloring of chain bipartite graphs and k-split graphs. The edge sum coloring problem and the

edge strength of a graph are de�ned similarly. We prove that the edge sum coloring and the edge

strength problems are both NP-complete for k-regular graphs, k � 3. Also we give a polynomial

time algorithm to solve the edge sum coloring problem on trees.

1 Introduction

We consider the following kind of graph coloring, called sum coloring: for a given graph G, �nd a

proper vertex coloring of G, using natural numbers, such that the total sum of the colors of vertices

is minimized amongst all proper colorings of G. This minimum total sum of colors is called the

chromatic sum of G, and is denoted by �(G). We refer to a vertex coloring whose total sum is �(G)

as an optimum vertex coloring. Assume that P is an optimum vertex coloring of a graph G with k

colors. It is clear that k � �(G), but not necessarily k = �(G), even for trees (See �gure 1). The

minimum number of colors needed in any optimum coloring of a graph G is called the strength of

G, and is denoted by s(G). Similar to the vertex sum coloring problem we can de�ne the edge sum

coloring, to be an edge coloring using natural numbers, such that the total sum of the colors of the

edges of the graph is minimized. The edge chromatic sum, denoted by �

0

(G), and the edge strength,

denoted by s

0

(G), are de�ned in a similar way. Note that there are some graphs for which the edge

strength and the chromatic index are not equal, i.e s

0

(G) > �

0

(G). See [6] for such an example.

The notion of a coloring in which we want to minimize the total sum of colors �rst appeared in

1987 from two di�erent sources. In theoretical graph theory, Kubika [12] in her Ph.D thesis introduced

the chromatic sum of a graph with the above notation. Supowit [18] introduced the optimum cost

chromatic partition (OCCP) problem, from its application in VLSI design, in which we have to �nd

a proper coloring of a graph, using a given set of colors fc

1

; c

2

; : : : ; c

k

g, such that the total sum of

colors is minimized. There are some other applications for this problem in scheduling and resource

allocation, see [1].

In [15], Kubika and Schwenk proved the NP-completeness of the chromatic sum problem and gave

a polynomial time algorithm to �nd the chromatic sum of trees. They showed that for any integer k,
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Figure 1: A coloring of a tree with total sum 12 using 2 colors, and a coloring with total sum 11 using

3 colors

there exists a tree T , whose strength is k, and k 2 
(logn) where n is the size of T . In [3] Erd�os et al.

continued the study of graphs that require many colors in their optimum vertex colorings. In another

article, Erd�os et al. [19] gave some interesting tight bounds on the chromatic sum of a graph in

terms of the number of vertices and edges of the graph. Hajiabolhassan et al. [6] considered optimum

vertex colorings of graphs with s(G) colors. A nice result they proved is that s(G) � �, where �

is the maximum degree of G, if G is neither a complete graph nor an odd cycle. In [7] Halld�orsson

and Kortsarz showed that for any k-colorable graph G, s(G) 2 O(k logn), where n is the number of

vertices.

Kroon et al. [13] proved the NP-hardness of the OCCP problem on interval graphs and gave a

linear time algorithm for trees. Then, Jansen [9] showed that the OCCP problem for cographs (graphs

with no induced P

4

) and for partial k-trees can be solved in time O(jV j+ jEj) and O(jV j log

k+1

jV j),

respectively. On the one hand he showed the NP-completeness of this problem on bipartite graphs

and permutation graphs, and on the other hand he proved that the OCCP problem can be solved

for cobipartite graphs in polynomial time. We have proved in [17] that the greedy algorithm which

�nds maximal independent sets consecutively can solve the OCCP problem for P

4

-reducible graphs

(graphs in which each vertex is in at most one P

4

), which strictly contain cographs. Therefore this

result extends the result of Jansen, for cographs.

The only results about the edge sum coloring problem, as far as we know, appeared in [6] and [1].

The edge sum coloring problem is introduced independently in each of these articles as the vertex sum

coloring of line graphs. Hajiabolhassan et al. [6] introduced the notion of edge strength, and similar

to Vizing's theorem, they proved that for every graph G, s

0

(G) � �+ 1.

The organization of the paper is as follows: In the next section we show that �nding the strength

of a graph with � = 6 is NP-hard. This is the �rst complexity result on the strength of graphs. In

section 3 some algorithms for various restricted classes of graphs are presented. We show that there is

a linear time algorithm for �nding an optimum vertex coloring of chain bipartite graphs. The author

proves in [17] that the sum coloring problem is NP-complete for split graphs. Here we show that if

we bound the outgoing degree of each vertex in one of the parts of a split graph, the clique part or

the independent set part, then there is a polynomial time algorithm for them. The time complexity

of the edge sum coloring problem and the edge strength problem are both proved to be NP-complete

in section 4. Finally in the last section we provide a polynomial time algorithm to solve the edge sum

coloring problem for trees. We note that the author has some results on the generalization of sum

coloring to list sum coloring in [17].

2 Complexity of �nding the vertex strength

Since the sum coloring problem seems no easier than the standard vertex coloring problem, one can

expect that �nding the vertex strength is NP-hard. We prove that in fact it is NP-hard to �nd the

vertex strength even for a graph with � = 6. Our proof is very similar to the proof of Kubika and

Schwenk [15] for proving the NP-completeness of �nding the chromatic sum.
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Theorem 2.1 The vertex strength problem restricted to the class of graphs with maximum degree 6

is NP-hard.

Proof: First note that we do not know whether this problem belongs to NP or not. To show the

NP-hardness, we are going to reduce the vertex 3-coloring of graphs with maximumdegree 4 problem,

which is NP-complete even for the class of planar graphs [5], to this problem. Consider an instance

of the vertex coloring problem. Let G(V;E) be the graph of this instance. Construct G

0

(V

0

; E

0

), the

cartesian product of G�K

3

, as follows: take three copies of G, called G

1

, G

2

, and G

3

. For a vertex

v 2 V , let v

1

, v

2

, and v

3

be the corresponding vertices of G

1

, G

2

, and G

3

, respectively, and connect

them together using three new edges. Since the degree of each vertex in G is at most 4, and each

v

i

2 G

0

is connected to two more vertices, therefore the maximumdegree of G

0

is at most 6. It is clear

that we can construct G

0

in polynomial time. Now we claim that:

�(G) � 3() s(G

0

) = 3:

First suppose that s(G

0

) = 3. It means that there is an optimum vertex coloring of G

0

in which

only 3 colors are used. Since G is a subgraph of G

0

, this coloring induces a proper 3-coloring for G.

Therefore �(G) � 3.

Now assume that �(G) � 3. Therefore we can color G

1

with 3 colors, independently. To obtain a

proper 3-coloring ofG

0

, we use the same partition of vertices ofG

1

for G

2

andG

3

, with the modi�cation

that the color of the j'th class of G

i

is (i+ j � 2 mod 3) + 1, instead of j. Thus each G

i

(1 � i � 3) is

colored with colors 1; 2; 3, and also this is a proper coloring of G

0

. It is not di�cult to see that this is

an optimum vertex coloring for G

0

. This follows since each complete subgraph of size 3 of G

0

, which

contains the corresponding vertices of copies of G, requires at least 3 colors, in any proper coloring

of G

0

. In this coloring each of these complete subgraphs are colored with colors 1; 2; 3, which clearly

gives the least possible sum of colors. Thus this is an optimum vertex coloring of G

0

, and clearly uses

the least possible number of colors. Therefore s(G

0

) = 3.

Corollary 2.2 For a given graph G, it is NP-hard to determine if s(G) � k, for any �xed k � 3.

We don't know the time complexity of deciding if the strength of a given graph is equal to 2, but

we expect it to be NP-hard.

3 Algorithms for some restricted classes of graphs

Unlike the standard vertex coloring, the sum coloring problem is NP-complete for bipartite graphs,

permutation graphs, and split graphs [9, 2, 17]. So it is natural to consider this problem for restricted

families of graphs. In this section we show that we have polynomial time algorithms to solve this

problem on chain bipartite graphs, and k-split graphs.

3.1 Vertex sum coloring of chain bipartite graphs

The notion of chain graphs was introduced by Yannakakis [20, 21].

De�nition 3.1 A bipartite graph G(X[Y;E) is called a chain graph if for every two vertices x

i

; x

j

2

X, we have either N (x

i

) � N (x

j

) or N (x

j

) � N (x

i

).
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In other words, there is an ordering of the vertices of X, x

�

1

; x

�

2

: : : ; x

�

n

, where jXj = n, such

that N (x

�

i

) � N (x

�

i+1

), 1 � i < n. We call this property, the chain property. It is not di�cult to see

that if we have an ordering of the vertices of X, having the chain property, we can �nd an ordering

of the vertices of Y with this property, as well. We have to note that recognition of chain bipartite

graphs and �nding an ordering of each part having the chain property can be easily done in linear

time.

Let G(X [ Y;E) be a chain bipartite graph. Without loss of generality, we assume that the graph

is connected. Also, let x

1

; x

2

; : : : ; x

n

and y

1

; y

2

; : : : ; y

m

(jXj = n and jY j = m) be the orderings of X

and Y respectively, having the chain property. By G

ij

we mean the induced subgraph of G on vertices

fx

1

; x

2

; : : : ; x

i

g [ fy

1

; y

2

; : : : ; y

j

g. For a pair (i; j) where G

ij

has no edges, consider the following

vertex sum coloring of G: assign color 1 to all of the vertices of G

ij

. If n � i � m � j then assign

color 2 to x

i+1

; : : : ; x

n

and assign color 3 to y

j+1

; : : : ; y

m

. Otherwise, if n � i < m � j then assign

color 3 to x

i+1

; : : : ; x

n

and assign color 2 to y

j+1

; : : : ; y

m

. Let S

ij

be the total sum of this coloring.

We call a pair (i; j) a proper pair if the set of vertices of G

ij

is a maximal independent set of G. Let

S

min

be the minimum of S

ij

over all proper pairs (i; j). The algorithm computes S

min

and returns

the minimum of fS

min

; 2n+m;n+ 2mg as the chromatic sum of G. The last two values are the total

cost of the trivial 2-colorings of G. We refer to �gure 1 to see why a 2-coloring does not necessarily

give an optimum coloring of a chain bipartite graph.

Theorem 3.2 The chromatic sum of G is equal to the minimum of fS

min

; 2n+m;n+ 2mg.

Proof: Let C be an optimum vertex coloring of G. We denote the color of vertex v by c(v) and

its neighborhood by N (v). If no vertex in X has color 1, then all of the vertices in Y must have color

1 and so all the vertices in X must have color 2. Thus the total cost of C will be 2n+m. Similarly if

no vertex in Y has color 1, then the total cost of C will be n+ 2m.

Now assume that there is at least one vertex with color 1 in each part. Let i be the largest index

such that c(x

i

) = 1, and let j be the largest index such that c(y

j

) = 1. We know that C is an optimum

vertex coloring, and N (x

k

) � N (x

i

), for k < i. Therefore, all the vertices x

1

; x

2

; : : : ; x

i�1

must have

color 1, too. Similarly all the vertices y

1

; y

2

; : : : ; y

j�1

must have color 1. Thus the vertex set of G

ij

is

an independent set. It follows from the de�nition of i and j that the color of the vertices x

i+1

; : : : ; x

n

and y

j+1

; : : : ; y

m

must be greater than 1. So each of them must be connected to a vertex having color

1, otherwise we could simply change its color to 1. In particular, x

i+1

is connected to y

a

for some

a � j, and y

j+1

is connected to x

b

for some b � i. Because of the chain property it follows that x

i

is connected to all of the vertices y

j+1

; : : : ; y

m

, and y

j

is connected to all of the vertices x

i+1

; : : : ; x

n

,

and the subgraph G�G

ij

is a complete bipartite subgraph. Therefore G

ij

is a maximal independent

set. Thus (i; j) is a proper pair. Note that if k > i and l > j, then no two vertices x

k

and y

l

, can

have the same color. Now it is clear that the vertices of the larger of the two sets fx

i+1

; : : : ; x

n

g and

fy

j+1

; : : : ; y

m

g must be colored with color 2, and the vertices of the smaller one with color 3. This

kind of coloring is the same as the one we use in the algorithm when we select a proper pair.

To �nd a proper pair (i; l) for a �xed i, �rst we �nd the largest number j such that x

i

y

j

62 E. If

such a number does not exists then it's clear that there is no proper pair having i as the �rst element.

We now show that (i; j) is a proper pair and that it is the only proper pair having i as the �rst

element. This follows from the fact that, if x

a

y

b

2 E, 1 � a � i and 1 � b � j, then because of the

chain property, x

i

y

b

2 E. Since b � j, this implies that x

i

y

j

2 E, which is a contradiction. Therefore,

to �nd a proper pair with (i; j) for a �xed i, it takes at most O(deg(x

i

)) time. So overall, the time

complexity of �nding all proper pairs is O(jEj). We have proved the following theorem:

Theorem 3.3 The chromatic sum of chain bipartite graphs can be found in time O(jEj+ jV j).
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3.2 Vertex sum coloring of k-split graphs

A graph is a split graph if its vertices can be partitioned into a clique and an independent set. The

author has proved in [17] that the sum coloring problem is NP-complete for split graphs, and therefore

for chordal graphs, by giving a reduction from the Exact Cover by 3-sets. We introduce two subclasses

of split graphs where the sum coloring problem can be solved for them e�ciently. The following two

lemmas will be used later in our algorithms:

Lemma 3.4 If G(C [ I; E) is a split graph, where C is the complete part and I is the independent

part and jCj = n

C

, then s(G) � n

C

+ 1.

Proof: Consider an optimum vertex coloring of G. Let i be the smallest positive number such that

none of the vertices of C have color i. In this case, no vertex in I can have a color greater than i,

otherwise we can simply change the color of that vertex to i. So the only colors (possibly) used in I

are 1; 2; : : :; i. It follows that there can't be any color greater than n

C

+ 1 in C, otherwise there is

some color x (i + 1 � x � n

C

+ 1) that is not used in C, and we can simply change the color greater

than n

C

+ 1 to x.

Lemma 3.5 For split graph G(C [ I; E), where jCj = n

C

and jIj = n

I

, we have:

(i) �(G) �

n

C

(n

C

+1)

2

+ n

C

+ n

I

.

(ii) If s(G) = n

C

+ 1 then �(G) =

n

C

(n

C

+1)

2

+ n

C

+ n

I

.

Proof: (i) Consider the vertex sum coloring of G in which all of the vertices of I have color 1,

and the vertices of C are colored by colors 2; 3; : : : ; n

C

+ 1. It is trivial that this is a proper coloring

and the total sum of colors is

n

C

(n

C

+1)

2

+ n

C

+ n

I

:

(ii) If s(G) = n

C

+ 1 then there are n

C

+ 1 vertices such that the set of colors of these vertices

is exactly f1; 2; : : : ; n

C

+ 1g, and the total sum of the colors of the other vertices is at least n

I

� 1.

Therefore:

�(G) �

(n

C

+ 1)(n

C

+ 2)

2

+ n

I

� 1 =

n

C

(n

C

+ 1)

2

+ n

C

+ n

I

:

The result follows from part (i).

De�nition 3.6 A split graph G(C [ I; E), where C is a complete subgraph and I an independent set,

is a k

I

-split graph if the degree of each vertex of I is at most k. It is a k

C

-split graph if the number

edges of each vertex in C going out to the vertices in I is at most k. We call a graph k-split if it is

either k

C

-split or k

I

-split graph.

Let G(C [ I; E) be a k

I

-split graph. By lemma 3.4 and the fact that C is a clique of size n

C

, we

have: n

C

� s(G) � n

C

+ 1. Lemma 3.5 gives the exact value of �(G) and its proof gives an optimum

vertex coloring for the case s(G) = n

C

+ 1.

Now suppose that s(G) = n

C

. We denote the set of neighbors of a vertex c 2 C that are in set

I by N

I

(c). Let P be an optimum coloring of G with n

C

colors. Clearly C is colored with colors

1; 2; : : : ; n

C

. Let v

c

i

be the vertex of C that has color i in P . The set of vertices in I that have color

1 are exactly those vertices that are not connected to v

c

1

, i.e the vertices in N

I

(v

c

1

) are colored by at

least 2. Among them, those that are not connected to v

c

2

have color 2, and the remainder has color

at least 3. In general, the number of vertices having color greater than i in I, is:

jN

I

(v

c

1

) \N

I

(v

c

2

) : : :\N

I

(v

c

i

)j:
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Note that since the degree of each vertex in I is bounded by k, no vertex in I has a color greater

than k + 1 in any optimum vertex coloring of G. Let:

S = jN

I

(v

c

1

)j+ jN

I

(v

c

1

) \N

I

(v

c

2

)j+ : : :+ j

k

\

i=1

N

I

(v

c

i

)j:

Therefore, the total sum of colors in I is n

I

+ S and the total sum of colors of coloring P is:

n

C

(n

C

+ 1)

2

+ n

I

+ S:

So, to �nd an optimum vertex coloring of G, using n

C

colors, we must minimize the term S. We

can simply consider all permutations � with k elements, such that each element is a vertex of C, and

compute the value of S for each permutation by assigning color i to the vertex v

c

�(i)

of C, and then

taking the minimum over all values of S. It is straightforward to compute the value of S for each

permutation in time O(n

I

) and the number of such permutations is O(n

k

C

). The chromatic sum of G

is the minimum between the minimum value of S and n

C

, plus the term

n

C

(n

C

+1)

2

+ n

I

.. Hence:

Theorem 3.7 Let G(C [ I; E) be a k

I

-split graph, for �xed k. Then the chromatic sum and also an

optimum vertex coloring of G can be computed in O(n

I

� n

k

C

).

Now, let G(C [ I; E) be a k

C

-split graph. Again, if s(G) = n

C

+ 1 then we know the exact value

of �(G). Assume that s(G) = n

C

and consider an optimum vertex coloring of G, called P . Let v

c

1

be

the vertex in C that has color 1 in P . Clearly every vertex in I �N

I

(v

c

1

) also has color 1. We show

that no vertex in N

I

(v

c

1

) can have a color greater than k+1. Otherwise, let v

x

be a vertex in N

I

(v

c

1

)

with color x, such that k+1 < x � n

C

. Therefore there exists a color y such that y � k+1 and y has

not appeared on any vertex in N

I

(v

c

1

). Let v

c

x

and v

c

y

be the vertices of C having colors x and y,

respectively. By exchanging the colors of v

c

x

and v

c

y

we can assign color y to all the vertices of N

I

(v

c

1

)

colored x. This exchange reduces the total sum of the colors of P , which is a contradiction. So, to

�nd an optimum coloring of G, using n

C

colors, we select one of the vertices of C, call v

c

1

, and assign

color 1 to it and to all the vertices in I � N

I

(v

c

1

). Then we consider all the possible assignments

of colors 2; 3; : : : ; k + 1 to the vertices of N

I

(v

c

1

). Note that since the degree of v

c

1

is at most k,

there is a constant number of such assignments. Also, for each assignment of colors to the vertices

in N

I

(v

c

1

), we have to �nd a coloring for the uncolored vertices of C that is feasible with coloring of

N

I

(v

c

1

). To do so we construct a bipartite graph G

0

(X [ Y;E

0

), such that X = fx

1

; x

2

; : : : ; x

n

C

�1

g,

Y = fy

2

; y

3

; : : : ; y

k+1

g, and x

i

y

j

2 E

0

if and only if there is no edge between the ith uncolored vertex

of C and the vertex in N

I

(v

c

1

) with color j. It is not di�cult to see that by using a bipartite matching

in G

0

that covers all the vertices in Y (if there exists such a matching), we can �nd those vertices of C

that will have colors 2; 3; : : : ; k+ 1, and then color the rest of vertices of C with colors k + 2; : : : ; n

C

arbitrarily. By taking the minimum between the total sum of the colors of each of these colorings, we

�nd the sum of the optimum coloring using n

C

colors. Finally, we have to take the minimumbetween

this amount and the total sum of the coloring using n

C

+ 1 colors. Finding a maximum matching in

G

0

can be done in time O(n

C

), by applying the augmenting path algorithm k times. Therefore, for

each assignment of colors to the vertices in N

I

(v

c

1

) we spend O(n

C

) time to complete the coloring.

Also, at the �rst stage, there are n

C

choices for selecting the vertex v

c

1

. Thus, overall we spend O(n

2

C

)

time to �nd the minimum sum of colors between all colorings using n

C

colors.

Theorem 3.8 If G(C [ I; E) is a k

C

-split graph, for �xed k, then the chromatic sum and also an

optimum vertex coloring of G can be computed in O(n

2

C

).

Corollary 3.9 The chromatic sum of k-split graphs can be computed in time O(n

I

� n

k

C

).
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4 Complexity of the edge chromatic sum and the edge strength

problems

In [1] Bar-noy et al. proved that the edge sum coloring problem is NP-hard for general multigraphs,

but the complexity of this problem was left open for simple graphs. In this section, we study edge

sum coloring of k-regular graphs for k � 3. We prove that �nding the edge chromatic sum and the

edge strength of a k-regular graph are both NP-complete. Holyer [8] proved that the chromatic index

problem restricted to cubic graphs is NP-complete. Later, Leven and Galil [16] generalized this result

to k-regular graphs, k � 3. By Vizing's theorem and Hajiabolhassan et al. [6] we know that the

chromatic index and the edge strength of a k-regular graph are either k or k + 1. First we show that

�nding the edge chromatic sum of a k-regular graph is NP-complete.

Instance: A k-regular graph G of size n, k � 3.

Question: Is �

0

(G) =

nk(k+1)

4

?

Note that since the degree of each vertex of a k-regular graph is k, in any edge coloring of G the

total sum of the colors used to color the incident edges of any vertex is at least

k(k+1)

2

. Therefore,

�

0

(G) �

nk(k+1)

4

.

Theorem 4.1 The edge chromatic sum problem is NP-complete for k-regular graphs, k � 3.

Proof: First of all, it is trivial that this problem belongs to NP. To prove the NP-completeness we

use a reduction from the chromatic index problem. We prove that for k-regular graph G:

�

0

(G) =

nk(k + 1)

4

() �

0

(G) = k:

First, assume that �

0

(G) = k. This means that there exists a k-edge coloring of G, called C. Since

the degree of each vertex in G is k, all numbers 1; 2; : : : ; k must appear on the edges incident with

each vertex. So the total sum of the colors in C is equal to

nk(k+1)

4

. Therefore �

0

(G) =

nk(k+1)

4

.

Now, suppose that �

0

(G) =

nk(k+1)

4

. It su�ces to prove that any optimum edge coloring of G is

a k-edge coloring of G. Assume, by way of contradiction, that C is an optimum edge coloring of G

with k + 1 colors. So there exists at least one vertex such that color k + 1 is the color of one of its

incident edges. Therefore the total sum of the colors of the edges incident with that vertex is more

than

k(k+1)

2

. We have the lower bound

k(k+1)

2

for the sum of the colors of the edges of every other

vertex. Therefore the total sum of colors of the edges in G will be strictly greater than

nk(k+1)

4

, which

is a contradiction. Therefore, any optimum edge coloring of G is also a k-edge coloring of G, and so

�

0

(G) = k.

Corollary 4.2 For a k-regular graph G, k � 3, we have: s

0

(G) = k() �

0

(G) = k:

Proof: If s

0

(G) = k then trivially �

0

(G) = k. Now assume that �

0

(G) = k. From the arguments we

had in the proof of theorem 4.1 it follows that if s

0

(G) > k then �

0

(G) >

nk(k+1)

4

. Also we know that

the sum of any k-edge coloring of G is

nk(k+1)

4

. This proves that in this case s

0

(G) = k.

Since �nding the chromatic index is NP-complete for the class of k-regular graphs, k � 3, therefore:
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Theorem 4.3 Finding the edge strength of k-regular graphs is NP-complete, k � 3.

5 Edge sum coloring of trees

In this section, we give a polynomial time algorithm that �nds the edge chromatic sum of trees. We

can �nd an optimum edge coloring as well, by storing some extra information in the data tables.

Assume that we are given tree T of size n, with a Breath First Search ordering of it. For vertex v

of T , we denote the subtree rooted at v by T

v

. By lower edges of v, we mean the set of edges that

connect v to its children. We denote the degree of vertex v by deg(v) and assume that the maximum

degree is �. If C is an edge coloring of T , the set of colors used for the lower edges of v, is denoted

by L

v

. Also, as we mentioned in the previous section, we know that s

0

(T ) � �+ 1.

The algorithm uses the dynamic programming method. We have a n � (� + 1) table, called S,

such that:

S[v; j] = The cost of an optimum edge coloring of T

v

such that j 62 L

v

:

For 1 � j � �+ 1, the initial values of S are �lled as:

�

S[x; j] = 0 x is a leaf

S[x; j] =1 otherwise:

The algorithm computes the values of this table in a bottom-up way, from the leaves of the tree

up to the root. It computes the value S[v; j] for each internal node v, after it has computed the

values for the children of v. Suppose that u

1

; u

2

; : : : ; u

k

are the children of internal node v. Assume

that S[u

i

; j] is computed, for 1 � i � k and 1 � j � � + 1, and we want to compute the value

of S[v;m] (1 � m � � + 1), the cost of an optimum edge coloring for T

v

, such that m 62 L

v

.

Construct the complete weighted bipartite graph G

v

= (A [ B;E

0

), where A = fa

1

; a

2

; : : : ; a

k

g,

B = fb

j

jj 6= m; 1 � j � �+ 1g, and the weight of edge a

i

b

j

is w(a

i

b

j

) = S[u

i

; j] + j. Now �nd a

min-weighted maximum matching in G

v

, and call it M . This matching covers all the vertices of A.

We assign the colors of the lower edges of v, according to the following rule:

The color of vu

i

is c

i

, i� edge a

i

b

c

i

is in M .

It is easy to see that by this assignment the value of S[v;m] is equal to the sum of the weights of

M , which is:

X

e2M

w(e) =

X

a

i

b

c

i

2M

S[u

i

; c

i

] + c

i

:

Knowing how to compute the value of S[v;m], from the computed values of children of v, the

algorithm starts from the leaves of T , and �lls in the table, from bottom to up, until it computes the

value of S[r;�+1], where r is the root of T . One can easily verify that the minimum value of S[r; j],

for 1 � j � �+ 1, is the edge chromatic sum of the tree.

To �nd an optimum edge coloring for T , we only need to keep track of the colors of the lower edges

of each vertex v, when we compute S[v;m]. This can be easily done by storing this extra information

for each entry of the table S.

The most time consuming step of the algorithm is to �nd the min-weighted matching. If the

vertex v has k children, then the size of the bipartite graph G

v

, is of O(�). The fastest min-weighted

maximummatching algorithm works in time O(jEjjV j log jV j) and is due to Galil et al. [4]. By using

this algorithm, for each vertex v, and each value m � �+1, we spend O(deg(v)�

2

log�) time. Thus
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the total amount of time for computing the entries of the row v of the table S is O(deg(v)�

3

log�).

Summing up these values for all v, we have the bound O(n

4

logn) for the time complexity of this

algorithm. Therefore, we can say:

Theorem 5.1 An optimum edge sum coloring of a tree, and therefore its edge chromatic sum, can be

found in time O(n

4

logn).

More general version: We note that the above algorithm, with a few modi�cations, can also be

used to solve the more general case of the edge sum coloring problem, similar to the OCCP problem

for vertex sum coloring, where the color costs are from a given set C = fc

1

; c

2

; : : : ; c

l

g.
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