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Abstract

The sum coloring problem asks to find a vertex coloring of a given graph G, using natural
numbers, such that the total sum of the colors is minimized. A coloring which achieves this total
sum 1s called an optimum coloring and the minimum number of colors needed in any optimum
coloring of a graph is called the strength of the graph. We prove the NP-hardness of finding the
vertex strength for graphs with A = 6. Polynomial time algorithms are presented for the sum
coloring of chain bipartite graphs and k-split graphs. The edge sum coloring problem and the
edge strength of a graph are defined similarly. We prove that the edge sum coloring and the edge
strength problems are both NP-complete for k-regular graphs, & > 3. Also we give a polynomial
time algorithm to solve the edge sum coloring problem on trees.

1 Introduction

We consider the following kind of graph coloring, called sum coloring: for a given graph G, find a
proper vertex coloring of (4, using natural numbers, such that the total sum of the colors of vertices
is minimized amongst all proper colorings of . This minimum total sum of colors is called the
chromatic sum of G, and is denoted by X(G). We refer to a vertex coloring whose total sum is 2(G)
as an opltimum verter coloring. Assume that P is an optimum vertex coloring of a graph G with &
colors. Tt is clear that k > x(G), but not necessarily & = x(G), even for trees (See figure 1). The
minimum number of colors needed in any optimum coloring of a graph G is called the strength of
(i, and is denoted by s(G). Similar to the vertex sum coloring problem we can define the edge sum
coloring, to be an edge coloring using natural numbers, such that the total sum of the colors of the
edges of the graph is minimized. The edge chromatic sum, denoted by X/(G), and the edge strength,
denoted by s'(G), are defined in a similar way. Note that there are some graphs for which the edge
strength and the chromatic index are not equal, i.e s'(G) > x/(G). See [6] for such an example.

The notion of a coloring in which we want to minimize the total sum of colors first appeared in
1987 from two different sources. In theoretical graph theory, Kubika [12] in her Ph.D thesis introduced
the chromatic sum of a graph with the above notation. Supowit [18] introduced the optimum cost
chromatic partition (OCCP) problem, from its application in VLSI design, in which we have to find
a proper coloring of a graph, using a given set of colors {c1,¢a,..., ¢k}, such that the total sum of
colors is minimized. There are some other applications for this problem in scheduling and resource
allocation, see [1].

In [15], Kubika and Schwenk proved the NP-completeness of the chromatic sum problem and gave
a polynomial time algorithm to find the chromatic sum of trees. They showed that for any integer &,
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Figure 1: A coloring of a tree with total sum 12 using 2 colors, and a coloring with total sum 11 using
3 colors

there exists a tree T', whose strength is k, and k& € Q(logn) where n is the size of T'. In [3] Erdos et al.
continued the study of graphs that require many colors in their optimum vertex colorings. In another
article, Erdos et al. [19] gave some interesting tight bounds on the chromatic sum of a graph in
terms of the number of vertices and edges of the graph. Hajiabolhassan et al. [6] considered optimum
vertex colorings of graphs with s(G) colors. A nice result they proved is that s(G) < A, where A
is the maximum degree of G, if G is neither a complete graph nor an odd cycle. In [7] Halldérsson
and Kortsarz showed that for any k-colorable graph G, s(G) € O(klogn), where n is the number of
vertices.

Kroon et al. [13] proved the NP-hardness of the OCCP problem on interval graphs and gave a
linear time algorithm for trees. Then, Jansen [9] showed that the OCCP problem for cographs (graphs
with no induced P;) and for partial k-trees can be solved in time O(|V|+ |E|) and O(|V]log"** [V]),
respectively. On the one hand he showed the NP-completeness of this problem on bipartite graphs
and permutation graphs, and on the other hand he proved that the OCCP problem can be solved
for cobipartite graphs in polynomial time. We have proved in [17] that the greedy algorithm which
finds maximal independent sets consecutively can solve the OCCP problem for P,-reducible graphs
(graphs in which each vertex is in at most one Py4), which strictly contain cographs. Therefore this
result extends the result of Jansen, for cographs.

The only results about the edge sum coloring problem, as far as we know, appeared in [6] and [1].
The edge sum coloring problem is introduced independently in each of these articles as the vertex sum
coloring of line graphs. Hajiabolhassan et al. [6] introduced the notion of edge strength, and similar
to Vizing’s theorem, they proved that for every graph G, s'(G) < A+ 1.

The organization of the paper 1s as follows: In the next section we show that finding the strength
of a graph with A = 6 is NP-hard. This is the first complexity result on the strength of graphs. In
section 3 some algorithms for various restricted classes of graphs are presented. We show that there is
a linear time algorithm for finding an optimum vertex coloring of chain bipartite graphs. The author
proves in [17] that the sum coloring problem is NP-complete for split graphs. Here we show that if
we bound the outgoing degree of each vertex in one of the parts of a split graph, the clique part or
the independent set part, then there 1s a polynomial time algorithm for them. The time complexity
of the edge sum coloring problem and the edge strength problem are both proved to be NP-complete
in section 4. Finally in the last section we provide a polynomial time algorithm to solve the edge sum
coloring problem for trees. We note that the author has some results on the generalization of sum
coloring to list sum coloring in [17].

2 Complexity of finding the vertex strength

Since the sum coloring problem seems no easier than the standard vertex coloring problem, one can
expect that finding the vertex strength is NP-hard. We prove that in fact it is NP-hard to find the
vertex strength even for a graph with A = 6. Our proof is very similar to the proof of Kubika and
Schwenk [15] for proving the NP-completeness of finding the chromatic sum.



Theorem 2.1 The vertex strength problem restricted to the class of graphs with marimum degree 6

15 NP-hard.

Proof: First note that we do not know whether this problem belongs to NP or not. To show the
NP-hardness, we are going to reduce the vertex 3-coloring of graphs with maximum degree 4 problem,
which is NP-complete even for the class of planar graphs [5], to this problem. Consider an instance
of the vertex coloring problem. Let G(V, E) be the graph of this instance. Construct G'(V', E'), the
cartesian product of GG x K3, as follows: take three copies of (G, called (G1, G2, and G3. For a vertex
v € V, let v, va, and vg be the corresponding vertices of GG1, G2, and ('3, respectively, and connect
them together using three new edges. Since the degree of each vertex in G is at most 4, and each
v; € G is connected to two more vertices, therefore the maximum degree of G’ is at most 6. Tt is clear
that we can construct GG in polynomial time. Now we claim that:

X(G) €3« s(G') = 3.

First suppose that s(G’') = 3. Tt means that there is an optimum vertex coloring of G in which
only 3 colors are used. Since (G is a subgraph of G, this coloring induces a proper 3-coloring for G.

Therefore x(G) < 3.

Now assume that x(G) < 3. Therefore we can color GG with 3 colors, independently. To obtain a
proper 3-coloring of G’ we use the same partition of vertices of G for G5 and G'3, with the modification
that the color of the j’th class of G is (i +j — 2 mod 3) 4 1, instead of j. Thus each G; (1 < ¢ < 3)is
colored with colors 1,2, 3, and also this is a proper coloring of /. It is not difficult to see that this is
an optimum vertex coloring for G'. This follows since each complete subgraph of size 3 of ', which
contains the corresponding vertices of copies of (G, requires at least 3 colors, in any proper coloring
of . In this coloring each of these complete subgraphs are colored with colors 1,2, 3, which clearly
gives the least possible sum of colors. Thus this is an optimum vertex coloring of G/, and clearly uses
the least possible number of colors. Therefore s(G’) = 3. ]

Corollary 2.2 For a given graph G, it is NP-hard to determine if s(G) < k, for any fired k > 3.

We don’t know the time complexity of deciding if the strength of a given graph is equal to 2, but
we expect 1t to be NP-hard.

3 Algorithms for some restricted classes of graphs

Unlike the standard vertex coloring, the sum coloring problem is NP-complete for bipartite graphs,
permutation graphs, and split graphs [9, 2, 17]. So it is natural to consider this problem for restricted
families of graphs. In this section we show that we have polynomial time algorithms to solve this
problem on chain bipartite graphs, and k-split graphs.

3.1 Vertex sum coloring of chain bipartite graphs

The notion of chain graphs was introduced by Yannakakis [20, 21].

Definition 3.1 A bipartite graph G(X UY, E) is called a chain graph if for every two vertices x;, z; €
X, we have either N(z;) C N(z;) or N(x;) C N(z;).



In other words, there is an ordering of the vertices of X, @, @n, ..., &x,, where |X| = n, such
that N(zr,) C N(xr,,,), 1 <i<n. We call this property, the chain property. It is not difficult to see
that if we have an ordering of the vertices of X, having the chain property, we can find an ordering
of the vertices of Y with this property, as well. We have to note that recognition of chain bipartite
graphs and finding an ordering of each part having the chain property can be easily done in linear
time.

Let G(X UY, E) be a chain bipartite graph. Without loss of generality, we assume that the graph
is connected. Also, let @1, 22,...,2, and y1, 92, ..., ym (|JX| =n and [Y| = m) be the orderings of X
and Y respectively, having the chain property. By G;; we mean the induced subgraph of G on vertices
{e1,22, ..., 2} U{y1,y2,...,y;}. For a pair (i,j) where (G;; has no edges, consider the following
vertex sum coloring of G: assign color 1 to all of the vertices of G;;. If n —¢ > m — j then assign
color 2 to z;41,..., %, and assign color 3 to y;41,...,¥m. Otherwise, if n — ¢ < m — j then assign
color 3 to ®;41,...,%, and assign color 2 to y;41,...,Ym. Let Si; be the total sum of this coloring.
We call a pair (4, j) a proper pair if the set of vertices of (7;; is a maximal independent set of (. Let
Smin be the minimum of S;; over all proper pairs (7, j). The algorithm computes Syin and returns
the minimum of {Syin, 2n 4+ m, n+ 2m} as the chromatic sum of G. The last two values are the total
cost of the trivial 2-colorings of G. We refer to figure 1 to see why a 2-coloring does not necessarily
give an optimum coloring of a chain bipartite graph.

Theorem 3.2 The chromatic sum of G is equal to the minimum of {Spmin,2n +m,n + 2m}.

Proof: Let C' be an optimum vertex coloring of (G. We denote the color of vertex v by ¢(v) and
its neighborhood by N(v). If no vertex in X has color 1, then all of the vertices in ¥ must have color
1 and so all the vertices in X must have color 2. Thus the total cost of C' will be 2n + m. Similarly if
no vertex in Y has color 1, then the total cost of C' will be n 4+ 2m.

Now assume that there is at least one vertex with color 1 in each part. Let ¢ be the largest index
such that e(z;) = 1, and let j be the largest index such that ¢(y;) = 1. We know that C'is an optimum
vertex coloring, and N(zy) C N(#;), for k < 4. Therefore, all the vertices 1, za,..., ;-1 must have
color 1, too. Similarly all the vertices y;, 2, ...,y;—1 must have color 1. Thus the vertex set of Gy; is
an independent set. It follows from the definition of ¢ and j that the color of the vertices #;41, ..., 2,
and ¢;41, ..., Ym must be greater than 1. So each of them must be connected to a vertex having color
1, otherwise we could simply change its color to 1. In particular, #;41 is connected to y, for some
a < j, and y;41 is connected to x; for some b < ¢. Because of the chain property it follows that z;
is connected to all of the vertices y;41, ..., ¥m, and y; is connected to all of the vertices x;11,..., %y,
and the subgraph G — G; is a complete bipartite subgraph. Therefore G;; is a maximal independent
set. Thus (4,4) is a proper pair. Note that if & > ¢ and [ > j, then no two vertices x5 and y;, can

have the same color. Now it is clear that the vertices of the larger of the two sets {a;41,...,2,} and
{Yj+1, .-, Ym } must be colored with color 2, and the vertices of the smaller one with color 3. This
kind of coloring is the same as the one we use in the algorithm when we select a proper pair. [ |

To find a proper pair (7,{) for a fixed ¢, first we find the largest number j such that z;y; ¢ E. If
such a number does not exists then it’s clear that there is no proper pair having ¢ as the first element.
We now show that (¢, ) is a proper pair and that it is the only proper pair having i as the first
element. This follows from the fact that, if zqyp € F, 1 < a < i¢and 1 < b < j, then because of the
chain property, z;y € £. Since b < j, this implies that z;y; € F, which is a contradiction. Therefore,
to find a proper pair with (¢, j) for a fixed 4, it takes at most O(deg(x;)) time. So overall, the time
complexity of finding all proper pairs is O(|E|). We have proved the following theorem:

Theorem 3.3 The chromatic sum of chain bipartite graphs can be found in time O(|E| +|V]).



3.2 Vertex sum coloring of k-split graphs

A graph is a split graph if its vertices can be partitioned into a clique and an independent set. The
author has proved in [17] that the sum coloring problem is NP-complete for split graphs, and therefore
for chordal graphs, by giving a reduction from the Ezact Cover by 3-sets. We introduce two subclasses
of split graphs where the sum coloring problem can be solved for them efficiently. The following two
lemmas will be used later in our algorithms:

Lemma 3.4 If G(CU I E) is a split graph, where C is the complete part and I is the independent
part and |C| = n¢, then s(G) < n¢ + 1.

Proof: Consider an optimum vertex coloring of (G. Let ¢ be the smallest positive number such that
none of the vertices of (' have color ¢. In this case, no vertex in I can have a color greater than ¢,
otherwise we can simply change the color of that vertex to i. So the only colors (possibly) used in [
are 1,2,...,7. It follows that there can’t be any color greater than n¢ + 1 in C'| otherwise there is
some color z (i +1 < x < n¢ + 1) that is not used in €, and we can simply change the color greater
than nc + 1 to . [ |

Lemma 3.5 For split graph G(C' U I, E), where |C| = n¢ and |I| = ny, we have:
(i) 2(G) < nelnetl) | oy
(ii) If s(G) = ne + 1 then X(G) = W +ne +nr.

Proof: (i) Consider the vertex sum coloring of G in which all of the vertices of I have color 1,
and the vertices of C' are colored by colors 2,3,...,n¢ + 1. Tt is trivial that this is a proper coloring
and the total sum of colors is % +ne +ny.

(i) If s(G) = n¢ + 1 then there are ne + 1 vertices such that the set of colors of these vertices
is exactly {1,2,... nec + 1}, and the total sum of the colors of the other vertices is at least ny — 1.
Therefore: ) 5 )

S(G) > (nc + )2(710-1- T %Jﬂl“m.

The result follows from part (i). [ ]

Definition 3.6 A split graph G(CU I, E), where C' is a complete subgraph and I an independent set,
1s a kp-split graph if the degree of each vertex of I is at most k. It is a kc-split graph iof the number
edges of each vertex in C' going out to the vertices in I is at most k. We call a graph k-split if it s
etther ke -split or kr-split graph.

Let G(C'UI, E) be a kr-split graph. By lemma 3.4 and the fact that C' is a clique of size n¢, we
have: n¢ < s(G) < ne + 1. Lemma 3.5 gives the exact value of X((G) and its proof gives an optimum
vertex coloring for the case s(G) = n¢ + 1.

Now suppose that s(G) = n¢. We denote the set of neighbors of a vertex ¢ € C' that are in set
I by Ni(¢). Let P be an optimum coloring of G with n¢ colors. Clearly C' is colored with colors
1,2,...,nc. Let v, be the vertex of C' that has color 7 in P. The set of vertices in I that have color
1 are exactly those vertices that are not connected to v.,, i.e the vertices in Ny(v., ) are colored by at
least 2. Among them, those that are not connected to v., have color 2, and the remainder has color
at least 3. In general, the number of vertices having color greater than ¢ in 7, is:

IN7(ve,) N Ni(ve,) ... 0 Np(ve, ).



Note that since the degree of each vertex in [ is bounded by &, no vertex in I has a color greater
than k& 4+ 1 in any optimum vertex coloring of GG. Let:

S = |Nr(ve )| + | N1(ve,) O Np(we )| + ..+ | ﬂ Ni(ve,)

i=1

Therefore, the total sum of colors in I is ny 4+ .S and the total sum of colors of coloring P is:

nc(nc + 1)

2 +nr+ 5.

So, to find an optimum vertex coloring of (G, using n¢ colors, we must minimize the term S. We
can simply consider all permutations 7 with & elements,; such that each element is a vertex of C', and
compute the value of S for each permutation by assigning color ¢ to the vertex Ve oy of €', and then
taking the minimum over all values of S. It is straightforward to compute the value of S for each
permutation in time O(n) and the number of such permutations is O(nf.). The chromatic sum of

is the minimum between the minimum value of S and n¢, plus the term anc—-l'll + ny.. Hence:
Theorem 3.7 Let G(C U I, E) be a kr-split graph, for fived k. Then the chromatic sum and also an
optimum vertexr coloring of G can be computed in O(n; x nk).

Now, let G(C' U I, E) be a ke-split graph. Again, if s(G) = ne + 1 then we know the exact value
of £(G). Assume that s(G) = n¢ and consider an optimum vertex coloring of GG, called P. Let v, be
the vertex in C' that has color 1 in P. Clearly every vertex in I — Ny(v.,) also has color 1. We show
that no vertex in Ny(ve, ) can have a color greater than k4 1. Otherwise, let v, be a vertex in Ny (ve,)
with color #, such that £+ 1 < # < n¢. Therefore there exists a color y such that y < k41 and y has
not appeared on any vertex in Nr(vc,). Let ve, and v, be the vertices of C' having colors 2 and y,
respectively. By exchanging the colors of v, and v., we can assign color y to all the vertices of N (v, )
colored x. This exchange reduces the total sum of the colors of P, which is a contradiction. So, to
find an optimum coloring of GG, using n¢ colors, we select one of the vertices of C'| call v, , and assign
color 1 to it and to all the vertices in I — Ny(v.,). Then we consider all the possible assignments
of colors 2,3,...,k + 1 to the vertices of Ny(v.,). Note that since the degree of v, is at most k,
there is a constant number of such assignments. Also, for each assignment of colors to the vertices
in Ny(ve,), we have to find a coloring for the uncolored vertices of C' that is feasible with coloring of
Ni(ve,). To do so we construct a bipartite graph G/'(X UY, E’), such that X = {z1,29,...,2nc-1},
Y = {y2,y3, ..., Ye+1}, and z;y; € B’ if and only if there is no edge between the ith uncolored vertex
of C' and the vertex in N(v.,) with color j. Tt is not difficult to see that by using a bipartite matching
in G’ that covers all the vertices in V" (if there exists such a matching), we can find those vertices of C
that will have colors 2,3,...,k 4+ 1, and then color the rest of vertices of (' with colors &+ 2,..., n¢
arbitrarily. By taking the minimum between the total sum of the colors of each of these colorings, we
find the sum of the optimum coloring using n¢ colors. Finally, we have to take the minimum between
this amount and the total sum of the coloring using nc + 1 colors. Finding a maximum matching in
(' can be done in time O(n¢), by applying the augmenting path algorithm & times. Therefore, for
each assignment of colors to the vertices in Ny(v.,) we spend O(n¢) time to complete the coloring.
Also, at the first stage, there are n¢ choices for selecting the vertex v.,. Thus, overall we spend O(n%)
time to find the minimum sum of colors between all colorings using n¢ colors.

Theorem 3.8 If G(C U I, E) is a kc-split graph, for fived k, then the chromatic sum and also an
optimum vertex coloring of G can be computed in O(nZ).

Corollary 3.9 The chromatic sum of k-split graphs can be computed in time O(ny X nkc)



4 Complexity of the edge chromatic sum and the edge strength
problems

In [1] Bar-noy et al. proved that the edge sum coloring problem is NP-hard for general multigraphs,
but the complexity of this problem was left open for simple graphs. In this section, we study edge
sum coloring of k-regular graphs for & > 3. We prove that finding the edge chromatic sum and the
edge strength of a k-regular graph are both NP-complete. Holyer [8] proved that the chromatic index
problem restricted to cubic graphs is NP-complete. Later, Leven and Galil [16] generalized this result
to k-regular graphs, & > 3. By Vizing’s theorem and Hajiabolhassan et al. [6] we know that the
chromatic index and the edge strength of a k-regular graph are either k& or k 4+ 1. First we show that
finding the edge chromatic sum of a k-regular graph is NP-complete.

Instance: A k-regular graph G of size n, k > 3.
. . _ nk(k+1
Question: Is ¥/(G) = 44—17

Note that since the degree of each vertex of a k-regular graph is k, in any edge coloring of G the
total sum of the colors used to color the incident edges of any vertex is at least @ Therefore,

nk(k+1)
YNG) > =5
Theorem 4.1 The edge chromatic sum problem 1s NP-complete for k-reqular graphs, k > 3.

Proof: First of all| it is trivial that this problem belongs to NP. To prove the NP-completeness we
use a reduction from the chromatic index problem. We prove that for k-regular graph G

nk(k+1)

2(6) =

X' (G) = k.
First, assume that x'(G) = k. This means that there exists a k-edge coloring of G, called C'. Since

the degree of each vertex in G is k, all numbers 1,2,..., k¥ must appear on the edges incident with
each vertex. So the total sum of the colors in (' is equal to %. Therefore ¥/(G) = W.

Now, suppose that X/(G) = %. It suffices to prove that any optimum edge coloring of G is
a k-edge coloring of GG. Assume, by way of contradiction, that C' is an optimum edge coloring of ¢
with & 4+ 1 colors. So there exists at least one vertex such that color & + 1 is the color of one of its
incident edges. Therefore the total sum of the colors of the edges incident with that vertex is more
than ﬂkzil We have the lower bound ﬂkzil for the sum of the colors of the edges of every other

vertex. Therefore the total sum of colors of the edges in G will be strictly greater than %, which

is a contradiction. Therefore, any optimum edge coloring of G is also a k-edge coloring of GG, and so

Y(G) = k.

|
Corollary 4.2 For a k-regular graph G, k > 3, we have: s'(G) = k <= x'(G) = k.

Proof: If '(G) = k then trivially ¥/(G) = k. Now assume that y/(G) = k. From the arguments we
had in the proof of theorem 4.1 it follows that if s'(G) > k then ¥/ (G) > %. Also we know that

the sum of any k-edge coloring of G is %. This proves that in this case s'(G) = k. ]

Since finding the chromatic index is NP-complete for the class of k-regular graphs, & > 3, therefore:



Theorem 4.3 Finding the edge strength of k-regular graphs is NP-complete, k > 3.

5 Edge sum coloring of trees

In this section, we give a polynomial time algorithm that finds the edge chromatic sum of trees. We
can find an optimum edge coloring as well, by storing some extra information in the data tables.

Assume that we are given tree T of size n, with a Breath First Search ordering of it. For vertex v
of T', we denote the subtree rooted at v by T,,. By lower edges of v, we mean the set of edges that
connect v to its children. We denote the degree of vertex v by deg(v) and assume that the maximum
degree is A. If C'is an edge coloring of T, the set of colors used for the lower edges of v, is denoted
by L,. Also, as we mentioned in the previous section, we know that s'(7) < A + 1.

The algorithm uses the dynamic programming method. We have a n x (A 4 1) table, called S,
such that:
S[v, j] = The cost of an optimum edge coloring of T, such that j & L,.

For 1 < j < A+ 1, the initial values of S are filled as:

{ Slz,7]=0 z is a leaf

Slz,jl =00  otherwise.

The algorithm computes the values of this table in a bottom-up way, from the leaves of the tree
up to the root. It computes the value S[v, j] for each internal node v, after it has computed the
values for the children of v. Suppose that uy, us, ..., ugx are the children of internal node v. Assume
that Sfu;, j] is computed, for 1 < i < k and 1 < j < A+ 1, and we want to compute the value
of S[u,m] (1 < m < A+ 1), the cost of an optimum edge coloring for T,, such that m ¢ L,.
Construct the complete weighted bipartite graph G, = (AU B, E'), where A = {a1,as,...,as},
B = {b;]j # m,1 < j < A+ 1}, and the weight of edge a;b; is w(a;b;) = S[u;, j] + j. Now find a
min-weighted maximum matching in G,, and call it M. This matching covers all the vertices of A.
We assign the colors of the lower edges of v, according to the following rule:

The color of vu; 1is ¢;, iff edge a;b., is in M.

It is easy to see that by this assignment the value of S[v, m] is equal to the sum of the weights of

M, which is:
Z w(e) = Z Slug, ] + ¢

eeM abe, €M

Knowing how to compute the value of S[v,m], from the computed values of children of v, the
algorithm starts from the leaves of 7', and fills in the table, from bottom to up, until it computes the
value of S[r, A+ 1], where r is the root of T'. One can easily verify that the minimum value of S[r, j],
for 1 < j < A+41,1s the edge chromatic sum of the tree.

To find an optimum edge coloring for 7', we only need to keep track of the colors of the lower edges
of each vertex v, when we compute S[v, m]. This can be easily done by storing this extra information
for each entry of the table S.

The most time consuming step of the algorithm is to find the min-weighted matching. If the
vertex v has k children, then the size of the bipartite graph G, is of O(A). The fastest min-weighted
maximum matching algorithm works in time O(|E||V]log |V|) and is due to Galil et al. [4]. By using
this algorithm, for each vertex v, and each value m < A+ 1, we spend O(deg(v)A%log A) time. Thus



the total amount of time for computing the entries of the row v of the table S is O(deg(v)A3log A).
Summing up these values for all v, we have the bound O(n*logn) for the time complexity of this
algorithm. Therefore, we can say:

Theorem 5.1 An optimum edge sum coloring of a tree, and therefore its edge chromatic sum, can be
found in time O(n*logn).

More general version: We note that the above algorithm, with a few modifications, can also be
used to solve the more general case of the edge sum coloring problem, similar to the OCCP problem
for vertex sum coloring, where the color costs are from a given set C'= {e1,¢2,...,¢}.
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