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Given an undirected graph G(V, E) with terminal set T C V the problem of packing element-
disjoint Steiner trees is to find the maximum number of Steiner trees that are disjoint on the
nonterminal nodes and on the edges. The problem is known to be NP-hard to approximate within
a factor of Q(logn), where n denotes |V|. We present a randomized O(logn)-approximation
algorithm for this problem, thus matching the hardness lower bound. Moreover, we show a tight
upper bound of O(logn) on the integrality ratio of a natural linear programming relaxation.

Categories and Subject Descriptors: F.2.2 [Nonnumerical Algorithms and Problems]: Com-
putations on discrete structures; G.2.2 [Discrete Mathematics]: Graph Algorithms

General Terms: Algorithms, Approximation
Additional Key Words and Phrases: Packing, Steiner Trees, Element-disjoint, Approximation
algorithms, Hardness of approximation

1. INTRODUCTION

Throughout we assume that G = (V, E), with n = |V, is a simple graph and T C V
is a specified set of nodes (although we do not allow multi-edges, these can be
handled by inserting new nodes into the edges). The nodes in T are called terminal
nodes or black nodes, and the nodes in V — T are called Steiner nodes or white
nodes. Following the notation on approximation algorithms for graph connectivity
problems (e.g., see [Jain et al. 1999]), by an element we mean either an edge or
a Steiner node. A Steiner tree is a connected, acyclic subgraph that contains all
the terminal nodes (Steiner nodes are optional). The problem of packing element-
disjoint Steiner trees is to find a largest set of element-disjoint Steiner trees. In
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other words, the goal is to find the maximum number of Steiner trees such that
each edge and each white node is in at most one of these trees. We denote this
problem by TUV. Here, I denotes identical terminal sets for different trees in the
packing, U denotes an undirected graph, and V denotes disjointness for white nodes
and edges.

By bipartite IUV we mean the special case where G is a bipartite graph with node
partition V = TU(V —T), that is, one of the sets of the vertex bipartition consists
of all of the terminal nodes. We also consider the problem of packing Steiner
trees fractionally, with constraints on the nodes; this corresponds to a natural
linear programming relaxation of IUV, and we call this problem fractional IUV;
a detailed discussion is given later.

IUV captures some of the fundamental problems of combinatorial optimization
and graph theory. First, suppose that T consists of just two nodes s and ¢. Then
the problem is to find a largest set of element-disjoint s, ¢-paths. This problem is
addressed by one of the cornerstone theorems in graph theory, namely Menger’s
theorem [Diestel 2000, Theorem 3.3.1], which states that the maximum number
of openly-disjoint s, t-paths equals the minimum number of white nodes whose
deletion leaves no s,t-path. The algorithmic problem of finding a largest set of
openly-disjoint s, t-paths can be solved in polynomial time via any polynomial-time
maximum s, t-flow algorithm. Another key special case of IUV occurs for T'=V,
that is, all the nodes are terminals. Then the problem is to find a largest set of edge-
disjoint spanning trees. This problem is addressed by another classical min-max
theorem, namely the Tutte/Nash-Williams theorem [Diestel 2000, Theorem 3.5.1].
The algorithmic problem of finding a largest set of edge-disjoint spanning trees can
be solved in polynomial time via the matroid intersection algorithm. In contrast, the
problem IUV is known to be NP-hard [Frank et al. 2003; Cheriyan and Salavatipour
2006], and the optimal value cannot be approximated within a factor of Q(logn)
modulo the P#NP conjecture [Cheriyan and Salavatipour 2006]; moreover, this
hardness result applies to bipartite IUV and to fractional IUV.

One variant of IUV has attracted increasing research interest over the last few
years, namely, the problem of packing edge-disjoint Steiner trees, that is, find-
ing a largest set of edge-disjoint Steiner trees; we denote this problem by IUE.
This problem in its full generality has applications in VLSI circuit design (e.g., see
[Grotschel et al. 1997; Martin and Weismantel 1993]). Other applications include
multicasting in wireless networks (see [Floréen et al. 2003]) and broadcasting large
data streams, such as videos, over the Internet (see [Jain et al. 2003]). Almost a
decade ago, Grotschel et al. studied the problem using methods from mathematical
programming, in particular, polyhedral theory and cutting-plane algorithms, see
[Grotschel et al. 1996¢; 1996a; 1996d; 1996b; 1997]. Moreover, there is significant
motivation from the areas of graph theory and combinatorial optimization, partly
based on the relation to the classical results mentioned above, and partly fueled
by an exciting conjecture of Kriesell [Kriesell 2003]. The conjecture states that
the maximum number of edge-disjoint Steiner trees is at least half of the minimum
number of edges in a cut that separates some pair of terminals. If this conjecture
is settled by a constructive proof, then it may give a 2-approximation algorithm
for TUE. Recently, Lau [Lau 2004] made a major advance on this conjecture by
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presenting a 26-approximation algorithm for IUE using new combinatorial ideas.
Lau’s construction is based on an earlier result of Frank, Kiraly, and Kriesell [Frank
et al. 2003] that gives a 3-approximation for a special case of bipartite TUV.

Another related topic pertains to the domatic number of a graph and computing
near-optimal domatic partitions. Feige et al. [Feige et al. 2002] presented approx-
imation algorithms and hardness results for these problems; in particular, they
presented algorithms with logarithmic approximation guarantees for the problem
of finding a largest family of disjoint dominating sets. One of our key results (Theo-
rem 3.1) is inspired by their work. In fact, the bipartite ITUV problem is equivalent
to the problem of packing one-sided connected dominating sets in bipartite graphs.
It is well known that approximation algorithms for the minimum-cost dominating
set problem extend to the minimum-cost connected dominating set problem with
the same approximation guarantees (up to constant factors), see [Guha and Khuller
1999], but to the best of our knowledge, such extensions were not known for the
corresponding packing problems.

Also, bipartite IUV is equivalent to the connected sub-hypergraph packing prob-
lem studied in [Bang-Jensen and Thomassé 2003]. It follows from [Bang-Jensen and
Thomassé 2003] that there exist graphs that are Q(logn) element-connected on the
terminal nodes but do not have two element-disjoint Steiner trees.

Frank et al. [Frank et al. 2003] studied bipartite IUV, and focusing on the re-
stricted case where the degree of every white node is at most A they presented a
A-approximation algorithm via the matroid intersection theorem and algorithm.
The authors [Cheriyan and Salavatipour 2006] showed that (i) TUV is hard to
approximate within a factor of Q(logn), even for bipartite IUV and even for the
fractional version of bipartite IUV, (ii) IUV is APX-hard even if |T| is a small
constant, and (iii) there is an O(y/nlogn)-approximation algorithm for a general-
ization of IUV. For IUE, Jain et al. [Jain et al. 2003] proved that the problem is
APX-hard, and (as mentioned above) Lau [Lau 2004] presented a 26-approximation
algorithm, based on the results of Frank et al. for bipartite TUV. !

Our main contribution is to settle the approximation guarantee for IUV and
bipartite IUV up to constant factors. Moreover, our result extends to the capaci-
tated version of IUV, where each white (Steiner) node v has a nonnegative integer
capacity ¢,, and the goal is to find a maximum collection of Steiner trees (allowing
multiple copies of any Steiner tree) such that each white node v appears in at most
¢, Steiner trees; there is no capacity constraint on the edges, i.e., each edge has
infinite capacity. The capacitated version of IUV may be formulated as an integer
program (IP) that has an exponential number of variables. Let F denote the col-
lection of all Steiner trees in GG. We have a binary variable zp for each Steiner tree
FekF.

L Although not relevant to this paper, we mention that the directed version of IUV has been
studied [Cheriyan and Salavatipour 2006], and the known approximation guarantees and hardness
lower bounds are within the same “ballpark” according to the classification of Arora and Lund
[Arora and Lund 1996].
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maximize ) pcorTF
subject to Yo eV =T :3 . cprr < ¢y (1)
VF € F: $F20,$F€Z

Note that in uncapacitated IUV we have ¢, = 1,Vv € V — T. The fractional
TUV (mentioned earlier) corresponds to the linear programming relaxation of this
IP that is obtained by relaxing the integrality condition on xr’s to zr > 0.

Our main result is the following:

THEOREM 1.1. (a) There is a polynomial-time probabilistic approximation al-
gorithm with a guarantee of O(logn) and a failure probability of gg}l for (uncapac-
itated) TUV. The algorithm finds a solution that is within a factor O(logn) of the
optimal solution to fractional TUV.

(b) The same approzimation guarantee holds for capacitated TUV .

For two nodes s,t, let x(s,t) denote the maximum number of element-disjoint
s, t-paths (an s, t-path means a path with end-nodes s and t); in other words, x(s,t)
denotes the maximum number of s, t-paths such that each edge and each white node
is in at most one of these paths. The graph is said to be k-element connected if
k(s,t) > k, Vs,t € T,s # t, i.e., there are > k element-disjoint paths between
every pair of terminals. For a graph G = (V, E) and edge e € E, G — e denotes the
graph obtained from G by deleting e, and G/e denotes the graph obtained from G
by contracting e; see [Diestel 2000, Chapter 1] for more details. We call an edge
white if both its end-nodes are white, otherwise, the edge is called black (then at
least one end-node is a terminal). For our purposes, any edge can be subdivided
by inserting a white node. In particular, any edge with both end-nodes black can
be subdivided by inserting a white node. We call a graph bipartite if every edge is
black; thus bipartite IUV means the special case of IUV where every edge is black.

Here is a sketch of our algorithm and proof for Theorem 1.1(a). Let k be the
maximum number such that the input graph G is k-element connected. Clearly,
the maximum number of element-disjoint Steiner trees is at most k (because each
Steiner tree in a set of element-disjoint Steiner trees contributes one to the element
connectivity). Note that this upper bound also holds for the optimal fractional
solution. We delete or contract white edges in G, while preserving the element
connectivity, to obtain a bipartite graph G*; thus, G* too is k-element connected
(details in Section 2). Then we apply our key result (Theorem 3.1 in Section 3)
to G* to obtain O(k/logn) element-disjoint Steiner trees; this is achieved via a
simple algorithm that assigns a random colour to each Steiner node — it turns out
that for each colour, the union of 7" and the set of nodes with that colour induces a
connected subgraph, and hence this subgraph contains a Steiner tree. Finally, we
uncontract some of the white nodes to obtain the same number of element-disjoint
Steiner trees of GG. Clearly, uncontracting white nodes in a set of element-disjoint
Steiner trees preserves the Steiner trees (up to the deletion of redundant edges) and
preserves the element-disjointness of the Steiner trees.

As mentioned above, any edge can be subdivided by inserting a white node. Thus,
the problem of packing element-disjoint Steiner trees can be transformed into the
problem of packing Steiner trees that are disjoint on the set of white nodes. We
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prefer the formulation in terms of element-disjoint Steiner trees; for example, this
formulation immediately shows that ITUV captures the problem of packing edge-
disjoint spanning trees; of course, the two formulations are equivalent.

2. REDUCING IUV TO BIPARTITE IUV

To prove our main result, we first show that the problem can be reduced to bipartite
IUV while preserving the approximation guarantee. The next result is due to Hind
and Oellermann [Hind and Oellermann 1996, Lemma 4.2]. We had found the result
independently (before discovering the earlier works), and have included a proof for
the sake of completeness.

THEOREM 2.1. Given a graph G = (V, E) with terminal set T that is k-element
connected (and has no edge with both end-nodes black), there is a polynomial-time
algorithm to obtain a bipartite graph G* from G such that G* has the same terminal
set and is k-element connected, by repeatedly deleting or contracting white edges.

PRrROOF. Consider any white edge e = pg. We prove that either deleting or
contracting e preserves the k-element connectivity of G.

Suppose that G — e is not k-element connected. Then by Menger’s theorem G — e
has a set D of kK — 1 white nodes whose deletion “separates” two terminals. That
is, every terminal is in one of two components of G — D — e and each of these
components has at least one terminal; call these two components C}, and C,. Let
s be a terminal in C}, and let ¢ be a terminal in C,. Let P(s,t) denote any set of
k element-disjoint s, t-paths in G, and observe that one of these s, t-paths, say P,
contains e (since the k-set D U {e} “covers” P(s,t)).

By way of contradiction, suppose that the graph G” = G/e, obtained from G by
contracting e, is mot k-element connected. Then focus on G and note that, again
by Menger’s theorem, it has a set R of k& white nodes, R 2 {p, ¢}, whose deletion
“separates” two terminals. That is, there are two terminals that are in different
components of G — R (R is obtained by taking a “cut” of k — 1 white nodes in
G’ and uncontracting one node). This gives a contradiction because: (1) For s, ¢
as above, the s,t-path P; in P(s,t) contains both nodes p,q € R; since |R| = k
and P(s,t) has k element disjoint paths another one of the s, t-paths in P(s,t) say
Py is disjoint from R, by the Pigeonhole Principle; hence, G — R has an s, t-path.
(2) For terminals v, w that are both in Cp, G — R has a v, t-path arguing as in (1)
and also it has a w, t-path, thus G — R has a v, w-path. (3) For terminals v, w that
are both in Cy, G — R has a v, s-path arguing as in (1) and also it has a w, s-path,
thus G — R has a v, w-path.

It is easy to complete the proof: we repeatedly choose any white edge and either
delete e or contract e, while preserving the k-element connectivity, until no white
edges are left; we take G* to be the resulting k-element connected bipartite graph.

Clearly, this procedure can be implemented in polynomial time. In more detail,
we choose any white edge e (if there exists one) and delete it. Then we compute
whether or not the new graph is k-element connected by finding whether x(s,t) > k
in the new graph for every pair of terminals s, ¢; this computation takes O(k|T|?| E|)
time. If the new graph is k-element connected, then we proceed to the next white
edge, otherwise, we identify the two end nodes of e (this has the effect of contracting
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e in the old graph). Thus each iteration decreases the number of white edges (which
is O(|E|)), hence, the overall running time is O(k|T|?|E[?). O

3. BIPARTITE IUV

This section has the key result of the paper, namely, a randomized O(logn)-
approximation algorithm for bipartite ITUV.

THEOREM 3.1. Given an instance of bipartite TUV such that the graph is k-
element connected, there is a randomized polynomial-time algorithm that with prob-
ability 1 — @ finds a set of Q(%) element-disjoint Steiner trees.

PRrROOF. Without loss of generality, assume that the graph is connected, and
there is no edge between any two terminals (if there exists any, then subdivide each
such edge by inserting a Steiner node).

For ease of exposition, assume that n is a power of two and k is an integer multiple
of R = 6logn; here, R is a parameter of the algorithm. The algorithm is simple:
we color each Steiner node w.r. (uniformly at random) with one of % super-colors
j=1,...,k/R. For each j = 1,...,k/R, let D/ denote the set of nodes that get
the super-color j. We claim that for each j, the subgraph induced by D7 U T is
connected with high probability, and hence this subgraph contains a Steiner tree.
If the claim holds, then we are done, since we get a set of k/R element-disjoint
Steiner trees.

For the purpose of analysis, it is easier to present the algorithm in an equivalent
form that has two phases. In phase one, we color every Steiner node u.r. with one
of k colors i = 1,...,k and we denote the set of nodes that get the color i by C*
(i =1,...,k). In phase two, we partition the color classes into k/R super-classes
where each super-class D7 (j = 1,...,k/R) consists of R consecutive color classes
Cii—1)r+1,Cli—1)R42; - - -, Cjr. We do this in R rounds, where in round 1 </ < R

we have Dg = UEJ: zjlzlf;r é 1 C'; thus we have DI = D%. Consider an arbitrary super-
class DI, 1 <j< k/R. For an arbitrary ¢, 1 < ¢ < R, let H, denote the graph
induced by Dj UT, and let d; > 1 denote the number of connected components of

H,.

LEMMA 3.2. Let Hy and dy be as defined above, and suppose that dy > 1, i.e.,
Hy is not connected. Let G, ...,Gq, be the connected components of Hy. Consider
any connected component of Hy, say G, (1 < a < dy). Then there is a set U C
V —T -V (G,) (of white nodes) with |U| > k such that each node in U is adjacent

to a terminal in G, and to a terminal in G — V(G,).

PROOF. Let U CV — V(G,) be a maximum-size set of Steiner nodes such that
each node in U has a neighbour in each of G, and G —V(G,,); note that none of the
nodes in U is in G,. By way of contradiction, assume that |U| < k. Consider G—U.
Note that there is at least one terminal in each of G, and G — U — V(G,). An
important observation is that every edge of G between G, and G-V (G,,) is between
a terminal of G, and a Steiner node of G —V (G, ); this holds because G is bipartite
and G, is a subgraph induced by 7' and some set of white nodes. From this, and
by definition of U, there is no edge between G, and G — U — V(G,), i.e., G —U is
disconnected. This contradicts the assumption that G is k element-connected. [
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Consider a set U as in the above lemma. If a vertex s € U has the color £ + 1,
then when we add C4t! to Dj, we see that s connects G, and another connected
component of Hy, because s is adjacent to a terminal in GG, and to a terminal in
G —V/(Ga). For every node s € U we have Pr[s € C**!] = L. Thus, the probability
that none of the vertices in U has been colored £ + 1 is at most:

(1—%)IU§ (1—%>kge—1. (2)

This is an upper bound on the probability that when we add C**! to ’Dfé, compo-
nent G, does not become connected to another connected component Gy, for some
1 < b <dyb # a. Note that G, is an arbitrary component of Hy. If every con-
nected component G;, 1 <1 < dy, becomes connected to another component, then
the number of connected components of Hy decreases to at most % in round £+ 1.
If in every round and for every super-class, the number of connected components
decreases by a constant factor then, after O(logn) rounds, every D/ U T forms a
connected graph. We show that this happens with sufficiently high probability.

By (2), in round ¢, any fixed connected component of Hy becomes connected
to another component with probability at least 1 — e™!. So the expected number
of connected components of Hy that become connected to another component is

—e ) - dy. us, if dp > 2 then defining o = ¢! we have:
(1 1. dy. Th f dy > 2 then defining 1+2

E[dprl | dz] S g - dg. (3)

Define X, = dy — 1. Therefore, X7, Xo,...,Xy,..., is a sequence of integer
random variables that starts with X7 = d; — 1. Moreover, for every £ > 1, we have
X >0, and if X; = 0 then E[X,41] =0, and if X; > 1 then

E[Xg+1|Xg] = E[dg.H — 1|dg —-1> 1]
Eldesa|de > 2] — 1

< odp—1 by (3)
=o0Xp+o-—1
< oXy.

An easy induction shows that E[X,;1] < 0X;. Since X; <n—1and o < %, we
have E[Xg] < & (recall that R = 6logn). Therefore, Markov’s inequality implies
that Pr[Xg > 1] < % This implies that Pr[dg > 2] < %, i.e., the probability that
Hpr = DV UT is not connected is at most % As there are % super-classes, a simple
union-bound shows that the probability that there is at least one D7 (1 < j < %)
such that D7 UT is not connected is at most % < lo;n' Thus, with probability at
least 1—@, every super-class D7 (together with T') induces a connected graph, and
hence, the randomized algorithm finds Q(k/logn) element-disjoint Steiner trees.

Remark: To get an approximation guarantee of O(log|T|) or O(log k) instead of
O(logn), one way may be to replace the parameter R = 6logn by an appropriate
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function of |T'| or k; but then the claim Pr[Xp > 1] < 1 (in the last paragraph of
the proof) fails to hold; thus the failure probability may be high.

4. TUV AND CAPACITATED IUV

Now we complete the proof of Theorem 1.1 using Theorems 2.1 and 3.1.

First, we prove part (a). Let k be the maximum number such that the input
graph G is k-element connected. Clearly, the maximum number of element-disjoint
Steiner trees is at most k. Apply Theorem 2.1 to obtain a bipartite graph G*
that is k-element connected. Apply Theorem 3.1 to find Q(logn) element-disjoint
Steiner trees in G*. Then uncontract white nodes to obtain the same number of
element-disjoint Steiner trees of G. Moreover, it can be seen that the optimal value
of the LP relaxation is at most k (because there exists a set of k white nodes whose
deletion leaves no path between some pair of terminals). Thus our integral solution
is within a factor O(logn) of the optimal fractional solution.

Now, we prove part (b) of Theorem 1.1, by using ideas from [Cheriyan and
Salavatipour 2006; Jain et al. 2003; Lau 2004]. Consider the IP formulation (1) of
capacitated IUV. The fractional capacitated TUV problem is the linear program
(LP) obtained by relaxing the integrality condition in the IP to zr > 0. As we said
earlier, this LP has exponentially many variables, however, we can solve it approxi-
mately. Then we show that either rounding the approximate LP solution will result
in an O(logn)-approximation or we can reduce the problem to the uncapacitated
version of IUV and use Theorem 1.1(a).

Note that the separation oracle for the dual of the LP is the problem of finding
a minimum node-weighted Steiner tree. Using this fact, the proof of Theorem 4.1
in [Jain et al. 2003] may be adapted to prove the following:

LEMMA 4.1. There is an a-approzimation algorithm for fractional capacitated
IUV if and only if there is an a-approximation algorithm for the minimum node-
weighted Steiner tree problem.

Klein and Ravi [Klein and Ravi 1995] (see also Guha and Khuller [Guha and
Khuller 1999]) give an O(logn)-approximation algorithm for the problem of com-
puting a minimum node-weighted Steiner tree. Their result, together with Lemma 4.1,
implies the next lemma. The lemma also follows from [Carr and Vempala 2002].

LEMMA 4.2. There is a polynomial-time O(logn)-approzimation algorithm for
fractional capacitated TUV.

Define ¢ and ¢y to be the optimal objective values for capacitated ITUV and
for fractional capacitated IUV, respectively. Consider an approximately optimal
solution to fractional capacitated IUV obtained by Lemma 4.2. Let ¢* denote the
approximately optimal objective value, and let Y = {x1,..., 24} denote the set of
primal variables that have positive values. One of the features of the algorithm
of Lemma 4.2 (which is also a feature of the algorithm of [Jain et al. 2003]) is
that d (the number of fractional Steiner trees computed) is polynomial in n, even

though the LP has an exponential number of variables. If Zle |2 | > %Ele Z;

then Y' = {|z1],...,|zq]} is an integral solution (i.e., a solution for capacitated
IUV) with value at least -, which is at least Q(hfgfn), and this in turn is at least
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Q%) In this case the algorithm returns the Steiner trees corresponding to the
gn

variables in Y’ and stops. This is within an O(logn) factor of the optimal solution.
Otherwise, if Zle 2] < & 2?21 x; then

d *

d d
w*:in:ZinHZ(xi—mp<%+d.

i=1

Therefore ¢* < 2d. This implies that for every Steiner node v, at most a value of
min{c,, O(dlogn)} of the capacity of v is used in any optimal (fractional or integral)
solution. So we can decrease the capacity ¢, of every Steiner node v € V — T to
min{c,, O(dlogn)}. Note that this value is upper bounded by a polynomial in n.
Let this new graph be G’. We are going to modify this graph to another graph G”
which will be an instance of uncapacitated TUV. For every Steiner node v € G’
with capacity ¢, we replace v with ¢, copies of it called vy, ..., v., each having unit
capacity. The set of terminal nodes stays the same in G’ and G”. Then for every
edge uv € G’ we create a complete bipartite graph on the copies of v (as one part)
and the copies of u (the other part) in G”. This new graph G” will be the instance
of uncapacitated TUV. It follows that the size of G” is polynomial in G. Also, it
is straightforward to verify that G” has « element-disjoint Steiner trees if and only
if there are a Steiner trees in G satisfying the capacity constraints of the Steiner
nodes. Finally, we apply the algorithm of Theorem 1.1(a) to graph G”.

A referee suggested the following modification of the proof for part (b) where
the input data (capacities of Steiner nodes) is perturbed to give an “approximately
equivalent” uncapacitated problem. Let k denote the element connectivity between
terminals with respect to the Steiner node capacities; k¥ may be computed via an
algorithm for maximum flows. Replace ¢, by min{c,, k}, for each Steiner node
v; this does not change the optimal value. We may assume k& > n, otherwise,
as in the first proof, we find a near-optimal solution by using the algorithm for
part (a). Next, delete each Steiner node v with ¢, < % This decreases the element
connectivity, but it stays > %,
element connectivity by at most % Now the node capacities are all within a factor
at most 2n of each other. Let ¢y, be the smallest capacity of a remaining Steiner
node. For each Steiner node v, let ¢, = |¢y/cmin|. Now all the ¢, values are in the
range {1,...,2n}. As in the first proof, we find a near-optimal solution by using
the algorithm for part (a), after replacing each Steiner node v with ¢/ copies and
replacing each edge with a complete bipartite graph. At the end, we multiply each
tree by cmin to obtain a solution to the original problem that is within a factor
O(logn) of the optimum.

since the deletion of each such node decreases the

5. CONCLUDING REMARKS

Although TUE seems to be more natural compared to IUV, and although there
are many more papers (applied, computational, and theoretical) on TUE, the only
known O(1)-approximation guarantee for IUE is based on solving bipartite TUV.
This shows that IUV is a fundamental problem in this area. We presented a simple
randomized algorithm for IUV that finds an integral solution that is within a factor
O(logn) of the optimal integral (and in fact optimal fractional) solution.
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