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Abstract

The Steiner packing problem is to find the mazimum
number of edge-disjoint subgraphs of a given graph G
that connect a given set of required points S. This
problem is motivated by practical applications in VLSI-
layout and broadcasting, as well as theoretical reasons.
In this paper, we study this problem and present an
algorithm with an asymptotic approzimation factor of
|S|/4. This gives a sufficient condition for the ezistence
of k edge-disjoint Steiner trees in a graph in terms of the
edge-connectivity of the graph. We will show that this
condition is the best possible if the number of terminals
is 3. At the end, we consider the fractional version
of this problem, and observe that it can be reduced
to the minimum Steiner tree problem via the ellipsoid
algorithm.

1 Introduction

In the Steiner tree packing problem the objective is to
find the maximum number of edge-disjoint Steiner trees
in a given graph (See Section 2 for the definitions).
In this paper we study the version in which all the
Steiner trees are required to connect the same set
of terminal vertices (a.k.a. required vertices). This
problem is motivated by both practical as well as
theoretical considerations.

The problem in its full generality (where for each
Steiner tree, a different set of terminals is given) has
applications in VLSI circuit design [15, 9, 8]. In this
application, a Steiner tree is needed to share an electric
signal by a set of terminal nodes. Another application,
which is also our primary focus, arises in the Internet
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domain. Imagine that a given graph represents a
network. Suppose one of the node in the graph is
the broadcaster. All other nodes are either wusers or
routers (also called switches). The broadcaster wants
to broadcast as many streams of movies as possible, so
that the users have the maximum number of choices.
Each stream of movie is broadcasted via a Steiner tree
connecting all the users with the broadcaster. Since we
allow parallel edges, we can also assume that each link
can carry only one broadcast. So in essence we need to
find the maximum number of edge-disjoint Steiner trees
connecting all the users and the broadcaster.

From a theoretical perspective, both extremes of this
problem are fundamental theorems in combinatorics.
One extreme of the problem is when we only have two
terminals. In this case a Steiner tree is just a path
between the terminals, so the problem becomes the
well-known Menger theorem [16]. The other extreme
is when all the vertices are terminals. In this case a
Steiner tree is just a spanning tree of the graph, so
the problem becomes the classical Nash-Williams-Tutte
theorem [17, 19].

THEOREM 1.1. [17, 19] Graph G(V, E) contains k edge-
disjoint spanning trees if and only if

Eq(P) = k(t—1)

for every partition P = {Vi,...,Vi} of V into non-
empty subsets, where Eg(P) denotes the number of
edges between distinct classes of P.

Since the problem of finding k£ disjoint spanning trees
in a graph is a special case of finding k& disjoint bases of
a matroid, Theorem 1.1 can be derived from Edmonds’
matroid partition theorem [6].

Both these theorems, Menger as well as Nash-Williams-
Tutte theorem, are max-min theorems and can be
generalized into a single theorem which says that the



maximum number of edge-disjoint Steiner trees is the
same as the integer part of the minimum value of l|57§|(2)1) ,
where the minimum is over the set of all partitions of the
vertices of graph that include at least one terminal in
each class, with Eq(P) denoting the number of edges
between distinct classes of P, and |P| denoting the
number of classes of P. This statement is not true if we
are not in the extreme cases, as shown by an example
in [14].

It is an easy exercise to show using Theorem 1.1 that
if a graph G is 2k-edge-connected then it has k edge-
disjoint spanning trees. Kriesell [14] conjectured that
this corollary generalizes to Steiner trees, i.e., if a set S
of vertices of G is 2k-edge-connected (see Section 2 for
the definitions) then there is a set of k edge-disjoint
S-Steiner trees in G. This conjecture is still open,
even with 2k replaced by any constant multiple of
k. Notice that the edge-connectivity of the set S is
an upper bound on the maximum number of edge-
disjoint S-Steiner trees. Thus, a constructive proof for
the above conjecture would provide a constant-factor
approximation algorithm for the Steiner tree packing
problem.

The special case in which V' — S is independent is
considered by Kriesell [14] and Frank et al. [7]. A
corollary of the main theorem of [14] is that for a graph
G(V,E) and S C V, if V — S is an independent set
and S is k(k + 1)-edge-connected, then G contains k
edge-disjoint S-Steiner trees. A stronger version of this
appeared in [7], where they weaken the requirement for
connectivity of S to 3k-edge-connectedness. They also
prove a generalization of Theorem 1.1 to hypergraphs.

For an arbitrary set S, Petingi and Rodriguez [18] give
a lower bound for the number of edge-disjoint S-Steiner
trees, by showing that: if S is k-edge-connected in G
and |S| > 2, then G has at least [(2)/V~51k/2] edge-
disjoint S-Steiner trees.

For planar graphs, related problems have been consid-
ered by Wagner [20]. A variant of the maximum ca-
pacity broadcast problem, in which network encoding is
allowed is considered in information theory [1, 13].

In this paper, we will present an algorithm for the
Steiner tree packing problem which shows that if a
subset S in a graph is k-edge-connected, then there are
a|sik edge-disjoint Steiner trees for S, where a; is a
sequence that tends to % as s tends to infinity. This
result is tight when S consists of 3 points. The novel
idea of the algorithm is in trying to combine a collection
of edge-disjoint paths with a collection of edge-disjoint
Steiner trees by modifying the paths and trees in several

(polynomial) iterations.

We also study the problem of packing the maximum
number of Steiner trees fractionally. We show that find-
ing an a-approximation algorithm for this problem is
equivalent to finding an a-approximation algorithm for
the minimum Steiner tree problem. As a corollary, we
get a 1.598-approximation algorithm for the fractional
Steiner tree packing problem. This also shows that it is
hard to find a PTAS for (fractional or integral) Steiner
tree packing problem.

2 Preliminaries

We only consider undirected connected finite graphs. A
path between two vertices u and v in a graph G is a
sequence u = v, €1,V1,€2,V2,...,€k, U = v such that
e;’s are distinct edges of G, and the endpoints of e; are
vi—1 and v;. Such a path is called simple if v;’s are all
distinct. The edge-connectivity of a connected graph G
is the minimum number £ of edges required to remove
from G to make it disconnected. Let G(V, E) be a graph
and S C V be a set of at least two vertices. We say S
is k-edge-connected in G if for any set F' of less than k
edges in GG, there is a path between any pair of vertices
in S in G\ F. In other words, the S-edge-connectivity
of G is the minimum number of edges whose removal
disconnects at least two vertices of S.

For a graph G(V,E) and a set S C V of at least two
vertices, an S-Steiner tree is a subgraph T'(V', E') of G
which is a tree and S C V'. The minimum Steiner tree
problem is the problem of finding the minimum weight
S-Steiner tree for a given weighted graph G and subset
S of its vertices. The Steiner tree packing problem for
a given graph G(V, E) and S C V asks to find a set of
maximum size of edge-disjoint S-Steiner trees of G.

3 The Algorithm

In this section we show that for a graph G(V,E) and
S C V with |S| = s, if S is k-edge-connected, then there
are azk edge-disjoint Steiner trees for S, where «; is a
sequence that is asymptotic to % as s tends to infinity.
For simplicity of exposition, we first prove the following
weaker theorem, whose proof contains the main idea
that we will use later on in proving the above result.

THEOREM 3.1. Let G(V,E) be a graph and S =
{v1,v2,v3} be a subset of V. Assume that vy and vy are
k-edge-connected, and vy and vs are %—edge—connected
in G. Then G has % edge-disjoint S-Steiner trees.



Figure 1: Shortcutting procedure. (The path Pris
marked by thick lines).

Proof. Let P = {Pl,PQ,...,P%} be a set of % edge-
disjoint paths between v; and wvs. Similarly, let Q =
{Q1,Q2,...,Qr} be a set of k edge-disjoint paths
between v; and v2. We consider the paths of P from
vz to v1; thus, an edge e appears before another edge €’
on P; if e is closer to vs than e on P;. Similarly, we
consider the paths of Q from vy to vy.

Note that the paths in P are not necessarily disjoint
from the paths in Q. The last intersection of a path @Q;
with P is the last edge (i.e., the edge closest to v1) on
Q; that is also part of a path in P.

Assume that there exists a path @; € Q whose last
intersection with P is e € P; and e is not the last edge
of P;. We call such a situation a wasteful situation,
in which we perform the following procedure, called the
shortcutting procedure: we construct a new path P7, by
replacing the part of P; after e with the part of Q); after
e (See Figure 1 for an example). Notice that depending
on whether e is traversed by P; and (); in the same
or opposite directions, we will have to include or not
include e in P;.

Since e is the last intersection of (); with P, therefore Pf
does not intersect any path in P \ P;. Now we remove
Pj from P and instead, add P} to it. After doing this,
P is sill a set of k/2 edge-disjoint paths from v3 to v;.
We call this a shortcutting of P; on @;, and say that ();
is that path that is used for shortcutting P}

We keep doing the shortcutting procedure, as long as
we are in a wasteful situation. Let OQ* denote the set
of paths in @ that are used for shortcutting a path in
P (Q* changes in each iteration of the algorithm). We
notice that at any time each path in P can be shortcut
through at most one path in Q; therefore, if P; is first
shortcut through @; (i.e., it is replaced by the path
P} constructed above) and at a later iteration, P} is

shortcut through @Q;, then at this iteration we remove
i from Q* and add ¢’ instead. Let T denote the number
of pairs (7,j) such that P; € P and @Q; € Q intersect
(T changes in each iteration of the algorithm). It is not
difficult to observe the following facts.

Facr 3.1. The shortcutting procedure never increases
the value of T'.

Facr 3.2. Each iteration of the above algorithm either
increases the number paths in Q*, or decreases T'.

It follows immediately from the above facts that the
algorithm eventually stops in a non-wasteful situation.
In such a situation, every path @); € Q that has a non-
empty intersection with P is used for shortcutting one
path in P (i.e., belongs to Q*). Therefore, the number
of paths in Q that have an intersection with a path in
P is not more than k/2. So if we remove all the edges
of the paths in P from G, there are still % edge-disjoint
paths from v; to vy. Each such path together with a
path from P forms an S-Steiner tree. O

By induction on S and using the shortcutting procedure,
it can be proved that for a graph G(V,E) and S C V
where S = {vy,vs,...,vs}, if v; and v; are (i — 1)k-
edge-connected in G, for 2 < i < s, then there are k
edge-disjoint S-Steiner trees in G. We can guarantee the
existence of the same number of edge-disjoint S-Steiner
trees, under the slightly stronger assumption that S
is (s — 1)k-edge-connected, using the following simple
argument: add a new vertex v and connect it to each
of vy, vs...,vs with k parallel edges. It is easy to see
that in this graph, v and v; are (s — 1)k-edge-connected
and therefore, by Menger’s theorem, there are (s — 1)k
edge-disjoint paths from u to v;. These paths can be
partitioned into s — 1 groups, such that the ith group
consists of k paths between v;11 and vy. It is easy to
combine these paths to obtain k edge-disjoint S-Steiner
trees in G.

There are a few points worth mentioning here. Firstly,
as you may have noticed, both of these results guarantee
the existence of a collection of Steiner trees all of
which are stars. This is stronger than what we need,
and of course, it doesn’t come for free: we need
relatively strong assumptions. Secondly, there is an
interesting connection between the algorithm in the
proof of Theorem 3.1 and the standard stable marriage
algorithm. See Conforti et al. [5] for more details.

In the next theorem, we can get a better bound using
the idea used in the proof of Theorem 3.1.



THEOREM 3.2. Let G(V,E) be a graph and S be a
subset of s vertices of G. If S is k-edge-connected in G,
then there are |ask| edge-disjoint S-Steiner trees in G,
where «; is defined by the following recurrence relation.

(31) ax=1 Vi>2 a=a_1—a; /4

Proof Sketch: We use induction on s. If s = 2,
the theorem follows from Menger’s theorem. Suppose
s> 2, and let vy, va,...,vs be the vertices in S. Define
S" .= S\ {vs}. By induction hypothesis, there is a
collection T of a1k edge-disjoint S’-Steiner trees in
G. We denote these Steiner trees by T7,...
Also, from Menger’s theorem, we know there are k edge-
disjoint paths Py, Ps,..., P, between vy and v;. We
consider these paths as paths starting from vs. So, we
say an edge e appears before (after) e’ in P; if e is closer

(farther) to v, than e'.

;Tas,lk-

The basic idea is to combine these trees and paths to
obtain Steiner trees for S. The difficulty arises when
there trees and paths have some edges in common. We
say that an edge e is a red edge if it is both in a tree
T; and a path P;. Consider a tree, say T7. For each
required point v;, 1 < ¢ < s—1, find the closest red edge
to v; in T7. Let e be ared edge in 71, i.e., e isin 71 N FP;
for some path P;. If e is the closest red edge to several
vertices v;,,Viy,...,0;, in T7, then we “shortcut” the
path P; to v;,,vi,,...,v; at e. That is, we remove the
part of P; after e, and add to it the paths in T} between e
and vy, , V4, - . -, U5, . Notice that after this operation, P;
is no longer a path; it starts from v, as a path, but after
reaching e it branches into several branches each ending
in one of v; ’s. We call such a structure a path-tree, as
we want to emphasize the distinction between the part
between vs and e (which comes from the original path
P;), and the part after e (that comes from the tree 77).

It is not difficult to see that the collection of P;’s after
the above shortcutting procedure can be assumed to
be edge-disjoint, without loss of generality, since an
intersection between P;’s can occur after the above
procedure only if the paths between two required points
v; and v; and their respective closest red edges e; and
e; intersect, and in such a situation we can pick e; as
the closest red edge to both v; and v; (See Figure 2).

After we shortcut all paths that intersect 77 in a red
edge that is the closest red edge to one of v;’s, we
perform the same procedure for T». However, if a path
P; is shortcut at e while processing 77, the edges of
P; that are discarded in this process (i.e., edges that
come after e in P;), are no longer considered red edges.
We perform the shortcutting procedure on all trees

T,....Ta, k-

Figure 2: Proof of Theorem 3.2

After this process, we might have paths that are short-
cut twice. For example, P; might be shortcut at an
edge e while processing 71, and at an edge e’ before e
while processing T5. If such a thing happens, we mark
the edges of the part of P; that is discarded during the
shortcutting procedure for 75 (i.e., the edges that come
after e') as non-red edges (so e is no longer a red edge),
and perform the procedure for 77 again. That is, each
of the vertices v;, , vi,, . .., v;, that had e as their closest
red edge in 73 previously will have to choose their clos-
est red edge again, with the updated set of red edges.
We iterate this procedure until every P; is shortcut for
at most one tree. It is not difficult to see that this pro-
cedure ends, since in every iteration some of the edges
that were originally in P; are discarded.

At the end of the above procedure, we are in a situation
where each P; is shortcut for at most one tree T;. Let
Q; denote the collection of P;’s that are not shortcut
(and therefore are still paths from vs to vy ), let f denote
the size of Q. Also, let z; (i =0,...,s — 1) denote the
number of T}’s that are used for shortcutting exactly ¢
paths. For ¢ > 0, from these trees and the paths that
are shortcut through them, we get a collection of iz;
path-trees, that we denote by Q;. We let Qy denote the
collection of xp trees that are not used in shortcutting
any path.

From the above definitions, since there are k — f of P;’s
that are shortcut exactly once in the above procedure,
we have

For simplicity, we let x5 := f/s. Therefore, the above
equation can be written as

s
i=0

Also, since each of the T}’s is counted in exactly one of

x;’s, we have
s—1
E Ty = as_1k.
i=0

(3.2)

(3.3)



It is not hard to see that the collection of all k£ paths and
path-trees in Q; U---UQ, and x( trees in Qg constitute
a collection Q of k + z¢ edge-disjoint subgraphs of
G. In the rest of the proof, we will try to combine
the subgraphs in Q to construct edge-disjoint S-Steiner
trees in G.

Let p be a number such that 37 . diz; < zp <
Yipizi. I my < swy, we define p = s, and if
Yoi_jix; < wo, we define p = 0. For every i =
p+1,...,s — 1, from each of the iz; path-trees in Q;,
we pick one path from vs to one of vy,...,vs_1. Also,
Q, is by itself a collection of sz paths from v, to
vy. Thus, we can obtain Zf:p_H 1x; edge-disjoint paths
from v, to one of vy,...,vs_1, from Qpy; U---U Qs
There are pr, path-trees in Q,, corresponding to z,
trees in 7. Consider the path-trees corresponding to
[(zog — Zf:m_l iz;)/p| of these trees, and from each
of these p[(zo — Zf:m_l iz;)/p| path-trees, take one
path from v to one of vy,...,vs_1. This gives us a
collection of p[(zo — 27—, i) /P] > To = Y i— i i
paths from vg to one of vy,.. Therefore, we
get at least x(p edge-disjoint paths from vy to one of
v1,...,vs—1 at the expense of destroying the path-
trees in Qg, Ds_1,...,9pt1, and the path-trees in Q,
corresponding to [(zo — X.;_,,, ix;)/p] trees in T.
Each of these paths can be joined with one of the
trees in Qg to form an S-Steiner tree. The remaining
pxp —pl(xo — Zf:m_l iz;)/p] path-trees in Q, can be
grouped into @, — [(zo — > ;_,,, iw;)/p] groups, each
group consisting of p path-trees that correspond to the
same tree in 7. The union of the path-trees in each
group is a graph that connects all vertices in S, and
therefore contains an S-Steiner tree. This gives us
xp — [(xo — Xoi_, 41 1wi)/p] S-Steiner trees. Similarly,
from each Q;, i = p,p—1,...,1, we get x; S-Steiner
trees. Therefore, the total number of S-Steiner trees
that we obtain is equal to

-y Usg—1-

s

iz;) /p] + ) i

SOLy(x) = mo+ap—[(zo— Y
i=p+1 =1
p—1 L L
(3.4) = To + Z T; + Z —T;
p i=1 i=p+1 p

Here we have to be careful about the two special cases
p = 0 and p = s. Using the same method, it is not
difficult to see that in these two cases we get SOLg(z) =
S22 Liw; and SOLs(z) = Y70 a; S-Steiner trees,
respectively. By Equations (3.2) and (3.3), we have
SOLy(x) = k and SOLs(x) = as—1k. Therefore, in
these cases we get at least as_1k > ayk edge-disjoint
S-Steiner trees. Thus, we may assume without loss of

generality that 1 < p <s.

Now that we have computed the number of S-Steiner
trees that our algorithm finds in terms of z;’s, we can
analyze the worst-case behavior of our algorithm by
treating z;’s as variables and solving the following linear
program.

s .

C . 1
minimize E —x;

p

-1 p
p To + Z T; +
p i=1 i=p+1

s
ZZ:L'@ =k

=0

s—1

in = ozs_lk
=0

Vi: x; >0

subject to

This is very similar to the idea of using factor-revealing
LP’s explained in [12, 11]. In order to upper bound
the solution of the above linear program, we multiply
its first constraint by 1/p? and its second constraint by
(p — 1)/p. We obtain the following.

st p—1 i s
(5 )

i=0 p
-1
L
p

1
p’
—1

It is easy to see that for i < p, ”T + piz < 1 and for
i>p,%+p%<%. Also, %5 < £. Thus, since z; > 0

(3.6)

) p2
for every 1,
p- - i
w+d ot Y in
i=1 i=p+1
s—1 p— 1 i
ZZ<T+—2)%+ 305
Z’_
1 p-1
3.7 (— +—« 1) k
(3.7) ¥ op

This shows that in the worst case our algorithm finds
at least L(I% + ijlas_l)kJ edge-disjoint S-Steiner trees.
The minimum of this expressionis at p = 2/a;_1. Thus,
our algorithm finds is at least |[(as—1 — a2 |/4)k] =
|ask] edge-disjoint S-Steiner trees. O

Notice that the algorithm given in the proof of Theorem
3.2 can be easily implemented in polynomial time.
Thus, since the edge-connectivity of the set S is an
upper bound on the maximum number of edge-disjoint
S-Steiner that we can pack in G, we get the following
corollary.



COROLLARY 3.1. There is a polynomial time algorithm
for the Steiner tree packing problem with an approxi-
mation ratio of as, where s is the number of required
points.

LEMMA 3.1. Let a,, be the sequence defined by Equation
(3.1). Then o, = 2 +o(L).

Proof. Let 3, = % -,
Equation (3.1) we have:

for n > 2. Therefore, from

. 1
= B+

B )

(3.8)

Cramm 3.1. Forn > 2, 3, > % — %

Proof. We use induction on n. The statement holds
trivially for n = 2. Suppose n > 2 and the claim is true
for all values up to n — 1. By (3.8):

P 1 1 2+1
= \2 (n-1) 4
_ 1 n-2
2 (n-1)°
1 1
> Z -,
- 2 n

Cramm 3.2. Forn > 2, 3, < % — ﬁ.

Proof. Again, we use induction on n. The base case
n = 2 is trivially true. Suppose the statement holds
for all values up to n — 1. By (3.8) and the induction
hypothesis,

5. o< (Lot Y, Ll 1 dn-5
"= \2 4(n-1) 42 16(n—1)2
1 4n? — 5n 1 4n®>—-8n+4
= ——-— < =
2 16nn—1)2 — 2 16n(n—1)>2
_ 11
T2 dn”

O

Claim 3.2 will be used to prove the following stronger
statement.

CramM 3.3. There is a constant ¢ such that
1 c

1
2 n

Bn < :
nlnn

Proof. For small values of n, the claim is true if we let
¢ to be a large enough constant. Let’s assume that n
is sufficiently large and that the claim is true for all
integers up to n — 1. From Equation (3.8) we have

1 In(n—1)—c \> 1

= (G amman)
_ 1 _(am-1)-oln-2)nn-1)+d
2 (n—1)*In*(n — 1) '

So, to prove the claim, it is enough to show that,

(In(n—1) —¢)[(n—=2)In(n—1)+¢ _ Inn—-c

(n—1)*In*(n —1)

nlonn ’

or equivalently,

nlnn(ln(n —1) —¢)[(n — 2)In(n — 1) + ¢

(3.9) —(Inn —¢)(n — 1)*In*(n — 1)] > 0.

The expansion of the left-hand side of (3.9) is

—cn’Innlin(n — 1) + 3enlnnin(n — 1) — ¢*nlnn
—Innln®*(n — 1) + en?In*(n — 1)
—2enln®(n — 1) + cln®(n — 1)

> cen?In(n — D)[In(n — 1) —Inn] + enlnnln(n — 1)
—c®nlnn —Innln®(n — 1) + cln®(n — 1)

>cnln(n — 1)[lnn — 2] — *ninn
—Innln®*(n —1).

Let ¢ = %ln np and let ny be the smallest integer such
that

cno In(ng — 1)[Inng — 2] — c*ng In ng
—Inngln®(ng — 1) > 0.

By this definition, the claim is true for n < ng by Claim
3.2, and for n > ng by Equation (3.10). O

From Claims 3.1 and 3.3,

4 4c 4
. <a, < —
n  nlon  — -
This completes the proof of the lemma. O

The simplest case of the Steiner tree packing problem
after the Menger and Nash-Williams-Tutte theorems is
perhaps the case where the number of required points
is three (|S] = 3). In this case, Theorem 3.2 gives the
following corollary.



COROLLARY 3.2. Let G(V,E) be a graph and S be a
subset of 3 vertices of G. If S is k-edge-connected in G,
then there are | 3k] edge-disjoint S-Steiner trees in G.

The following example shows that the constant 3/4 in
the above corollary cannot be replaced with any larger
constant.

Ezample. Let G be a graph on s vertices with exactly
r parallel edges between each pair of its vertices, and
let S = V(G). Clearly, S is k-edge-connected, where
k = (s—1)r. Since each S-Steiner tree has exactly s —1
edges, the maximum number of edge-disjoint S-Steiner
trees in G is at most 7(3)/(s — 1) = rs/2 = 555k
In particular, when s = 3, the graph does not contain
more than %k edge-disjoint Steiner trees.

The following question remains open. An affirmative
answer to this question would provide a common gener-
alization of Menger’s theorem and the corollary of Nash-
Williams-Tutte’s theorem.

QUESTION 3.1. Is it true that for every graph G and
subset S of vertices of G with |S| = s, if S is k-edge-
connected in G then there are -2

ook edge-disjoint S-
Steiner trees in G ?

4 Packing Steiner trees fractionally

The fractional Steiner tree packing problem can be
formulated by the following linear program. In the
following 7 denotes the collection of all S-Steiner trees
in a graph G, and ¢, is the (given) capacity of the edge e.

maximize ) o 27

(4.10)

subject to Ve€ E: ) . oo < ce

YI'eT: zp >0

This problem is a natural relaxation of the Steiner tree
packing problem, and one might hope to get a good
upper bound by solving the above linear program. Also,
fractional packing of Steiner trees is useful in some
broadcasting applications.

The dual of the linear program (4.10) is as follows.

minimize

2eer CeYe

(4.11)

subject to VI'€ T : ) cpye >1

YVee E: y.>0

In other words, the dual LP captures the following
problem: Assign non-negative weights to the edges of
the graph G in such a way that the minimum weight S-
Steiner tree has weight at least 1, and a linear function
of the weights of the edges is minimized. The difficulty
in solving this linear program arises from the fact that
the separation oracle for the above linear program is the
Steiner tree problem, and is therefore NP-hard. In this
section, we observe that it is possible to use the known
approximation algorithms for the Steiner tree problem
as an approrimate separation oracle in the Ellipsoid
algorithm to find an approximate fractional packing
of Steiner trees. The converse is also true, i.e., an
approximation algorithm for the fractional Steiner tree
packing problem implies an approximation algorithm
for the minimum Steiner tree problem.

THEOREM 4.1. There is an a-approximation algorithm
for the mazimum fractional Steiner tree packing problem
if and only if there is an a-approximation algorithm for
the minimum Steiner tree problem.

Proof Sketch: Assume there is a polynomial time «-
approximation algorithm A for finding the minimum
weight Steiner tree in a given weighted graph for a
given set of required points. We show that there is a
polynomial time a-approximation algorithm for finding
the maximum fractional packing of Steiner trees in a
given capacitated graph for a given set of required
points.

We run the ellipsoid algorithm on the linear program
(4.11) using the algorithm A as the separation oracle.
More precisely, we add the inequality >,z ceye < R
to the linear program, and use binary search to find
the smallest value of R for which the linear program is
feasible. The separation oracle acts as follows: First,
it checks the inequality > . pceye < R. Next, it
runs the algorithm A to find the approximate minimum
weight Steiner tree in the graph, using y.’s as the
weights of the edges. If the answer that A finds has
weight less than 1, then we know that y.’s are not a
feasible solution of the linear program (4.11), and the
Steiner tree of weight less than 1 gives us a separating
hyperplane. If the approximate minimum Steiner tree
that A finds has weight at least 1, then we accept
ye's as a feasible solution and therefore the ellipsoid
algorithm decides that the linear program is feasible.
Of course, since A is just an approximation algorithm,
the above conclusion might be incorrect, and the linear
program might actually be infeasible. However, since
the approximation factor of A is at most «, we know
that in this case, ay.’s constitute a feasible solution of



the linear program, with R replaced by aR. Therefore,
if R* is the minimum value of R for which the algorithm
decides that the linear program is feasible, then we know
that the linear program is infeasible for R* — e (where
€ depends on the precision of the algorithm) , and is
feasible for aR*. Therefore, the optimum solution of
the dual program (4.11) is between R* and aR*.

The above algorithm computes the approximate value
of the solution of the primal program (4.10). In order
to compute the actual solution, we use the technique
used in [4]. The total number of separating hyperplanes
found by the above separation oracle while running
the ellipsoid algorithm for R* — € is bounded by a
polynomial. These separation oracles are enough to
show that the solution of the dual program (4.11)
is at least R*. Therefore, if we consider the set of
primal variables that correspond to these separating
hyperplanes, we get a set of polynomially many primal
variables. By LP-duality, if we fix the values of the
other variables to 0, the resulting program still has
solution at least R*. However, after fixing the values of
other variables to 0 we obtain a polynomial size linear
program, which we can solve in polynomial time, and
find the optimum solution. By the above argument this
optimum solution has value at least R*. Furthermore,
we know that the optimum solution of the dual program
(4.11), and therefore the primal program (4.10) is not
more than aR*.

Conversely, assume there is an a-approximation algo-
rithm A for finding the maximum fractional Steiner tree
packing in a given capacitated graph with a given set
of required points. This means that if we denote the
polytope defined by the inequalities of the linear pro-
gram (4.11) by P, then we can approximately optimize
on P in any given direction. In the polar, this means
that there is a procedure that for any given line [, finds
(approximately) the first facet of the polar of P that
intersects [. This implies that there is an approximate
separation oracle for the polar of P. Using this separa-
tion oracle and the method described in the first part
of the proof, we can obtain an algorithm that for any
given direction, finds the approximate optimum point
in the polar of P along that direction. This means that
for P, there is a procedure A’ that for any given line [,
finds (approximately) the first facet of P that intersects
. It is not difficult to observe that using A', we can
(approximately) solve the minimum Steiner tree prob-
lem. Furthermore, the above reduction preserves the
approximation factor of the algorithm. (I

The above theorem together with the algorithm of
Hougardy and Promel [10] and APX-completeness proof
of Bern and Plassmann [3] for the minimum Steiner tree

problem implies the following corollaries.

COROLLARY 4.1. There is a 1.598-approximation algo-
rithm for the fractional Steiner tree packing problem.

COROLLARY 4.2. The fractional Steiner tree packing
problem is APX -hard.

COROLLARY 4.3. The problem of packing the maximum
number of edge-disjoint Steiner trees is APX -hard.

Proof Sketch: It is easy to see that if there is an a-
approximation algorithm for the Steiner tree packing
problem, then by replacing each edge by several paral-
lel edges, one can obtain an (a — €)-approximation al-
gorithm for the fractional Steiner tree packing problem,
for any € > 0. d

It worths mentioning that using Mader’s splitting-off
lemma (see [2]) one can obtain a combinatorial 2-
approximation algorithm for the fractional Steiner tree
packing problem. The idea is to replace each edge
by two parallel edges, and perform the splitting-off
procedure on the Steiner points.

5 Conclusion

In this paper, we considered the problem of packing
Steiner trees. This problem is a common generalization
of both Nash-Williams-Tutte’s and Menger’s theorems.
We gave a polynomial time algorithm that for a graph
G(V,E) and a k-edge-connected subset S of vertices
of G, it finds ak-edge-disjoint S-Steiner trees, where
ays) = 4/|S|+0(]S|~"). We showed that this is tight for
the case |S| = 3. There are several problems left open.
The first one is to improve the main result of section 3.
Ultimately, we would like to answer Question 3.1. An
affirmative answer to this question will probably provide
a 2-approximation algorithm for the Steiner tree packing
problem. As noted in [14], we don’t even know whether
there is a constant k£ such that if S is k-edge-connected
in G, then there are two edge-disjoint S-Steiner trees

in G.
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