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Abstra
t

The Steiner pa
king problem is to �nd the maximum

number of edge-disjoint subgraphs of a given graph G

that 
onne
t a given set of required points S. This

problem is motivated by pra
ti
al appli
ations in VLSI-

layout and broad
asting, as well as theoreti
al reasons.

In this paper, we study this problem and present an

algorithm with an asymptoti
 approximation fa
tor of

jSj=4. This gives a suÆ
ient 
ondition for the existen
e

of k edge-disjoint Steiner trees in a graph in terms of the

edge-
onne
tivity of the graph. We will show that this


ondition is the best possible if the number of terminals

is 3. At the end, we 
onsider the fra
tional version

of this problem, and observe that it 
an be redu
ed

to the minimum Steiner tree problem via the ellipsoid

algorithm.

1 Introdu
tion

In the Steiner tree pa
king problem the obje
tive is to

�nd the maximum number of edge-disjoint Steiner trees

in a given graph (See Se
tion 2 for the de�nitions).

In this paper we study the version in whi
h all the

Steiner trees are required to 
onne
t the same set

of terminal verti
es (a.k.a. required verti
es). This

problem is motivated by both pra
ti
al as well as

theoreti
al 
onsiderations.

The problem in its full generality (where for ea
h

Steiner tree, a di�erent set of terminals is given) has

appli
ations in VLSI 
ir
uit design [15, 9, 8℄. In this

appli
ation, a Steiner tree is needed to share an ele
tri


signal by a set of terminal nodes. Another appli
ation,

whi
h is also our primary fo
us, arises in the Internet
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domain. Imagine that a given graph represents a

network. Suppose one of the node in the graph is

the broad
aster. All other nodes are either users or

routers (also 
alled swit
hes). The broad
aster wants

to broad
ast as many streams of movies as possible, so

that the users have the maximum number of 
hoi
es.

Ea
h stream of movie is broad
asted via a Steiner tree


onne
ting all the users with the broad
aster. Sin
e we

allow parallel edges, we 
an also assume that ea
h link


an 
arry only one broad
ast. So in essen
e we need to

�nd the maximum number of edge-disjoint Steiner trees


onne
ting all the users and the broad
aster.

From a theoreti
al perspe
tive, both extremes of this

problem are fundamental theorems in 
ombinatori
s.

One extreme of the problem is when we only have two

terminals. In this 
ase a Steiner tree is just a path

between the terminals, so the problem be
omes the

well-known Menger theorem [16℄. The other extreme

is when all the verti
es are terminals. In this 
ase a

Steiner tree is just a spanning tree of the graph, so

the problem be
omes the 
lassi
al Nash-Williams-Tutte

theorem [17, 19℄.

Theorem 1.1. [17, 19℄ Graph G(V;E) 
ontains k edge-

disjoint spanning trees if and only if

E

G

(P) � k(t� 1)

for every partition P = fV

1

; : : : ; V

t

g of V into non-

empty subsets, where E

G

(P) denotes the number of

edges between distin
t 
lasses of P.

Sin
e the problem of �nding k disjoint spanning trees

in a graph is a spe
ial 
ase of �nding k disjoint bases of

a matroid, Theorem 1.1 
an be derived from Edmonds'

matroid partition theorem [6℄.

Both these theorems, Menger as well as Nash-Williams-

Tutte theorem, are max-min theorems and 
an be

generalized into a single theorem whi
h says that the



maximum number of edge-disjoint Steiner trees is the

same as the integer part of the minimum value of

E

G

(P)

jPj�1

,

where the minimum is over the set of all partitions of the

verti
es of graph that in
lude at least one terminal in

ea
h 
lass, with E

G

(P) denoting the number of edges

between distin
t 
lasses of P , and jPj denoting the

number of 
lasses of P . This statement is not true if we

are not in the extreme 
ases, as shown by an example

in [14℄.

It is an easy exer
ise to show using Theorem 1.1 that

if a graph G is 2k-edge-
onne
ted then it has k edge-

disjoint spanning trees. Kriesell [14℄ 
onje
tured that

this 
orollary generalizes to Steiner trees, i.e., if a set S

of verti
es of G is 2k-edge-
onne
ted (see Se
tion 2 for

the de�nitions) then there is a set of k edge-disjoint

S-Steiner trees in G. This 
onje
ture is still open,

even with 2k repla
ed by any 
onstant multiple of

k. Noti
e that the edge-
onne
tivity of the set S is

an upper bound on the maximum number of edge-

disjoint S-Steiner trees. Thus, a 
onstru
tive proof for

the above 
onje
ture would provide a 
onstant-fa
tor

approximation algorithm for the Steiner tree pa
king

problem.

The spe
ial 
ase in whi
h V � S is independent is


onsidered by Kriesell [14℄ and Frank et al. [7℄. A


orollary of the main theorem of [14℄ is that for a graph

G(V;E) and S � V , if V � S is an independent set

and S is k(k + 1)-edge-
onne
ted, then G 
ontains k

edge-disjoint S-Steiner trees. A stronger version of this

appeared in [7℄, where they weaken the requirement for


onne
tivity of S to 3k-edge-
onne
tedness. They also

prove a generalization of Theorem 1.1 to hypergraphs.

For an arbitrary set S, Petingi and Rodriguez [18℄ give

a lower bound for the number of edge-disjoint S-Steiner

trees, by showing that: if S is k-edge-
onne
ted in G

and jSj � 2, then G has at least b(

2

3

)

jV�Sj

k=2
 edge-

disjoint S-Steiner trees.

For planar graphs, related problems have been 
onsid-

ered by Wagner [20℄. A variant of the maximum 
a-

pa
ity broad
ast problem, in whi
h network en
oding is

allowed is 
onsidered in information theory [1, 13℄.

In this paper, we will present an algorithm for the

Steiner tree pa
king problem whi
h shows that if a

subset S in a graph is k-edge-
onne
ted, then there are

�

jSj

k edge-disjoint Steiner trees for S, where �

s

is a

sequen
e that tends to

4

s

as s tends to in�nity. This

result is tight when S 
onsists of 3 points. The novel

idea of the algorithm is in trying to 
ombine a 
olle
tion

of edge-disjoint paths with a 
olle
tion of edge-disjoint

Steiner trees by modifying the paths and trees in several

(polynomial) iterations.

We also study the problem of pa
king the maximum

number of Steiner trees fra
tionally. We show that �nd-

ing an �-approximation algorithm for this problem is

equivalent to �nding an �-approximation algorithm for

the minimum Steiner tree problem. As a 
orollary, we

get a 1.598-approximation algorithm for the fra
tional

Steiner tree pa
king problem. This also shows that it is

hard to �nd a PTAS for (fra
tional or integral) Steiner

tree pa
king problem.

2 Preliminaries

We only 
onsider undire
ted 
onne
ted �nite graphs. A

path between two verti
es u and v in a graph G is a

sequen
e u = v

0

; e

1

; v

1

; e

2

; v

2

; : : : ; e

k

; v

k

= v su
h that

e

i

's are distin
t edges of G, and the endpoints of e

i

are

v

i�1

and v

i

. Su
h a path is 
alled simple if v

i

's are all

distin
t. The edge-
onne
tivity of a 
onne
ted graph G

is the minimum number k of edges required to remove

from G to make it dis
onne
ted. Let G(V;E) be a graph

and S � V be a set of at least two verti
es. We say S

is k-edge-
onne
ted in G if for any set F of less than k

edges in G, there is a path between any pair of verti
es

in S in G n F . In other words, the S-edge-
onne
tivity

of G is the minimum number of edges whose removal

dis
onne
ts at least two verti
es of S.

For a graph G(V;E) and a set S � V of at least two

verti
es, an S-Steiner tree is a subgraph T (V

0

; E

0

) of G

whi
h is a tree and S � V

0

. The minimum Steiner tree

problem is the problem of �nding the minimum weight

S-Steiner tree for a given weighted graph G and subset

S of its verti
es. The Steiner tree pa
king problem for

a given graph G(V;E) and S � V asks to �nd a set of

maximum size of edge-disjoint S-Steiner trees of G.

3 The Algorithm

In this se
tion we show that for a graph G(V;E) and

S � V with jSj = s, if S is k-edge-
onne
ted, then there

are �

s

k edge-disjoint Steiner trees for S, where �

s

is a

sequen
e that is asymptoti
 to

4

s

as s tends to in�nity.

For simpli
ity of exposition, we �rst prove the following

weaker theorem, whose proof 
ontains the main idea

that we will use later on in proving the above result.

Theorem 3.1. Let G(V;E) be a graph and S =

fv

1

; v

2

; v

3

g be a subset of V . Assume that v

1

and v

2

are

k-edge-
onne
ted, and v

1

and v

3

are

k

2

-edge-
onne
ted

in G. Then G has

k

2

edge-disjoint S-Steiner trees.
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Figure 1: Short
utting pro
edure. (The path P

�

j

is

marked by thi
k lines).

Proof. Let P = fP

1

; P

2

; : : : ; P k

2

g be a set of

k

2

edge-

disjoint paths between v

1

and v

3

. Similarly, let Q =

fQ

1

; Q

2

; : : : ; Q

k

g be a set of k edge-disjoint paths

between v

1

and v

2

. We 
onsider the paths of P from

v

3

to v

1

; thus, an edge e appears before another edge e

0

on P

i

if e is 
loser to v

3

than e

0

on P

i

. Similarly, we


onsider the paths of Q from v

2

to v

1

.

Note that the paths in P are not ne
essarily disjoint

from the paths in Q. The last interse
tion of a path Q

i

with P is the last edge (i.e., the edge 
losest to v

1

) on

Q

i

that is also part of a path in P .

Assume that there exists a path Q

i

2 Q whose last

interse
tion with P is e 2 P

j

and e is not the last edge

of P

j

. We 
all su
h a situation a wasteful situation,

in whi
h we perform the following pro
edure, 
alled the

short
utting pro
edure: we 
onstru
t a new path P

�

j

, by

repla
ing the part of P

j

after e with the part of Q

i

after

e (See Figure 1 for an example). Noti
e that depending

on whether e is traversed by P

j

and Q

i

in the same

or opposite dire
tions, we will have to in
lude or not

in
lude e in P

�

j

.

Sin
e e is the last interse
tion of Q

i

with P , therefore P

�

j

does not interse
t any path in P n P

j

. Now we remove

P

j

from P and instead, add P

�

j

to it. After doing this,

P is sill a set of k=2 edge-disjoint paths from v

3

to v

1

.

We 
all this a short
utting of P

j

on Q

i

, and say that Q

i

is that path that is used for short
utting P

�

j

.

We keep doing the short
utting pro
edure, as long as

we are in a wasteful situation. Let Q

�

denote the set

of paths in Q that are used for short
utting a path in

P (Q

�


hanges in ea
h iteration of the algorithm). We

noti
e that at any time ea
h path in P 
an be short
ut

through at most one path in Q; therefore, if P

j

is �rst

short
ut through Q

i

(i.e., it is repla
ed by the path

P

�

j


onstru
ted above) and at a later iteration, P

�

j

is

short
ut through Q

i

0

, then at this iteration we remove

i from Q

�

and add i

0

instead. Let T denote the number

of pairs (i; j) su
h that P

j

2 P and Q

i

2 Q interse
t

(T 
hanges in ea
h iteration of the algorithm). It is not

diÆ
ult to observe the following fa
ts.

Fa
t 3.1. The short
utting pro
edure never in
reases

the value of T .

Fa
t 3.2. Ea
h iteration of the above algorithm either

in
reases the number paths in Q

�

, or de
reases T .

It follows immediately from the above fa
ts that the

algorithm eventually stops in a non-wasteful situation.

In su
h a situation, every path Q

i

2 Q that has a non-

empty interse
tion with P is used for short
utting one

path in P (i.e., belongs to Q

�

). Therefore, the number

of paths in Q that have an interse
tion with a path in

P is not more than k=2. So if we remove all the edges

of the paths in P from G, there are still

k

2

edge-disjoint

paths from v

1

to v

2

. Ea
h su
h path together with a

path from P forms an S-Steiner tree. �

By indu
tion on S and using the short
utting pro
edure,

it 
an be proved that for a graph G(V;E) and S � V

where S = fv

1

; v

2

; : : : ; v

s

g, if v

1

and v

i

are (i � 1)k-

edge-
onne
ted in G, for 2 � i � s, then there are k

edge-disjoint S-Steiner trees in G. We 
an guarantee the

existen
e of the same number of edge-disjoint S-Steiner

trees, under the slightly stronger assumption that S

is (s � 1)k-edge-
onne
ted, using the following simple

argument: add a new vertex u and 
onne
t it to ea
h

of v

2

; v

3

: : : ; v

s

with k parallel edges. It is easy to see

that in this graph, u and v

1

are (s�1)k-edge-
onne
ted

and therefore, by Menger's theorem, there are (s� 1)k

edge-disjoint paths from u to v

1

. These paths 
an be

partitioned into s � 1 groups, su
h that the ith group


onsists of k paths between v

i+1

and v

1

. It is easy to


ombine these paths to obtain k edge-disjoint S-Steiner

trees in G.

There are a few points worth mentioning here. Firstly,

as you may have noti
ed, both of these results guarantee

the existen
e of a 
olle
tion of Steiner trees all of

whi
h are stars. This is stronger than what we need,

and of 
ourse, it doesn't 
ome for free: we need

relatively strong assumptions. Se
ondly, there is an

interesting 
onne
tion between the algorithm in the

proof of Theorem 3.1 and the standard stable marriage

algorithm. See Conforti et al. [5℄ for more details.

In the next theorem, we 
an get a better bound using

the idea used in the proof of Theorem 3.1.



Theorem 3.2. Let G(V;E) be a graph and S be a

subset of s verti
es of G. If S is k-edge-
onne
ted in G,

then there are b�

s

k
 edge-disjoint S-Steiner trees in G,

where �

i

is de�ned by the following re
urren
e relation.

�

2

= 1 8i > 2; �

i

= �

i�1

� �

2

i�1

=4(3.1)

Proof Sket
h: We use indu
tion on s. If s = 2,

the theorem follows from Menger's theorem. Suppose

s > 2, and let v

1

; v

2

; : : : ; v

s

be the verti
es in S. De�ne

S

0

:= S n fv

s

g. By indu
tion hypothesis, there is a


olle
tion T of �

s�1

k edge-disjoint S

0

-Steiner trees in

G. We denote these Steiner trees by T

1

; : : : ; T

�

s�1

k

.

Also, from Menger's theorem, we know there are k edge-

disjoint paths P

1

; P

2

; : : : ; P

k

between v

s

and v

1

. We


onsider these paths as paths starting from v

s

. So, we

say an edge e appears before (after) e

0

in P

j

if e is 
loser

(farther) to v

s

than e

0

.

The basi
 idea is to 
ombine these trees and paths to

obtain Steiner trees for S. The diÆ
ulty arises when

there trees and paths have some edges in 
ommon. We

say that an edge e is a red edge if it is both in a tree

T

i

and a path P

j

. Consider a tree, say T

1

. For ea
h

required point v

i

, 1 � i � s�1, �nd the 
losest red edge

to v

i

in T

1

. Let e be a red edge in T

1

, i.e., e is in T

1

\P

j

for some path P

j

. If e is the 
losest red edge to several

verti
es v

i

1

; v

i

2

; : : : ; v

i

`

in T

1

, then we \short
ut" the

path P

j

to v

i

1

; v

i

2

; : : : ; v

i

`

at e. That is, we remove the

part of P

j

after e, and add to it the paths in T

1

between e

and v

i

1

; v

i

2

; : : : ; v

i

`

. Noti
e that after this operation, P

j

is no longer a path; it starts from v

s

as a path, but after

rea
hing e it bran
hes into several bran
hes ea
h ending

in one of v

i

r

's. We 
all su
h a stru
ture a path-tree, as

we want to emphasize the distin
tion between the part

between v

s

and e (whi
h 
omes from the original path

P

j

), and the part after e (that 
omes from the tree T

1

).

It is not diÆ
ult to see that the 
olle
tion of P

j

's after

the above short
utting pro
edure 
an be assumed to

be edge-disjoint, without loss of generality, sin
e an

interse
tion between P

j

's 
an o

ur after the above

pro
edure only if the paths between two required points

v

i

and v

j

and their respe
tive 
losest red edges e

i

and

e

j

interse
t, and in su
h a situation we 
an pi
k e

i

as

the 
losest red edge to both v

i

and v

j

(See Figure 2).

After we short
ut all paths that interse
t T

1

in a red

edge that is the 
losest red edge to one of v

i

's, we

perform the same pro
edure for T

2

. However, if a path

P

j

is short
ut at e while pro
essing T

1

, the edges of

P

j

that are dis
arded in this pro
ess (i.e., edges that


ome after e in P

j

), are no longer 
onsidered red edges.

We perform the short
utting pro
edure on all trees

T

1

; : : : ; T

�

s�1

k

.

v
i

vj

ei

e
j

Figure 2: Proof of Theorem 3.2

After this pro
ess, we might have paths that are short-


ut twi
e. For example, P

j

might be short
ut at an

edge e while pro
essing T

1

, and at an edge e

0

before e

while pro
essing T

2

. If su
h a thing happens, we mark

the edges of the part of P

j

that is dis
arded during the

short
utting pro
edure for T

2

(i.e., the edges that 
ome

after e

0

) as non-red edges (so e is no longer a red edge),

and perform the pro
edure for T

1

again. That is, ea
h

of the verti
es v

i

1

; v

i

2

; : : : ; v

i

`

that had e as their 
losest

red edge in T

1

previously will have to 
hoose their 
los-

est red edge again, with the updated set of red edges.

We iterate this pro
edure until every P

j

is short
ut for

at most one tree. It is not diÆ
ult to see that this pro-


edure ends, sin
e in every iteration some of the edges

that were originally in P

j

are dis
arded.

At the end of the above pro
edure, we are in a situation

where ea
h P

j

is short
ut for at most one tree T

i

. Let

Q

s

denote the 
olle
tion of P

j

's that are not short
ut

(and therefore are still paths from v

s

to v

1

), let f denote

the size of Q

s

. Also, let x

i

(i = 0; : : : ; s� 1) denote the

number of T

j

's that are used for short
utting exa
tly i

paths. For i > 0, from these trees and the paths that

are short
ut through them, we get a 
olle
tion of ix

i

path-trees, that we denote by Q

i

. We let Q

0

denote the


olle
tion of x

0

trees that are not used in short
utting

any path.

From the above de�nitions, sin
e there are k� f of P

j

's

that are short
ut exa
tly on
e in the above pro
edure,

we have

s�1

X

i=0

ix

i

= k � f:

For simpli
ity, we let x

s

:= f=s. Therefore, the above

equation 
an be written as

s

X

i=0

ix

i

= k:(3.2)

Also, sin
e ea
h of the T

j

's is 
ounted in exa
tly one of

x

i

's, we have

s�1

X

i=0

x

i

= �

s�1

k:(3.3)



It is not hard to see that the 
olle
tion of all k paths and

path-trees in Q

1

[� � �[Q

s

and x

0

trees in Q

0


onstitute

a 
olle
tion Q of k + x

0

edge-disjoint subgraphs of

G. In the rest of the proof, we will try to 
ombine

the subgraphs in Q to 
onstru
t edge-disjoint S-Steiner

trees in G.

Let p be a number su
h that

P

s

i=p+1

ix

i

< x

0

�

P

s

i=p

ix

i

. If x

0

� sx

s

, we de�ne p = s, and if

P

s

i=1

ix

i

< x

0

, we de�ne p = 0. For every i =

p + 1; : : : ; s � 1, from ea
h of the ix

i

path-trees in Q

i

,

we pi
k one path from v

s

to one of v

1

; : : : ; v

s�1

. Also,

Q

s

is by itself a 
olle
tion of sx

s

paths from v

s

to

v

1

. Thus, we 
an obtain

P

s

i=p+1

ix

i

edge-disjoint paths

from v

s

to one of v

1

; : : : ; v

s�1

, from Q

p+1

[ � � � [ Q

s

.

There are px

p

path-trees in Q

p

, 
orresponding to x

p

trees in T . Consider the path-trees 
orresponding to

d(x

0

�

P

s

i=p+1

ix

i

)=pe of these trees, and from ea
h

of these pd(x

0

�

P

s

i=p+1

ix

i

)=pe path-trees, take one

path from v

s

to one of v

1

; : : : ; v

s�1

. This gives us a


olle
tion of pd(x

0

�

P

s

i=p+1

ix

i

)=pe � x

0

�

P

s

i=p+1

ix

i

paths from v

s

to one of v

1

; : : : ; v

s�1

. Therefore, we

get at least x

0

edge-disjoint paths from v

s

to one of

v

1

; : : : ; v

s�1

at the expense of destroying the path-

trees in Q

s

;Q

s�1

; : : : ;Q

p+1

, and the path-trees in Q

p


orresponding to d(x

0

�

P

s

i=p+1

ix

i

)=pe trees in T .

Ea
h of these paths 
an be joined with one of the

trees in Q

0

to form an S-Steiner tree. The remaining

px

p

� pd(x

0

�

P

s

i=p+1

ix

i

)=pe path-trees in Q

p


an be

grouped into x

p

� d(x

0

�

P

s

i=p+1

ix

i

)=pe groups, ea
h

group 
onsisting of p path-trees that 
orrespond to the

same tree in T . The union of the path-trees in ea
h

group is a graph that 
onne
ts all verti
es in S, and

therefore 
ontains an S-Steiner tree. This gives us

x

p

� d(x

0

�

P

s

i=p+1

ix

i

)=pe S-Steiner trees. Similarly,

from ea
h Q

i

, i = p; p � 1; : : : ; 1, we get x

i

S-Steiner

trees. Therefore, the total number of S-Steiner trees

that we obtain is equal to

SOL

p

(x) = x

0

+ x

p

� d(x

0

�

s

X

i=p+1

ix

i

)=pe+

p�1

X

i=1

x

i

=

6

6

6

4

p� 1

p

x

0

+

p

X

i=1

x

i

+

s

X

i=p+1

i

p

x

i

7

7

7

5

(3.4)

Here we have to be 
areful about the two spe
ial 
ases

p = 0 and p = s. Using the same method, it is not

diÆ
ult to see that in these two 
ases we get SOL

0

(x) =

P

s

i=1

ix

i

and SOL

s

(x) =

P

s�1

i=0

x

i

S-Steiner trees,

respe
tively. By Equations (3.2) and (3.3), we have

SOL

0

(x) = k and SOL

s

(x) = �

s�1

k. Therefore, in

these 
ases we get at least �

s�1

k > �

s

k edge-disjoint

S-Steiner trees. Thus, we may assume without loss of

generality that 1 � p < s.

Now that we have 
omputed the number of S-Steiner

trees that our algorithm �nds in terms of x

i

's, we 
an

analyze the worst-
ase behavior of our algorithm by

treating x

i

's as variables and solving the following linear

program.

minimize

p� 1

p

x

0

+

p

X

i=1

x

i

+

s

X

i=p+1

i

p

x

i

subje
t to

s

X

i=0

ix

i

= k

s�1

X

i=0

x

i

= �

s�1

k

8i : x

i

� 0

(3.5)

This is very similar to the idea of using fa
tor-revealing

LP's explained in [12, 11℄. In order to upper bound

the solution of the above linear program, we multiply

its �rst 
onstraint by 1=p

2

and its se
ond 
onstraint by

(p� 1)=p. We obtain the following.

s�1

X

i=0

�

p� 1

p

+

i

p

2

�

x

i

+

s

p

2

x

s

=

�

1

p

2

+

p� 1

p

�

s�1

�

k(3.6)

It is easy to see that for i � p,

p�1

p

+

i

p

2

� 1 and for

i > p,

p�1

p

+

i

p

2

<

i

p

. Also,

s

p

2

<

s

p

. Thus, sin
e x

i

� 0

for every i,

p� 1

p

x

0

+

p

X

i=1

x

i

+

s

X

i=p+1

i

p

x

i

�

s�1

X

i=0

�

p� 1

p

+

i

p

2

�

x

i

+

s

p

2

x

s

=

�

1

p

2

+

p� 1

p

�

s�1

�

k(3.7)

This shows that in the worst 
ase our algorithm �nds

at least b(

1

p

2

+

p�1

p

�

s�1

)k
 edge-disjoint S-Steiner trees.

The minimum of this expression is at p = 2=�

s�1

. Thus,

our algorithm �nds is at least b(�

s�1

� �

2

s�1

=4)k
 =

b�

s

k
 edge-disjoint S-Steiner trees. �

Noti
e that the algorithm given in the proof of Theorem

3.2 
an be easily implemented in polynomial time.

Thus, sin
e the edge-
onne
tivity of the set S is an

upper bound on the maximum number of edge-disjoint

S-Steiner that we 
an pa
k in G, we get the following


orollary.



Corollary 3.1. There is a polynomial time algorithm

for the Steiner tree pa
king problem with an approxi-

mation ratio of �

s

, where s is the number of required

points.

Lemma 3.1. Let �

n

be the sequen
e de�ned by Equation

(3.1). Then �

n

=

4

n

+ o(

1

n

).

Proof. Let �

n

=

1

2

�

�

n

4

, for n � 2. Therefore, from

Equation (3.1) we have:

�

n

= �

2

n�1

+

1

4

:(3.8)

Claim 3.1. For n � 2, �

n

�

1

2

�

1

n

:

Proof. We use indu
tion on n. The statement holds

trivially for n = 2. Suppose n > 2 and the 
laim is true

for all values up to n� 1. By (3.8):

�

n

�

�

1

2

�

1

(n� 1)

�

2

+

1

4

=

1

2

�

n� 2

(n� 1)

2

�

1

2

�

1

n

:

�

Claim 3.2. For n � 2, �

n

�

1

2

�

1

4n

:

Proof. Again, we use indu
tion on n. The base 
ase

n = 2 is trivially true. Suppose the statement holds

for all values up to n � 1. By (3.8) and the indu
tion

hypothesis,

�

n

�

�

1

2

�

1

4(n� 1)

�

2

+

1

4

=

1

2

�

4n� 5

16(n� 1)

2

=

1

2

�

4n

2

� 5n

16n(n� 1)

2

�

1

2

�

4n

2

� 8n+ 4

16n(n� 1)

2

=

1

2

�

1

4n

:

�

Claim 3.2 will be used to prove the following stronger

statement.

Claim 3.3. There is a 
onstant 
 su
h that

�

n

�

1

2

�

1

n

+




n lnn

:

Proof. For small values of n, the 
laim is true if we let


 to be a large enough 
onstant. Let's assume that n

is suÆ
iently large and that the 
laim is true for all

integers up to n� 1. From Equation (3.8) we have

�

n

�

�

1

2

�

ln(n� 1)� 


(n� 1) ln(n� 1)

�

2

+

1

4

=

1

2

�

(ln(n� 1)� 
)[(n� 2) ln(n� 1) + 
℄

(n� 1)

2

ln

2

(n� 1)

:

So, to prove the 
laim, it is enough to show that,

(ln(n� 1)� 
)[(n� 2) ln(n� 1) + 
℄

(n� 1)

2

ln

2

(n� 1)

�

lnn� 


n lnn

;

or equivalently,

n lnn(ln(n� 1)� 
)[(n� 2) ln(n� 1) + 
℄

�(lnn� 
)(n� 1)

2

ln

2

(n� 1)℄ � 0:(3.9)

The expansion of the left-hand side of (3.9) is

�
n

2

lnn ln(n� 1) + 3
n lnn ln(n� 1)� 


2

n lnn

� lnn ln

2

(n� 1) + 
n

2

ln

2

(n� 1)

�2
n ln

2

(n� 1) + 
 ln

2

(n� 1)

� 
n

2

ln(n� 1)[ln(n� 1)� lnn℄ + 
n lnn ln(n� 1)

�


2

n lnn� lnn ln

2

(n� 1) + 
 ln

2

(n� 1)

� 
n ln(n� 1)[lnn� 2℄� 


2

n lnn

� lnn ln

2

(n� 1):

Let 
 =

3

4

lnn

0

and let n

0

be the smallest integer su
h

that


n

0

ln(n

0

� 1)[lnn

0

� 2℄� 


2

n

0

lnn

0

� lnn

0

ln

2

(n

0

� 1) � 0:

By this de�nition, the 
laim is true for n � n

0

by Claim

3.2, and for n > n

0

by Equation (3.10). �

From Claims 3.1 and 3.3,

4

n

�

4


n lnn

� �

n

�

4

n

This 
ompletes the proof of the lemma. �

The simplest 
ase of the Steiner tree pa
king problem

after the Menger and Nash-Williams-Tutte theorems is

perhaps the 
ase where the number of required points

is three (jSj = 3). In this 
ase, Theorem 3.2 gives the

following 
orollary.



Corollary 3.2. Let G(V;E) be a graph and S be a

subset of 3 verti
es of G. If S is k-edge-
onne
ted in G,

then there are b

3

4

k
 edge-disjoint S-Steiner trees in G.

The following example shows that the 
onstant 3=4 in

the above 
orollary 
annot be repla
ed with any larger


onstant.

Example. Let G be a graph on s verti
es with exa
tly

r parallel edges between ea
h pair of its verti
es, and

let S = V (G). Clearly, S is k-edge-
onne
ted, where

k = (s�1)r. Sin
e ea
h S-Steiner tree has exa
tly s�1

edges, the maximum number of edge-disjoint S-Steiner

trees in G is at most r

�

s

2

�

=(s � 1) = rs=2 =

s

2(s�1)

k.

In parti
ular, when s = 3, the graph does not 
ontain

more than

3

4

k edge-disjoint Steiner trees.

The following question remains open. An aÆrmative

answer to this question would provide a 
ommon gener-

alization of Menger's theorem and the 
orollary of Nash-

Williams-Tutte's theorem.

Question 3.1. Is it true that for every graph G and

subset S of verti
es of G with jSj = s, if S is k-edge-


onne
ted in G then there are

s

2(s�1)

k edge-disjoint S-

Steiner trees in G?

4 Pa
king Steiner trees fra
tionally

The fra
tional Steiner tree pa
king problem 
an be

formulated by the following linear program. In the

following T denotes the 
olle
tion of all S-Steiner trees

in a graphG, and 


e

is the (given) 
apa
ity of the edge e.

maximize

P

T2T

x

T

subje
t to 8e 2 E :

P

T :e2T

x

T

� 


e

8T 2 T : x

T

� 0

(4.10)

This problem is a natural relaxation of the Steiner tree

pa
king problem, and one might hope to get a good

upper bound by solving the above linear program. Also,

fra
tional pa
king of Steiner trees is useful in some

broad
asting appli
ations.

The dual of the linear program (4.10) is as follows.

minimize

P

e2E




e

y

e

subje
t to 8T 2 T :

P

e2T

y

e

� 1

8e 2 E : y

e

� 0

(4.11)

In other words, the dual LP 
aptures the following

problem: Assign non-negative weights to the edges of

the graph G in su
h a way that the minimum weight S-

Steiner tree has weight at least 1, and a linear fun
tion

of the weights of the edges is minimized. The diÆ
ulty

in solving this linear program arises from the fa
t that

the separation ora
le for the above linear program is the

Steiner tree problem, and is therefore NP-hard. In this

se
tion, we observe that it is possible to use the known

approximation algorithms for the Steiner tree problem

as an approximate separation ora
le in the Ellipsoid

algorithm to �nd an approximate fra
tional pa
king

of Steiner trees. The 
onverse is also true, i.e., an

approximation algorithm for the fra
tional Steiner tree

pa
king problem implies an approximation algorithm

for the minimum Steiner tree problem.

Theorem 4.1. There is an �-approximation algorithm

for the maximum fra
tional Steiner tree pa
king problem

if and only if there is an �-approximation algorithm for

the minimum Steiner tree problem.

Proof Sket
h: Assume there is a polynomial time �-

approximation algorithm A for �nding the minimum

weight Steiner tree in a given weighted graph for a

given set of required points. We show that there is a

polynomial time �-approximation algorithm for �nding

the maximum fra
tional pa
king of Steiner trees in a

given 
apa
itated graph for a given set of required

points.

We run the ellipsoid algorithm on the linear program

(4.11) using the algorithm A as the separation ora
le.

More pre
isely, we add the inequality

P

e2E




e

y

e

� R

to the linear program, and use binary sear
h to �nd

the smallest value of R for whi
h the linear program is

feasible. The separation ora
le a
ts as follows: First,

it 
he
ks the inequality

P

e2E




e

y

e

� R. Next, it

runs the algorithm A to �nd the approximate minimum

weight Steiner tree in the graph, using y

e

's as the

weights of the edges. If the answer that A �nds has

weight less than 1, then we know that y

e

's are not a

feasible solution of the linear program (4.11), and the

Steiner tree of weight less than 1 gives us a separating

hyperplane. If the approximate minimum Steiner tree

that A �nds has weight at least 1, then we a

ept

y

e

's as a feasible solution and therefore the ellipsoid

algorithm de
ides that the linear program is feasible.

Of 
ourse, sin
e A is just an approximation algorithm,

the above 
on
lusion might be in
orre
t, and the linear

program might a
tually be infeasible. However, sin
e

the approximation fa
tor of A is at most �, we know

that in this 
ase, �y

e

's 
onstitute a feasible solution of



the linear program, with R repla
ed by �R. Therefore,

if R

�

is the minimum value of R for whi
h the algorithm

de
ides that the linear program is feasible, then we know

that the linear program is infeasible for R

�

� � (where

� depends on the pre
ision of the algorithm) , and is

feasible for �R

�

. Therefore, the optimum solution of

the dual program (4.11) is between R

�

and �R

�

.

The above algorithm 
omputes the approximate value

of the solution of the primal program (4.10). In order

to 
ompute the a
tual solution, we use the te
hnique

used in [4℄. The total number of separating hyperplanes

found by the above separation ora
le while running

the ellipsoid algorithm for R

�

� � is bounded by a

polynomial. These separation ora
les are enough to

show that the solution of the dual program (4.11)

is at least R

�

. Therefore, if we 
onsider the set of

primal variables that 
orrespond to these separating

hyperplanes, we get a set of polynomially many primal

variables. By LP-duality, if we �x the values of the

other variables to 0, the resulting program still has

solution at least R

�

. However, after �xing the values of

other variables to 0 we obtain a polynomial size linear

program, whi
h we 
an solve in polynomial time, and

�nd the optimum solution. By the above argument this

optimum solution has value at least R

�

. Furthermore,

we know that the optimum solution of the dual program

(4.11), and therefore the primal program (4.10) is not

more than �R

�

.

Conversely, assume there is an �-approximation algo-

rithm A for �nding the maximum fra
tional Steiner tree

pa
king in a given 
apa
itated graph with a given set

of required points. This means that if we denote the

polytope de�ned by the inequalities of the linear pro-

gram (4.11) by P , then we 
an approximately optimize

on P in any given dire
tion. In the polar, this means

that there is a pro
edure that for any given line l, �nds

(approximately) the �rst fa
et of the polar of P that

interse
ts l. This implies that there is an approximate

separation ora
le for the polar of P . Using this separa-

tion ora
le and the method des
ribed in the �rst part

of the proof, we 
an obtain an algorithm that for any

given dire
tion, �nds the approximate optimum point

in the polar of P along that dire
tion. This means that

for P , there is a pro
edure A

0

that for any given line l,

�nds (approximately) the �rst fa
et of P that interse
ts

l. It is not diÆ
ult to observe that using A

0

, we 
an

(approximately) solve the minimum Steiner tree prob-

lem. Furthermore, the above redu
tion preserves the

approximation fa
tor of the algorithm. �

The above theorem together with the algorithm of

Hougardy and Pr�omel [10℄ and APX-
ompleteness proof

of Bern and Plassmann [3℄ for the minimum Steiner tree

problem implies the following 
orollaries.

Corollary 4.1. There is a 1.598-approximation algo-

rithm for the fra
tional Steiner tree pa
king problem.

Corollary 4.2. The fra
tional Steiner tree pa
king

problem is APX-hard.

Corollary 4.3. The problem of pa
king the maximum

number of edge-disjoint Steiner trees is APX-hard.

Proof Sket
h: It is easy to see that if there is an �-

approximation algorithm for the Steiner tree pa
king

problem, then by repla
ing ea
h edge by several paral-

lel edges, one 
an obtain an (� � �)-approximation al-

gorithm for the fra
tional Steiner tree pa
king problem,

for any � > 0. �

It worths mentioning that using Mader's splitting-o�

lemma (see [2℄) one 
an obtain a 
ombinatorial 2-

approximation algorithm for the fra
tional Steiner tree

pa
king problem. The idea is to repla
e ea
h edge

by two parallel edges, and perform the splitting-o�

pro
edure on the Steiner points.

5 Con
lusion

In this paper, we 
onsidered the problem of pa
king

Steiner trees. This problem is a 
ommon generalization

of both Nash-Williams-Tutte's and Menger's theorems.

We gave a polynomial time algorithm that for a graph

G(V;E) and a k-edge-
onne
ted subset S of verti
es

of G, it �nds �

s

k-edge-disjoint S-Steiner trees, where

�

jSj

= 4=jSj+o(jSj

�1

). We showed that this is tight for

the 
ase jSj = 3. There are several problems left open.

The �rst one is to improve the main result of se
tion 3.

Ultimately, we would like to answer Question 3.1. An

aÆrmative answer to this question will probably provide

a 2-approximation algorithm for the Steiner tree pa
king

problem. As noted in [14℄, we don't even know whether

there is a 
onstant k su
h that if S is k-edge-
onne
ted

in G, then there are two edge-disjoint S-Steiner trees

in G.
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