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Abstra
t

Planar graphs without 
y
les of length from 4 to 7 are proved to be 3-
olorable. Moreover, it

is proved that ea
h proper 3-
oloring of a fa
e of length from 8 to 11 in a 
onne
ted plane graph

without 
y
les of length from 4 to 7 
an be extended to a proper 3-
oloring of the whole graph. This

improves on the previous results on a long standing 
onje
ture of Steinberg.

1 Introdu
tion

In 1976, Steinberg 
onje
tured that every planar graph without 4 and 5-
y
les is 3-
olorable. This


onje
ture (open problem 2.9 in [4℄) remains unsettled despite several attempts. Erd�os (see [6℄) suggested

the following relaxation of this problem: does there exist a 
onstant C su
h that the absen
e of 
y
les

with size from 4 to C in a planar graph guarantees its 3-
olorability? Abbott and Zhou [1℄ proved that

su
h a C exists and C � 11. This result was later on improved to C � 10 by Borodin [2℄ and to C � 9

by Borodin [3℄ and, independently, Sanders and Zhao [5℄. Here, we improve on all these results:

Theorem 1.1 Every planar graph without 
y
les of length from 4 to 7 is 3-
olorable.

Let G

7

denote the 
lass of planar graphs without 
y
les of size from 4 to 7. To obtain Theorem 1.1,

we prove the following stronger theorem:

Theorem 1.2 Every proper 3-
oloring of the verti
es of any fa
e of size from 8 to 11 in a 
onne
ted

graph in G

7


an be extended to a proper 3-
oloring of the whole graph.

�
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Assuming Theorem 1.2, we 
an easily prove Theorem 1.1:

Proof of Theorem 1.1: Suppose that G is a 
ounter-example to the theorem with the smallest

number of verti
es. Clearly, G is 
onne
ted and by [3, 5℄ it has a 
y
le C of length 8 or 9. By the

absen
e of 
y
les of length from 4 to 7 in G, the subgraph indu
ed by C 
an have at most one 
hord, and

therefore it has a proper 3-
oloring '. By Theorem 1.2, ' 
an be extended (after deleting the possible


hords) both inside and outside of C to obtain a proper 3-
oloring of G.

Our proof of Theorem 1.2 is 
onstru
tive and easily yields a polynomial time algorithm for �nding

su
h a 3-
oloring. In the remaining of this se
tion, we de�ne some notation used throughout the paper.

In the next se
tion we prove some properties for a possible minimum 
ounter-example to Theorem 1.2.

In the �nal se
tion we 
omplete the proof by showing that these properties are in
ompatible, using the

Dis
harging Method.

Denote the degree of a vertex v by d(v) and the size of a fa
e f (bridges are 
ounted twi
e) by jf j. A

k-vertex is a vertex of degree k. By a �k-vertex (a �k-vertex) we mean a vertex of degree at least (at

most) k. Similar notation is used for fa
es. For a 
y
le S of a plane graph G, the verti
es lying inside

and outside of S are denoted by Int(S) and Out(S), respe
tively. If Int(S) 6= ; and Out(S) 6= ;, then

S is a separating 
y
le. Two 
y
les that have an edge in 
ommon are 
alled adja
ent.

Let an embedded graph G 2 G

7

, its fa
e f

0

, and a 3-
oloring ' of the verti
es of f

0

yield a minimal


ounter-example to Theorem 1.2. Without loss of generality assume that f

0

, whose proper 3-
oloring '


annot be extended to a proper 3-
oloring of G, is the outside fa
e. We denote by D the sequen
e of

verti
es of f

0

obtained by a fa
ial walk around f

0

staring at a vertex of it. Any fa
e in G other than f

0

is 
alled internal. The verti
es in G�D are also 
alled internal. An internal 3-vertex whi
h is in
ident

with a 3-fa
e is 
alled bad. The notion of bad verti
es is 
ru
ial to our proof.

2 Basi
 Properties of the Minimal Counter-example

From now on, we assume that G, f

0

, and D are as de�ned in the last paragraph.

Lemma 2.1 G has no separating 
y
le S of length at most 11.

Proof: By minimality of G, we 
an extend ' to G � Int(S). Then we delete the (possible) 
hords

from S and extend the 3-
oloring of S indu
ed by ' to G�Out(S), using the minimality of G if jSj 6= 3

or the minimality 
ombined with [3, 5℄ (see the proof of Theorem 1.1) otherwise.

Lemma 2.2 G is 2-
onne
ted; in parti
ular G has no 1-verti
es.

Proof: Be
ause of minimality of G, there 
annot be a 
ut vertex in D. Now assume that B is a pendant

blo
k with the 
ut vertex v 2 G �D. We �rst extend ' to G � (B � v), then 3-
olor B (using again

the minimality of G 
ombined with [3, 5℄), and �nally get an extension of ' to G.

Corollary 2.3 D is a 
y
le in G.

Lemma 2.4 Ea
h 2-vertex in G belongs to D, and none of them is in
ident with a 3-fa
e.

Proof: Otherwise, we 
an �rst extend ' to G� v and then 
olor v if v =2 D. Therefore, every 2-vertex

belongs to D.
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Figure 1: A tetrad

Lemma 2.5 No 
y
le of length at most 13 in G has a non-triangular 
hord, neither D has a 
hord at

all.

Proof: The �rst statement follows from the fa
t that two adja
ent 
y
les of length at least 8 must form

a 
y
le of length at least 14. Now if a 
hord 
uts a 3-
y
le T from D, then T is a 3-fa
e by Lemma 2.1,

whi
h 
ontradi
ts Lemma 2.4.

A tetrad is a path T = v

1

v

2

v

3

v

4

in Int(D) su
h that d(v

1

) = d(v

2

) = d(v

3

) = d(v

4

) = 3, where

: : : xv

1

v

2

v

3

v

4

x

0

: : : is on the boundary of a fa
e, and there are triangles t

0

v

1

v

2

, tv

3

v

4

, where t

0

6= x,

t 6= x

0

.

Lemma 2.6 G has no tetrad.

Proof: Take a tetrad, delete v

1

, v

2

, v

3

, and v

4

(along with the in
ident edges) and identify x with t. It is

easy to see that the graph G

�

obtained has no fa
e of size from 4 to 7. To prove that G

�

is in G

7

we now

prove that G

�


annot have a separating 
y
le of size from 4 to 7. By way of 
ontradi
tion, suppose that

S

�

= xz

1

: : : z

k

t is su
h a 
y
le, where 3 � k � 6 (see Figure 1). Then S = xz

1

: : : z

k

tv

3

v

2

v

1

separates t

0

from v

4

in G. Indeed, t

0


annot lie on S by Lemma 2.5. But this means that S is a separating 
y
le of

size from 8 to 11 in G, whi
h 
ontradi
ts Lemma 2.1.

Also, G

�

has neither loops nor multiple edges. Therefore, G

�

2 G

7

. Next observe that any 3-
oloring

 of G

�


an be extended to a 3-
oloring of G: we �rst 
olor v

4

and v

3

(in this order); then, sin
e x and

v

3

have di�erent 
olors, it is easy to 
olor v

1

and v

2

.

So, if the 
oloring ' of D is not damaged by identifying x with t, then we have got a 3-
oloring of

G that extends ', a 
ontradi
tion. It follows that while identifying x with t we either (a) identify two

verti
es of D 
olored di�erently, or (b) insert an edge between two verti
es of D 
olored the same. In

other words, the total distan
e from x and t to D is at most 1.

Let D = d

1

: : : d

jDj

, with the subs
ripts in
reasing in the 
lo
kwise order. Suppose d

jDj

is a vertex

of D nearest to x, while d

j

, 
losest to t. Sin
e jDj � 11, it follows that D is split by d

jDj

and d

j

into

paths P

1

, P

2

one of whi
h, say P

1

= d

jDj

d

1

: : : d

j

, 
onsists of at most 5 edges. This path, 
ombined with

the path d

j

ftgv

3

v

2

v

1

fxgd

jDj

, yields a 
y
le C of length at most 10. By Lemma 2.5, sin
e t

0

v

2

is an edge

and v

2

2 C, it follows that t

0


annot belong to C. Re
all that xv

1

v

2

v

3

v

4

x

0

is on the boundary of a fa
e.

Therefore, C separates t

0

from v

4

. But this 
ontradi
ts Lemma 2.1.

Let f be an 8-fa
e with boundary v

1

; : : : ; v

8

, where v

1

; v

2

; v

3

; v

5

; v

6

; v

7

are bad, while v

4

and v

8

are

good (i.e. non-bad) verti
es. Note that by de�nition of bad verti
es, f is internal. Assume that v

2

v

3

t

23

,

v

5

v

6

t

56

, v

1

v

8

t

18

, and v

7

v

8

t

78

are 3-fa
es adja
ent to f (see Figure 2). Then f is 
alled an M -fa
e.
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t18

t23 t56

t78

Figure 2: An M -fa
e

Lemma 2.7 G 
annot have an M -fa
e.

Proof: Let f be an M -fa
e as in Figure 2. We obtain G

�

from G by deleting all the bad verti
es of f

and identifying v

4

with v

8

. As in Lemma 2.6, it is easy to 
he
k that G

�

does not have a 4 to 7-fa
e and

it 
annot have a separating 
y
le of size from 4 to 7, or else G has a separating 
y
le of size from 8 to

11, whi
h 
ontradi
ts Lemma 2.1. Also, G

�

has neither loops nor multiple edges. Therefore, G

�

2 G

7

.

The same argument as in the last paragraph of proving Lemma 2.6 shows that the 
oloring ' of D is

not damaged by identifying v

4

with v

8

.

Sin
e G

�

is smaller than G, it remains to prove that every 3-
oloring  of G

�


an be extended to a

3-
oloring of G.

Let 
 be an arbitrary 3-
oloring of G

�

; w.l.o.g., assume that 
(v

4

) = 
(v

8

) = 1 and 
(t

18

) = 2. We

transfer 
 to G. First 
olor v

1

and v

7

. Sin
e 
(v

4

) 6= 
(v

1

) and 
(v

4

) 6= 
(v

7

), we 
an easily extend this


oloring to v

2

, v

3

, v

5

, and v

6

.

Let f be an 8-fa
e with boundary v

1

; : : : ; v

8

, where v

1

; : : : ; v

4

and v

6

; v

7

are bad verti
es, while v

5

and v

8

are internal 4-verti
es. Assume that v

2

v

3

t

23

, v

4

v

5

t

45

, v

5

v

6

t

56

, v

7

v

8

t

78

, and v

8

v

1

t

18

are 3-fa
es

adja
ent to f (see Figure 3). Then f is 
alled an MM -fa
e.

Lemma 2.8 G 
annot have an MM -fa
e.

Proof: We obtain G

�

from G by deleting v

1

; : : : ; v

8

and identifying t

18

with t

56

. As in the previous

two lemmas, it is easy to 
he
k that G

�

2 G

7

and that the 
oloring ' of D is not damaged by this

identi�
ation. We show that every 3-
oloring  of G

�


an be extended to a 3-
oloring of G.

Let 
 be an arbitrary 3-
oloring of G

�

, where 
(t

18

) = 
(t

56

) = 1. We transfer 
 to G. If 
(t

45

) 6= 1,

we �rst 
olor v

5

, v

4

, and v

6

, (in this order); then, using an argument as in proving Lemma 2.6, we 
an


olor v

8

and v

7

, then v

1

, and �nally v

2

and v

3

.

If 
(t

45

) = 1, we put 1 6= 
(v

8

) = 
(v

6

) = 
(v

4

) 6= 
(t

78

), then 
olor v

1

, v

5

, v

7

(in this order), and

�nally v

2

and v

3

.
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Figure 3: An MM -fa
e

3 In
ompatibility of the Basi
 Properties

The rest of our proof 
onsists in showing that the stru
tural properties of G proved in the previous

se
tion are in
ompatible. Euler's formula jV (G)j � jE(G)j + jF (G)j = 2 for G may be rewritten as

X

v2V (G)

(d(v) � 4) +

X

f2F (G)

(jf j � 4) = �8:

We set the initial 
harge of every vertex v of G to be 
h(v) = d(v) � 4, the initial 
harge of every

fa
e f 6= f

0

to be 
h(f) = jf j � 4, and put 
h(f

0

) = jf

0

j+ 4. Clearly,

X

x2V (G)[F (G)


h(x) = 0:

Then we use the dis
harging pro
edure, leading to a �nal 
harge 
h

�

, de�ned by applying the following

rules:

R1. Ea
h 3-fa
e re
eives

1

3

from ea
h in
ident vertex.

R2. Ea
h internal non-triangular fa
e f sends to ea
h in
ident vertex v:

(a)

2

3

if either deg(v) = 2 or v is a bad vertex.

(b)

1

3

if v is internal and either deg(v) = 3 and v is not bad, or deg(v) = 4 and v is either in
ident

with a 3-fa
e not adja
ent to f , or else is in
ident with two 3-fa
es both adja
ent to f .

R3. Ea
h internal non-triangular fa
e f re
eives

1

3

from its in
ident vertex v if:

(a) deg(v) � 5 and v is internal and in
ident with two 3-fa
es adja
ent to f , or

(b) deg(v) � 4 and v 2 D.

R4. The outside fa
e f

0

gives

4

3

to ea
h vertex of D.

5
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Figure 4: (a) Rule R2 (b) Rule R3

Rules 2 and 3 are illustrated in Figure 4. Sin
e the above pro
edure preserves the total 
harge, we

have:

X

x2V (G)[F (G)


h

�

(x) = 0:

The rest of the proof 
onsists in 
he
king that 
h

�

(x) � 0 whenever x 2 V (G) [ F (G) and that


h

�

(f

0

) > 0, with the obvious �nal 
ontradi
tion.

Lemma 3.1 If v 2 V (G) then 
h

�

(v) � 0.

Proof: If d(v) = 2 then by Lemma 2.4 it belongs to D and is not in
ident with a 3-fa
e. Therefore,

only rules R2 and R4 are applied to v and 
h

�

(v) = 2 � 4 +

2

3

+

4

3

= 0. Suppose that d(v) = 3. If

v 2 D, then v re
eives

4

3

from D by R4 and possibly sends away

1

3

by R1. So, assume v =2 D. If v is not

in
ident with a 3-fa
e, then 
h

�

(v) = 3�4+3�

1

3

= 0 by R2. Otherwise, 
h

�

(v) = 3�4+2�

2

3

�

1

3

= 0

by R1 and R2.

Suppose d(v) = 4. If v 2 D, then v re
eives

4

3

from f

0

by R4 and sends away

1

3

to ea
h internal

in
ident fa
e by R3 or R1, and therefore 
h

�

(v) �

4

3

� 3 �

1

3

> 0. So, we assume v =2 D. If v is not

in
ident with a 3-fa
e, then 
h

�

(v) = 
h(v) = 0. If v is in
ident with only one 3-fa
e, then v re
eives

1

3

by R2 and sends away

1

3

due to R1. If v is in
ident with two (mutually nonadja
ent) 3-fa
es, then v

re
eives 2�

1

3

due to R2 and sends away 2�

1

3

due to R1. In any 
ase 
h

�

(v) � 0.

Now suppose d(v) = 5. If v =2 D then v sends

1

3

to at most two 3-fa
es by R1 and to at most one

non-triangular fa
e by R3, so that 
h

�

(v) � 0. Otherwise, 
h

�

(v) � 1 +

4

3

� 4�

1

3

> 0

If d(v) � 6 then v sends away at most d(v)�

1

3

a

ording to R1 and R3, so that 
h

�

(v) � d(v)� 4�

d(v)

3

=

2(d(v)�6)

3

� 0.

Lemma 3.2 
h

�

(f

0

) > 0.

Proof: Re
all that 
h(f

0

) = jf

0

j+ 4. By R4, 
h

�

(f) � jf

0

j+ 4� jf

0

j �

4

3

=

12�jf

0

j

3

> 0.

Lemma 3.3 If f 2 F (G) and f 6= f

0

, then 
h

�

(f) � 0.

6
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Figure 5: A 9-fa
e as in the proof of Lemma 3.3

Proof: If jf j = 3 then 
h(f) = jf j � 4 + 3�

1

3

= 0 by R1.

Suppose jf j � 12. As f sends ea
h in
ident vertex at most

2

3

due to R2, we have 
h

�

(f) = jf j � 4�

jf j �

2

3

=

jf j�12

3

� 0.

Observe that if jf j � 8 and f is in
ident with a 2-vertex, whi
h belongs to D by Lemma 2.4 and

takes

2

3

from f by R2, then f is in
ident with two �3-verti
es of D, namely the ends of a maximal

path of 2-verti
es on the boundary of f . These verti
es get nothing from f , and therefore 
h

�

(f) �

jf j � 4� (jf j � 2)�

2

3

�

jf j�8

3

� 0. Thus, from now on, we may assume that f is not in
ident with any

2-verti
es.

Suppose jf j = 11. If f sends to at least one in
ident vertex less than

2

3

, i.e., at most

1

3

(see R2), then

we have 
h

�

(f) � 11� 4� 10�

2

3

�

1

3

= 0. However, f 
annot be in
ident with 11 bad verti
es be
ause

of parity.

Now suppose jf j = 10. If f sends to at least two in
ident verti
es at most

1

3

ea
h, we are done:


h

�

(f) � 10� 4� 8�

2

3

� 2�

1

3

= 0. The only danger 
omes from f being in
ident with at least 9 bad

verti
es. But 
learly every 5 
onse
utive bad verti
es on the boundary of f in
lude a tetrad, whi
h is

impossible by Lemma 2.6.

Next suppose jf j = 9. If f sends to at least three in
ident verti
es at most

1

3

ea
h, or if it sends nothing

to at least one vertex and at most

1

3

to another one, then we are done: 
h

�

(f) � 9�4�6�

2

3

�3�

1

3

= 0

or 
h

�

(f) � 9 � 4 � 7 �

2

3

�

1

3

= 0, respe
tively. If f has eight bad verti
es it will 
ertainly form a

tetrad, whi
h 
ontradi
ts Lemma 2.6. So, there are at most seven bad verti
es and the other two must

be internal verti
es and taking

1

3

ea
h. Clearly those seven must be split by the two good verti
es as

4+3, otherwise they form a tetrad. Furthermore, the quadruple should fail to be a tetrad. W.l.o.g.,

we have a situation as in Figure 5. But in this 
ase, one of the good verti
es (v

1

in the �gure) takes

nothing from f and therefore 
h

�

(f) � 0.

Finally, suppose jf j = 8. If f sends to at least four in
ident verti
es at most

1

3

ea
h, or if it

sends nothing to at least two verti
es, then we are done: 
h

�

(f) � 8 � 4 � 4 �

2

3

� 4 �

1

3

= 0 or


h

�

(f) � 8�4�6�

2

3

= 0, respe
tively. So we may again assume that f is totally surrounded by internal

verti
es. (If exa
tly one vertex v at f belongs to D, then 
learly deg(v) � 4, so that v gives

1

3

to f . Sin
e

the other seven verti
es 
annot all be bad by Lemma 2.6, it follows that 
h

�

(f) � 8�4+

1

3

�6�

2

3

�

1

3

= 0.)

If f is in
ident with at most one good vertex, we have a tetrad. It remains to assume that f = v

1

: : : v

8

7



is in
ident with exa
tly 6 or exa
tly 5 bad verti
es.

Case 1. There are pre
isely 5 bad verti
es around f .

If at least one good vertex of f fails to take

1

3

from f , then we are done: 
h

�

(f) � 8�4�5�

2

3

�2�

1

3

= 0.

So suppose that ea
h of these three verti
es takes

1

3

. It follows by R2 and R3 that all of them must

be internal � 4-verti
es, ea
h having either two or no in
ident triangular edges in 
ommon with f .

However, this is impossible by parity: ea
h bad vertex starts a unique path of triangular edges along

the boundary of f , with another bad vertex at the end and all good 4-verti
es in between.

Case 2. There are pre
isely 6 bad verti
es around f .

These six must be split by the two good verti
es as 4+2 or 3+3, sin
e ea
h path of 5 bad verti
es


ontains a tetrad.

Sub
ase 2.1: 4+2

Not to form a tetrad, those 4 bad verti
es, v

1

; : : : v

4

should form triangles with the good verti
es

v

5

and v

8

. If the edge v

6

v

7

is triangular, then both v

5

and v

8

get nothing from f by R2, and we are

home. So suppose that both v

5

v

6

and v

7

v

8

are triangular. Observe that d(v

5

) � 4 and d(v

8

) � 4. If

d(v

5

) � 5, or d(v

8

) � 5, or if one of these two verti
es belongs to D, then we are done due to R3:


h

�

(f) � 8 � 4 � 6�

2

3

�

1

3

+

1

3

= 0. Therefore, it remains to assume that both v

5

and v

8

are internal

4-verti
es and, furthermore, we have 3-fa
es v

1

v

8

t

18

, v

2

v

3

t

23

, v

4

v

5

t

45

, v

5

v

6

t

56

, and v

7

v

8

t

78

as in Figure

3. But this is an MM -fa
e, 
ontrary to Lemma 2.8.

Sub
ase 2.2: 3+3

As in Sub
ase 2.1, one of the two good verti
es at f , say v

8

, must have two triangular edges in


ommon with f , for otherwise ea
h good vertex takes 0 from f . Due to the absen
e of tetrads, the other

good vertex at f must be v

4

. But then f is an M -fa
e (as in Figure 2), whi
h 
ontradi
ts Lemma 2.7.

This 
ompletes the proof of Theorem 1.2.

Referen
es

[1℄ H.L. Abbott and B. Zhou, \On small fa
es in 4-
riti
al graphs", Ars Combinatoria 32 (1991)

203-207.

[2℄ O.V. Borodin, \To the paper of H.L. Abbott and B. Zhou on 4-
riti
al planar graphs", Ars Com-

binatoria., 25 (1979) 211{236.

[3℄ O.V. Borodin, \Stru
tural properties of plane graphs without adja
ent triangles and an appli
ation

to 3-
olorings", J. of Graph Theory, 21, no. 2 (1996) 183-186.

[4℄ T.R. Jensen and B. Toft, Graph 
oloring problems, Wiley, New York, 1995.

[5℄ D.P. Sanders and Y. Zhao, \A note on the Three Color Problem", Graphs and Combinatori
s, 11

(1995) 91-94.

[6℄ R. Steinberg, \The state of the three 
olor problem", Quo Vadis, Graph Theory? J. Gimbel,

J.W. Kennedy & L.V. Quintas (eds.) Ann. Dis
rete Math. 55 (1993) 211-248.

8


