Planar graphs without cycles of length from 4 to 7 are 3-colorable
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Abstract

Planar graphs without cycles of length from 4 to 7 are proved to be 3-colorable. Moreover, it
is proved that each proper 3-coloring of a face of length from 8 to 11 in a connected plane graph
without cycles of length from 4 to 7 can be extended to a proper 3-coloring of the whole graph. This
improves on the previous results on a long standing conjecture of Steinberg.

1 Introduction

In 1976, Steinberg conjectured that every planar graph without 4 and 5-cycles is 3-colorable. This
conjecture (open problem 2.9 in [4]) remains unsettled despite several attempts. Erdds (see [6]) suggested
the following relaxation of this problem: does there exist a constant C' such that the absence of cycles
with size from 4 to C' in a planar graph guarantees its 3-colorability? Abbott and Zhou [1] proved that
such a C exists and C' < 11. This result was later on improved to C' < 10 by Borodin [2] and to C' <9
by Borodin [3] and, independently, Sanders and Zhao [5]. Here, we improve on all these results:

Theorem 1.1 Every planar graph without cycles of length from 4 to 7 is 3-colorable.

Let G7 denote the class of planar graphs without cycles of size from 4 to 7. To obtain Theorem 1.1,
we prove the following stronger theorem:

Theorem 1.2 FEvery proper 3-coloring of the vertices of any face of size from 8 to 11 in a connected
graph in Gy can be extended to a proper 3-coloring of the whole graph.

“A part of this research was supported by the Dutch-Russian grant NWO-047-008-006 and by the grant 02-01-00039 of
the Russian Foundation for Basic Research.

" This work was partially supported by the grants 00-01-00916 of the Russian Foundation for Basic Research and No. 6
of the 6th Expertise of Young Scientists’ Projects of RAN.

{Research was done while the author was a graduate student in the Department of Computer Science at University of
Toronto. Supported by an Ontario Graduate Scholarship and University of Toronto Open Fellowship.



Assuming Theorem 1.2, we can easily prove Theorem 1.1:

Proof of Theorem 1.1: Suppose that G is a counter-example to the theorem with the smallest
number of vertices. Clearly, G is connected and by [3, 5] it has a cycle C of length 8 or 9. By the
absence of cycles of length from 4 to 7 in G, the subgraph induced by C' can have at most one chord, and
therefore it has a proper 3-coloring ¢. By Theorem 1.2, ¢ can be extended (after deleting the possible
chords) both inside and outside of C' to obtain a proper 3-coloring of G. [ |

Our proof of Theorem 1.2 is constructive and easily yields a polynomial time algorithm for finding
such a 3-coloring. In the remaining of this section, we define some notation used throughout the paper.
In the next section we prove some properties for a possible minimum counter-example to Theorem 1.2.
In the final section we complete the proof by showing that these properties are incompatible, using the
Discharging Method.

Denote the degree of a vertex v by d(v) and the size of a face f (bridges are counted twice) by |f]. A
k-vertex is a vertex of degree k. By a >k-vertex (a <k-vertex) we mean a vertex of degree at least (at
most) k. Similar notation is used for faces. For a cycle S of a plane graph G, the vertices lying inside
and outside of S are denoted by Int(S) and Out(S), respectively. If Int(S) # () and Out(S) # (), then
S is a separating cycle. Two cycles that have an edge in common are called adjacent.

Let an embedded graph G € Gy, its face fy, and a 3-coloring ¢ of the vertices of fy yield a minimal
counter-example to Theorem 1.2. Without loss of generality assume that f, whose proper 3-coloring ¢
cannot be extended to a proper 3-coloring of G, is the outside face. We denote by D the sequence of
vertices of fy obtained by a facial walk around fj staring at a vertex of it. Any face in G other than f
is called internal. The vertices in G — D are also called internal. An internal 3-vertex which is incident
with a 3-face is called bad. The notion of bad vertices is crucial to our proof.

2 Basic Properties of the Minimal Counter-example
From now on, we assume that G, fo, and D are as defined in the last paragraph.
Lemma 2.1 G has no separating cycle S of length at most 11.

Proof: By minimality of G, we can extend ¢ to G — Int(S). Then we delete the (possible) chords
from S and extend the 3-coloring of S induced by ¢ to G — Out(S), using the minimality of G if |S| # 3
or the minimality combined with [3, 5] (see the proof of Theorem 1.1) otherwise. ]

Lemma 2.2 G is 2-connected; in particular G has no 1-vertices.

Proof: Because of minimality of G, there cannot be a cut vertex in D. Now assume that B is a pendant
block with the cut vertex v € G — D. We first extend ¢ to G — (B — v), then 3-color B (using again
the minimality of G combined with [3, 5]), and finally get an extension of ¢ to G. [ ]

Corollary 2.3 D s a cycle in G.
Lemma 2.4 FEach 2-vertex in G belongs to D, and none of them is incident with a 3-face.

Proof: Otherwise, we can first extend ¢ to G — v and then color v if v ¢ D. Therefore, every 2-vertex
belongs to D. ]
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Figure 1: A tetrad

Lemma 2.5 No cycle of length at most 13 in G has a non-triangular chord, neither D has a chord at
all.

Proof: The first statement follows from the fact that two adjacent cycles of length at least 8 must form
a cycle of length at least 14. Now if a chord cuts a 3-cycle T from D, then T is a 3-face by Lemma 2.1,

which contradicts Lemma 2.4. [ |

A tetrad is a path T = vjvgvzvy in Int(D) such that d(vi) = d(v2) = d(vs) = d(vs) = 3, where
...ZU1Vov3V4x ... is on the boundary of a face, and there are triangles t'vivy, tvzvy, where t' # z,
t#a.

Lemma 2.6 G has no tetrad.

Proof: Take a tetrad, delete vy, vy, v3, and vy (along with the incident edges) and identify z with ¢. It is
easy to see that the graph G* obtained has no face of size from 4 to 7. To prove that G* is in G7; we now
prove that G* cannot have a separating cycle of size from 4 to 7. By way of contradiction, suppose that
S* = xz1 ...zt is such a cycle, where 3 < k < 6 (see Figure 1). Then S = 2 ... zxtvgvou; separates ¢’
from vy in G. Indeed, ¢’ cannot lie on S by Lemma 2.5. But this means that S is a separating cycle of
size from 8 to 11 in G, which contradicts Lemma 2.1.

Also, G* has neither loops nor multiple edges. Therefore, G* € G7. Next observe that any 3-coloring
1 of G* can be extended to a 3-coloring of G: we first color v4 and v (in this order); then, since = and
v have different colors, it is easy to color v; and vs.

So, if the coloring ¢ of D is not damaged by identifying = with ¢, then we have got a 3-coloring of
G that extends ¢, a contradiction. It follows that while identifying = with ¢ we either (a) identify two
vertices of D colored differently, or (b) insert an edge between two vertices of D colored the same. In
other words, the total distance from x and ¢ to D is at most 1.

Let D = d; ...d|p|, with the subscripts increasing in the clockwise order. Suppose d|p, is a vertex
of D nearest to z, while dj, closest to ¢. Since |D| < 11, it follows that D is split by d|p| and d; into
paths P, P> one of which, say P = d|p|di .. .d;, consists of at most 5 edges. This path, combined with
the path d;{t}vsvevi{z}d|p), yields a cycle C of length at most 10. By Lemma 2.5, since v, is an edge
and vo € C, it follows that ¢ cannot belong to C. Recall that zvvev3vsz’ is on the boundary of a face.
Therefore, C separates ¢’ from vy. But this contradicts Lemma 2.1. [ |

Let f be an 8-face with boundary vy, ..., vs, where vy, v9,vs, vs, v, v7 are bad, while vy and vg are
good (i.e. non-bad) vertices. Note that by definition of bad vertices, f is internal. Assume that vovstas,
vsVets6, U1Ust1s, and vrugtys are 3-faces adjacent to f (see Figure 2). Then f is called an M -face.



Figure 2: An M-face

Lemma 2.7 G cannot have an M -face.

Proof: Let f be an M-face as in Figure 2. We obtain G* from G by deleting all the bad vertices of f
and identifying vy with vg. As in Lemma 2.6, it is easy to check that G* does not have a 4 to 7-face and
it cannot have a separating cycle of size from 4 to 7, or else G has a separating cycle of size from 8 to
11, which contradicts Lemma 2.1. Also, G* has neither loops nor multiple edges. Therefore, G* € G7.
The same argument as in the last paragraph of proving Lemma 2.6 shows that the coloring ¢ of D is
not damaged by identifying v, with vg.

Since G* is smaller than G, it remains to prove that every 3-coloring 1 of G* can be extended to a
3-coloring of G.

Let ¢ be an arbitrary 3-coloring of G*; w.l.o.g., assume that c(vs) = ¢(vs) = 1 and c¢(t13) = 2. We
transfer ¢ to G. First color v; and v7. Since c(vy) # c(v1) and c(vg) # ¢(v7), we can easily extend this
coloring to vg, vs, vs, and vg. [ ]

Let f be an 8-face with boundary vy, ...,vs, where vy,...,vq4 and vg, vy are bad vertices, while vy
and vg are internal 4-vertices. Assume that vovstos, v4Ustss5, UsUstss, V7Ust7s, and vgvit1g are 3-faces
adjacent to f (see Figure 3). Then f is called an M M -face.

Lemma 2.8 G cannot have an M M -face.

Proof: We obtain G* from G by deleting vy, ...,vs and identifying ¢35 with ¢55. As in the previous
two lemmas, it is easy to check that G* € G; and that the coloring ¢ of D is not damaged by this
identification. We show that every 3-coloring 9 of G* can be extended to a 3-coloring of G.

Let ¢ be an arbitrary 3-coloring of G*, where c(t13) = c(t56) = 1. We transfer ¢ to G. If ¢(ts5) # 1,
we first color vs, vy, and vg, (in this order); then, using an argument as in proving Lemma 2.6, we can
color vg and vy, then v, and finally vy and vg.

If c(tys) = 1, we put 1 # c(vg) = c(vg) = c(vq) # c(t7s), then color vy, vs, v7 (in this order), and
finally vy and wvs. [ ]



Figure 3: An M M-face

3 Incompatibility of the Basic Properties

The rest of our proof consists in showing that the structural properties of G proved in the previous
section are incompatible. Euler’s formula |V (G)| — |E(G)| + |F(G)| = 2 for G may be rewritten as

> (d )+ > (fl-4) = -8.

veV (@) fEF(G)

We set the initial charge of every vertex v of G to be ch(v) = d(v) — 4, the initial charge of every
face f # fo to be ch(f) = |f| — 4, and put ch(fy) = |fo| + 4. Clearly,

Z ch(z) = 0.
2€V(G)UF(G)
Then we use the discharging procedure, leading to a final charge ch*, defined by applying the following
rules:

R1. Each 3-face receives % from each incident vertex.

R2. Each internal non-triangular face f sends to each incident vertex v:

(a)
(b)

if either deg(v) = 2 or v is a bad vertex.

W= wlN

if v is internal and either deg(v) = 3 and v is not bad, or deg(v) = 4 and v is either incident
with a 3-face not adjacent to f, or else is incident with two 3-faces both adjacent to f.

R3. Each internal non-triangular face f receives % from its incident vertex v if:

(a) deg(v) > 5 and v is internal and incident with two 3-faces adjacent to f, or

(b) deg(v) > 4 and v € D.

R4. The outside face fy gives % to each vertex of D.



Figure 4: (a) Rule R2 (b) Rule R3

Rules 2 and 3 are illustrated in Figure 4. Since the above procedure preserves the total charge, we
have:

Z ch*(z) =0.
£€V (G)UF(G)
The rest of the proof consists in checking that ch*(z) > 0 whenever z € V(G) U F(G) and that
ch*(fo) > 0, with the obvious final contradiction.

Lemma 3.1 Ifv € V(G) then ch*(v) > 0.

Proof: If d(v) = 2 then by Lemma 2.4 it belongs to D and is not incident with a 3-face. Therefore,
only rules R2 and R4 are applied to v and ch*(v) =2 —4 + % + % = 0. Suppose that d(v) = 3. If
v € D, then v receives % from D by R4 and possibly sends away % by R1. So, assume v ¢ D. If v is not
incident with a 3-face, then ch*(v) = 3—4+43x § = 0 by R2. Otherwise, ch*(v) =3-4+2x3—-% =0
by R1 and R2.

Suppose d(v) = 4. If v € D, then v receives % from fy by R4 and sends away % to each internal
incident face by R3 or R1, and therefore ch*(v) > 3 — 3 x § > 0. So, we assume v ¢ D. If v is not
incident with a 3-face, then ch*(v) = ch(v) = 0. If v is incident with only one 3-face, then v receives
% by R2 and sends away % due to R1. If v is incident with two (mutually nonadjacent) 3-faces, then v
receives 2 X % due to R2 and sends away 2 x % due to R1. In any case ch*(v) > 0.

Now suppose d(v) = 5. If v ¢ D then v sends 3 to at most two 3-faces by R1 and to at most one
non-triangular face by R3, so that ch*(v) > 0. Otherwise, ch*(v) > 143 —4x 3 >0

If d(v) > 6 then v sends away at most d(v) x £ according to R1 and R3, so that ch*(v) > d(v) —4 —
@ — 2(d(03)—6) > 0. -

Lemma 3.2 ch*(fy) > 0.

Proof: Recall that ch(fo) = |fo| + 4. By R4, ch*(f) > |fo| + 4 — | fo| x & = 12510l 5 ¢, n

Lemma 3.3 If f € F(G) and f # fo, then ch*(f) > 0.



Figure 5: A 9-face as in the proof of Lemma 3.3

Proof: If |f| = 3 then ch(f) = |f| —4+3 x £ =0 by RI.

Suppose |f| > 12. As f sends each incident vertex at most % due to R2, we have ch*(f) =|f| —4 —
fIx3=152>0.

Observe that if |f| > 8 and f is incident with a 2-vertex, which belongs to D by Lemma 2.4 and
takes % from f by R2, then f is incident with two >3-vertices of D, namely the ends of a maximal
path of 2-vertices on the boundary of f. These vertices get nothing from f, and therefore ch*(f) >
lfl—4—(f]—2) x % > WT_S > 0. Thus, from now on, we may assume that f is not incident with any
2-vertices.

Suppose |f| = 11. If f sends to at least one incident vertex less than 2, i.e., at most 3 (see R2), then
we have ch*(f) > 11 —4 —10 x % — % = 0. However, f cannot be incident with 11 bad vertices because
of parity.

Now suppose |f| = 10. If f sends to at least two incident vertices at most % each, we are done:
ch*(f) >10 -4 -8 x % —2x % = 0. The only danger comes from f being incident with at least 9 bad
vertices. But clearly every 5 consecutive bad vertices on the boundary of f include a tetrad, which is
impossible by Lemma 2.6.

Next suppose |f| = 9. If f sends to at least three incident vertices at most % each, or if it sends nothing
to at least one vertex and at most 3 to another one, then we are done: ch*(f) > 9-4—-6x35—-3x% =0
or ch*(f) >9—-4-7x % - % = 0, respectively. If f has eight bad vertices it will certainly form a
tetrad, which contradicts Lemma 2.6. So, there are at most seven bad vertices and the other two must
be internal vertices and taking % each. Clearly those seven must be split by the two good vertices as
4+3, otherwise they form a tetrad. Furthermore, the quadruple should fail to be a tetrad. W.l.o.g.,
we have a situation as in Figure 5. But in this case, one of the good vertices (v; in the figure) takes
nothing from f and therefore ch*(f) > 0.

Finally, suppose |f| = 8. If f sends to at least four incident vertices at most = each, or if it
sends nothing to at least two vertices, then we are done: ch*(f) > 8 —4 — 4 X % —4 x % =0 or
ch*(f) >8—-4—-6x % = 0, respectively. So we may again assume that f is totally surrounded by internal
vertices. (If exactly one vertex v at f belongs to D, then clearly deg(v) > 4, so that v gives % to f. Since
the other seven vertices cannot all be bad by Lemma 2.6, it follows that ch*(f) > 8—4+41—6x3—1 =0.)
If f is incident with at most one good vertex, we have a tetrad. It remains to assume that f = v;...vg

W=



is incident with exactly 6 or exactly 5 bad vertices.

Case 1. There are precisely 5 bad vertices around f.

If at least one good vertex of f fails to take % from f, then we are done: ch*(f) > 8—4—5x %—2><% =0.
So suppose that each of these three vertices takes % It follows by R2 and R3 that all of them must
be internal < 4-vertices, each having either two or no incident triangular edges in common with f.
However, this is impossible by parity: each bad vertex starts a unique path of triangular edges along
the boundary of f, with another bad vertex at the end and all good 4-vertices in between.

Case 2. There are precisely 6 bad vertices around f.

These six must be split by the two good vertices as 442 or 343, since each path of 5 bad vertices
contains a tetrad.

Subcase 2.1: 442

Not to form a tetrad, those 4 bad vertices, vy, ...vs should form triangles with the good vertices
vs and vg. If the edge vgv; is triangular, then both vs and vg get nothing from f by R2, and we are
home. So suppose that both vsvg and vrvg are triangular. Observe that d(vs) > 4 and d(vg) > 4. If
d(vs) > b5, or d(vg) > 5, or if one of these two vertices belongs to D, then we are done due to R3:
ch*(f) >8—-4—6x % — % + % = 0. Therefore, it remains to assume that both vs and vg are internal
4-vertices and, furthermore, we have 3-faces vivgtig, vovstos, V4Ustas, VsUstss, and vrvgtrg as in Figure
3. But this is an M M-face, contrary to Lemma 2.8.

Subcase 2.2: 343

As in Subcase 2.1, one of the two good vertices at f, say wvg, must have two triangular edges in
common with f, for otherwise each good vertex takes 0 from f. Due to the absence of tetrads, the other
good vertex at f must be vg. But then f is an M-face (as in Figure 2), which contradicts Lemma 2.7.

This completes the proof of Theorem 1.2.

|
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