Planar graphs without cycles of length from 4 to 7 are 3-colorable

O. V. Borodin*

Institute of Mathematics, Novosibirsk, 630090, Russia

A. N. Glebov[†]

Institute of Mathematics, Novosibirsk, 630090, Russia

A. Raspaud

LaBRI, Université Bordeaux I, 33405 Talence Cedex, France

M. R. Salavatipour[‡]

Department of Computing Science, University of Alberta, Edmonton, AB, T6G2E8 Canada

Abstract

Planar graphs without cycles of length from 4 to 7 are proved to be 3-colorable. Moreover, it is proved that each proper 3-coloring of a face of length from 8 to 11 in a connected plane graph without cycles of length from 4 to 7 can be extended to a proper 3-coloring of the whole graph. This improves on the previous results on a long standing conjecture of Steinberg.

1 Introduction

In 1976, Steinberg conjectured that every planar graph without 4 and 5-cycles is 3-colorable. This conjecture (open problem 2.9 in [4]) remains unsettled despite several attempts. Erdös (see [6]) suggested the following relaxation of this problem: does there exist a constant C such that the absence of cycles with size from 4 to C in a planar graph guarantees its 3-colorability? Abbott and Zhou [1] proved that such a C exists and $C \le 11$. This result was later on improved to $C \le 10$ by Borodin [2] and to $C \le 9$ by Borodin [3] and, independently, Sanders and Zhao [5]. Here, we improve on all these results:

Theorem 1.1 Every planar graph without cycles of length from 4 to 7 is 3-colorable.

Let \mathcal{G}_7 denote the class of planar graphs without cycles of size from 4 to 7. To obtain Theorem 1.1, we prove the following stronger theorem:

Theorem 1.2 Every proper 3-coloring of the vertices of any face of size from 8 to 11 in a connected graph in \mathcal{G}_7 can be extended to a proper 3-coloring of the whole graph.

 $^{^*}$ A part of this research was supported by the Dutch-Russian grant NWO-047-008-006 and by the grant 02-01-00039 of the Russian Foundation for Basic Research.

[†]This work was partially supported by the grants 00-01-00916 of the Russian Foundation for Basic Research and No. 6 of the 6th Expertise of Young Scientists' Projects of RAN.

[‡]Research was done while the author was a graduate student in the Department of Computer Science at University of Toronto. Supported by an Ontario Graduate Scholarship and University of Toronto Open Fellowship.

Assuming Theorem 1.2, we can easily prove Theorem 1.1:

Proof of Theorem 1.1: Suppose that G is a counter-example to the theorem with the smallest number of vertices. Clearly, G is connected and by [3, 5] it has a cycle C of length 8 or 9. By the absence of cycles of length from 4 to 7 in G, the subgraph induced by C can have at most one chord, and therefore it has a proper 3-coloring φ . By Theorem 1.2, φ can be extended (after deleting the possible chords) both inside and outside of C to obtain a proper 3-coloring of G.

Our proof of Theorem 1.2 is constructive and easily yields a polynomial time algorithm for finding such a 3-coloring. In the remaining of this section, we define some notation used throughout the paper. In the next section we prove some properties for a possible minimum counter-example to Theorem 1.2. In the final section we complete the proof by showing that these properties are incompatible, using the Discharging Method.

Denote the degree of a vertex v by d(v) and the size of a face f (bridges are counted twice) by |f|. A k-vertex is a vertex of degree k. By a $\geq k$ -vertex (a $\leq k$ -vertex) we mean a vertex of degree at least (at most) k. Similar notation is used for faces. For a cycle S of a plane graph G, the vertices lying inside and outside of S are denoted by Int(S) and Out(S), respectively. If $\text{Int}(S) \neq \emptyset$ and $\text{Out}(S) \neq \emptyset$, then S is a separating cycle. Two cycles that have an edge in common are called adjacent.

Let an embedded graph $G \in \mathcal{G}_7$, its face f_0 , and a 3-coloring φ of the vertices of f_0 yield a minimal counter-example to Theorem 1.2. Without loss of generality assume that f_0 , whose proper 3-coloring φ cannot be extended to a proper 3-coloring of G, is the outside face. We denote by D the sequence of vertices of f_0 obtained by a facial walk around f_0 staring at a vertex of it. Any face in G other than f_0 is called *internal*. The vertices in G - D are also called *internal*. An internal 3-vertex which is incident with a 3-face is called *bad*. The notion of bad vertices is crucial to our proof.

2 Basic Properties of the Minimal Counter-example

From now on, we assume that G, f_0 , and D are as defined in the last paragraph.

Lemma 2.1 G has no separating cycle S of length at most 11.

Proof: By minimality of G, we can extend φ to $G - \operatorname{Int}(S)$. Then we delete the (possible) chords from S and extend the 3-coloring of S induced by φ to $G - \operatorname{Out}(S)$, using the minimality of G if $|S| \neq 3$ or the minimality combined with [3, 5] (see the proof of Theorem 1.1) otherwise.

Lemma 2.2 G is 2-connected; in particular G has no 1-vertices.

Proof: Because of minimality of G, there cannot be a cut vertex in D. Now assume that B is a pendant block with the cut vertex $v \in G - D$. We first extend φ to G - (B - v), then 3-color B (using again the minimality of G combined with [3, 5]), and finally get an extension of φ to G.

Corollary 2.3 D is a cycle in G.

Lemma 2.4 Each 2-vertex in G belongs to D, and none of them is incident with a 3-face.

Proof: Otherwise, we can first extend φ to G-v and then color v if $v \notin D$. Therefore, every 2-vertex belongs to D.

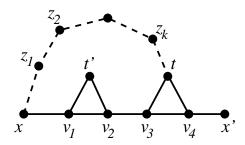


Figure 1: A tetrad

Lemma 2.5 No cycle of length at most 13 in G has a non-triangular chord, neither D has a chord at all.

Proof: The first statement follows from the fact that two adjacent cycles of length at least 8 must form a cycle of length at least 14. Now if a chord cuts a 3-cycle T from D, then T is a 3-face by Lemma 2.1, which contradicts Lemma 2.4.

A tetrad is a path $T = v_1v_2v_3v_4$ in Int(D) such that $d(v_1) = d(v_2) = d(v_3) = d(v_4) = 3$, where $\dots xv_1v_2v_3v_4x'\dots$ is on the boundary of a face, and there are triangles $t'v_1v_2$, tv_3v_4 , where $t' \neq x$, $t \neq x'$.

Lemma 2.6 G has no tetrad.

Proof: Take a tetrad, delete v_1 , v_2 , v_3 , and v_4 (along with the incident edges) and identify x with t. It is easy to see that the graph G^* obtained has no face of size from 4 to 7. To prove that G^* is in \mathcal{G}_7 we now prove that G^* cannot have a separating cycle of size from 4 to 7. By way of contradiction, suppose that $S^* = xz_1 \dots z_k t$ is such a cycle, where $3 \le k \le 6$ (see Figure 1). Then $S = xz_1 \dots z_k t v_3 v_2 v_1$ separates t' from v_4 in G. Indeed, t' cannot lie on S by Lemma 2.5. But this means that S is a separating cycle of size from 8 to 11 in G, which contradicts Lemma 2.1.

Also, G^* has neither loops nor multiple edges. Therefore, $G^* \in \mathcal{G}_7$. Next observe that any 3-coloring ψ of G^* can be extended to a 3-coloring of G: we first color v_4 and v_3 (in this order); then, since x and v_3 have different colors, it is easy to color v_1 and v_2 .

So, if the coloring φ of D is not damaged by identifying x with t, then we have got a 3-coloring of G that extends φ , a contradiction. It follows that while identifying x with t we either (a) identify two vertices of D colored differently, or (b) insert an edge between two vertices of D colored the same. In other words, the total distance from x and t to D is at most 1.

Let $D = d_1 \dots d_{|D|}$, with the subscripts increasing in the clockwise order. Suppose $d_{|D|}$ is a vertex of D nearest to x, while d_j , closest to t. Since $|D| \leq 11$, it follows that D is split by $d_{|D|}$ and d_j into paths P_1 , P_2 one of which, say $P_1 = d_{|D|}d_1 \dots d_j$, consists of at most 5 edges. This path, combined with the path $d_j\{t\}v_3v_2v_1\{x\}d_{|D|}$, yields a cycle C of length at most 10. By Lemma 2.5, since $t'v_2$ is an edge and $v_2 \in C$, it follows that t' cannot belong to C. Recall that $xv_1v_2v_3v_4x'$ is on the boundary of a face. Therefore, C separates t' from v_4 . But this contradicts Lemma 2.1.

Let f be an 8-face with boundary v_1, \ldots, v_8 , where $v_1, v_2, v_3, v_5, v_6, v_7$ are bad, while v_4 and v_8 are good (i.e. non-bad) vertices. Note that by definition of bad vertices, f is internal. Assume that $v_2v_3t_{23}$, $v_5v_6t_{56}$, $v_1v_8t_{18}$, and $v_7v_8t_{78}$ are 3-faces adjacent to f (see Figure 2). Then f is called an M-face.

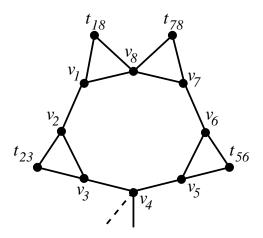


Figure 2: An M-face

Lemma 2.7 G cannot have an M-face.

Proof: Let f be an M-face as in Figure 2. We obtain G^* from G by deleting all the bad vertices of f and identifying v_4 with v_8 . As in Lemma 2.6, it is easy to check that G^* does not have a 4 to 7-face and it cannot have a separating cycle of size from 4 to 7, or else G has a separating cycle of size from 8 to 11, which contradicts Lemma 2.1. Also, G^* has neither loops nor multiple edges. Therefore, $G^* \in \mathcal{G}_7$. The same argument as in the last paragraph of proving Lemma 2.6 shows that the coloring φ of D is not damaged by identifying v_4 with v_8 .

Since G^* is smaller than G, it remains to prove that every 3-coloring ψ of G^* can be extended to a 3-coloring of G.

Let c be an arbitrary 3-coloring of G^* ; w.l.o.g., assume that $c(v_4) = c(v_8) = 1$ and $c(t_{18}) = 2$. We transfer c to G. First color v_1 and v_7 . Since $c(v_4) \neq c(v_1)$ and $c(v_4) \neq c(v_7)$, we can easily extend this coloring to v_2 , v_3 , v_5 , and v_6 .

Let f be an 8-face with boundary v_1, \ldots, v_8 , where v_1, \ldots, v_4 and v_6, v_7 are bad vertices, while v_5 and v_8 are internal 4-vertices. Assume that $v_2v_3t_{23}$, $v_4v_5t_{45}$, $v_5v_6t_{56}$, $v_7v_8t_{78}$, and $v_8v_1t_{18}$ are 3-faces adjacent to f (see Figure 3). Then f is called an MM-face.

Lemma 2.8 G cannot have an MM-face.

Proof: We obtain G^* from G by deleting v_1, \ldots, v_8 and identifying t_{18} with t_{56} . As in the previous two lemmas, it is easy to check that $G^* \in \mathcal{G}_7$ and that the coloring φ of D is not damaged by this identification. We show that every 3-coloring ψ of G^* can be extended to a 3-coloring of G.

Let c be an arbitrary 3-coloring of G^* , where $c(t_{18}) = c(t_{56}) = 1$. We transfer c to G. If $c(t_{45}) \neq 1$, we first color v_5 , v_4 , and v_6 , (in this order); then, using an argument as in proving Lemma 2.6, we can color v_8 and v_7 , then v_1 , and finally v_2 and v_3 .

If $c(t_{45}) = 1$, we put $1 \neq c(v_8) = c(v_6) = c(v_4) \neq c(t_{78})$, then color v_1, v_5, v_7 (in this order), and finally v_2 and v_3 .

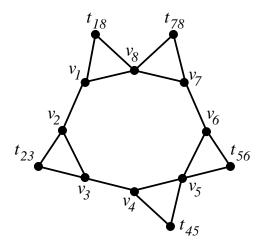


Figure 3: An MM-face

3 Incompatibility of the Basic Properties

The rest of our proof consists in showing that the structural properties of G proved in the previous section are incompatible. Euler's formula |V(G)| - |E(G)| + |F(G)| = 2 for G may be rewritten as

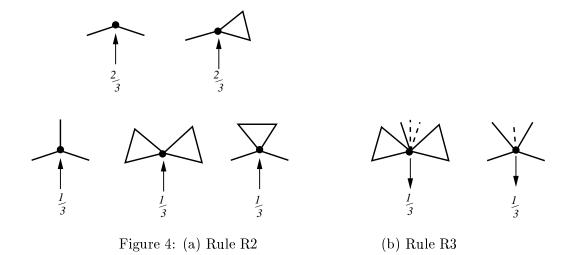
$$\sum_{v \in V(G)} (d(v) - 4) + \sum_{f \in F(G)} (|f| - 4) = -8.$$

We set the *initial charge* of every vertex v of G to be ch(v) = d(v) - 4, the initial charge of every face $f \neq f_0$ to be ch(f) = |f| - 4, and put $ch(f_0) = |f_0| + 4$. Clearly,

$$\sum_{x \in V(G) \cup F(G)} ch(x) = 0.$$

Then we use the discharging procedure, leading to a final charge ch^* , defined by applying the following rules:

- **R1.** Each 3-face receives $\frac{1}{3}$ from each incident vertex.
- **R2.** Each internal non-triangular face f sends to each incident vertex v:
 - (a) $\frac{2}{3}$ if either deg(v) = 2 or v is a bad vertex.
 - (b) $\frac{1}{3}$ if v is internal and either deg(v) = 3 and v is not bad, or deg(v) = 4 and v is either incident with a 3-face not adjacent to f, or else is incident with two 3-faces both adjacent to f.
- **R3.** Each internal non-triangular face f receives $\frac{1}{3}$ from its incident vertex v if:
 - (a) $deg(v) \geq 5$ and v is internal and incident with two 3-faces adjacent to f, or
 - (b) $deg(v) \ge 4$ and $v \in D$.
- **R4.** The outside face f_0 gives $\frac{4}{3}$ to each vertex of D.



Rules 2 and 3 are illustrated in Figure 4. Since the above procedure preserves the total charge, we have:

$$\sum_{x \in V(G) \cup F(G)} ch^*(x) = 0.$$

The rest of the proof consists in checking that $ch^*(x) \geq 0$ whenever $x \in V(G) \cup F(G)$ and that $ch^*(f_0) > 0$, with the obvious final contradiction.

Lemma 3.1 If $v \in V(G)$ then $ch^*(v) \geq 0$.

Proof: If d(v)=2 then by Lemma 2.4 it belongs to D and is not incident with a 3-face. Therefore, only rules R2 and R4 are applied to v and $ch^*(v)=2-4+\frac{2}{3}+\frac{4}{3}=0$. Suppose that d(v)=3. If $v\in D$, then v receives $\frac{4}{3}$ from D by R4 and possibly sends away $\frac{1}{3}$ by R1. So, assume $v\notin D$. If v is not incident with a 3-face, then $ch^*(v)=3-4+3\times\frac{1}{3}=0$ by R2. Otherwise, $ch^*(v)=3-4+2\times\frac{2}{3}-\frac{1}{3}=0$ by R1 and R2.

Suppose d(v)=4. If $v\in D$, then v receives $\frac{4}{3}$ from f_0 by R4 and sends away $\frac{1}{3}$ to each internal incident face by R3 or R1, and therefore $ch^*(v)\geq \frac{4}{3}-3\times \frac{1}{3}>0$. So, we assume $v\notin D$. If v is not incident with a 3-face, then $ch^*(v)=ch(v)=0$. If v is incident with only one 3-face, then v receives $\frac{1}{3}$ by R2 and sends away $\frac{1}{3}$ due to R1. If v is incident with two (mutually nonadjacent) 3-faces, then v receives $2\times \frac{1}{3}$ due to R2 and sends away $2\times \frac{1}{3}$ due to R1. In any case $ch^*(v)\geq 0$.

Now suppose d(v) = 5. If $v \notin D$ then v sends $\frac{1}{3}$ to at most two 3-faces by R1 and to at most one non-triangular face by R3, so that $ch^*(v) \ge 0$. Otherwise, $ch^*(v) \ge 1 + \frac{4}{3} - 4 \times \frac{1}{3} > 0$

If $d(v) \ge 6$ then v sends away at most $d(v) \times \frac{1}{3}$ according to R1 and R3, so that $ch^*(v) \ge d(v) - 4 - \frac{d(v)}{3} = \frac{2(d(v) - 6)}{3} \ge 0$.

Lemma 3.2 $ch^*(f_0) > 0$.

Proof: Recall that $ch(f_0) = |f_0| + 4$. By R4, $ch^*(f) \ge |f_0| + 4 - |f_0| \times \frac{4}{3} = \frac{12 - |f_0|}{3} > 0$.

Lemma 3.3 If $f \in F(G)$ and $f \neq f_0$, then $ch^*(f) \geq 0$.

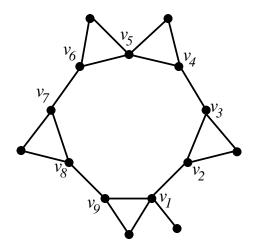


Figure 5: A 9-face as in the proof of Lemma 3.3

Proof: If |f| = 3 then $ch(f) = |f| - 4 + 3 \times \frac{1}{3} = 0$ by R1.

Suppose $|f| \ge 12$. As f sends each incident vertex at most $\frac{2}{3}$ due to R2, we have $ch^*(f) = |f| - 4 - |f| \times \frac{2}{3} = \frac{|f|-12}{3} \ge 0$.

Observe that if $|f| \ge 8$ and f is incident with a 2-vertex, which belongs to D by Lemma 2.4 and takes $\frac{2}{3}$ from f by R2, then f is incident with two ≥ 3 -vertices of D, namely the ends of a maximal path of 2-vertices on the boundary of f. These vertices get nothing from f, and therefore $ch^*(f) \ge |f| - 4 - (|f| - 2) \times \frac{2}{3} \ge \frac{|f| - 8}{3} \ge 0$. Thus, from now on, we may assume that f is not incident with any 2-vertices.

Suppose |f| = 11. If f sends to at least one incident vertex less than $\frac{2}{3}$, i.e., at most $\frac{1}{3}$ (see R2), then we have $ch^*(f) \ge 11 - 4 - 10 \times \frac{2}{3} - \frac{1}{3} = 0$. However, f cannot be incident with 11 bad vertices because of parity.

Now suppose |f| = 10. If f sends to at least two incident vertices at most $\frac{1}{3}$ each, we are done: $ch^*(f) \ge 10 - 4 - 8 \times \frac{2}{3} - 2 \times \frac{1}{3} = 0$. The only danger comes from f being incident with at least 9 bad vertices. But clearly every 5 consecutive bad vertices on the boundary of f include a tetrad, which is impossible by Lemma 2.6.

Next suppose |f| = 9. If f sends to at least three incident vertices at most $\frac{1}{3}$ each, or if it sends nothing to at least one vertex and at most $\frac{1}{3}$ to another one, then we are done: $ch^*(f) \geq 9 - 4 - 6 \times \frac{2}{3} - 3 \times \frac{1}{3} = 0$ or $ch^*(f) \geq 9 - 4 - 7 \times \frac{2}{3} - \frac{1}{3} = 0$, respectively. If f has eight bad vertices it will certainly form a tetrad, which contradicts Lemma 2.6. So, there are at most seven bad vertices and the other two must be internal vertices and taking $\frac{1}{3}$ each. Clearly those seven must be split by the two good vertices as 4+3, otherwise they form a tetrad. Furthermore, the quadruple should fail to be a tetrad. W.l.o.g., we have a situation as in Figure 5. But in this case, one of the good vertices $(v_1$ in the figure) takes nothing from f and therefore $ch^*(f) \geq 0$.

Finally, suppose |f| = 8. If f sends to at least four incident vertices at most $\frac{1}{3}$ each, or if it sends nothing to at least two vertices, then we are done: $ch^*(f) \geq 8 - 4 - 4 \times \frac{2}{3} - 4 \times \frac{1}{3} = 0$ or $ch^*(f) \geq 8 - 4 - 6 \times \frac{2}{3} = 0$, respectively. So we may again assume that f is totally surrounded by internal vertices. (If exactly one vertex v at f belongs to D, then clearly $deg(v) \geq 4$, so that v gives $\frac{1}{3}$ to f. Since the other seven vertices cannot all be bad by Lemma 2.6, it follows that $ch^*(f) \geq 8 - 4 + \frac{1}{3} - 6 \times \frac{2}{3} - \frac{1}{3} = 0$.) If f is incident with at most one good vertex, we have a tetrad. It remains to assume that $f = v_1 \dots v_8$

is incident with exactly 6 or exactly 5 bad vertices.

Case 1. There are precisely 5 bad vertices around f.

If at least one good vertex of f fails to take $\frac{1}{3}$ from f, then we are done: $ch^*(f) \geq 8-4-5\times\frac{2}{3}-2\times\frac{1}{3}=0$. So suppose that each of these three vertices takes $\frac{1}{3}$. It follows by R2 and R3 that all of them must be internal ≤ 4 -vertices, each having either two or no incident triangular edges in common with f. However, this is impossible by parity: each bad vertex starts a unique path of triangular edges along the boundary of f, with another bad vertex at the end and all good 4-vertices in between.

Case 2. There are precisely 6 bad vertices around f.

These six must be split by the two good vertices as 4+2 or 3+3, since each path of 5 bad vertices contains a tetrad.

Subcase 2.1: 4+2

Not to form a tetrad, those 4 bad vertices, $v_1, \ldots v_4$ should form triangles with the good vertices v_5 and v_8 . If the edge v_6v_7 is triangular, then both v_5 and v_8 get nothing from f by R2, and we are home. So suppose that both v_5v_6 and v_7v_8 are triangular. Observe that $d(v_5) \geq 4$ and $d(v_8) \geq 4$. If $d(v_5) \geq 5$, or $d(v_8) \geq 5$, or if one of these two vertices belongs to D, then we are done due to R3: $ch^*(f) \geq 8 - 4 - 6 \times \frac{2}{3} - \frac{1}{3} + \frac{1}{3} = 0$. Therefore, it remains to assume that both v_5 and v_8 are internal 4-vertices and, furthermore, we have 3-faces $v_1v_8t_{18}$, $v_2v_3t_{23}$, $v_4v_5t_{45}$, $v_5v_6t_{56}$, and $v_7v_8t_{78}$ as in Figure 3. But this is an MM-face, contrary to Lemma 2.8.

Subcase 2.2: 3+3

As in Subcase 2.1, one of the two good vertices at f, say v_8 , must have two triangular edges in common with f, for otherwise each good vertex takes 0 from f. Due to the absence of tetrads, the other good vertex at f must be v_4 . But then f is an M-face (as in Figure 2), which contradicts Lemma 2.7. This completes the proof of Theorem 1.2.

References

- [1] H.L. Abbott and B. Zhou, "On small faces in 4-critical graphs", Ars Combinatoria 32 (1991) 203-207.
- [2] O.V. Borodin, "To the paper of H.L. Abbott and B. Zhou on 4-critical planar graphs", Ars Combinatoria., 25 (1979) 211–236.
- [3] O.V. Borodin, "Structural properties of plane graphs without adjacent triangles and an application to 3-colorings", J. of Graph Theory, 21, no. 2 (1996) 183-186.
- [4] T.R. Jensen and B. Toft, Graph coloring problems, Wiley, New York, 1995.
- [5] D.P. Sanders and Y. Zhao, "A note on the Three Color Problem", *Graphs and Combinatorics*, 11 (1995) 91-94.
- [6] R. Steinberg, "The state of the three color problem", Quo Vadis, Graph Theory? J. Gimbel, J.W. Kennedy & L.V. Quintas (eds.) Ann. Discrete Math. 55 (1993) 211-248.