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Abstra
t

Wegner 
onje
tured that the 
hromati
 number of the square of any planar

graph G with maximum degree � � 8 is bounded by �(G

2

) � b

3

2

�
 + 1. We

prove the bound �(G

2

) � d

5

3

�e + 78. This is asymptoti
ally an improvement on

the previously best known bound. For large values of � we give the bound of

�(G

2

) � d

5

3

�e+ 25. We generalize this result to L(p; q)-labeling of planar graphs,

by showing that �

p

q

(G) � qd

5

3

�e+18p+77q� 18. For ea
h of the results, the proof

provides a quadrati
 time algorithm.

1 Introdu
tion

In this paper by graph we mean a simple graph. The vertex set and edge set of a graph G

are denoted by V (G) and E(G), respe
tively. The length of a path between two verti
es

is the number of edges on that path. We de�ne the distan
e between two verti
es to be

the length of the shortest path between them. The square of a graph G, denoted by G

2

, is

�
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a graph on the same vertex set su
h that two verti
es are adja
ent in G

2

i� their distan
e

in G is at most 2. The degree of a vertex v is the number of edges in
ident with v and is

denoted by d

G

(v) or simply d(v) if it is not 
onfusing. We denote the maximum degree

of a graph G by �(G) or simply �. If the degree of v is i, at least i, or at most i we


all it an i-vertex, a �i-vertex, or a �i-vertex, respe
tively. By N

G

(v), we mean the open

neighborhood of v in G, whi
h 
ontains all those verti
es that are adja
ent to v in G.

The 
losed neighborhood of v, whi
h is denoted by N

G

[v℄, is N

G

(v)[fvg. We usually use

N(v) and N [v℄ instead of N

G

(v) and N

G

[v℄, respe
tively.

A vertex k-
oloring of a graph G is a mapping C : V �! f1; : : : ; kg su
h that any

two adja
ent verti
es u and v are mapped to di�erent integers. The minimum k for whi
h

a 
oloring exists is 
alled the 
hromati
 number of G and is denoted by �(G). The well

known result of Appel and Haken [2℄ states that:

Theorem 1.1 (The Four Color Theorem) For every planar graph G: �(G) � 4.

The question of �nding the best possible upper bound for the 
hromati
 number of

the square of a planar graph seems to �rst have been asked by Wegner [21℄. He posed the

following 
onje
ture:

Conje
ture 1.2 For a planar graph G:

�(G

2

) �

(

�+ 5 if 4 � � � 7;

b

3

2

�
+ 1 if � � 8:

Wegner gave examples illustrating that these bounds are best possible. He also showed

that if � = 3 then G

2


an be 8-
olored and 
onje
tured that 7 
olors would be enough.

Very re
ently, Thomassen [18℄ has solved this 
onje
ture for � = 3, by showing that the

square of every 
ubi
 planar graph is 7-
olorable, but the 
onje
ture for general planar

graphs remains open.

Wegner's 
onje
ture is mentioned in Jensen and Toft [14℄, Se
tion 2.18, followed by a

brief history of it. One might think that sin
e every planar graph has a �5-vertex then

this trivially implies a greedy algorithm for (5� + 1)-
oloring of G

2

. See [19℄ why this

straightforward argument doesn't work. Jonas [13℄ in his Ph.D. thesis proved �(G

2

) �

8��22. This bound was later improved by Wong [23℄ to �(G

2

) � 3�+5. Then Van den

Heuvel and M
Guinness [19℄ proved �(G

2

) � 2� + 25. For large values of �, Agnarsson

and Halld�orsson [1℄ have a better asymptoti
 bound. They showed that if G is a planar

graph with � � 749, then �(G

2

) � b

9

5

�
 + 2. Re
ently, Borodin et al. [4, 5℄ have been

able to extend this result further by proving �(G

2

) � d

9

5

�e + 1 for planar graphs with

� � 47. We improve these results asymptoti
ally by showing that:

Theorem 1.3 For a planar graph G, �(G

2

) � d

5

3

�e + 78.

Theorem 1.4 For a planar graph G, if � � 241, then �(G

2

) � d

5

3

�e + 25.
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Remark: The 
onstants 78 and 25 in the above theorems 
an be improved. For

example with an extra page of proof the �rst 
onstant 
an be brought down to 61 but we

don't know how to bring it down to a number 
lose to 1, using this proof.

The te
hnique we use is inspired by that used by Sanders and Zhao [17℄ to obtain a

similar bound on the 
y
li
 
hromati
 number of planar graphs.

A generalization of ordinary vertex 
oloring is L(p; q)-labeling. Let dist(u; v) denote

the distan
e between u and v. For integers p; q � 0, an L(p; q)-labeling of a graph G is a

mapping L : V (G) �! f0; : : : ; kg su
h that

� jL(u)� L(v)j � p if dist(u; v) = 1, and

� jL(u)� L(v)j � q if dist(u; v) = 2.

The p; q-span of G, denoted by �

p

q

(G), is the minimum k for whi
h an L(p; q)-labeling

exists. It is easy to see that for any graph G: �(G

2

) = �

1

1

(G) + 1. The problem of

determining �

p

q

(G) has been studied for some spe
i�
 
lasses of graphs [3, 6, 7, 8, 9, 10,

11, 15, 16, 20, 22℄. The motivation for this problem 
omes from the 
hannel assignment

problem in radio and 
ellular phone systems, where ea
h vertex of the graph 
orresponds to

a transmitter lo
ation, with the label assigned to it determining the frequen
y 
hannel on

whi
h it transmits. In appli
ations, be
ause of possible interferen
e between neighboring

transmitters, the 
hannels assigned to them must have a 
ertain distan
e from ea
h other.

A similar requirement arises from transmitters that are not neighbors but are 
lose, i.e at

distan
e 2. This problem is also known as the Frequen
y Assignment Problem. Be
ause

of the motivating appli
ation for this problem, it is quite natural to 
onsider it on planar

graphs. Sin
e the 
ase q = 0 
orresponds to labeling the verti
es of a graph with integers

su
h that adja
ent verti
es re
eive labels at least p apart, the upper bound 3p for �

p

0

of

planar graphs follows from the Four Color Theorem (if we use 
olors from f0; p; 2p; 3pg).

So let's assume that q � 1. For any planar graph G, a straightforward argument shows

that �

p

q

(G) � q�+p�q+1. There are planar graphs G for whi
h �

p

q

(G) �

3

2

q�+O(p; q).

The best known upper bound for �

p

q

(G), for a planar graph G, is proved in [19℄.

Theorem 1.5 [19℄ For any planar graph G and positive integers p and q, su
h that p � q:

�

p

q

(G) � (4q � 2)� + 10p+ 38q � 24.

We sharpen the gap between this result and the best possible bound asymptoti
ally, by

showing that:

Theorem 1.6 For any planar graph G and positive integers p and q: �

p

q

(G) � qd

5

3

�e +

18p+ 77q � 18.

Se
tions 2 and 3 
ontain the proof of Theorem 1.3. In Se
tion 4 we show how to

modify the proof of Theorem 1.3 to prove Theorem 1.4. In Se
tion 5 we explain why

any modi�
ations of the lemmas used in the proof of Theorem 1.3 are not suÆ
ient to

improve this theorem asymptoti
ally, and one has to 
ome up with a new 
on�guration.
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These arguments will be 
leared later in the paper. We generalize the proof of Theorem

1.3 in Se
tion 6 to prove Theorem 1.6. Finally, in Se
tion 7 we des
ribe an O(n

2

) time

algorithm for �nding a 
oloring as des
ribed in Theorems 1.3, 1.4, and 1.6.

2 Preliminaries

A vertex v is 
alled big if d

G

(v) � 47, otherwise we 
all it a small vertex. From now on

we assume that G is a 
ounter-example to Theorem 1.3 with the minimum number of

verti
es. By a 
oloring we mean a 
oloring in whi
h verti
es at distan
e at most two from

ea
h other get di�erent 
olors. Trivially G is 
onne
ted.

Lemma 2.1 For every vertex v of G, if there exists a vertex u 2 N(v), su
h that d

G

(v)+

d

G

(u) � �+ 2 then d

G

2

(v) � d

5

3

�e + 78.

Proof: Assume that v is su
h a vertex. Contra
t v on edge uv. The resulting graph has

maximum degree at most � and be
ause G was a minimum 
ounter-example, the new

graph 
an be 
olored with d

5

3

�e+78 
olors. Now 
onsider this 
oloring indu
ed on G, in

whi
h every vertex other than v is 
olored. If d

G

2

(v) < d

5

3

�e + 78 then we 
an assign a


olor to v to extend the 
oloring to v, whi
h 
ontradi
ts the de�nition of G.

Observation 2.2 We 
an assume that � � 160, otherwise 2� + 25 � d

5

3

�e+ 78.

Lemma 2.3 Every �5-vertex in G must be adja
ent to at least two big verti
es.

Proof: By way of 
ontradi
tion assume that this is not true. Then there is a �5-vertex

v whi
h is adja
ent to at most one big vertex and all its other neighbors are �46-verti
es.

Then, using Observation 2.2, v along with one of these small verti
es will 
ontradi
t

Lemma 2.1.

Corollary 2.4 Every vertex of G is a �2-vertex.

Lemma 2.5 G is 2-
onne
ted.

Proof: By 
ontradi
tion, let v be a 
ut-vertex of G and let C

1

; : : : ; C

t

(t � 2) be the


onne
ted 
omponents of G � fvg. By the de�nition of G, for ea
h 1 � i � t, there is a


oloring '

i

of G

i

= C

i

[ fvg with d

5

3

�e + 78 
olors. We 
an permute the 
olors in ea
h

'

i

(if needed) su
h that v has the same 
olor in all '

i

's, and the sets of 
olors appearing

in N

G

i

(v), 1 � i � t, are all disjoint. Now the union of these 
olorings will be a 
oloring

of G, a 
ontradi
tion.

The proof of Theorem 1.3 be
omes signi�
antly simpler if we 
an assume that the

underlying graph is a triangulation, i.e. all fa
es are triangles, and has minimum degree
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y

t

x

z

v

Figure 1: The swit
hing operation

at least 4. To be able to make these assumptions, we begin by modifying the graph G in

two phases.

Phase 1: In this phase we transform G into a (simple) triangulated graph G

0

, by

adding edges to every non-triangle fa
e of G. Let G

0

be initially equal to G. Consider

any non-triangle fa
e f = v

1

; v

2

; : : : ; v

k

of G

0

. Be
ause G is 2-
onne
ted, we 
annot have

both v

1

v

3

2 E(G

0

) and v

2

v

4

2 E(G

0

) at the same time sin
e they both have to be outside

of f . So we 
an add at least one of these edges to E(G

0

) inside f , without 
reating any

multiple edges. We follow this pro
edure to redu
e the fa
es' sizes as long as we have any

non-triangle fa
e in G

0

. At the end we have a triangulated graph G

0

whi
h 
ontains G as

a subgraph.

Observation 2.6 For every vertex v, N

G

(v) � N

G

0

(v).

Lemma 2.7 All verti
es of G

0

are �3-verti
es.

Proof: By Corollary 2.4 and Observation 2.6 all the verti
es of G

0

are � 2-verti
es.

Suppose that we have a 2-vertex v inG

0

having neighbors x and y. Sin
e G

0

is triangulated,

the fa
es on ea
h side of edge vx must be triangles, 
all them f

1

and f

2

. So we must have

xy 2 f

1

and also xy 2 f

2

. Sin
e G

0

has at least 4 verti
es, f

1

6= f

2

and so we have a

multiple edge. But G

0

is simple.

Lemma 2.8 Ea
h �4-vertex v in G

0


an have at most

d(v)

2

neighbors whi
h are 3-verti
es.

Proof: Let x

0

; x

1

; : : : ; x

d

G

0

(v)�1

be the sequen
e of neighbors of v in G

0

, in 
lo
kwise order.

We show that we 
annot have two 
onse
utive 3-verti
es in this sequen
e. If there are

two 
onse
utive 3-verti
es, say d(x

i

) = d(x

i+1

) = 3, where addition is in mod d

G

0

(v), then

there is a fa
e 
ontaining x

i�1

; x

i

; x

i+1

; x

i+2

. But G

0

is a triangulated graph.

Phase 2: In this phase we transform graph G

0

into another triangulated graph G

00

,

whose minimum degree is at least 4. Initially G

00

is equal to G

0

. As long as there is any

3-vertex v we do the following swit
hing operation: let x; y; z be the three neighbors of

v. At least two of them, say x and y, are big in G

0

by Lemma 2.3 and Observation 2.6.

Remove edge xy. Sin
e G

0

(and also G

00

) is triangulated this leaves a fa
e of size 4, say

x; v; y; t. Add edge vt to G

00

(see Figure 1). This way, the graph is still triangulated.

Observation 2.9 If v is not a big vertex in G then N

G

(v) � N

G

00

(v).

Lemma 2.10 If v is a big vertex in G then d

G

00

(v) � 24.

5



Proof: Follows easily from Lemma 2.8 and the de�nition of the swit
hing operation.

So a big vertex v in G will not be a �23-vertex in G

00

. Let v be a big vertex in G and

x

0

; x

1

; : : : ; x

d

G

00

(v)�1

be the neighbors of v in G

00

in 
lo
kwise order. We 
all x

a

; : : : ; x

a+b

(where addition is in mod d

G

00

(v)) a sparse segment in G

00

i�:

� b � 2,

� Ea
h x

i

is a 4-vertex.

In the next two lemmas, we assume that x

a

; : : : ; x

a+b

is a maximal sparse segment of v in

G

00

, whi
h is not equal to the whole neighborhood of v. Also, we assume that x

a�1

and

x

a+b+1

are the neighbors of v right before x

a

and right after x

a+b

, respe
tively.

Lemma 2.11 There is a big vertex in G other than v, that is 
onne
ted to all the verti
es

of x

a+1

; : : : ; x

a+b�1

, in G

00

(and in G).

Proof: Follows easily from Observation 2.9, Lemma 2.3, and the de�nition of a sparse

segment.

We use u to denote the big vertex, other than v, that is 
onne
ted to all x

a+1

; : : : ; x

a+b�1

.

Lemma 2.12 All the verti
es x

a+1

; : : : ; x

a+b�1

are 
onne
ted to both u and v in G. If

x

a�1

is not big in G then x

a

is 
onne
ted to both u and v in G. Otherwise it is 
onne
ted

to at least one of them. Similarly if x

a+b+1

is not big in G, x

b

is 
onne
ted to both u and

v in G, and otherwise it is 
onne
ted to at least one of them.

Proof: Sin
e the only big neighbors of x

a+1

; : : : ; x

a+b�1

in G

00

are v and u, by Lemma 2.3

they must be 
onne
ted to both of them in G as well. For the same reason x

a

and x

a+b

will be 
onne
ted to u and v in G, if x

a�1

and x

a+b�1

are not big.

We 
all x

a+1

; : : : ; x

a+b�1

the inner verti
es of the sparse segment, and x

a

and x

a+b

the

end verti
es of the sparse segment. Consider vertex v and let us denote the maximal sparse

segments of N(v) by Q

1

; Q

2

; : : : ; Q

m

in 
lo
kwise order, where Q

i

= q

i;1

; q

i;2

; q

i;3

; : : :. The

next two lemmas are the key lemmas in the proofs of Theorems 1.3 and 1.4. They provide

two redu
ible 
on�gurations for a graph that is a minimum 
ounter-example to theorem.

Lemma 2.13 jQ

i

j � d

G

(v)� d

2

3

�e � 73, for 1 � i � m.

Proof: We prove this by 
ontradi
tion. Assume that for some i, jQ

i

j > d

G

(v)�d

2

3

�e�73.

Let u

i

be the big vertex that is adja
ent to all the inner verti
es of Q

i

(in both G and

G

00

). See Figure 2. For an inner vertex of Q

i

, say q

i;2

, we have:

d

G

2

(q

i;2

) � d

G

(u

i

) + d

G

(v) + 2� (jQ

i

j � 3)

� �+ d

G

(v)� jQ

i

j+ 5

< d

5

3

�e + 78:

6



qi,2

ui

iQ

v

Figure 2: The 
on�guration of Lemma 2.13

If q

i;2

is adja
ent to q

i;1

or q

i;3

in G then it is 
ontradi
ting Lemma 2.1. Otherwise it is only

adja
ent to v and u

i

in G, therefore has degree 2, and so along with v or u

i


ontradi
ts

Lemma 2.1.

Lemma 2.14 Consider G and suppose that u

i

and u

i+1

are the big verti
es adja
ent to

all the inner verti
es of Q

i

and Q

i+1

, respe
tively. Furthermore assume that t is a vertex

adja
ent to both u

i

and u

i+1

but not adja
ent to v (see Figure 3) and there is a vertex

w 2 N

G

(t) su
h that d

G

(t) + d

G

(w) � � + 2. Let X(t) be the set of verti
es at distan
e

at most 2 of t that are not in N

G

[u

i

℄ [N

G

[u

i+1

℄. If jX(t)j � 6 then:

jQ

i

j+ jQ

i+1

j � b

1

3

�
 � 67:

Proof: Again we use 
ontradi
tion. Assume that jQ

i

j + jQ

i+1

j � b

1

3

�
 � 66. Using the

argument of the proof of Lemma 2.1 we 
an 
olor every vertex of G other than t. Note

that d

G

2

(t) � d

G

(u

i

) + d

G

(u

i+1

) + jX(t)j � 2� + 6. If all the 
olors of the inner verti
es

of Q

i

have appeared on the verti
es of N

G

[u

i+1

℄ [X(t)�Q

i+1

and all the 
olors of inner

verti
es of Q

i+1

have appeared on the verti
es of N

G

[u

i

℄ [ X(t) � Q

i

then there are at

least jQ

i

j � 2 + jQ

i+1

j � 2 repeated 
olors at N

G

2

(t). So the number of 
olors at N

G

2

(t)

is at most 2�+ 6� jQ

i

j � jQ

i+1

j+ 4 � d

5

3

�e+ 76 and so there is still one 
olor available

for t, whi
h is a 
ontradi
tion.

Therefore, without loss of generality, there exists an inner vertex of Q

i+1

, say q

i+1;2

,

whose 
olor is not in N

G

[u

i

℄ [ X(t) � Q

i

. If there are less than d

5

3

�e + 77 
olors at

N

G

2

(q

i+1;2

) then we 
ould assign a new 
olor to q

i+1;2

and assign the old 
olor of it to

t and get a 
oloring for G. So there must be d

5

3

�e + 77 or more di�erent 
olors at

N

G

2

(q

i+1;2

).

From the de�nition of a sparse segment N

G

(q

i+1;2

) � fv; u

i+1

; q

i+1;1

; q

i+1;3

g. There are

at most d

G

(u

i+1

) + 7 
olors, 
alled the smaller 
olors, at N

G

[u

i+1

℄ [ X(t) [ N

G

[q

i+1;1

℄ [

N

G

[q

i+1;3

℄�fvg�fq

i+1;2

g (note that t is not 
olored). So there must be at least d

2

3

�e+70

di�erent 
olors, 
alled the larger 
olors, at N

G

[v℄�Q

i+1

. Sin
e jN

G

[v℄j � jQ

i

j � jQ

i+1

j �

� + 1� b

1

3

�
 + 66 � d

2

3

�e + 67, one of the larger 
olors must be on an inner vertex of

Q

i

, whi
h without loss of generality, we 
an assume is q

i;2

. Be
ause t is not 
olored, we

must have all the d

5

3

�e+ 78 
olors at N

G

2

(t). Otherwise we 
ould assign a 
olor to t. As

there are at most � + 6 
olors, all from the smaller 
olors, at N

G

[u

i+1

℄ [ X(t), all the

larger 
olors must be in N

G

[u

i

℄, too. Let L be the number of larger 
olors. Therefore,

the number of forbidden 
olors for q

i;2

that are not from the larger 
olors, is at most

7



w

v

ui+1

t

qi,2

ui

qi+1,2

iQ Qi+1

Figure 3: Con�guration of Lemma 2.14

d(u

i

)�L+ d(u

i+1

)�L � 2�� 2L. By 
onsidering the verti
es at distan
e exa
tly two of

q

i;2

that have a larger 
olor and noting that q

i;2

has a larger 
olor too, the total number

of forbidden 
olors for q

i;2

is at most 2� � L � b

4

3

�
 � 70, and so we 
an assign a new


olor to q

i;2

and assign the old 
olor of q

i;2

, whi
h is one of the larger 
olors and is not in

N

G

2

(t)� fq

i+1;2

g, to t and extend the 
oloring to G, a 
ontradi
tion.

3 Dis
harging rules

We give an initial 
harge of d

G

00

(v) � 6 units to ea
h vertex v. Using Euler's formula,

jV j � jEj+ jF j = 2, and noting that 3jF (G

00

)j = 2jE(G

00

)j, it is straightforward to 
he
k

that:

X

v2V

(d

G

00

(v)� 6) = 2jE(G

00

)j � 6jV j+ 4jE(G

00

)j � 6jF (G

00

)j = �12: (1)

By these initial 
harges, the only verti
es that have negative 
harges are 4- and 5-verti
es,

whi
h have 
harges �2 and �1, respe
tively. The goal is to show that, based on the

assumption thatG is a minimum 
ounter-example, we 
an send 
harges from other verti
es

to �5-verti
es su
h that all the verti
es have non-negative 
harge, whi
h is of 
ourse a


ontradi
tion sin
e the total 
harge must be negative by equation (1).

We 
all a vertex v pseudo-big (in G

00

) if v is big (in G) and d

G

00

(v) � d

G

(v)� 11. Note

that a pseudo-big vertex is also a big vertex, but a big vertex might or might not be a

pseudo-big vertex. Before explaining the dis
harging rules, we need a few more notations.

Suppose that v; x

1

; x

2

; : : : ; x

k

; u is a sequen
e of verti
es su
h that v is adja
ent to x

1

,

x

i

is adja
ent to x

i+1

, 1 � i < k, and x

k

is adja
ent to u.

De�nition: By \v sends 
 units of 
harge through x

1

; : : : ; x

k

to u" we mean v sends


 units of 
harge to x

1

, it passes the 
harge to x

2

... et
, and �nally x

k

passes the 
harge

to u. In this 
ase, we also say \v sends 
 units of 
harge through x

1

" and \u gets 
 units

of 
harge through x

k

". In order to simplify the 
al
ulations of the total 
harges on vertex

8



x

i

, 1 � i � k, we do not take into a

ount the 
harges that only pass through x

i

.

In dis
harging phase, a big vertex v of G:

1) Sends 1 unit of 
harge to ea
h 4-vertex u in N

G

00

(v).

2) Sends

1

2

unit of 
harge to ea
h 5-vertex u in N

G

00

(v).

In addition, if v is a big vertex and u

0

; u

1

; u

2

; u

3

; u

4

are 
onse
utive neighbors of v in


lo
kwise or 
ounter-
lo
kwise order, where d

G

00

(u

0

) = 4, then:

3) If d

G

00

(u

1

) = 5, u

2

is big, d

G

00

(u

3

) = 4, d

G

00

(u

4

) � 5, and the neighbors of u

1

in 
lo
kwise

or 
ounter-
lo
kwise order are v; u

0

; x

1

; x

2

; u

2

then v sends

1

2

to x

1

through u

2

; u

1

.

4) If d

G

00

(u

1

) = 5, 5 � d

G

00

(u

2

) � 6, d

G

00

(u

3

) � 7, and the neighbors of u

1

in 
lo
kwise or


ounter-
lo
kwise order are v; u

0

; x

1

; x

2

; u

2

then v sends

1

2

to x

1

through u

3

; u

2

; u

1

.

5) If d

G

00

(u

1

) = 5, u

2

is big, d

G

00

(u

3

) � 5, and the neighbors of u

1

in 
lo
kwise or


ounter-
lo
kwise order are v; u

0

; x

1

; x

2

; u

2

then v sends

1

4

to x

1

through u

2

; u

1

.

6) If d

G

00

(u

1

) = 6, d

G

00

(u

2

) � 5, d

G

00

(u

3

) � 7, and the neighbors of u

1

in 
lo
kwise or


ounter-
lo
kwise order are v; u

0

; x

1

; x

2

; x

3

; u

2

then v sends

1

2

to x

1

through u

1

.

7) If d

G

00

(u

1

) = 6, d

G

00

(u

2

) � 6, and the neighbors of u

1

in 
lo
kwise or 
ounter-
lo
kwise

order are v; u

0

; x

1

; x

2

; x

3

; u

2

then v sends

1

4

to x

1

through u

1

.

If 7 � d

G

00

(v) < 12 then:

8) If u is a big vertex and u

0

; u

1

; u

2

; v; u

3

; u

4

; u

5

are 
onse
utive neighbors of u where all

u

0

; u

1

; u

2

; u

3

; u

4

; u

5

are 4-verti
es then v sends

1

2

to u.

9) If u

0

; u

1

; u

2

; u

3

are 
onse
utive neighbors of v, su
h that d

G

00

(u

1

) = d

G

00

(u

2

) = 5, u

0

and u

3

are big, and t is the other 
ommon neighbor of u

1

and u

2

(other than v),

then v sends

1

2

to t.

Every �12-vertex v of G

00

that was not big in G:

10) Sends

1

2

to ea
h of its neighbors.

A �5-vertex v sends 
harges as follows:

11) If d

G

00

(v) = 4 and its neighbors in 
lo
kwise order are u

0

; u

1

; u

2

; u

3

, su
h that u

0

; u

1

; u

2

are big in G and u

3

is small, then v sends

1

2

to ea
h of u

0

and u

2

through u

1

.

12) If d

G

00

(v) = 5 and its neighbors in 
lo
kwise order are u

0

; u

1

; u

2

; u

3

; u

4

, su
h that

d

G

00

(u

0

) � 11, d

G

00

(u

1

) � 12, d

G

00

(u

2

) � 12, d

G

00

(u

3

) � 11, and u

4

is big, then v sends

1

2

to u

4

.
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u3

u0

u1

u
2

2
1

2
1

u0
u1 u

2 u32
1

u0

u1

u2

u3

2
1

2
1

2
1

u0

u1

u4

u3

u
2

u0

u1

u
2 u3

u4

u5

Rule 4: 5    d(u )    62

:     12−vertex

: Big

u0

1x

u
2

u1

x2 x3

1 2

v

1x

x2 x3

1 4

v

u

v

u

u

u

u

x

u0

1

2

3

4

2

1x

Rule 3

v
u0

1x u3u1

1 2

Rule 5

v

x

u0

2

1x

u
2

u3u1

1 4

Rule 7

v

t

v

v

Rule 11

v

Rule 12

u
2

2

x2

Rule 8: 7   d(v)   12

Rule 6: d(u )    5

Rule 9: 7   d(v)    12

: 4−vertex

: 5−vertex

: 6−vertex

: 7−vertex

:     5−vertex

:     6−vertex

:     4−vertex

:     7−vertex

:     11−vertex

: Small

: Any degree

Figure 4: Dis
harging rules
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From now on, by \the total 
harge sent from v to one of its neighbors u", we mean the

total 
harge sent from v to u or through u. Similarly, by \the total 
harge v re
eived from

u", we mean the total 
harge sent from or through u to v.

Lemma 3.1 Every big vertex v sends at most

1

2

to every 5� or 6-vertex in N

G

00

(v).

Proof: For any 5� or 6-vertex u, v sends 
harges to u by at most one rule.

Lemma 3.2 If v is big and u

0

; u

1

; u

2

; u

3

; u

4

are 
onse
utive neighbors of v in 
ounter-


lo
kwise order, su
h that d

G

00

(u

2

) � 7 then v sends at most

1

2

through u

2

, or sends 1

through u

2

and d

G

00

(u

0

) = d

G

00

(u

4

) = 5 and u

1

and u

3

are 5� or 6-verti
es.

Proof: If u

2

is big and one of rules 3 or 5 applies then it is easy to verify that it is the

only rule by whi
h u

2

gets 
harge from v. If u

1

and u

3

are both 5-verti
es then rule 5 may

apply twi
e, one for sending 
harge to a neighbor of u

1

and one for sending 
harge to a

neighbor of u

3

, so overall u

2

gets at most

1

2

from v. It is straightforward to 
he
k that

there is no 
on�guration in whi
h we 
an apply rule 3 twi
e.

The only other way for v to send 
harge to u

2

is by rule 4. Note that if this rule applies

then none of the other rules apply. Also, v 
an send 
harge to u

2

twi
e by rule 4 sin
e it

might apply under 
lo
kwise and 
ounter-
lo
kwise orientations of neighbors of v. This

happens if d

G

00

(u

0

) = 5, 5 � d

G

00

(u

1

) � 6, 5 � d

G

00

(u

3

) � 6, d

G

00

(u

4

) = 5, v; u

1

; x

2

; x

1

; x

0

are neighbors of u

0

in 
lo
kwise order where d

G

00

(x

0

) = 4, and y

0

; y

1

; y

2

; u

3

; v are neighbors

of u

4

in 
lo
kwise order where d

G

00

(y

0

) = 4. In this 
ase v sends

1

2

to x

1

through u

2

; u

1

; u

0

and sends

1

2

to y

1

through u

2

; u

3

; u

4

, and this is the only 
on�guration in whi
h v sends


harge to u

2

twi
e. This proves the lemma.

Lemma 3.3 Every vertex v that is not big in G will have non-negative 
harge.

Proof: By Lemma 2.3 every 4-vertex gets a total of at least 2 units of 
harge by rule 1 and

ea
h 5-vertex gets a total of at least 1 unit of 
harge by rule 2. Also, the �5-verti
es that

send 
harges by rules 11 and 12 will have non-negative 
harges, sin
e they are adja
ent

to at least three �12-verti
es. If d

G

00

(v) � 12 then it sends

1

2

d

G

00

(v) � d

G

00

(v) � 6 by

rule 10 and so will have non-negative 
harge. It is straightforward to verify that there is

no 
on�guration in whi
h a 7-vertex v sends more than 1 unit of 
harge in rules 8 or 9.

Finally, it is not diÆ
ult to see that by rules 8 and 9, a vertex sends at most

1

2

for every

two neighbors that it has. So if 8 � d

G

00

(v) < 12 it sends at most

d

G

00

(v)

4

� d

G

00

(v) � 6,

and therefore it will have non-negative 
harge in any of these 
ases. Finally, rules 3 to 7

do not apply to the verti
es that are not big in G.

Lemma 3.4 Every big vertex v that is not pseudo-big will have non-negative 
harge.

Proof: Suppose that v is su
h a vertex. So d

G

00

(v) � d

G

(v) � 12 and therefore v was

involved in at least 12 swit
hing operations, in ea
h of whi
h the edge between v and

11



yi

xi
zi

u
i,1

u i,li

xi+1 zi+1

yi+1

v

Figure 5: Con�guration of Lemma 3.4

another big vertex of G was removed. Sin
e G

0

is simple, these big verti
es are distin
t.

Call them y

1

; y

2

; : : : ; y

k

, where k � 12, in 
lo
kwise order. Let x

i

z

i

be the edge that was

added during the swit
hing operation that removed vy

i

, and the order of x

i

's and z

i

's is

su
h that x

i


omes before z

i

in 
lo
kwise order. Note that all x

i

's and all z

i

's are neighbors

of v in G

00

(see Figure 5).

Let us 
all the verti
es between z

i

and x

i+1

, u

i;1

; u

i;2

; : : : ; u

i;l

i

, starting from z

i

. For


onsisten
y, let us relabel temporarily z

i

and x

i+1

to u

i;0

and u

i;l

i

+1

, respe
tively. Re
all

that k � 12 and v sends a total of no more than 1 to any vertex. Thus, in order to show

that v sends no more than its initial 
harge of d

G

00

(v) � 6, it is enough to show that for

ea
h 1 � i � k, either

(a) v sends a total of at most

1

2

to a vertex from z

i

to x

i+1

; or

(b) v sends a total of at most l

i+1

+ 1 to the l

i+1

+ 2 verti
es from z

i+1

to x

i+2

.

First we show that there is at least one �5-vertex in u

i;0

; : : : ; u

i;l

i

+1

, for ea
h 1 � i � k.

If u

i;0

is a 4-vertex we must have y

i

u

i;1

2 G

00

, be
ause G

00

is a triangulation. Assuming

that u

i;1

is a 4-vertex we must have y

i

u

i;2

2 G

00

and so on, until we have y

i+1

u

i;l

i

+1

2 G

00

and so u

i;l

i

+1

will be a �5-vertex. So for every 1 � i � k, there is a �5-vertex between

z

i

and x

i+1

; take any su
h vertex and 
all it u

i;j

i

. By Lemmas 3.1 and 3.2 and rule 10, it


an be seen that v sends a total of at most

1

2

to u

i;j

i

, unless 7 � d

G

00

(u

i;j

i

) � 11.

So assume that 7 � d

G

00

(u

i;j

i

) � 11 and v sends 1 through u

i;j

i

. By Lemma 3.2 both

of the neighbors of v before and after u

i;j

i

are 5� or 6-verti
es and so to ea
h of them v

sends a total of at most

1

2

. If z

i

6= x

i+1

then at least one of these lies between z

i

and x

i+1

and therefore we satisfy (a) above.

So we 
an assume z

i

= x

i+1

. Thus u

i;j

i

= z

i

= x

i+1

, and so (i) 5 � d

G

00

(z

i+1

) � 6,

and (ii) d

G

00

(u

i+1;1

) = 5 if z

i+1

6= x

i+2

, or d

G

00

(z

i+2

) = 5 otherwise. First assume that

z

i+1

= x

i+2

. Now if d

G

00

(z

i+1

) = 5 then v gets ba
k

1

2

from z

i+1

by rule 12 and so sends a

total of at most 0 to it. If d

G

00

(z

i+1

) = 6 then it is easy to verify that v sends nothing to

z

i+1

by any rule and so sends a total of at most 0 to it. Either way, we satisfy (b), above.

Otherwise if z

i+1

6= x

i+2

then there are at least two verti
es between z

i+1

; : : : ; x

i+2

,

that are 5� or 6-verti
es and so to ea
h of them v sends a total of at most

1

2

. Therefore

we satisfy (b), above.
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ui+1

t
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Figure 6: The �rst 
on�guration in Lemma 3.6

So the only verti
es that may have negative 
harges are pseudo-big verti
es in G

00

.

Assume that v is a pseudo-big vertex of G

00

whose neighborhood sequen
e in 
lo
kwise

order is x

1

; : : : ; x

k

. Let m be the number of maximal sparse segments of the neighborhood

of v and 
all these segments Q

1

; Q

2

; : : : ; Q

m

in 
lo
kwise order. Also, let R

i

be the

sequen
e of neighbors of v between the last vertex of Q

i

and the �rst vertex of Q

i+1

,

where Q

m+1

= Q

1

. If m = 0 then we de�ne R

1

to be equal to N

G

00

(v)

Lemma 3.5 Let R = x

a

; : : : ; x

b

, where R is one of R

1

; : : : ; R

m

. Then v sends at total of

at most d

5jRj

6

e to the verti
es of R.

Proof: Sin
e R does not overlap with any maximal sparse segment, from every three


onse
utive verti
es x

i

; x

i+1

; x

i+2

in R (where we 
onsider the neighbors 
y
li
ly if R =

N

G

00

(v)), at least one of them is a �5-vertex. Either v sends a total at most

1

2

to this

vertex, or v sends 1 and by lemma 3.2 the two verti
es before that and the two verti
es

after that are 5� or 6-verti
es and so v sends to ea
h of them a total of at most

1

2

. Thus

in either 
ase v sends a total of at most

5

2

to every three 
onse
utive verti
es of R and so

sends at most d

5

6

(b� a+ 1)e = d

5jRj

6

e to the verti
es of R.

Lemma 3.6 Suppose that m � 4. Then for every 1 � i � m either v sends at most

jR

i

j �

3

2

to R

i

, or v sends at most jR

i

j � 1 to R

i

and

jQ

i

j+ jQ

i+1

j � b

1

3

�
 � 67: (2)

Proof: We 
onsider di�erent 
ases based on jR

i

j:

jR

i

j = 1: Assume that R

i

= u. Sin
e u is the only vertex between two maximal sparse

segments, d

G

00

(u) � 5. First let d

G

00

(u) = 5. Sin
e Q

i

and Q

i+1

are sparse segments

there must be two big verti
es u

i

and u

i+1

that are 
onne
ted to all the verti
es of

13



Q

i

and Q

i+1

, respe
tively. Also, u must be 
onne
ted to these two verti
es, be
ause

G

00

is a triangulation (see Figure 6).

Note that by rule 12 v gets ba
k the

1

2


harge it had sent to u. So v is sending a

total of at most 0, so far. Let t be the other vertex that makes a triangle with edge

u

i

u

i+1

. Assume that d

G

00

(t) = 4, and w

1

; w

2

are the two neighbors of t other than

u

i

and u

i+1

. If d

G

00

(w

1

) � 4 and d

G

00

(w

2

) � 4 then sin
e Q

i

and Q

i+1

are sparse

segments and u

i

and u

i+1

are big verti
es in G, by Lemma 2.14 Equation (2) holds.

Otherwise, assume that d

G

00

(w

1

) � 5. Then by rule 3 u

i

will be sending extra

1

2

to

v through u. So overall, v sends a total of �

1

2

to u. If d

G

00

(t) � 5 then ea
h of u

i

and u

i+1

will send an extra

1

4

to v through u by rule 5 and therefore v sends a total

of �

1

2

to u.

Now assume d

G

00

(u) = 6 and that the neighbors of u are v; u

i

; u

i+1

; t and the end

verti
es of Q

i

and Q

i+1

. Note that in this 
ase v will send nothing to u. Assume

that d

G

00

(t) = 4 and its other neighbor is w. If d

G

00

(w) � 6 then by Lemma 2.14

Equation (2) holds. Otherwise, d

G

00

(w) � 7 and so ea
h of u

i

and u

i+1

sends an

extra

1

2

to v through u by rule 6 and so v sends a total of �1 to u. If d

G

00

(t) = 5 and

its other neighbors are w

1

and w

2

then either d

G

00

(w

1

) � 6 and d

G

00

(w

2

) � 6 and we


an apply Lemma 2.14 to get Equation (2), or at least one of w

1

and w

2

has degree

� 7 and so one of u

i

or u

i+1

will send an extra

1

2

unit of 
harge to v through u by

rule 6 and so v sends a total of �

1

2

to u. If d

G

00

(t) � 6 then both u

i

and u

i+1

send

an extra

1

4


harge to v through u by rule 7. So v sends a total of �

1

2

to u.

If 7 � d

G

00

(u) � 11, or 12 � d

G

00

(u) and u was not big in G, then u sends

1

2

to v by

rules 8 or 10 and so v sends a total of �

1

2

to u.

If u was big in G then by rule 11 v gets ba
k

1

2

through u for ea
h of the end verti
es

of Q

i

and Q

i+1

that are adja
ent to u, and so v sends a total of at most �1 to u.

jR

i

j = 2: Assume that R

i

= v

1

; v

2

. If d

G

00

(v

1

) � 6 or d

G

00

(v

2

) � 6 then it is easy to 
he
k

that v sends nothing to one of v

1

; v

2

and sends at most

1

2

to the other one, or sends

1

4

to ea
h, and so sends at most

1

2

to R

i

. So let us assume that d

G

00

(v

1

) = d

G

00

(v

2

) = 5

and let t be the other vertex whi
h makes a triangle with v

1

; v

2

. Note that v sends

only

1

2

to ea
h of v

1

and v

2

.

If d

G

00

(t) = 4 then we 
an apply Lemma 2.14 and get Equation (2). Let d

G

00

(t) = 5

and 
all the other neighbor of t (other than u

i

; v

1

; v

2

; u

i+1

), w (see Figure 7(a)).

If d

G

00

(w) � 6 then we 
an apply Lemma 2.14 to get Equation (2). Otherwise

d

G

00

(w) � 7 and by rule 4 u

i

and u

i+1

ea
h send an extra

1

2

to v (through v

1

and

v

2

, respe
tively) and therefore v sends a total of at most 0 to R

i

. Now assume

that d

G

00

(t) = 6 and its neighbors are w

1

; w

2

; u

i

; u

i+1

; v

1

; v

2

(see Figure 7(b)). If

d

G

00

(w

1

) � 6 and d

G

00

(w

2

) � 6 then by Lemma 2.14 we have Equation (2). Otherwise,

at least one of w

1

or w

2

is a �7-vertex and so one of u

i

or u

i+1

sends an extra

1

2

to

v (through v

1

or v

2

) by rule 4 and therefore v sends a total of at most

1

2

to R

i

. If
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Figure 7: Two other 
on�gurations for Lemma 3.6

7 � d

G

00

(t) < 12 then t sends

1

2

to v by rule 9 and so v sends a total of at most

1

2

to

R

i

. If 12 � d

G

00

(t) then v gets ba
k the

1

2

it had sent to ea
h of v

1

and v

2

by rule 12

and so sends a total of at most o to R

i

.

jR

i

j � 3: If there is no 4-vertex in R

i

then they are all �5-verti
es and by Lemmas 3.1

and 3.2 v sends a total of at most jR

i

j �

3

2

to R

i

. If jR

i

j � 5, sin
e R

i


annot have

three 
onse
utive 4-verti
es, we must have at least three �5-verti
es and again by

Lemmas 3.1 and 3.2 v sends a total of at most jR

i

j �

3

2

. So 
onsider the 
ase that

R

i

= v

1

; v

2

; v

3

; v

4

, d

G

00

(v

1

) � 5, d

G

00

(v

4

) � 5, and d

G

00

(v

2

) = d

G

00

(v

3

) = 4 (exa
tly the

same argument works for the 
ase that jR

i

j = 3 and v

2

= v

3

). There must be a big

vertex w, other than v, 
onne
ted to all the verti
es of R

i

. If d

G

00

(v

1

) = 5 then v

gets ba
k

1

2

from v

1

by rule 12 and so sends a total of at most 0 to v

1

. If d

G

00

(v

1

) � 6

it 
an be veri�ed that v sends nothing to v

1

by any rule. Sin
e v sends a total of at

most

1

2

to v

2

and at most 1 to any vertex, it sends a total of at most jR

i

j �

3

2

to R

i

.

Lemma 3.7 Every pseudo-big vertex v has non-negative 
harge.

Proof: Re
all that the initial 
harge of v was d

G

00

(v) � 6 and that v sends a total of

at most 1 to any neighbor. We will show that v sends a total of less than 1 to ea
h of

several neighbors, enough so that the total 
harge that v loses is at most d

G

00

(v)� 6. We


onsider di�erent 
ases based on the value of m, the number of maximal sparse segments

of v. Re
all that by Observation 2.2 we 
an assume that � � 160.

m = 0: Sin
e v is pseudo-big d

G

00

(v) � d

G

(v) � 11 � 36. Using Lemma 3.5 v will send

at most d

5

6

d

G

00

(v)e � d

G

00

(v)� 6 and therefore will have non-negative 
harge.

1 � m � 3: By lemma 2.13 and de�nition of a pseudo-big vertex:

15



� m = 1: Then:

jR

1

j = d

G

00

(v)� jQ

1

j

� d

G

00

(v)� d

G

(v) + d

2

3

�e + 73

� d

2

3

� 160e+ 62

� 36:

So by Lemma 3.5 v sends a total of at most jR

1

j � 6 to R

1

.

� m = 2: Then:

X

1�i�2

jR

i

j= d

G

00

(v)�

X

1�i�2

jQ

i

j

� d

G

00

(v)� 2d

G

(v) + 2� d

2

3

�e+ 146

�d

1

3

�e + 135

� 36:

So by Lemma 3.5 v sends a total of at most jR

1

[ R

2

j � 6 to R

1

[ R

2

.

� m = 3: Then:

X

1�i�3

jR

i

j= d

G

00

(v)�

X

1�i�3

jQ

i

j

� d

G

00

(v)� 3d

G

(v) + 3� d

2

3

�e+ 219

� 36:

Therefore by Lemma 3.5 v sends at most jR

1

[ R

2

[R

3

j � 6 to R

1

[R

2

[ R

3

.

m = 4: If v sends a total of at most jR

i

j �

3

2

to ea
h R

i

then we are done. Otherwise by

Lemma 3.6, we 
an assume without loss of generality that v sends a total of jR

1

j�1

to R

1

and that Equation (2) holds for Q

1

and Q

2

. Therefore using Lemma 2.13:

jR

2

j+ jR

3

j+ jR

4

j � d

G

00

(v)� (jQ

1

j+ jQ

2

j)� jQ

3

j � jQ

4

j

� d

G

00

(v)� b

1

3

�
 + 67� 2(d

G

(v)� d

2

3

�e � 73)

� �� 2d

G

(v) + d

G

00

(v) + 213

� 36:

Thus by Lemma 3.5, v sends a total of at most jR

2

[R

3

[R

4

j � 5 to R

2

[R

3

[R

4

.
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m = 5: v sends a total of at most jR

i

j � 1 to ea
h R

i

, by Lemma 3.6. If there are at

least two values of i su
h that v sends a total of at most jR

i

j �

3

2

to R

i

then we are

done. Otherwise there is at most one R

i

, say R

5

, to whi
h v sends a total of at most

jR

i

j �

3

2

. Therefore Equation (2) must hold for jQ

1

j+ jQ

2

j and jQ

3

j+ jQ

4

j, i.e:

jQ

1

j+ jQ

2

j+ jQ

3

j+ jQ

4

j � 2� b

1

3

�
 � 134:

Then using Lemma 2.13:

X

1�i�5

jR

i

j � d

G

00

(v)� d

G

(v) + d

2

3

�e+ 73� 2� b

1

3

�
 + 134

� 36:

Therefore by Lemma 3.5, v sends a total of at most jR

1

[R

2

[R

3

[R

4

[R

5

j � 6 to

R

1

[R

2

[ R

3

[ R

4

[R

5

.

m � 6: v sends at most jR

i

j � 1 to ea
h R

i

, by lemma 3.6. So we are done.

Proof of Theorem 1.3: By Lemmas 3.3, 3.4, and 3.7 every vertex of G

00

will have

non-negative 
harge, after applying the dis
harging rules. Therefore the total 
harge over

all the verti
es of G

00

will be non-negative, but this is 
ontradi
ting equation (1). This

disproves the existen
e of G, a minimum 
ounter-example to the theorem.

Remark: Using a more 
areful analysis one 
an prove the bound b

4jRj

5


 in Lemma

3.5 whi
h in turn 
an be used to prove �(G

2

) � b

5

3

�
 + 61. By being even more 
areful

throughout the analysis one 
an probably prove the bound �(G

2

) � b

5

3

�
 + 51 or even

maybe with 30 or 20 instead of 51.

4 A better bound for graphs with large �

The steps of the proof of Theorem 1.4 are very similar to those of Theorem 1.3, we only

have to modify a few lemmas and redo the 
al
ulations. For these lemmas, sin
e the proofs

are almost identi
al and do not need any new ideas, we only state the lemmas without

giving further proofs. Let G be a minimum 
ounter-example to Theorem 1.4 su
h that

� � 241.

Lemma 4.1 For every vertex v of G, if there exists a vertex u 2 N(v), su
h that d

G

(v)+

d

G

(u) � �+ 2 then d

G

2

(v) � d

5

3

�e + 25.

We 
onstru
t the triangulated graphs G

0

and then G

00

exa
tly in the same way. Lemmas

2.3 to 2.12 are still valid. The analogous of Lemmas 2.13 and 2.14 will be as follows.

Lemma 4.2 jQ

i

j � d

G

(v)� d

2

3

�e � 20, for 1 � i � m.
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Figure 8: The i
osahedron and the modi�ed graph

Lemma 4.3 Under the same assumption as in Lemma 2.14, we have:

jQ

i

j+ jQ

i+1

j � b

1

3

�
 � 14:

We apply the same initial 
harges and dis
harging rules. Again, all Lemmas 3.1 to 3.5

hold. The analogue of lemma 3.6 will be:

Lemma 4.4 Suppose that m � 4. Then for every 1 � i � m either v sends a total of at

most jR

i

j �

3

2

to R

i

, or v sends a total of at most jR

i

j � 1 to R

i

and

jQ

i

j+ jQ

i+1

j � b

1

3

�
 � 14:

Now it is straightforward to do the 
al
ulations of Lemma 3.7 with the above values to

see that it holds in this 
ase too. This will 
omplete the proof of Theorem 1.4.

5 On possible asymptoti
 improvement of Theorem

1.3

In this se
tion, we only fo
us on the asymptoti
 order of the bounds, i.e. the 
oeÆ
ient

of �. The results of [1℄ and [4, 5℄ are essentially based on showing that in a planar graph

G, there exists a vertex v su
h that d

G

2

(v) � d

9

5

�e+O(1) ([5℄ a
tually obtains a slightly

weaker, but still suÆ
ient bound.) However, as pointed out in [1℄, this is the best possible

bound on the minimum degree of a vertex in G

2

. That is, there are 2-
onne
ted planar

graphs in whi
h every vertex v satis�es d

G

2

(v) � d

9

5

�e. One of these extremal graphs 
an

be obtained from a i
osahedron, by taking a perfe
t mat
hing of it, adding k� 1 paths of

length two parallel to ea
h edge of the perfe
t mat
hing, and repla
ing every other edge

of the i
osahedron by k parallel paths of length two (see Figure 8).

Therefore, by only bounding the minimum degree of G

2

we 
annot improve the bound

d

9

5

�e+O(1), asymptoti
ally. This is the reason we introdu
ed the redu
ible 
on�guration
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Figure 9: The graph obtained based on a tetrahedron

of Lemma 2.14. We proved that any planar graph G either has a 
ut-vertex, or a vertex

v su
h that d

G

2

(v) � d

5

3

�e +O(1), or has the 
on�guration of Lemma 2.14.

But there are graphs that are extremal for this new set of redu
ible 
on�gurations in

the following sense: these graphs do not have a 
ut-vertex, do not have a vertex v with

d

G

2

(v) � d

5

3

�e, and do not have the 
on�guration of Lemma 2.14. For an odd value

of k, one of these graphs is shown in Figure 9. To interpret this �gure, we have to join

the three 
opies of v

8

and remove the multiple edges (we draw the graph in this way for


larity). Also, the dashed lines represent sequen
es of 
onse
utive 4-verti
es. Around

ea
h of v

1

; : : : ; v

4

there are 3k � 6 su
h verti
es. So, d(v

1

) = d(v

2

) = d(v

3

) = d(v

4

) = 3k,

d(v

5

) = d(v

6

) = d(v

7

) = d(v

8

) = 3k + 3, � = 3k + 3, and for any vertex v 2 G:

d

G

2

(v) � 5k + 3 (with equality holding for v 2 fv

1

; : : : ; v

4

g). The minimum degree of G

2

is d

5

3

�e+O(1) and it is easy to see that G does not have the 
on�guration of Lemma 2.14.

Therefore, using redu
ible 
on�gurations similar to those of Se
tion 2 the best asymptoti


bound that we 
an a
hieve is d

5

3

�e + O(1). So we need another redu
ible 
on�guration

to improve the multipli
ative 
onstant

5

3

.

6 Generalization to L(p; q)-labeling

In this se
tion we prove Theorem 1.6. As we said before, the upper bound 3p for �

p

0

of a

planar graph follows from the Four Color Theorem (if we use 
olors from f0; p; 2p; 3pg).

So let's assume that q � 1. We prove the following theorem:
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Theorem 6.1 For any planar graph G and positive integer p:

�

p

1

(G) � d

5

3

�e + 18p+ 59:

Assuming Theorem 6.1, we 
an prove Theorem 1.6 as follows:

Proof of Theorem 1.6: Let 
 = d

5

3

�e + 18d

p

q

e + 60. By Theorem 6.1, there is an

L(d

p

q

e; 1)-labeling of G with the 
 
olors in f0; : : : ; 
� 1g. Consider su
h a labeling and

multiply every 
olor by q. This yields an L(p; q)-labeling of G with 
olors in f0; : : : ; q(
�

1)g. Noting that d

p

q

e �

p+q�1

q

yields q(
 � 1) � qd

5

3

�e + 18p + 77q � 18 whi
h in turn


ompletes the proof.

In the rest of this se
tion we give the proof of Theorem 6.1. The steps of the proof

are very similar to those of proof of Theorem 1.3. Let G be a planar graph whi
h is a


ounter-example to Theorem 6.1 with the minimum number of verti
es. We set

C = d

5

3

�e + 18p+ 60

and throughout this se
tion we use 
olors from f0; : : : ; C � 1g. Re
all that a vertex is

said to be big if d

G

(v) � 47.

Lemma 6.2 Suppose that v is a �5-vertex in G. If there exists a vertex u 2 N(v), su
h

that d

G

(v) + d

G

(u) � �+ 2 then d

G

2

(v) � d

G

(v) + d

5

3

�e+ 73.

Proof: Assume that v is su
h a vertex and assume that d

G

2

(v) < d

G

(v) + d

5

3

�e + 73.

Contra
t v on edge vu. The resulting graph has maximum degree at most � and be
ause

G was a minimum 
ounter-example, the new graph has an L(p; 1)-labeling with at most

C 
olors. Now 
onsider su
h a labeling indu
ed on G, in whi
h every vertex other than v

is 
olored. Every vertex at distan
e (exa
tly) two of v in G forbids one 
olor for v, and

every vertex in N(v) forbids at most 2p� 1 
olors for v. So the total number of forbidden


olors for v, i.e. the 
olors that we 
annot assign to v, is at most:

d

G

(v)(2p� 1) + d

G

2

(v)� d

G

(v) < 10p� 5 + d

5

3

�e + 73

= d

5

3

�e + 10p+ 68

� C:

The last inequality follows from the assumption that p � 1. Therefore, there is still at

least one 
olor available for v whose absolute di�eren
e from its neighbors in G

2

is large

enough and so we 
an extend the 
oloring to G.

Observation 6.3 By Theorem 1.5 we 
an assume that � � 162, otherwise (4q � 2)� +

10p+ 38q � 24 � C � 1 (with q = 1).

Lemma 6.4 Every �5-vertex must be adja
ent to at least 2 big verti
es.
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Proof: By way of 
ontradi
tion assume that there is a �5-vertex v whi
h is adja
ent

to at most one big vertex and so all its other neighbors are �46-verti
es. Then, using

Observation 6.3, v along with one of these small verti
es will 
ontradi
t Lemma 6.2.

Now 
onstru
t graph G

0

from G and then G

00

from G

0

in the same way we did in the

proof of Theorem 1.3. Also, we de�ne the sparse segments in the same way. Consider

vertex v and let's 
all the maximal sparse segments of it Q

1

; Q

2

; : : : ; Q

m

in 
lo
kwise

order, where Q

i

= q

i;1

; q

i;2

; q

i;3

; : : :.

Lemma 6.5 jQ

i

j � d

G

(v)� d

2

3

�e � 69.

Proof: Analogous to the proof of Lemma 2.13.

The next lemma is analogous to Lemma 2.14. The key di�eren
e is that we require a

bound on the degree of t. This is be
ause ea
h vertex adja
ent to t 
an forbid for t up

to 2p� 1 
olors. Thus we have to be more 
areful about 
ontrolling the number of su
h

verti
es.

Lemma 6.6 Suppose that u

i

and u

i+1

are the big verti
es adja
ent to all the verti
es of

Q

i

and Q

i+1

, respe
tively. Furthermore assume that t is a �6-vertex adja
ent to both u

i

and u

i+1

but not adja
ent to v (see Figure 3) and there is a vertex w 2 N(t) su
h that

d

G

(t) + d

G

(w) � � + 2. Let X(t) be the set of verti
es at distan
e at most two of t that

are not in N [u

i

℄ [N [u

i+1

℄. If jX(t)j � 6 then:

jQ

i

j+ jQ

i+1

j � b

1

3

�
 � 60: (3)

Proof: Again, by way of 
ontradi
tion, assume that jQ

i

j+ jQ

i+1

j � b

1

3

�
�59. Using the

same argument as at the beginning of the proof of Lemma 6.2, we 
an 
olor every vertex

of G other than t using 
olors in f0; : : : ; C � 1g su
h that the verti
es that are adja
ent

re
eive 
olors that are at least p apart and the verti
es at distan
e two re
eive distin
t


olors. Consider su
h a 
oloring.

Note: We often fo
us on the inner verti
es of Q

i

. So re
all that there are exa
tly

jQ

i

j � 2 su
h verti
es (similarly for Q

i+1

). Also, for a set S of verti
es ea
h of whi
h has

a 
olor, we sometimes use \the 
olors in S" to refer to the set of 
olors that appear on

the verti
es of S.

We say that a vertex u 2 N

G

2

(w) forbids a 
olor 
 for w if either (i) u is a distan
e 2

from w and u has 
olour 
 or (ii) u is adja
ent to w and u has a 
olour that di�ers from


 by less than p; i.e., if an assignment of 
 to w would 
reate a 
on
i
t with the 
olour

on u. A set S of verti
es forbids a set T of 
olours for w if for ea
h 
olour 
 2 T , some

vertex in S forbids 
 for w. A 
olour 
 is forbidden for w if some u 2 N

G

2

(w) forbids it

for w.

Claim 1: There are at least d

5

3

�e+ 78 
olors in N

G

2

(t) and N

G

2

(t) forbids all the C


olors for t.
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Proof: Trivially, if there is a non-forbidden 
olor for t then we 
an extend the 
oloring

to t, whi
h 
ontradi
ts the minimality of G.

If there are at most d

5

3

�e+77 
olors in N

G

2

(t) then (be
ause t is not 
olored and has

degree at most 6) they forbid at most d

5

3

�e + 71 + 6(2p � 1) = d

5

3

�e + 12p + 65 < C


olors for t, whi
h 
ontradi
ts what we proved in the previous paragraph.

Claim 2: There exists an inner vertex of Q

i

or Q

i+1

whose 
olor is distin
t from the


olor of every other vertex in N

G

2

(t) and di�ers from the 
olor of every vertex in N(t) by

at least p.

Proof: By way of 
ontradi
tion assume the above statement is false. Let us 
ount the

number of forbidden 
olors for t. The neighbors of t forbid at most d

G

(t)� (2p� 1) 
olors

for t. Let's denote this set of forbidden 
olors by R. The verti
es at distan
e exa
tly two

of t are in N(u

i

) [ N(u

i+1

) [ X(t) � N(t), and ea
h of them forbids its own 
olor for t.

However, by assumption, at least jQ

i

j � 2 + jQ

i+1

j � 2 of these forbidden 
olors (for t)

are 
ounted twi
e. This is be
ause we assumed the 
laim is false; i.e. for every 
olor �

that appears on an inner vertex of Q

i

or Q

i+1

there is a neighbor of t whose 
olor di�ers

from � by less than p (and so � 2 R) or there is another vertex in N

G

2

(t) with 
olor �.

Sin
e d

G

(u

i

) + d

G

(u

i+1

) + jX(t)j � 2� + 6, the total number of forbidden 
olors for t is

at most d

G

(t)� (2p� 1) + 2�+ 6� d

G

(t)� jQ

i

j � jQ

i+1

j+ 4 � d

5

3

�e+ 6(2p� 1) + 63 �

d

5

3

�e + 12p+ 57 < C. This 
ontradi
ts Claim 1.

Thus, without loss of generality, we 
an assume there exists an inner vertex of Q

i+1

,

say q

i+1;2

, whose 
olor is di�erent from the 
olor of every vertex in N

G

2

(t) and di�ers from

the 
olor of every vertex in N(t) by at least p.

Claim 3: There are at least d

5

3

�e+77 
olors in N

G

2

(q

i+1;2

) and they forbid for q

i+1;2

,

C � 1 
olors (all the 
olors ex
ept the one that appears on q

i+1;2

).

Proof: First we show that the verti
es in N

G

2

(q

i+1;2

) must forbid all the 
olors (ex
ept

the one that appears on q

i+1;2

) for q

i+1;2

. Otherwise, we 
an produ
e a valid labelling of

G by removing the 
olor of q

i+1;2

and assigning it to t, and then assigning a new 
olor to

q

i+1;2

(from the other 
olors that are not forbidden for it). Hen
e, the number of forbidden


olors for q

i+1;2

must be C � 1.

If there are fewer than d

5

3

�e+77 di�erent 
olors in N

G

2

(q

i+1;2

) then, sin
e d

G

(q

i+1;2

) �

4, the verti
es in N

G

2

(q

i+1;2

) forbid fewer than 4(2p� 1)+ d

5

3

�e+73 = d

5

3

�e+8p+69 �

C � 1 
olors for q

i+1;2

. This 
ontradi
ts what we proved in the previous paragraph.

From the de�nition of a sparse segmentN(q

i+1;2

) � fv; u

i+1

; q

i+1;1

; q

i+1;3

g. Let's denote

the set of 
olors on the verti
es in N [u

i+1

℄ [N(t) [X(t) [N [q

i+1;1

℄ [N [q

i+1;3

℄ by S and


all it the set of smaller 
olors.

Claim 4: jSj � d

G

(u

i+1

) + 14.

Proof: Follows from the de�nition of S.

Every vertex in N [u

i+1

℄ [ N(t) [X(t) [ N [q

i+1;1

℄ [ N [q

i+1;3

℄ is of distan
e at most 2

from either t or q

i+1;2

, and therefore forbids some 
olors for t or for q

i+1;2

. Let us 
all

the set of 
olors that are forbidden for t or q

i+1;2

by those verti
es the smaller forbidden


olors, and denote them by SF . Sin
e d(t) � 6 and d(q

i+1;2

) � 4 and u

i+1

is a 
ommon
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neighbor of t and q

i+1;2

,

jSF j � 9(2p� 1) + jSj � 9 = jSj+ 18p� 18: (4)

So, SF 
ontains S along with at most 18(p� 1) 
olors whi
h di�er from the 
olor of some

neighbor of t or some neighbor of q

i+1;2

by at most p� 1.

Claim 5: Every 
olor that is not in SF di�ers from every 
olor in N(t) [ N(q

i+1;2

)

by at least p.

Proof: By the de�nition of SF , every 
olor whi
h di�ers from the 
olor of a vertex

in N(t) [N(q

i+1;2

) by less than p is in SF .

We will use Claim 5 at the end of the proof of this Lemma. By Claim 3, there are at

least C� 1� jSF j 
olors, di�erent from the smaller forbidden 
olors, in N(v)�Q

i+1

. We


all this set the larger 
olors and denote it by L.

Claim 6: jLj � d

5

3

�e � jSj+ 77 � d

5

3

�e � d

G

(u

i+1

) + 63.

Proof: Follows from the de�nition of L, Claim 4, and the bound on jSF j (Inequality

4).

Sin
e jN(v)j� (jQ

i

j�2)�jQ

i+1

j � ��b

1

3

�
+61 < jLj, one of the larger 
olors must

be on an inner vertex of Q

i

, whi
h without loss of generality, we 
an assume is q

i;2

.

Claim 7: The verti
es in N(v)�Q

i+1

�fq

i;2

g forbid for q

i;2

all the 
olors in L, ex
ept

the one that appears on q

i;2

.

Proof: All the larger 
olors appear in N(v) � Q

i+1

and so they are at distan
e at

most two of q

i;2

.

Claim 8: The number of forbidden 
olors for q

i;2

is at most b

4

3

�
+ 8p� 68 < C.

Proof: By noting that d(q

i;2

) � 4, neighbors of q

i;2

forbid at most 4(2p � 1) 
olors

for q

i;2

. Now let's 
ount the number of forbidden 
olors for q

i;2

by the verti
es at distan
e

exa
tly two of it.

N [u

i+1

℄ [N(t) [X(t) forbids for t only 
olors that are in SF . Thus, by Claim 1, all

the larger 
olors must appear in N [u

i

℄ � N(t). Remember that the larger 
olors appear

in N(v)�Q

i+1

, too. Therefore, the number of 
olors that are not in L and are forbidden

for q

i;2

by the verti
es at distan
e exa
tly 2 of q

i;2

is at most: d(u

i

)�1� (jLj�1)+d(v)�

1� (jLj � 1) � 2�� 2jLj. By 
onsidering the verti
es at distan
e exa
tly two of q

i;2

that

have a larger 
olor and noting that q

i;2

has a larger 
olor too, and using Claim 6, the total

number of 
olors forbidden for q

i;2

is at most:

4(2p� 1) + (2�� 2jLj) + (jLj � 1) � b

1

3

�
+ d

G

(u

i+1

) + 8p� 68

� b

4

3

�
+ 8p� 68:

By Claim 8, we 
an produ
e a valid labelling of G by assignning the 
olor of q

i;2

to t

(be
ause it is a larger 
olor and so it is di�erent from the 
olors in X(t) and, by Claim 5,
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di�ers from all the 
olors in N(t) by at least p) and then �nding a new 
olor for q

i;2

that

is not forbidden for it. This 
ompletes the proof of Lemma 6.6.

The rest of the proof is almost identi
al to that of Theorem 1.3. We use Lemmas 6.4,

6.5, and 6.6, instead of Lemmas 2.3, 2.13, and 2.14, respe
tively. The initial 
harges and

the dis
harging rules are the same. Without any modi�
ations, Lemmas 3.1 to 3.5 hold in

this 
ase, too. In Lemma 3.6 we should repla
e Equation (2) with Equation (3) and use

Lemma 6.6 instead of Lemma 2.14. To do so, it is important to note that whenever we

used Lemma 2.14 in the proof of Lemma 3.6, the degree of t was at most 6; thus, we 
an

use Lemma 6.6, instead. After doing these modi�
ations, the 
al
ulations for the proof

of this revised version of Lemma 3.6 are fairly straightforward.

7 An O(n

2

) time algorithm

In this se
tion we show how to transform the proof of Theorem 1.3 into a 
oloring al-

gorithm whi
h uses at most d

5

3

�e + 78 
olors. With some minor modi�
ations in the

algorithm, we 
an obtain 
oloring algorithms for Theorems 1.4 and 1.6.

Consider a planar graph G. We may assume that � � 160 sin
e for smaller values

of � it is straightforward to obtain an algorithm based on the result of [19℄ that uses at

most d

5

3

�e + 78 
olors. Also, we assume that the input to our algorithm is 
onne
ted,

sin
e for a dis
onne
ted graph it is enough to 
olor ea
h 
onne
ted 
omponent, separately.

One iteration of the algorithm either �nds a 
ut-vertex and breaks the graph into smaller

subgraphs, or redu
es the size of the problem by 
ontra
ting a suitable edge of G. Then

it 
olors the new smaller graph(s) re
ursively, and extends the 
oloring(s) to G. More

spe
i�
ally, we do the following steps, as long as the graph has at least one vertex:

1. Che
k to see whether G has a 
ut-vertex. If v is a 
ut-vertex and C

1

; : : : ; C

k

are

the 
onne
ted 
omponents of G� v then 
olor ea
h G

i

= C

i

[ fvg, independently.

The union of these 
olorings, after permuting the 
olors in some of them, will be a


oloring of G.

2. Else, 
he
k to see whether there is a �5-vertex adja
ent to at most one big vertex.

If su
h a vertex exists, then that vertex along with one of its small neighbours will

be the suitable edge to be 
ontra
ted.

3. Else, 
onstru
t the triangulated graph G

00

.

4. Apply the initial 
harges and the dis
harging rules.

5. As the total 
harge is negative, we 
an �nd a vertex v with negative 
harge. This

vertex must be in one of the redu
ible 
on�gurations des
ribed in Lemmas 2.13 or

2.14.
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If we �nd the redu
ible 
on�guration of Lemma 2.13 around v then one of the

inner verti
es of the sparse segment along with one of its two big neighbours will

be the suitable edge to 
ontra
t. Otherwise, if we �nd the redu
ible 
on�guration

of Lemma 2.14 around v then we 
an 
ontra
t edge tw (re
all the spe
i�
ation of t

and w from Lemma 2.14).

6. Color the new graph (after 
ontra
ting the suitable edge), re
ursively.

7. This 
oloring 
an be easily extended to G by the arguments of proofs of Lemmas

2.3, 2.13 or 2.14.

That this algorithm works follows easily from the proofs of Lemmas 3.3, 3.4, and 3.7.

Sin
e in a planar graph the number of edges and fa
es is linear in the number of verti
es

we may let n = jV j be the size of the graph. Finding a 
ut-vertex in a graph takes linear

time. To see if there is a �5-vertex with less than 2 big neighbors we spend at most O(n)

time. Also, applying the initial 
harges and the dis
harging rules takes O(n) time. After

�nding a vertex with negative 
harge, �nding the suitable edge and then 
ontra
ting it


an be done in O(n). Sin
e there are O(n) iterations of the main pro
edure, the total

running time of the algorithm would be O(n

2

).

The algorithms for Theorems 1.4 and 1.6 work almost identi
ally.
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