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Abstract

Wegner conjectured that the chromatic number of the square of any planar
graph G with maximum degree A > 8 is bounded by x(G?) < [3A] +1. We
prove the bound x(G?) < [gA} + 78. This is asymptotically an improvement on
the previously best known bound. For large values of A we give the bound of
x(G?) < [gA] + 25. We generalize this result to L(p, ¢)-labeling of planar graphs,
by showing that A\)(G) < q[gA] +18p + 77q — 18. For each of the results, the proof
provides a quadratic time algorithm.

1 Introduction

In this paper by graph we mean a simple graph. The vertex set and edge set of a graph G
are denoted by V(G) and E(G), respectively. The length of a path between two vertices
is the number of edges on that path. We define the distance between two vertices to be
the length of the shortest path between them. The square of a graph G, denoted by G2, is
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a graph on the same vertex set such that two vertices are adjacent in G? iff their distance
in G is at most 2. The degree of a vertex v is the number of edges incident with v and is
denoted by dg(v) or simply d(v) if it is not confusing. We denote the maximum degree
of a graph G by A(G) or simply A. If the degree of v is i, at least i, or at most i we
call it an i-vertex, a >i-vertex, or a <i-vertex, respectively. By Ng(v), we mean the open
neighborhood of v in G, which contains all those vertices that are adjacent to v in G.
The closed neighborhood of v, which is denoted by Ng[v], is Ng(v) U{v}. We usually use
N(v) and N|[v] instead of Ng(v) and Ng[v], respectively.

A vertex k-coloring of a graph G is a mapping C' : V. — {1,...,k} such that any
two adjacent vertices u and v are mapped to different integers. The minimum £ for which
a coloring exists is called the chromatic number of G and is denoted by x(G). The well
known result of Appel and Haken [2] states that:

Theorem 1.1 (The Four Color Theorem) For every planar graph G: x(G) < 4.

The question of finding the best possible upper bound for the chromatic number of
the square of a planar graph seems to first have been asked by Wegner [21]. He posed the
following conjecture:

Conjecture 1.2 For a planar graph G:

o [A45  ifA<A<T,
X(G)S{ BAl+1 ifA>S.

Wegner gave examples illustrating that these bounds are best possible. He also showed
that if A = 3 then G? can be 8-colored and conjectured that 7 colors would be enough.
Very recently, Thomassen [18] has solved this conjecture for A = 3, by showing that the
square of every cubic planar graph is 7-colorable, but the conjecture for general planar
graphs remains open.

Wegner’s conjecture is mentioned in Jensen and Toft [14], Section 2.18, followed by a
brief history of it. One might think that since every planar graph has a <5-vertex then
this trivially implies a greedy algorithm for (5A + 1)-coloring of G?. See [19] why this
straightforward argument doesn’t work. Jonas [13] in his Ph.D. thesis proved x(G?) <
8A —22. This bound was later improved by Wong [23] to x(G?) < 3A+5. Then Van den
Heuvel and McGuinness [19] proved x(G?) < 2A + 25. For large values of A, Agnarsson
and Halldérsson [1] have a better asymptotic bound. They showed that if G is a planar
graph with A > 749, then x(G?) < [2A] + 2. Recently, Borodin et al. [4, 5] have been
able to extend this result further by proving x(G?) < [2A] + 1 for planar graphs with
A > 47. We improve these results asymptotically by showing that:

Theorem 1.3 For a planar graph G, x(G?) < [3A] + 78.

Theorem 1.4 For a planar graph G, if A > 241, then x(G?) < [3A] + 25.
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Remark: The constants 78 and 25 in the above theorems can be improved. For
example with an extra page of proof the first constant can be brought down to 61 but we
don’t know how to bring it down to a number close to 1, using this proof.

The technique we use is inspired by that used by Sanders and Zhao [17] to obtain a
similar bound on the cyclic chromatic number of planar graphs.

A generalization of ordinary vertex coloring is L(p, ¢)-labeling. Let dist(u,v) denote
the distance between u and v. For integers p,q > 0, an L(p, ¢)-labeling of a graph G is a
mapping L : V(G) — {0, ..., k} such that

e |L(u) — L(v)| > pif dist(u,v) =1, and
o |L(u) — L(v)| > q if dist(u,v) = 2.

The p,g-span of G, denoted by AP(G), is the minimum k for which an L(p, ¢)-labeling
exists. It is easy to see that for any graph G: x(G?) = A (G) + 1. The problem of
determining A?(G) has been studied for some specific classes of graphs [3, 6, 7, 8, 9, 10,
11, 15, 16, 20, 22]. The motivation for this problem comes from the channel assignment
problem in radio and cellular phone systems, where each vertex of the graph corresponds to
a transmitter location, with the label assigned to it determining the frequency channel on
which it transmits. In applications, because of possible interference between neighboring
transmitters, the channels assigned to them must have a certain distance from each other.
A similar requirement arises from transmitters that are not neighbors but are close, i.e at
distance 2. This problem is also known as the Frequency Assignment Problem. Because
of the motivating application for this problem, it is quite natural to consider it on planar
graphs. Since the case ¢ = 0 corresponds to labeling the vertices of a graph with integers
such that adjacent vertices receive labels at least p apart, the upper bound 3p for A\, of
planar graphs follows from the Four Color Theorem (if we use colors from {0, p, 2p, 3p}).
So let’s assume that ¢ > 1. For any planar graph G, a straightforward argument shows
that A2(G) > ¢A+p—q+1. There are planar graphs G for which M2(G) > 2¢A+O(p, q).
The best known upper bound for \?(G), for a planar graph G, is proved in [19].

Theorem 1.5 [19] For any planar graph G and positive integers p and q, such thatp > q:
M(G) < (49 — 2)A + 10p + 38q — 24.

We sharpen the gap between this result and the best possible bound asymptotically, by
showing that:

Theorem 1.6 For any planar graph G and positive integers p and q: )‘Z(G) < q[2A] +
18p + 77q — 18.

Sections 2 and 3 contain the proof of Theorem 1.3. In Section 4 we show how to
modify the proof of Theorem 1.3 to prove Theorem 1.4. In Section 5 we explain why
any modifications of the lemmas used in the proof of Theorem 1.3 are not sufficient to
improve this theorem asymptotically, and one has to come up with a new configuration.

3



These arguments will be cleared later in the paper. We generalize the proof of Theorem
1.3 in Section 6 to prove Theorem 1.6. Finally, in Section 7 we describe an O(n?) time
algorithm for finding a coloring as described in Theorems 1.3, 1.4, and 1.6.

2 Preliminaries

A vertex v is called big if dg(v) > 47, otherwise we call it a small vertex. From now on
we assume that G is a counter-example to Theorem 1.3 with the minimum number of
vertices. By a coloring we mean a coloring in which vertices at distance at most two from
each other get different colors. Trivially GG is connected.

Lemma 2.1 For every vertex v of G, if there exists a vertex u € N(v), such that de(v) +
da(u) < A+2 then dgz(v) > [3A] +78.

Proof: Assume that v is such a vertex. Contract v on edge uv. The resulting graph has
maximum degree at most A and because G was a minimum counter-example, the new
graph can be colored with [gA] + 78 colors. Now consider this coloring induced on G, in
which every vertex other than v is colored. If dg2(v) < [2A] + 78 then we can assign a
color to v to extend the coloring to v, which contradicts the definition of G. ]

Observation 2.2 We can assume that A > 160, otherwise 2A + 25 < [2A] + 78.
Lemma 2.3 Every <5-verter in G must be adjacent to at least two big vertices.

Proof: By way of contradiction assume that this is not true. Then there is a <5-vertex
v which is adjacent to at most one big vertex and all its other neighbors are <46-vertices.
Then, using Observation 2.2, v along with one of these small vertices will contradict
Lemma 2.1. ]

Corollary 2.4 Every verter of G is a >2-vertex.
Lemma 2.5 G is 2-connected.

Proof: By contradiction, let v be a cut-vertex of G and let Cy,...,C; (t > 2) be the
connected components of G — {v}. By the definition of G, for each 1 < i < ¢, there is a
coloring ¢; of G; = C; U {v} with [2A] 4 78 colors. We can permute the colors in each
@; (if needed) such that v has the same color in all ¢;’s, and the sets of colors appearing
in Ng,(v), 1 < i <t, are all disjoint. Now the union of these colorings will be a coloring
of G, a contradiction. m

The proof of Theorem 1.3 becomes significantly simpler if we can assume that the
underlying graph is a triangulation, i.e. all faces are triangles, and has minimum degree
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Figure 1: The switching operation

at least 4. To be able to make these assumptions, we begin by modifying the graph G in
two phases.

Phase 1: In this phase we transform G into a (simple) triangulated graph G’, by
adding edges to every non-triangle face of GG. Let G’ be initially equal to G. Consider
any non-triangle face f = vy, vy,..., v, of G'. Because G is 2-connected, we cannot have
both viv3 € E(G') and vev, € E(G') at the same time since they both have to be outside
of f. So we can add at least one of these edges to E(G’) inside f, without creating any
multiple edges. We follow this procedure to reduce the faces’ sizes as long as we have any
non-triangle face in G'. At the end we have a triangulated graph G' which contains G as
a subgraph.

Observation 2.6 For every vertex v, Ng(v) C Ngi (v).
Lemma 2.7 All vertices of G' are >3-vertices.

Proof: By Corollary 2.4 and Observation 2.6 all the vertices of G' are > 2-vertices.
Suppose that we have a 2-vertex v in G' having neighbors x and y. Since G’ is triangulated,
the faces on each side of edge va must be triangles, call them f; and f,. So we must have
xy € f1 and also xy € fo. Since G’ has at least 4 vertices, f; # fo and so we have a

multiple edge. But G’ is simple. [ |
Lemma 2.8 FEach >4-vertex v in G' can have at most @ neighbors which are 3-vertices.
Proof: Let 2o, 21,. .., 74, v)-1 be the sequence of neighbors of v in G, in clockwise order.

We show that we cannot have two consecutive 3-vertices in this sequence. If there are
two consecutive 3-vertices, say d(z;) = d(z;+1) = 3, where addition is in mod d¢ (v), then
there is a face containing x;_1,x;, T;11, T;1o. But G’ is a triangulated graph. [ ]
Phase 2: In this phase we transform graph G’ into another triangulated graph G”,
whose minimum degree is at least 4. Initially G” is equal to G'. As long as there is any
3-vertex v we do the following switching operation: let x,y, z be the three neighbors of
v. At least two of them, say = and y, are big in G' by Lemma 2.3 and Observation 2.6.
Remove edge zy. Since G’ (and also G”) is triangulated this leaves a face of size 4, say
z,v,y,t. Add edge vt to G" (see Figure 1). This way, the graph is still triangulated.

Observation 2.9 If v is not a big vertez in G then Ng(v) C Ngn(v).

Lemma 2.10 If v is a big vertez in G then dgn(v) > 24.
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Proof: Follows easily from Lemma 2.8 and the definition of the switching operation. m

So a big vertex v in G will not be a <23-vertex in G”. Let v be a big vertex in G and
To, T1, - - -5 Tdgn(v)—1 be the neighbors of v in G in clockwise order. We call x,, ..., %410
(where addition is in mod dgr (v)) a sparse segment in G" iff:

e h>2
e Each zx; is a 4-vertex.

In the next two lemmas, we assume that x,, ..., .1 iS a maximal sparse segment of v in
G", which is not equal to the whole neighborhood of v. Also, we assume that z,_; and
ZTarpe1 are the neighbors of v right before x, and right after x,.4, respectively.

Lemma 2.11 There is a big vertex in G other than v, that is connected to all the vertices
of Tas1y- -y Tarp1, in G" (and in G).

Proof: Follows easily from Observation 2.9, Lemma 2.3, and the definition of a sparse

segment. [ |
We use u to denote the big vertex, other than v, that is connected to all x4 41, ..., Tarp—1-
Lemma 2.12 All the vertices Tqy1, ..., Tqrp—1 are connected to both u and v in G. If

ZTa_1 s not big in G then x, is connected to both u and v in G. Otherwise it s connected
to at least one of them. Similarly if x4 1 @5 not big in G, xy is connected to both u and
v i G, and otherwise it is connected to at least one of them.

Proof: Since the only big neighbors of x4, 1,...,Z.p_1 in G"” are v and u, by Lemma 2.3
they must be connected to both of them in G as well. For the same reason x, and x,.
will be connected to v and v in G, if x, ; and z,., 1 are not big. [
We call 2441, ...,2.051 the inner vertices of the sparse segment, and z, and x,, the
end vertices of the sparse segment. Consider vertex v and let us denote the maximal sparse
segments of N(v) by Q1,Q2, ..., Qn in clockwise order, where ); = ¢; 1, ¢i 2, ¢i3,-... The
next two lemmas are the key lemmas in the proofs of Theorems 1.3 and 1.4. They provide
two reducible configurations for a graph that is a minimum counter-example to theorem.
Lemma 2.13 |Q;| < dg(v) — [3A] — 73, for 1 <i <m.
Proof: We prove this by contradiction. Assume that for some 7, |Q;| > de(v) — [3A] —73.
Let u; be the big vertex that is adjacent to all the inner vertices of @; (in both G and
G"). See Figure 2. For an inner vertex of ();, say ¢;2, we have:

dc;2 (qi,g) S dc;(uz) -+ dG'(U) —+ 2 — (|Qz| — 3)
< A+dg(v) —|Qi| +5
< [gm 478,



Figure 2: The configuration of Lemma 2.13

If ¢; 2 is adjacent to ¢; ; or ¢; 3 in G then it is contradicting Lemma 2.1. Otherwise it is only
adjacent to v and wu; in GG, therefore has degree 2, and so along with v or u; contradicts
Lemma 2.1. ]

Lemma 2.14 Consider G and suppose that u; and u;, are the big vertices adjacent to
all the inner vertices of QQ; and Q;11, respectively. Furthermore assume that t is a vertex
adjacent to both u; and u;y; but not adjacent to v (see Figure 3) and there is a vertex
w € Ng(t) such that dg(t) + de(w) < A+ 2. Let X (t) be the set of vertices at distance
at most 2 of t that are not in Ng|u;| U Ngluiy1]. If | X (t)| < 6 then:

1
Qi +|Qin] < [3A] 67

Proof: Again we use contradiction. Assume that |Q;]| + |Qis1| > [3A] — 66. Using the
argument of the proof of Lemma 2.1 we can color every vertex of G other than ¢. Note
that dg2(t) < dg(w;) + da(uip1) + | X (t)] < 2A +6. If all the colors of the inner vertices
of ); have appeared on the vertices of Ng[u;1] U X (t) — Q;41 and all the colors of inner
vertices of ();; have appeared on the vertices of Ng[u;] U X (t) — @Q; then there are at
least |Q;] — 2 + |Q;+1] — 2 repeated colors at Ngz(t). So the number of colors at Ng2(t)
is at most 2A 46 — |Q;] — [Q11]| + 4 < [3A] 4 76 and so there is still one color available
for t, which is a contradiction.

Therefore, without loss of generality, there exists an inner vertex of Q;y1, say ¢iy1,2,
whose color is not in Nglu;] U X (t) — @Q;. If there are less than [3A] + 77 colors at
N¢2(giv12) then we could assign a new color to ¢;+12 and assign the old color of it to

t and get a coloring for G. So there must be [2A] + 77 or more different colors at

3
Naz(giv1,2)-

From the definition of a sparse segment N¢(¢i+1,2) € {v, wit1, ¢it1,1,¢+1,3}. There are
at most dg(u;t1) + 7 colors, called the smaller colors, at Neg[uit1] U X (t) U Nggiv11] U
Neliv1,3) —{v} —{di+12} (note that ¢ is not colored). So there must be at least [2A]+70
different colors, called the larger colors, at Ng[v] — Q;y1. Since |Ng[v]| — |Qi] — |Qiz1]| <
A+1—[3A] +66 < [2A] + 67, one of the larger colors must be on an inner vertex of
(i, which without loss of generality, we can assume is ¢; 5. Because ¢ is not colored, we
must have all the [2A] 478 colors at Ng2(t). Otherwise we could assign a color to ¢. As
there are at most A + 6 colors, all from the smaller colors, at Ng[u;+1] U X (¢), all the
larger colors must be in Ng|u;|, too. Let L be the number of larger colors. Therefore,
the number of forbidden colors for ¢;» that are not from the larger colors, is at most
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Figure 3: Configuration of Lemma 2.14

d(u;) — L+d(u;11) — L < 2A —2L. By considering the vertices at distance exactly two of
¢i2 that have a larger color and noting that ¢; » has a larger color too, the total number
of forbidden colors for ¢;» is at most 2A — L < [3A] — 70, and so we can assign a new
color to ¢;» and assign the old color of ¢; 2, which is one of the larger colors and is not in
Ng2(t) — {qi+12}, to t and extend the coloring to G, a contradiction. u

3 Discharging rules

We give an initial charge of dgr(v) — 6 units to each vertex v. Using Euler’s formula,
V| — |E| + |F| = 2, and noting that 3|F(G")| = 2|E(G")|, it is straightforward to check
that:
> (dar(v) = 6) = 2|E(G")| - 6|V| + 4| E(G")| — 6| F(G")| = —12. (1)
veV
By these initial charges, the only vertices that have negative charges are 4- and 5-vertices,
which have charges —2 and —1, respectively. The goal is to show that, based on the
assumption that GG is a minimum counter-example, we can send charges from other vertices
to <5-vertices such that all the vertices have non-negative charge, which is of course a
contradiction since the total charge must be negative by equation (1).
We call a vertex v pseudo-big (in G") if v is big (in G) and dgv (v) > dg(v) — 11. Note
that a pseudo-big vertex is also a big vertex, but a big vertex might or might not be a
pseudo-big vertex. Before explaining the discharging rules, we need a few more notations.

Suppose that v, xq, 29, ..., Tk, u is a sequence of vertices such that v is adjacent to xq,
x; is adjacent to x;41, 1 <1 < k, and xy is adjacent to u.
Definition: By “v sends ¢ units of charge through x,...,x to u” we mean v sends

¢ units of charge to xy, it passes the charge to zs... etc, and finally x; passes the charge
to u. In this case, we also say “v sends ¢ units of charge through 1”7 and “u gets ¢ units
of charge through x;”. In order to simplify the calculations of the total charges on vertex



xi, 1 <1 < k, we do not take into account the charges that only pass through x;.
In discharging phase, a big vertex v of G:

1) Sends 1 unit of charge to each 4-vertex u in Ngn(v).
2) Sends 3 unit of charge to each 5-vertex u in Ngr (v).

In addition, if v is a big vertex and wg, uy, us, us, uy are consecutive neighbors of v in
clockwise or counter-clockwise order, where dgr(ug) = 4, then:

3) f dgr(uy) = 5, ug is big, dgr(uz) = 4, dgr(ug) > 5, and the neighbors of u; in clockwise
or counter-clockwise order are v, ug, T1, T2, us then v sends % to x; through wus, u;.

4) If dgr(uy) =5, 5 < dgr(ug) <6, dgr(us) > 7, and the neighbors of u; in clockwise or
counter-clockwise order are v, ug, 1, 9, us then v sends % to x; through us, us, u;.

5) If dgv(uy) = b, ug is big, dgr(us) > 5, and the neighbors of u; in clockwise or
counter-clockwise order are v, ug, 1, 9, us then v sends i to x; through us, u;.

6) If dgv(uy) = 6, dgr(ug) < 5, dgv(usz) > 7, and the neighbors of u; in clockwise or
counter-clockwise order are v, ug, 1, s, T3, us then v sends % to x; through u;.

7) If dgn(uq) = 6, dgr(uz) > 6, and the neighbors of u; in clockwise or counter-clockwise
order are v, ug, x1, T2, T3, Uy then v sends i to x; through u;.

ft7< dc;//(v) < 12 then:

8) If u is a big vertex and wg, uy, us, v, us, uyg, us are consecutive neighbors of u where all
U, U1, Us, U3, Uy, Us are 4-vertices then v sends % to u.

9) If wg, uy, ug, usz are consecutive neighbors of v, such that dgr(ui) = dgr(ug) = 5, ug
and ug are big, and ¢ is the other common neighbor of u; and us (other than v),
then v sends % to t.

Every >12-vertex v of G” that was not big in G:
10) Sends 3 to each of its neighbors.
A <5-vertex v sends charges as follows:

11) If dgv(v) = 4 and its neighbors in clockwise order are g, uy, us, ug, such that ug, uy, us
are big in G and w3 is small, then v sends % to each of uy and wuy through w,.

12) If dgr(v) = 5 and its neighbors in clockwise order are wug, uy, ug, us, w4, such that
de(Uo) S 1]_, dGu (U,l) Z ]_2, dGH(Ug) Z 12, dGu (11,3) S ]_1, and Uy is blg, then v sends
1
s to Uyg.
2
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Figure 4: Discharging rules
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From now on, by “the total charge sent from v to one of its neighbors u”, we mean the
total charge sent from v to u or through u. Similarly, by “the total charge v received from
u”, we mean the total charge sent from or through u to v.

Lemma 3.1 FEvery big vertex v sends at most % to every 5— or 6-vertex in Ngn(v).

Proof: For any 5— or 6-vertex u, v sends charges to u by at most one rule. [ ]

Lemma 3.2 If v is big and ug, uy, us, uz, uqy are consecutive neighbors of v in counter-
clockwise order, such that dgn(ug) > 7 then v sends at most % through us, or sends 1
through uy and dgi(ug) = dgn(us) =5 and uy and us are 5— or 6-vertices.

Proof: If uy is big and one of rules 3 or 5 applies then it is easy to verify that it is the
only rule by which us gets charge from v. If u; and ugz are both 5-vertices then rule 5 may
apply twice, one for sending charge to a neighbor of u; and one for sending charge to a
neighbor of us, so overall us gets at most % from v. It is straightforward to check that
there is no configuration in which we can apply rule 3 twice.

The only other way for v to send charge to u, is by rule 4. Note that if this rule applies
then none of the other rules apply. Also, v can send charge to u, twice by rule 4 since it
might apply under clockwise and counter-clockwise orientations of neighbors of v. This
happens if dgr(uo) = 5, 5 < dgn(ur) < 6, 5 < dgn(us) < 6, dgr(ug) =5, v,ur, o, T1, o
are neighbors of ug in clockwise order where dgr (z9) = 4, and vy, y1, Yo, us, v are neighbors
of uy in clockwise order where dgr (yy) = 4. In this case v sends % to xy through g, uy, ug

1

and sends ; to y; through ws, u3, us, and this is the only configuration in which v sends

charge to uy twice. This proves the lemma. [ ]
Lemma 3.3 Every vertex v that is not big in G will have non-negative charge.

Proof: By Lemma 2.3 every 4-vertex gets a total of at least 2 units of charge by rule 1 and
each 5-vertex gets a total of at least 1 unit of charge by rule 2. Also, the <5-vertices that
send charges by rules 11 and 12 will have non-negative charges, since they are adjacent
to at least three >12-vertices. If dgv(v) > 12 then it sends idgr(v) < dgn(v) — 6 by
rule 10 and so will have non-negative charge. It is straightforward to verify that there is
no configuration in which a 7-vertex v sends more than 1 unit of charge in rules 8 or 9.
Finally, it is not difficult to see that by rules 8 and 9, a vertex sends at most % for every

two neighbors that it has. So if 8 < dgv(v) < 12 it sends at most QG# < dgr(v) — 6,
and therefore it will have non-negative charge in any of these cases. Finally, rules 3 to 7
do not apply to the vertices that are not big in G. [ ]

Lemma 3.4 FEvery big vertex v that is not pseudo-big will have non-negative charge.

Proof: Suppose that v is such a vertex. So dgr(v) < dg(v) — 12 and therefore v was
involved in at least 12 switching operations, in each of which the edge between v and

11



Figure 5: Configuration of Lemma 3.4

another big vertex of G was removed. Since G’ is simple, these big vertices are distinct.
Call them yy, vy, ..., yx, where £ > 12, in clockwise order. Let x;z; be the edge that was
added during the switching operation that removed vy;, and the order of z;’s and z;’s is
such that x; comes before z; in clockwise order. Note that all z;’s and all z;’s are neighbors
of v in G” (see Figure 5).

Let us call the vertices between z; and @41, i1, Uig, ..., Uiy, starting from z;. For
consistency, let us relabel temporarily z; and ;4 to u; and w;,4+1, respectively. Recall
that £ > 12 and v sends a total of no more than 1 to any vertex. Thus, in order to show
that v sends no more than its initial charge of dg»(v) — 6, it is enough to show that for
each 1 <1 < k, either

(a) v sends a total of at most £ to a vertex from z; to ;4; or
b) v sends a total of at most ;4 ; + 1 to the [;;1 + 2 vertices from z;,; to z; 2.
+ + + +

First we show that there is at least one >5-vertex in w;, ..., u; 41, foreach 1 <7 < k.
If u; is a 4-vertex we must have y;u;; € G”, because G" is a triangulation. Assuming
that w;; is a 4-vertex we must have y;u;» € G" and so on, until we have y;  u;;,11 € G”
and so wu;,+1 will be a >5-vertex. So for every 1 <7 < k, there is a >5-vertex between
z; and x;41; take any such vertex and call it u; ;. By Lemmas 3.1 and 3.2 and rule 10, it
can be seen that v sends a total of at most % to u, j,, unless 7 < dgn(u; ;) < 11.

So assume that 7 < dgr(u;;,) < 11 and v sends 1 through v, ;. By Lemma 3.2 both
of the neighbors of v before and after u; j, are 5— or 6-vertices and so to each of them v
sends a total of at most % If z; # x;,1 then at least one of these lies between z; and x;,,
and therefore we satisfy (a) above.

So we can assume z; = ;1. Thus w;;, = z; = z41, and so (i) 5 < dgr(241) < 6,
and (ii) der(uig1,1) = 5 if 2i11 # Tite, or dgr(zite) = 5 otherwise. First assume that
Zit1 = Tivo. Now if dgr(z;41) = b then v gets back % from z;,, by rule 12 and so sends a
total of at most 0 to it. If dgr(2;41) = 6 then it is easy to verify that v sends nothing to
zi+1 by any rule and so sends a total of at most 0 to it. Either way, we satisfy (b), above.

Otherwise if z;41 # ;12 then there are at least two vertices between z;i1,..., %12,
that are 5— or 6-vertices and so to each of them v sends a total of at most % Therefore
we satisfy (b), above. n
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Figure 6: The first configuration in Lemma 3.6

So the only vertices that may have negative charges are pseudo-big vertices in G”.
Assume that v is a pseudo-big vertex of G whose neighborhood sequence in clockwise
order is xy,...,x;. Let m be the number of maximal sparse segments of the neighborhood
of v and call these segments Qq,Q>,...,Q,, in clockwise order. Also, let R; be the
sequence of neighbors of v between the last vertex of (); and the first vertex of Q;;1,
where Q11 = Q1. If m = 0 then we define R; to be equal to Ng»(v)

Lemma 3.5 Let R = x,,...,x,, where R is one of Ry, ..., Ry. Then v sends at total of
at most [%1 to the vertices of R.

Proof: Since R does not overlap with any maximal sparse segment, from every three
consecutive vertices w;, 11, Z;42 in R (where we consider the neighbors cyclicly if R =
Ngr(v)), at least one of them is a >5-vertex. Either v sends a total at most 3 to this
vertex, or v sends 1 and by lemma 3.2 the two vertices before that and the two vertices
after that are 5— or 6-vertices and so v sends to each of them a total of at most % Thus
in either case v sends a total of at most g to every three consecutive vertices of R and so

sends at most [2(b—a+1)] = [%1 to the vertices of R. u

Lemma 3.6 Suppose that m > 4. Then for every 1 < i < m either v sends at most
|R;| — % to R;, or v sends at most |R;| — 1 to R; and

1
|Qil + Qi1 < LgAJ — 67. (2)
Proof: We consider different cases based on |R;|:

‘RZ’| = 1: Assume that R; = u. Since u is the only vertex between two maximal sparse
segments, dgr(u) > 5. First let dgv(u) = 5. Since @; and ;41 are sparse segments
there must be two big vertices u; and wu;,; that are connected to all the vertices of
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Q; and Q;,1, respectively. Also, u must be connected to these two vertices, because
G" is a triangulation (see Figure 6).

Note that by rule 12 v gets back the % charge it had sent to u. So v is sending a
total of at most 0, so far. Let ¢ be the other vertex that makes a triangle with edge
w1 Assume that dgr(t) = 4, and wy, wy are the two neighbors of ¢ other than
w; and w;p. If der(wy) < 4 and dgr(wy) < 4 then since @; and @Q;1, are sparse
segments and wu; and u;,1 are big vertices in G, by Lemma 2.14 Equation (2) holds.
Otherwise, assume that dgv(w;) > 5. Then by rule 3 u; will be sending extra 3 to
v through u. So overall, v sends a total of —% to u. If dgn(t) > 5 then each of u;
and u;, will send an extra i to v through u by rule 5 and therefore v sends a total

of —% to u.

Now assume dgr(u) = 6 and that the neighbors of u are v, u;, u;41,t and the end
vertices of Q; and ();4,. Note that in this case v will send nothing to u. Assume
that dgv(t) = 4 and its other neighbor is w. If dgv(w) < 6 then by Lemma 2.14
Equation (2) holds. Otherwise, dgv(w) > 7 and so each of w; and u;41 sends an
extra £ to v through u by rule 6 and so v sends a total of —1 to u. If dgr(t) =5 and
its other neighbors are w; and wy then either dg/(w;) < 6 and dgr(wy) < 6 and we
can apply Lemma 2.14 to get Equation (2), or at least one of w; and w, has degree
> 7 and so one of u; or u;y; will send an extra % unit of charge to v through u by
rule 6 and so v sends a total of —% to u. If dg(t) > 6 then both u; and u;y; send
an extra i charge to v through u by rule 7. So v sends a total of —% to u.

If 7<dgr(u) <11, or 12 < dgr(u) and u was not big in G, then u sends % to v by
rules 8 or 10 and so v sends a total of —% to wu.

If u was big in G then by rule 11 v gets back % through u for each of the end vertices
of ); and Q;;; that are adjacent to u, and so v sends a total of at most —1 to u.

‘R¢| = 2: Assume that R; = vy, ve. If dgn(vy) > 6 or dgr(v2) > 6 then it is easy to check
that v sends nothing to one of vy, vy and sends at most % to the other one, or sends i
to each, and so sends at most £ to R;. So let us assume that dev(v) = dgr(v2) =5
and let ¢ be the other vertex which makes a triangle with vy, v5. Note that v sends
only % to each of v; and v,.

If dgr(t) = 4 then we can apply Lemma 2.14 and get Equation (2). Let dgv (t) =5
and call the other neighbor of ¢ (other than w;, vy, ve,u;41), w (see Figure 7(a)).
If dgv(w) < 6 then we can apply Lemma 2.14 to get Equation (2). Otherwise
dev(w) > 7 and by rule 4 u; and u;4; each send an extra £ to v (through v; and
vo, respectively) and therefore v sends a total of at most 0 to R;. Now assume
that dg(t) = 6 and its neighbors are wy, wa, u;, uiy1,v1,v9 (see Figure 7(b)). If
der(wy) < 6 and dgr(we) < 6 then by Lemma 2.14 we have Equation (2). Otherwise,
at least one of wy or wy is a >7-vertex and so one of u; or u;;; sends an extra % to

v (through vy or vy) by rule 4 and therefore v sends a total of at most 3 to R;. If
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(@) (b)

Figure 7: Two other configurations for Lemma 3.6

7 < dgn(t) < 12 then ¢ sends % to v by rule 9 and so v sends a total of at most % to
R;. If 12 < dgn(t) then v gets back the % it had sent to each of v; and vy by rule 12
and so sends a total of at most o to R;.

‘RZ’| > 3: If there is no 4-vertex in R; then they are all >5-vertices and by Lemmas 3.1
and 3.2 v sends a total of at most |R;| — 3 to R;. If |[R;| > 5, since R; cannot have
three consecutive 4-vertices, we must have at least three >5-vertices and again by
Lemmas 3.1 and 3.2 v sends a total of at most |R;| — 2. So consider the case that
R; = vy, v9,v3,v4, dgr(v1) > 5, dgr(vg) > 5, and dgr (vy) = dgr(vs) = 4 (exactly the
same argument works for the case that |R;| = 3 and vy = v3). There must be a big
vertex w, other than v, connected to all the vertices of R;. If dgv(v1) = 5 then v
gets back % from vy by rule 12 and so sends a total of at most 0 to vy. If dgv(vi) > 6
it can be verified that v sends nothing to v; by any rule. Since v sends a total of at
most 5 to vy and at most 1 to any vertex, it sends a total of at most |R;| — 2 to R;.

[ |
Lemma 3.7 Every pseudo-big vertex v has non-negative charge.

Proof: Recall that the initial charge of v was dgr(v) — 6 and that v sends a total of
at most 1 to any neighbor. We will show that v sends a total of less than 1 to each of
several neighbors, enough so that the total charge that v loses is at most dg«(v) — 6. We
consider different cases based on the value of m, the number of maximal sparse segments
of v. Recall that by Observation 2.2 we can assume that A > 160.

m = 0: Since v is pseudo-big dgn(v) > dg(v) — 11 > 36. Using Lemma 3.5 v will send
at most [2dgr(v)] < dgr(v) — 6 and therefore will have non-negative charge.

1 <m < 3: By lemma 2.13 and definition of a pseudo-big vertex:
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e m = 1: Then:

| Ry |

= dor(v) ~ Q4]
2

Z dc;u(U) — dG(U) + [gA] + 73

> (% x 160] + 62

> 36.

So by Lemma 3.5 v sends a total of at most |R;| — 6 to R;.

e m = 2: Then:

Y |Ril=dan(v) = Y Q]

1<i<2

1<i<2

2
2 dGlI(U) — 2dG('U) + 2 % [gA] + ]_46

So by Lemma 3.5 v sends a total of at most |R; U Ry| — 6 to Ry U Ry.

e m = 3: Then:

> |Ril=dar(v) = 3 |Qil

1<i<3

1<:<3
2
Z dGH(’U) — 3dG(U) + 3 X [gA] —+ 219
> 36.

Therefore by Lemma 3.5 v sends at most |R; U Ry U R3] — 6 to Ry U Ry U R3.

m = 4: If v sends a total of at most |R;| — 3 to each R; then we are done. Otherwise by
Lemma 3.6, we can assume without loss of generality that v sends a total of |R;|—1
to Ry and that Equation (2) holds for ); and (). Therefore using Lemma 2.13:

|Ra| 4 |Rs| + | R4l

>
>

v v

den (v) — (1Q1] + 1Qa]) — |Qs] — 1@l

dan(v) = 5] + 67— 2(dg(v) — [3A] ~ 73
A — 2dG'(U) + dc;// (U) + 213

36.

Thus by Lemma 3.5, v sends a total of at most |Ry U R3 U Ry| — 5 to Ry U Ry U Ry.
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m = 5: v sends a total of at most |R;| — 1 to each R;, by Lemma 3.6. If there are at
least two values of ¢ such that v sends a total of at most |R;| — 3 to R; then we are
done. Otherwise there is at most one R;, say Rs5, to which v sends a total of at most
|R;| — 2. Therefore Equation (2) must hold for |Q| + |Q2| and |Qs] + [Q4], i.e:

1
Q1] + Q2] + Qs3] + |Qu] <2 x LgAJ — 134.

Then using Lemma 2.13:

> IR

1<i<5

Y

2 1
> 36.

Therefore by Lemma 3.5, v sends a total of at most |R; U Ry U R3U Ry U Rs| — 6 to
RiURy,UR;U R4 U Rs.

m > 6: v sends at most |R;| — 1 to each R;, by lemma 3.6. So we are done.

n

Proof of Theorem 1.3: By Lemmas 3.3, 3.4, and 3.7 every vertex of G will have
non-negative charge, after applying the discharging rules. Therefore the total charge over
all the vertices of G" will be non-negative, but this is contradicting equation (1). This
disproves the existence of G, a minimum counter-example to the theorem.

Remark: Using a more careful analysis one can prove the bound L@J in Lemma
3.5 which in turn can be used to prove x(G?) < |3A] + 61. By being even more careful
throughout the analysis one can probably prove the bound x(G?) < [2A] + 51 or even
maybe with 30 or 20 instead of 51.

4 A better bound for graphs with large A

The steps of the proof of Theorem 1.4 are very similar to those of Theorem 1.3, we only
have to modify a few lemmas and redo the calculations. For these lemmas, since the proofs
are almost identical and do not need any new ideas, we only state the lemmas without
giving further proofs. Let G be a minimum counter-example to Theorem 1.4 such that
A > 241.

Lemma 4.1 For every vertex v of G, if there exists a vertex u € N(v), such that dg(v)+
de(u) < A+2 then dg2(v) > [SA] + 25.

We construct the triangulated graphs G' and then G” exactly in the same way. Lemmas
2.3 to 2.12 are still valid. The analogous of Lemmas 2.13 and 2.14 will be as follows.

Lemma 4.2 |Q;| < dg(v) — [3A] — 20, for 1 <i<m.
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Figure 8: The icosahedron and the modified graph

Lemma 4.3 Under the same assumption as in Lemma 2.14, we have:

1
Qi + Q] < LgAJ — 14.

We apply the same initial charges and discharging rules. Again, all Lemmas 3.1 to 3.5
hold. The analogue of lemma 3.6 will be:

Lemma 4.4 Suppose that m > 4. Then for every 1 < i < m either v sends a total of at
most |R;| — 3 to R;, or v sends a total of at most |R;| — 1 to R; and

1
Qi +|Qia] < LgAJ — 14.

Now it is straightforward to do the calculations of Lemma 3.7 with the above values to
see that it holds in this case too. This will complete the proof of Theorem 1.4.

5 On possible asymptotic improvement of Theorem
1.3

In this section, we only focus on the asymptotic order of the bounds, i.e. the coefficient
of A. The results of [1] and [4, 5] are essentially based on showing that in a planar graph
G, there exists a vertex v such that dg2(v) < [2A] +O(1) ([5] actually obtains a slightly
weaker, but still sufficient bound.) However, as pointed out in [1], this is the best possible
bound on the minimum degree of a vertex in G?. That is, there are 2-connected planar
graphs in which every vertex v satisfies dg2(v) > [2A]. One of these extremal graphs can
be obtained from a icosahedron, by taking a perfect matching of it, adding £ — 1 paths of
length two parallel to each edge of the perfect matching, and replacing every other edge
of the icosahedron by k parallel paths of length two (see Figure 8).

Therefore, by only bounding the minimum degree of G2 we cannot improve the bound

[2A]+0(1), asymptotically. This is the reason we introduced the reducible configuration
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% % %

Figure 9: The graph obtained based on a tetrahedron

of Lemma 2.14. We proved that any planar graph G either has a cut-vertex, or a vertex
v such that dg2(v) < [2A] + O(1), or has the configuration of Lemma 2.14.

But there are graphs that are extremal for this new set of reducible configurations in
the following sense: these graphs do not have a cut-vertex, do not have a vertex v with
dg2(v) < [2A], and do not have the configuration of Lemma 2.14. For an odd value
of k, one of these graphs is shown in Figure 9. To interpret this figure, we have to join
the three copies of vg and remove the multiple edges (we draw the graph in this way for
clarity). Also, the dashed lines represent sequences of consecutive 4-vertices. Around
each of vy, ..., v there are 3k — 6 such vertices. So, d(v,) = d(vs) = d(v3) = d(v4) = 3k,
d(vs) = d(vg) = d(v7) = d(vs) = 3k + 3, A = 3k + 3, and for any vertex v € G:
dg2(v) > 5k + 3 (with equality holding for v € {v1,...,v4}). The minimum degree of G*
is [SA7+0(1) and it is easy to see that G does not have the configuration of Lemma 2.14.
Therefore, using reducible configurations similar to those of Section 2 the best asymptotic

5

bound that we can achieve is [3A] 4+ O(1). So we need another reducible configuration

to improve the multiplicative constant g

6 Generalization to L(p, q)-labeling
In this section we prove Theorem 1.6. As we said before, the upper bound 3p for A} of a

planar graph follows from the Four Color Theorem (if we use colors from {0, p, 2p, 3p}).
So let’s assume that ¢ > 1. We prove the following theorem:

19



Theorem 6.1 For any planar graph G and positive integer p:
5
N(G) < (§A1 + 18p + 59.

Assuming Theorem 6.1, we can prove Theorem 1.6 as follows:

Proof of Theorem 1.6: Let ¢ = [SA] + 18[2] 4 60. By Theorem 6.1, there is an
L([£],1)-labeling of G with the ¢ colors in {0,...,¢—1}. Consider such a labeling and
multiply every color by ¢. This yields an L(p, g)-labeling of G with colors in {0, ..., g(c —
1)}. Noting that [2] < % yields g(c — 1) < ¢[2A] 4 18p + 77¢ — 18 which in turn
completes the proof. [ ]

In the rest of this section we give the proof of Theorem 6.1. The steps of the proof
are very similar to those of proof of Theorem 1.3. Let G be a planar graph which is a
counter-example to Theorem 6.1 with the minimum number of vertices. We set

C= [gM + 18p + 60

and throughout this section we use colors from {0,...,C — 1}. Recall that a vertex is
said to be big if dg(v) > 47.

Lemma 6.2 Suppose that v is a <b-vertex in G. If there ezists a verter u € N(v), such
that dg(v) + dg(u) < A+ 2 then dg2(v) > dg(v) + [SA] + 73,

Proof: Assume that v is such a vertex and assume that dg2(v) < dg(v) + [2A] + 73.
Contract v on edge vu. The resulting graph has maximum degree at most A and because
G was a minimum counter-example, the new graph has an L(p, 1)-labeling with at most
C colors. Now consider such a labeling induced on G, in which every vertex other than v
is colored. Every vertex at distance (exactly) two of v in G forbids one color for v, and
every vertex in N (v) forbids at most 2p — 1 colors for v. So the total number of forbidden
colors for v, i.e. the colors that we cannot assign to v, is at most:

da(v)(2p — 1) + dg2(v) — dg(v) 10p — 54 [2A] +73
[2A] 4 10p + 68

C.

IAN 1A

The last inequality follows from the assumption that p > 1. Therefore, there is still at
least one color available for v whose absolute difference from its neighbors in G2 is large
enough and so we can extend the coloring to G. ]

Observation 6.3 By Theorem 1.5 we can assume that A > 162, otherwise (4q — 2)A +
10p+38¢—24<C —1 (withqg=1).

Lemma 6.4 Every <5-vertex must be adjacent to at least 2 big vertices.
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Proof: By way of contradiction assume that there is a <5-vertex v which is adjacent
to at most one big vertex and so all its other neighbors are <46-vertices. Then, using
Observation 6.3, v along with one of these small vertices will contradict Lemma 6.2. =

Now construct graph G’ from G and then G” from G’ in the same way we did in the
proof of Theorem 1.3. Also, we define the sparse segments in the same way. Consider
vertex v and let’s call the maximal sparse segments of it ()1,Qs,...,Q,, in clockwise
order, where Q; = qi1,4i2,qi3;-- -

Lemma 6.5 |Q;| < da(v) — [2A] — 69.

Proof: Analogous to the proof of Lemma 2.13. ]

The next lemma is analogous to Lemma 2.14. The key difference is that we require a
bound on the degree of ¢. This is because each vertex adjacent to ¢ can forbid for ¢ up
to 2p — 1 colors. Thus we have to be more careful about controlling the number of such
vertices.

Lemma 6.6 Suppose that u; and u;.1 are the big vertices adjacent to all the vertices of
Qi and Qi1+, respectively. Furthermore assume that t is a <6-vertex adjacent to both wu;
and w1y but not adjacent to v (see Figure 3) and there is a vertex w € N(t) such that
da(t) + da(w) < A+2. Let X(t) be the set of vertices at distance at most two of t that
are not in Nu;| U N[u;q]. If | X ()| < 6 then:

1
Qi] + [Qiya1] < LgAJ — 60. (3)

Proof: Again, by way of contradiction, assume that |Q;| +|Q;41] > |$A] —59. Using the
same argument as at the beginning of the proof of Lemma 6.2, we can color every vertex
of G other than t using colors in {0,...,C — 1} such that the vertices that are adjacent
receive colors that are at least p apart and the vertices at distance two receive distinct
colors. Consider such a coloring.

Note: We often focus on the inner vertices of ();. So recall that there are exactly
|Qi| — 2 such vertices (similarly for @;;1). Also, for a set S of vertices each of which has
a color, we sometimes use “the colors in S” to refer to the set of colors that appear on
the vertices of S.

We say that a vertex u € Ng2(w) forbids a color v for w if either (i) u is a distance 2
from w and u has colour 7 or (ii) u is adjacent to w and u has a colour that differs from
v by less than p; i.e., if an assignment of v to w would create a conflict with the colour
on u. A set S of vertices forbids a set T" of colours for w if for each colour v € T', some
vertex in S forbids v for w. A colour v is forbidden for w if some u € Ng2(w) forbids it
for w.

Claim 1: There are at least [2A] + 78 colors in Ngz2(t) and Ngz(t) forbids all the C
colors for ¢.
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Proof: Trivially, if there is a non-forbidden color for ¢ then we can extend the coloring
to t, which contradicts the minimality of G.

If there are at most [2A] + 77 colors in Ngz(t) then (because ¢ is not colored and has
degree at most 6) they forbid at most [2A] +71+6(2p — 1) = [3A] +12p+65 < C
colors for ¢, which contradicts what we proved in the previous paragraph. [ ]

Claim 2: There exists an inner vertex of ); or ;1 whose color is distinct from the
color of every other vertex in Ng2(t) and differs from the color of every vertex in N(t) by
at least p.

Proof: By way of contradiction assume the above statement is false. Let us count the
number of forbidden colors for ¢. The neighbors of ¢ forbid at most dg(t) x (2p — 1) colors
for t. Let’s denote this set of forbidden colors by R. The vertices at distance exactly two
of t are in N(u;) U N(u;11) U X(t) — N(t), and each of them forbids its own color for t.
However, by assumption, at least |Q;| — 2 + |Qi+1] — 2 of these forbidden colors (for t)
are counted twice. This is because we assumed the claim is false; i.e. for every color «
that appears on an inner vertex of (); or (0;4; there is a neighbor of ¢ whose color differs
from « by less than p (and so o € R) or there is another vertex in Ng2(t) with color «.
Since dg(u;) + de(uiv1) + | X (¢)| < 2A + 6, the total number of forbidden colors for ¢ is
at most de(t) X (2p — 1) + 2A + 6 — da(t) — |Qi] — |Qisa| +4 < [2A] +6(2p— 1) +63 <
[2A] +12p +57 < C. This contradicts Claim 1. ]

Thus, without loss of generality, we can assume there exists an inner vertex of Q;;1,
say ¢+1,2, whose color is different from the color of every vertex in Ng2(t) and differs from
the color of every vertex in N(¢) by at least p.

Claim 3: There are at least (%A} + 77 colors in Ng2(gi412) and they forbid for ¢; 41 o,
C — 1 colors (all the colors except the one that appears on ¢;19).

Proof: First we show that the vertices in Ng2(¢;41,2) must forbid all the colors (except
the one that appears on ¢;112) for g;4+12. Otherwise, we can produce a valid labelling of
G by removing the color of g1 » and assigning it to ¢, and then assigning a new color to
¢i+12 (from the other colors that are not forbidden for it). Hence, the number of forbidden
colors for ¢; 412 must be C' — 1.

If there are fewer than [3A]+77 different colors in Ng2(gi+1,2) then, since da(giy12) <
4, the vertices in Ng2(g;41,2) forbid fewer than 4(2p — 1)+ [2A] 4+ 73 = [3A] +8p+69 <
C — 1 colors for g;j;12. This contradicts what we proved in the previous paragraph. [ ]

From the definition of a sparse segment N (¢;+12) C {v, Wit1,¢i+1.1, i+1,3}- Let’s denote
the set of colors on the vertices in N[u; 1] U N(t) U X () U N[¢it1.1] U N[gi+1,3] by S and
call it the set of smaller colors.

Claim 4: |S| < dg(uiy1) + 14.

Proof: Follows from the definition of S. ]

Every vertex in N{u;41] U N(t) U X (t) U N[git11] U N[git+1,3] is of distance at most 2
from either ¢ or g1 2, and therefore forbids some colors for ¢ or for ¢;419. Let us call
the set of colors that are forbidden for ¢ or ¢;112 by those vertices the smaller forbidden
colors, and denote them by SF'. Since d(t) < 6 and d(g;+12) < 4 and u;4; is a common
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neighbor of ¢ and ¢ 2,
ISF| <9(2p—1) +|S| — 9 = |S| + 18p — 18. (4)

So, SF contains S along with at most 18(p — 1) colors which differ from the color of some
neighbor of ¢ or some neighbor of g;1; 2 by at most p — 1.

Claim 5: Every color that is not in SF' differs from every color in N(¢) U N(git1,2)
by at least p.

Proof: By the definition of SF', every color which differs from the color of a vertex
in N(t) UN(gi+12) by less than p is in SF. m

We will use Claim 5 at the end of the proof of this Lemma. By Claim 3, there are at
least C' — 1 —|SF| colors, different from the smaller forbidden colors, in N(v) — Q;41. We
call this set the larger colors and denote it by L.

Proof: Follows from the definition of L, Claim 4, and the bound on |SF| (Inequality
4). n

Since |N(v)| = (|Qi| —2) — |Qit1| < A—[3A] +61 < |L]|, one of the larger colors must
be on an inner vertex of );, which without loss of generality, we can assume is g¢; o.

Claim 7: The vertices in N(v) — Qi1 — {qi2} forbid for g, » all the colors in L, except
the one that appears on g¢; .

Proof: All the larger colors appear in N(v) — Q;4+1 and so they are at distance at
most two of g; . n
Claim 8: The number of forbidden colors for ¢;» is at most [3A] + 8p — 68 < C.

Proof: By noting that d(g;2) < 4, neighbors of ¢;» forbid at most 4(2p — 1) colors
for ¢; . Now let’s count the number of forbidden colors for g; » by the vertices at distance
exactly two of it.

Nluit1) U N(t) U X (t) forbids for ¢ only colors that are in SF. Thus, by Claim 1, all
the larger colors must appear in N[u;] — N(t). Remember that the larger colors appear
in N(v) — Qi11, too. Therefore, the number of colors that are not in L and are forbidden
for g; » by the vertices at distance exactly 2 of ¢; 5 is at most: d(u;) —1—(]L] —1) +d(v) —
1—(|L] —1) < 2A —2|L|. By considering the vertices at distance exactly two of ¢; » that
have a larger color and noting that ¢; » has a larger color too, and using Claim 6, the total
number of colors forbidden for ¢; » is at most:

42— 1)+ (28 —2L) + (L] - 1) < L%AJ 4 dgs(uies) + 8p — 68

4
< [3A]+8p—68.

]
By Claim 8, we can produce a valid labelling of G' by assignning the color of ¢;» to t
(because it is a larger color and so it is different from the colors in X (¢) and, by Claim 5,
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differs from all the colors in N(¢) by at least p) and then finding a new color for ¢, » that
is not forbidden for it. This completes the proof of Lemma 6.6. [ ]

The rest of the proof is almost identical to that of Theorem 1.3. We use Lemmas 6.4,
6.5, and 6.6, instead of Lemmas 2.3, 2.13, and 2.14, respectively. The initial charges and
the discharging rules are the same. Without any modifications, Lemmas 3.1 to 3.5 hold in
this case, too. In Lemma 3.6 we should replace Equation (2) with Equation (3) and use
Lemma 6.6 instead of Lemma 2.14. To do so, it is important to note that whenever we
used Lemma 2.14 in the proof of Lemma 3.6, the degree of ¢ was at most 6; thus, we can
use Lemma 6.6, instead. After doing these modifications, the calculations for the proof
of this revised version of Lemma 3.6 are fairly straightforward.

7 An O(n?) time algorithm

In this section we show how to transform the proof of Theorem 1.3 into a coloring al-
5

gorithm which uses at most [§A] + 78 colors. With some minor modifications in the
algorithm, we can obtain coloring algorithms for Theorems 1.4 and 1.6.

Consider a planar graph G. We may assume that A > 160 since for smaller values
of A it is straightforward to obtain an algorithm based on the result of [19] that uses at
most [gA] + 78 colors. Also, we assume that the input to our algorithm is connected,
since for a disconnected graph it is enough to color each connected component, separately.
One iteration of the algorithm either finds a cut-vertex and breaks the graph into smaller
subgraphs, or reduces the size of the problem by contracting a suitable edge of G. Then
it colors the new smaller graph(s) recursively, and extends the coloring(s) to G. More

specifically, we do the following steps, as long as the graph has at least one vertex:

1. Check to see whether G has a cut-vertex. If v is a cut-vertex and C,...,Cy are
the connected components of G — v then color each G; = C; U {v}, independently.
The union of these colorings, after permuting the colors in some of them, will be a
coloring of G.

2. Else, check to see whether there is a <5-vertex adjacent to at most one big vertex.
If such a vertex exists, then that vertex along with one of its small neighbours will
be the suitable edge to be contracted.

3. Else, construct the triangulated graph G”.
4. Apply the initial charges and the discharging rules.

5. As the total charge is negative, we can find a vertex v with negative charge. This
vertex must be in one of the reducible configurations described in Lemmas 2.13 or
2.14.
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If we find the reducible configuration of Lemma 2.13 around v then one of the
inner vertices of the sparse segment along with one of its two big neighbours will
be the suitable edge to contract. Otherwise, if we find the reducible configuration
of Lemma 2.14 around v then we can contract edge tw (recall the specification of ¢
and w from Lemma 2.14).

6. Color the new graph (after contracting the suitable edge), recursively.

7. This coloring can be easily extended to G' by the arguments of proofs of Lemmas
2.3, 2.13 or 2.14.

That this algorithm works follows easily from the proofs of Lemmas 3.3, 3.4, and 3.7.
Since in a planar graph the number of edges and faces is linear in the number of vertices
we may let n = |V| be the size of the graph. Finding a cut-vertex in a graph takes linear
time. To see if there is a <b-vertex with less than 2 big neighbors we spend at most O(n)
time. Also, applying the initial charges and the discharging rules takes O(n) time. After
finding a vertex with negative charge, finding the suitable edge and then contracting it
can be done in O(n). Since there are O(n) iterations of the main procedure, the total
running time of the algorithm would be O(n?).

The algorithms for Theorems 1.4 and 1.6 work almost identically.

Acknowledgements: We would like to thank two anonymous referees whose com-
ments greatly improved the presentation of the paper.
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