A (1 4 €)-Approximation Algorithm for Partitioning Hypergraphs
Using a New Algorithmic Version of the Lovasz Local Lemma *

Mohammad R. Salavatipour '

Department of Combinatorics and Optimization, University of Waterloo,
Waterloo, ON N2L 3G1, Canada

E-mail: mreza@math.uwaterloo.ca

Abstract

In his seminal result, Beck gave the first algorithmic version of the Lovasz Local Lemma by
giving polynomial time algorithms for 2-coloring and partitioning uniform hypergraphs. His work
was later generalized by Alon, and Molloy and Reed. Recently, Czumaj and Scheideler gave an
efficient algorithm for 2-coloring non-uniform hypergraphs. But the partitioning algorithm ob-
tained based on their second paper only applies to a more limited range of hypergraphs, so much
so that their work doesn’t imply the result of Beck for the uniform case. Here we give an algo-
rithmic version of the general form of the Local Lemma which captures (almost) all applications
of the results of Beck and Czumaj and Scheideler, with an overall simpler proof. In particular, if
H is a non-uniform hypergraph in which every edge e; intersects at most |e;|2%* other edges of
size at most k, for some small constant «, then we can find a partitioning of H in expected linear
time. This result implies the result of Beck for uniform hypergraphs along with a speedup in his
running time.

Keywords: Probabilistic Method, Lovdsz Local Lemma, Random trial, Hypergraph coloring.

1 Introduction

The probabilistic method is used to prove the existence of an object with certain properties by
showing that a randomly chosen object in an appropriate probability space has the desired properties
with positive probabilities. Some applications, for example, are in proving the existence of efficient
routing algorithms [15], disjoint paths in expander graphs [10, 11, 16], and many graph coloring
problems [2, 13, 17, 19, 20]. In most applications, the probability that the randomly selected object
has the desired property is not only positive, but is actually high and frequently tends to 1 as the
parameters of the problem tend to infinity. In these cases, the proof yields a randomized algorithm
for constructing an object with the required properties: we simply pick objects at random until we
find one. Under fairly general conditions, these algorithms can be derandomized using the method
of conditional probabilities due to Erdés and Selfridge [9].

*An earlier version of this paper appeared in the Proceedings of Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA) 2003.
tSupported by Research Assistantship, Department of Computer Science, University of Toronto.

On the other hand, there are some tools, by which we can show that a certain event happens with
positive, but exponentially small, probability. One of these tools is the Local Lemma, first proved
by Erdés and Lovasz [8], which turned out to be an extremely powerful tool.

Lemma 1.1 (General Local Lemma) Let Fy,..., E, be a set of “bad” events in an arbitrary
probability space and let G be the dependency graph for them. That is, for every i, 1 < ¢ < n, the
event E; is mutually independent from all E; with (i, j) § G. Assume that there exist x; € [0,1) for
all 1 <i <n with Pr[E;] < z; H(i,j)eG(l — x;), for all i. Then with positive probability no bad event
E; occurs.

There are many applications of the Local Lemma (see [2, 3, 8, 10, 12, 13, 15, 16, 19, 20]). Perhaps
the most typical example of an application of the LLL is the hypergraph 2-coloring problem, which
can be formulated as follows:

Corollary 1.2 [8] Let Ay, Ay, ... be n-element subsets of a finite set X, and assume that every
A; intersects at most 2"73 other Aj, n > 2. Then there is a 2-coloring of X such that no A; is
monochromatic.

For the Local Lemma, the simple general randomized procedure we mentioned above does not
produce a polynomial time algorithm. Therefore, we need some more elegant techniques to get an
algorithmic version of this lemma. In a breakthrough paper, Beck [4] developed the first algorith-
mic version of the LLL by giving a polynomial time algorithm for 2-coloring uniform hypergraphs,
provided that the condition 2”73 is replaced by a weaker bound 2*7, such as a = ﬁ. Alon [1]
described a parallel version of this algorithm, for smaller values of ow. These methods were further
generalized by Molloy and Reed [18] to yield efficient algorithms for a wider range of applications
of the LLL. Recently, some other algorithmic versions of the LLL have been presented by various
authors [5, 6, 7, 14, 17]. Czumaj and Scheideler [6] extended the result of Beck [4] to non-uniform

hypergraphs, by showing that:

Corollary 1.3 [6] There exist constants «, B, A, such that for every hypergraph H, if every edge
¢ € H has size at least X\ and intersects at most (3]e|2%% other edges of size at most k, then there is
randomized algorithm that finds a 2-coloring of H in polynomial time w.h.p. The expected running
time of the algorithm is linear in Y cy |e|.

In [4], Beck studied a discrepancy version of the 2-coloring problem, which is also called the hypergraph
partitioning problem, and gave the first polynomial time algorithm for it. Roughly speaking, this is
the problem of 2-coloring the vertices of a hypergraph, such that in each edge the number of nodes
of each color are relatively close. More formally:

Theorem 1.4 [/] Assume that 0 < € < 1 is a given real number. Let H(V, E) be an n-uniform
hypergraph in which each edge intersects at most 27" other edges, where v = ~(€). If n is large

enough with respect to €, then we can find a 2-coloring f : V. — {—=1,+1} in polynomial time such
that, with f(e) =3 ,c. f(v): for each e € H, |f(e)| < en.

Among the known algorithmic versions of the LLL, only the result of Czumaj and Scheideler [7]
can be used to extend this result to some non-uniform hypergraphs, but their result is somewhat
weaker than Theorem 1.4, as it requires that every edge intersects at most 0(20(’“&)) other edges of

size at most k, for some small constant a. As a consequence, their result is not strong enough to
imply Theorem 1.4 for uniform hypergraphs.

Here we give a new and stronger algorithmic version of the LLL, which implies all the applications
of the results of Beck [4] and Czumaj and Scheideler [6, 7]. In particular this result extends Theorem
1.4 to non-uniform hypergraphs. The overall analysis of the algorithm is simpler and under some
slightly stronger conditions its expected running time is linear. Before stating our main theorem, we
need a few definitions and notation.

Let F = {f1,..., fa} be a set of random trials, and & = {E4,..., E,,} be a set of “bad” events,
where each F; is determined by the outcomes of the trials in F; C F. Two events E; and E; are called
neighbors if F; N F; # (. By N(E;) we mean the set of neighbors of event F;. During the course of
our algorithm, we will need to break some of the events into at most three smaller sub-events. For
this reason, we need to assume that for every event E; and every set S C F;, the event E; restricted
to S is well-defined and is denoted by E;|s. For example, consider the problem of partitioning a
non-uniform hypergraph H(V, E) into two parts. That is, given H and real number € > 0, we want
to find a 2-coloring f : V' — {—1,1} such that with f(e;) = 3 .. f(v), for each edge ¢; € E we
have |f(e;)| < €|e;|. For each vertex v; we will have a random trial f; which determines the color to
be assigned to v; and for each edge e; € E the bad event E; will be the event that | f(e;)| > €|e;|. If
S1, 52,53 is a partition of the vertex set of e;, T, Ty, T3 is the corresponding partition of the trial set

of E;, and if we define f(S,) = > ,es, f(v) (1 <z < 3), then Ej|7, can be defined as the event that
|f(S2)| > @ By this definition, if none of E;|s, (1 < & < 3) happens it means that | f(S5,)| < @,
for 1 <o < 3, and since f(ej) = 2159553')‘(595)7 therefore |f(e;)| < Yi<e<s | £(Sz)| < €lej|. Thus E;

does not happen.

Theorem 1.5 Assume that F and & are defined as above. There exists a constant § such that for
any 0 < € < 1 the following holds:

Suppose that every trial f; € F has a constant number of outcomes and we can carry out the random
trial in time t1. Let p; = e~“IFil and suppose that for all S C F; it holds that:

o if |S| > €|Fj| then Pr[Eils] < p;,
e if |S| < €|F;| then Pr[E;|s] = 0, and
e knowing the outcomes of the trials in S, we can evaluate whether E;|s holds or not in time t;.
Furthermore assume that for x; = e 1E Gt holds that x; < % and:
pi<e JI -z, 1<i<m (1)
E;EN(E;)

Then there is a randomized algorithm that finds the outcomes of the random trials in time O((t1 +
t2) X Poly(n 4+ m)) with high probability, where Poly(n+m) is a polynomial in (n+m), such that for

every event E;, the set F; is partitioned into at most § subsets S; 1, 5; 2,53, so that E,'|5i71, E,'|5i72,
and E;|s,, are all false.
Remark 1: If we have the stronger assumption that for 2! = e=d¢ Il zh < e !and
B < I a-<f), 1<i<m, (2)

Ej;eN(E;)
Then:

(i) We can still get polynomial running time even if the number of outcomes of each random trial
fi € F is polylogarithmic in n + m.

(ii) Under some reasonably general assumptions, the expected running time of the algorithm is
linear in Y;%, |F;|. As an example, this applies to the hypergraph partitioning problem. We
talk about this in more detail in Section 4.

It is straightforward to check that (2) implies (1).

Remark 2: Throughout the paper, we do not attempt to find the optimal values of the constants;
rather we give the proofs based on their existence. As an example, it can be verified that § < 1/600
is enough for the theorem to hold.

Theorem 2.1 in Czumaj and Scheideler [7] needs the stronger requirements p;
e_5|Fi|€2 (

L€
= e IFl" and z; =

which are even stronger than those in Remark 1). This is why their theorem does not match
Theorem 1.4 for non-uniform hypergraphs. Also, the requirement of their theorem corresponding to
Inequality (1) is stronger than Inequality (1), and they don’t specify into how many sets each event
E; might be partitioned.

More importantly, there is an error in their theorem in that it only guarantees polynomial running
time if the number of outcomes of each trial is constant (rather than polylogarithmic in n + m as
they claim) unless an inequality stronger than the one in their theorem is satisfied.! Our proof is
similar to that of [7] with an overall simpler analysis. Using Theorem 1.5 we can show that:

Theorem 1.6 Let H(V, E) be a hypergraph with vertices vy, ..., v, and edges €y, ..., €. Suppose
that a real 0 < o < 1 and an integer C' are given. There exist constants 0 < 8,7, A < 1, such
that if every edge e; has size at least 1/X and intersects at most 5|ej|67k other edges of size at
most k, then we can find a C-coloring f : V. — {1,2,...,C} in expected linear time, such that if
di(ej) = {v € ¢; : f(v) =1}| then for each 1 <1 < C and each 1 < j < m:

le;] | ale]

|di(e;) — c | < o

One application of the hypergraph partitioning problem is in splitting expander graphs [12].
Frieze and Molloy [12] use an asymmetric version of the LLL to prove the existence of good splittings
for expander graphs. The result of [7] is not general enough to replace the non-constructive version
of the LLL in the proof of [12], but it is not very difficult to check that we can use Theorem 1.6 for
this application. However, this doesn’t yield a polynomial time algorithm, due to the fact that the
number of events that Molloy and Frieze [12] define to apply the LLL, is exponential in the size of
input.

The organization of the paper is as follows. In the next section we present the polynomial
time algorithm for Theorem 1.5. Section 3 contains the analysis of the algorithm and the proof
of correctness for it. More details of the proof are explained in Section 6. In Section 4 we show
the conditions under which the expected running time of the algorithm would be linear. Finally, in
Section 5 we explain how to use Theorem 1.5 to prove Theorem 1.6.

'The reason is that Step 3 of their algorithm cannot necessarily be performed, unless it is proved that the re-
quirements of their theorem holds for the new set of (possibly reduced) events that have to be considered for each
2-component. This, of course, does not necessarily hold unless we start with an stronger inequality.

2 Description of the Algorithm

2.1 Overview of the Algorithm

The goal is to find a set of outcomes for the trials in F such that each trial set F; (for event E; € &)
is partitioned into at most three subsets Sy, Sy, S5 where all E;|s,, Fil|s,, and E;|s, are false. The
main idea of the algorithm is essentially the same as the ones in Beck [4] and Czumaj and Scheideler
[6, 7]. There are two main steps in the algorithm:

Step 1: Choose an outcome for each trial uniformly at random.
Step 2: Select a (possibly empty) subset of trials of each event and redo them.

Of course, after Step 1, there might be many bad events that hold. Therefore, we must redo the
trials in them. The general idea of this part of the algorithm is similar to the other known algorithmic
versions of the Local Lemma, which is to show that the connected components constructed by these
bad events are disjoint, and then to try to handle each one separately in later steps. To achieve
this, we might break some of the basic events into some smaller events. For example, consider the
situation in which an event E; is true (and therefore its trials have to be redone). If there is another
event E; € N(E;) which is also true then of course E; and E; will be in the same component and we
cannot redo their trials independently. What if E; and the restricted event Ej|p, _p, are both false,
but E; has more than €| Fj}| trials in common with E;? In this case, although we don’t have to redo
the trials of E; (because it is false), there is this possibility that after redoing the trials of E;, E;
becomes true, although a large portion of it, i.e. Ej|p,_p, remains unchanged. This might happen,
for instance, if Ej|p;nr, becomes true. For this reason, we break event E; into two parts; one event
is E]1 = Ej|Fjr1Fi and the other is E]2 = Ej|Fj—Fi- Each of these is called a reduced event. Now
we consider the event E]1 to be in the same component as E; (since it has common trials with E;).
If we find a set of outcomes for the trials in this component that makes all the (possibly reduced)
events in the component false, then E]1 will become false. Since the trials of E]2 are disjoint form the
component and therefore are not affected by this process of redoing the trials of the events of the
component, E]2 remains false. Hence, the trial set of E; is partitioned into two sets, one defining E]1
and one defining EJZ7 where both of these events are false at the end.

So our first goal after Step 1 is to find connected components of bad (possibly reduced) events.
However, we cannot only focus on these components and redo their trials independently. The reason
is that there might be an event, such as Fj, which is false even restricted to any subset S C Fj, and
E} does not intersect any other event in more than €| F| trials. Therefore Fj cannot become true if
we redo the trials of any single event in N(Ey). So it does not belong to any component even as a
reduced event. But it is possible that Ej is intersecting too many bad events of different components
that are true, so many so that the that the total number of trials that Fr has in common with those
events is more than €|Fy|. In this case, if we are not careful enough when we redo the trials of those
components, then Ey may end-up being true after all. So, although E} (even restricted to any subset
of its trial set) is not true, it is “dangerous” as it is intersecting too many events that are true. So
we must consider the trials of the (possibly reduced) events of the components that are connected
by dangerous events together. This will result in larger connected components.

However, if an event E, is not true (even when restricted to any subset of F,) and it is not
dangerous, then by redoing the trials of these larger components, E, cannot become true, since
the subset S of trials of E, that may have been redone in the second step has size at most €|Fy|.

Therefore Pr[E,|s] = 0. Also E.|r,_s is not true either by our assumption. So F, remains false
after Step 2.

It can be shown that there is a suitable set of outcomes of the random trials of these components
such that every (reduced) event is false and the dangerous events are not true either. So if the size
of each of these components is small enough, then we can find these suitable outcomes by exhaustive
search in Step 2! We show that in fact this is the case. That is, with high probability, there is no
components which has more than O(lnm) trials. So exhaustive search yields polynomial running
time.

2.2 Details of the Algorithm

In this subsection, we describe how to perform each step of the algorithm in more details. We also
explain the extra steps for the cases that we have the stronger assumptions of Remark 1.

Step 1: Choose an outcome for each trial f; € F uniformly at random.

We call events Fy, ..., E, basic events and any event defined by a basic event E; restricted
to a subset S C F; is called a reduced event and is denoted by FE;|s. Now we find the connected
components of bad events using a Breadth First Search (BFS) algorithm:

Set R=F /* R is going to be the set of remaining trials of F */
for i=1 to m do
if E;|p,ng is true then
R=R-{F;NR}
BFS (E;

FinR)

Procedure BFS (E: event)
Fathers = {F};
CE={F} /* CE will be the set of core events of the 1-component */
repeat
Children =)
for all F; € N(Fathers) in increasing j do
F/=F;NR
iij|F]< is true then /* So |Fi| > €| F;|*/
R=R-TF]
Children = Children U {E]|F]/}
CE=CFEU {E]|F]/}

endif
Fathers = Children
endfor

until Children =0

We call each connected component found by the BFS algorithm a 1-component and C'E the set
of core events of the 1-component. Every basic event E; that has at least €| F}| trials in common with
CE is called a participating event of the 1-component. For every participating event Ej let F]’ C F;

be the set of trials of E; that are notin C'E. It can be seen that if we redo the trials in the core
events, E;|p, the reduced event of E; induced by its trials which are not in C'E, cannot be true,
J

otherwise Ej|p» would have been added to the 1-component as a core event. Another fact is that by
J

this algorithm, every basic event is reduced to at most one reduced (core) event.

After finding 1-components, it might happen that some basic events are not core events of any
1-component but are intersecting (or maybe participating in) “too many” l-components and so after
redoing the trials in each of the 1-components, these basic events become true. Such a basic event is
called dangerous. More formally, a basic event F;, that is not a core event, is dangerous if more than
€| F;| of its trials belong to (different) 1-components. So we introduce the 2-component structures.
A 2-component is basically a maximal set of 1-components that are connected by dangerous events.
The core set of a 2-component C' is the union of the core sets of its 1-components and is denoted by
CE¢c. An event F; is participating in a 2-component if at least €| F;| trials of it are covered by the
core events of the 2-component. So every dangerous event is also a participating event. For every
basic event F; that is not participating in any 2-component let F/ C F; be the (possibly empty) set
of trials of E; that are in the core events of the 2-components and let F” = F; — F!. By definition,
|F!| < €| F;| and therefore, even after redoing the trials of the core events of the 2-components, E;| g
cannot become true. Since E;|p» is not true either (otherwise it would have been added as a core
event to a l-component), therefore F} is partitioned into at most two subsets F) and F,’, such that
even after redoing the trials of the core events of the 2-component Ei|Fi/ and Ei|Fi” are both false.

Lemma 2.1 The following statements are true:
(i) Every basic event is participating in at most one 2-component.

(ii) For every 2-component C, there is a set of outcomes of the trials of the core set of C' such that
each participating event is partitioned into at most two subsets, each of which is false.

Proof: (i) If an event E; is participating in two different 2-components then it has at least €|F}]
trials in common with the core events of each of them. In that case, it would be a dangerous event
and those two 2-components would have been merged into one 2-component, a contradiction.

(ii) Every basic event participates as at most one core event in CE¢. For every participating basic
event F,;, we can consider the union of the trials of F; that are covered by the 1-components of C', as
one reduced event E!. Let us denote the trial set of E! by F/. By definition of a participating event,
the size of F! is at least €| F;|. So every participating event E; is divided into at most two parts: one
reduced event whose trial set is F} and is a subset of C E¢, and another part which has no intersection
with CE¢. Note that F; — F corresponds to S;; defined in Theorem 1.5, and F] corresponds to S; 5
for now (but may actually be divided later into at most two subsets, corresponding to S; 2 and S; 3).
The event E;|p, _pr is false, even if we redo the trials of CE¢. So if we prove the existence of a set of
outcomes of the trials of CE¢ that makes every core event and E;|p false, then we are done. The
existence of this set of outcomes can be proved by the Local Lemma. FEach basic event appears as at
most one (possibly reduced) event and the probability of each reduced event E! satisfies Pr[E]] < p;.
So the conditions of the Local Lemma in the statement of the theorem hold. [

Therefore, we can consider each 2-component independently. The main lemma (Lemma 2.2,
part (i)) shows that with high probability, the number of trials in the set of core events of any
2-component, which we call the size of the 2-component, will be at most O(Inm). After the first
step, if there are any 2-components of size greater than O(ln m) we redo the first step. The expected

number of times we have to redo it is at most a constant. Thus, if the number of outcomes of the
random trials in F is constant, then we can use exhaustive search in the next step:

Step 2: If the number of outcomes of the random trials is O(1) and we don’t require expected
linear time then using exhaustive search on each 2-component find a suitable set of outcome for the
random trials of the core events such that no core event is true. The algorithm will stop at this
point.

If the number of outcomes of the random trials is polylogarithmic in n + m (and therefore
exhaustive search on 2-components of size O(ln m) does not yield polynomial running time) or if we
want speed up in the algorithm then, instead of doing exhaustive search at this point, we may run
Step 1 on each of the created 2-components independently, to obtain sufficiently small 2-components.
To be able to do this we need the stronger assumptions explained in Remark 1.

More specifically, for each 2-component C' and each event E; which is a core event or a partici-
pating event in C'E¢, let F! C F; be the set of trials of E; that are in CE¢ and let E! = E;| .

Step 3: If the stronger conditions of Remark 1 hold then for each 2-component of size Ol(ln m)
obtained by Step 1, independently, consider the set of reduced events E! defined above as the new
set of basic events and apply Step 1 to them, to find sufficiently small 2-components.

Lemma 2.2 (Main Lemma) For any constant o > 0:

(i) After the first step, with probability at least 1 — #, there is no 2-component of size more than

O(%1lnm).

(7)) If the assumptions of Remark 1 hold we can do Step 8. Furthermore, after Step 3, with probability

at least 1 — 7=, there is no 2-component of size more than O(2Inlnm).
(Inm) c

Inm

If we get to run Step 3 then, by the second part of Lemma 2.2, with high probability we will
get 2-components each of which has size at most O(Inlnm). Now we can find the required set of
outcomes of the trials of the core sets of these small 2-components using exhaustive search.

Step 4: Using exhaustive search find a suitable set of outcomes for the random trials of core
events of the new 2-components such that no core event is true anymore.

Recall from the proof of Lemma 2.1 that after Step 1 of the algorithm, each event E; is partitioned
into at most two sets, one of which corresponds to S; 1, and the other one is F]. After Step 3 of the
algorithm, the event induced by F] might be divided into two smaller sets. These two sets correspond
to S; 2 and S; 3. Therefore the total number of sets to which an event E; might be partitioned is at
most three.

3 Correctness of the Algorithm

In this section we prove Lemma 2.2. Our proof uses some key ideas from both [4] and [7]. In
particular, we incorporate the “sum over all trees” approach from [4] into the “levels analysis” from
[7].

The main idea of the proof is to associate tree-like structures to 1- and 2-components that can be
created by the algorithm. These structures are purely combinatorial and are introduced to find an
upper bound on the expected number of 2-components of a certain size created by the algorithm. The
structure associated to a 2-component will be called a (1,2)-tree. We show how to construct a (1,2)-
tree from a 2-component and then prove that the expected number of (1,2)-trees is exponentially

small (in terms of their sizes). Then this will be used to show that with high probability there is no
2-components of size larger than O(lnm) after step 1 of the algorithm, which is what we need in the
main lemma.

More specifically, to a 1-component C! we associate a directed tree T* = (V¢, E¢) as follows:
create a vertex v; for each basic event E; that has a core event in C' and create edge (v, v5) if E;
was a father of E; during the BFS procedure and ¢ is the smallest index among the fathers of E;.
We call this structure a I-tree. The index of the vertex associated to event FE; is the same as the
index of E;, which is i. Note that the vertex corresponding to the initial event of C'* will be the root
of T'.

To a 2-component C? we associate a tree-like structure T? = (Vo U Vp, Ec U Ep), where Vi
and E¢ are the unions of the vertex sets and the edge sets of all the 1-trees corresponding to the
l-components of C?, respectively. Let D € C? be a dangerous event. Assume that there are k
l-components in C? intersecting D, called C],...,C}. We create a vertex vp in Vp. For each C}
let v} be the vertex corresponding to a core event intersecting D with the smallest index in C}. We
create the (undirected) edge (v},vp) in Ep for every 1 < i < k. This tree is called a (1,2)-tree. For
consistency, we call each edge of E¢ a I-tree edge and each edge of Ep a 2-tree edge. For a (1,2)-tree,
the node in V¢ that has only outgoing edges and has the minimum index corresponds to the initial
event of the first 1-component of the corresponding 2-component.

It is easy to see that for each 2-component there is a unique (1,2)-tree. Also, given a (1,2)-tree
T? we can uniquely determine the 1-components that correspond to the 1-trees of 72, and the order
in which the events were added to each 1-component, by looking at the direction of the edges of the
1-trees. In particular, the first 1-component is the one that corresponds to the 1-tree whose root has
the smallest index amongst the roots of the 1-trees of 72. But we cannot uniquely specify the trial
sets of the core events of a 2-component. The reason is that it can happen that a basic event has a
core (reduced) event in one 2-component, say C, and overlaps with the trials of another 2-component,
say C’. This can happen if C’ is constructed before C'. But given only the (1,2)-tree corresponding
to C' we cannot determine that some of the trials of this basic event are not in C'. This is the problem
for which Czumaj and Scheideler [7] introduced a more complicated structure, namely 3-components
and the related tree structures, in order to make a one to one mapping. But this problem can be
solved in a significantly easier way as we don’t require a one to one mapping between 2-components
and (1,2)-trees. If we show that with very high probability there is no (1,2)-tree of a certain size
then it definitely shows that with at least the same probability there is no 2-component of that size.
So to prove the main lemma, it is enough to show that with probability at least 1 — # there is no
(1,2)-tree of size greater than O(% Inm), after Step 1 of the algorithm. So from now on, our goal is
to show this statement, which will easily imply the main lemma.

In order to count the number of (1,2)-trees of a certain size we need to give a precise definition
for the size of a (1,2)-tree. Let’s define the order of a basic event E; (or any reduced event of it),
denoted by Ogp;, to be €|E;|. For a set P of (possibly reduced) events, we define the order of P,
denoted by Op, to be the sum of the orders of the events in P. The order of a (1,2)-tree T', denoted
by Or, is the sum of the orders of the events whose corresponding vertices are in Ve (T).

A set P of reduced events is a “possible set of core events” if there is a set of outcomes of the trials
in F and a run of Step 1 of the algorithm such that all the events in P are in the set of core events
of (possibly different) 2-components produced. Similarly, a (1,2)-tree T is a “possible (1,2)-tree” if
there is a set of outcomes of the trials in F and a run of Step 1 of the algorithm that produces a
2-component corresponding to 7.

Consider any fixed possible set P of core events. To find an upper bound on the probability that
all the events in P become core after Step 1 of the algorithm, an important point to note is that
these events are disjoint. Since each (possible) core event in P that is a reduced event of a basic
event E; has size at least €|Fj|, by the conditions of Theorem 1.5, the probability of it to become
true is at most p; = e~ °I¥il at the beginning of the algorithm and independently from other events.
Therefore, if Zp denotes the event that the events of P actually become core after Step 1 of the
algorithm, then:

Pr[zp] < [T i (3)
E;eP

For a possible (1,2)-tree T, let Z7 denote the event that T' becomes a (1,2)-tree after Step 1 of

the algorithm. Using (3) it is straightforward (but subtle) to show that:

Prizrl< I s (4)
E;w; eVe(T)

The proof of (4) is given in Section 6.
Now our goal is to prove the following lemma, by which the main lemma can be proved easily.

Lemma 3.1 The expected number of (1,2)-trees T with order at least ¥ is at most 21me=Y/20
For a possible (1,2)-tree T, we say T starts from FEy, if Ey is the initial event of the first 1-component
of T'. Define

T = {possible (1,2)-trees T" with order O7 = ¥ that start at Ep}.

Now let 7/ C T be the set of (1,2)-trees obtained after Step 1 of the algorithm that are also in 7.
By this definition and (4):

EITN=> Pizr1< > I »s (5)

TeT TeT E;w;eVe(T)

Computing a good upper bound for E[|7’|] by bounding the right-hand-side of (5) directly, is very
complicated and involves dealing with dependencies of probabilities of neighboring events of the
trees in 7. Instead, we proceed indirectly by defining a whole new experiment and a new set, which
will be called T7"”. We show that E[|T”|] is equal to the right-hand-side of Inequality (5), then we
bound E[|7”|] and this bound combined with (5) will give us an upper bound for E[|7|]. The new
experiment, called the helper experiment, is as follows: for every basic event E; € & we flip a coin
which comes up heads with probability p;. We assign a tag to event E; based on the result of the
coin flip. The tag is either a heads tag or a tails tag. The dependency graph of the events is defined
in a natural way: create a vertex for each event and two vertices are adjacent iff the corresponding
events intersect. Consider the connected components of the events that have a heads tag in the
corresponding dependency graph, and call each of them a pseudo I-component. Every event E;
having a tails tag, whose trial set is intersecting at least two different pseudo 1-components and at
least €| F;| of its trials are part of pseudo 1-components, is a pseudo dangerous event. A maximal set
of pseudo 1-components connected by pseudo dangerous events is a pseudo 2-component.

By these definitions, each possible 2-component C? can be associated to a unique possible pseudo
2-component PC? in a natural way: the events of PC? having heads tags are precisely the basic
events of the core events of C? and the pseudo dangerous events of PC? are precisely the dangerous

10

events of C2. This mapping is valid since the union of the trial sets of the core events of C? is a
subset of the union of the trial sets of the basic events of C?, which is the same as the union of the
trial sets of events of PC? with heads tags. Therefore, if a basic event is a dangerous event in C? it
will be a pseudo dangerous event in PC?. Consequently, any possible (1,2)-tree can be associated to
a unique pseudo 2-component. Note that neither of these correspondences is a one to one mapping.

For a fixed set of events P, let Z) denote the event that after performing the helper experiment
all the events in P get heads tags. So by this definition:

Pr(zZp) = I o (6)

E;eP

Also, for a fixed possible (1,2)-tree T define the event Z/ to be the event that we get the corresponding
pseudo 2-component after performing the helper experiment. Then:

Pizz] = II »s (7)

E;w; eVe(T)

Define 7" C T to be the set of (1,2)-trees whose corresponding pseudo 2-component is created after
performing the helper experiment. By this definition:

BT =>_Przzl=>, I »s: (8)

TeT TeT Ejw;eVe(T)
Since the right-most expressions in (5) and (8) are the same, therefore:
BT < EIT"]]. (9)

This simplifies our analysis significantly, since we can now continue the analysis based on the helper
experiment, and bound E[|T"|] to get a bound for E[|T|].

For each (1,2)-tree T € T"”, we consider the vertices of Vi (T') level-wise. The only vertex in level
zero is the one corresponding to Ey. All the vertices in Vi (T') connected to it by 1-tree edges, and
those that are in Vo (T') but at distance 2 from it, using only 2-tree edges, are in the second level.
Everything that is connected to a node in the second level using a 1-tree edge, or by a path of length
two of 2-tree edges, (regardless of the directions of the edges) is in the third level, and so on. Note
that the edges between level ¢ and ¢+ 4+ 1 may have different directions. So the levels we consider for
T do not necessarily follow the directions of the edges in the 1-trees of T'.

Remark 3: A careful reader might have noticed the huge difference that we would have had if we
were to analyze 7', rather than 7”. Namely, the direction of the edges between different levels would
play a crucial role in computing the probabilities of the events, which would involve calculating very
complicated conditional probabilities. We get rid of these complications by switching to the helper
experiment.

Define the order of a level to be the sum of the orders of the events that correspond to the vertices
in that level. We will show in Section 6, Lemma 6.3, that the order of each level should be at least
1/6. For any two sets () and R of events, we say R is an extension of Q if there exists a (1,2)-tree
T € T and an integer ¢, such that @) is the set of events corresponding to the vertices in level 7 and
R is the set of events corresponding to the vertices in level ¢ + 1 of T. For the moment just consider
those (1,2)-trees in 7" with k levels, whose level ¢ has order S;, for a fixed set of Sy, ..., Sk. Denote

11

these (1,2)-trees by 7}i7...75k. If we denote the order of T, excluding the initial event Fy, by 1, that
is v = ¥ — Sy, and we let [q,...,[; denote possible extensions for levels 1,..., k, respectively, then
using (8):

k
EITS. sl = ™ > > .. > II1II»

all Ip’s all l9’s all ig’s t=1 Ejelt
0y, =51 0p,=5) 0y, =5},
_ —50 . . .
= € Z (H Pj Z (H Py - - Z H Pix))) (10)
all Li's E; €l all Io's [€l all 1's F. el
o =5 N o =s, 27 o, =5, 'k ¥

Denote the set of all extensions R with Or = r of a set Q by EXT(Q,r). For a set () of events
let X, be the number of extensions R such that R € EXT(Q,r) and all events in R have heads
tags. Therefore, by (6):

E[Xqo., = > PiZpl= > II »;- (11)

R:REEXT(Q,r) R:REEXT(Q,r) E;€R

By this equation, the most internal summation in (10) is in fact E[X;,_, s,]. In Section 6, Lemma
6.4, we show that E[Xg ,] < e~ "/3¢0Q/16 Therefore, EX;,_,s5]< e~ Sr/3¢%-1/16 Using this fact,
Inequality (10) can be written as:

k—1
B[4, 5,1 < 7% J] e S /36516, (12)
=0

We need the following combinatorial lemma to prove Lemma 3.1.

Lemma 3.2 Let Nt denote the set of integers greater than or equal to x. For 1 < k < §v, define

EQy to be the equation Sy + Sy + ...+ Sk, = ¥, where the domain of each variable S; (1 <i<k)is

Nf. Then for sufficiently small § > 0, the sum of the number of the solutions of all equations EQy,
8

(1< k< &) is at most e¥/30,

Proof: Let’s call the equation ry + 72 + ... 4 rs5y = %, in which the r;’s are the variables whose

domain is N(;", the reference equation. To each solution of equation EQy, for 1 < k < &9, we

associate a unique solution of the reference equation: set r; = 5;, for 1 < ¢ < k, and r; = 0, for

kE < j < 01. Therefore, the sum of the number of solutions of all EQy equations (for 1 < &k < d7))

with domain N,j', is not more than the number of solutions of the reference equation with domain

N;. From elementary combinatorics we know that the number of non-negative integer solutions of

the reference equation is (Qb;ifl_l), which is less than (¢}'£¢) Using Stirling’s approximation for n!:
é

G\ [t 8
N 10
V(14 8)%
50
SV (L+In (145))
V80

VANVAN

12

if ¢ is sufficiently small. [
Proof of Lemma 3.1: Using (12), definition of 7"s, . s,, and Lemma 3.2:

5%
Y. D ElNTE sl

E[T"] <
k=1 g<51 55, <o
Zl<z<k Si=v
< e Z Z H e~ Si+1/8.5;/16

7AN
%
o
9}
A
[¢9)
£
=
(e}
Mé"
N
=

2199& Si=v
< U8 /16,050
e~ V/20 (13)
for sufficiently small 6. Therefore, using (9) and (13):
BT < ¥, (14)

Since we have at most m events that can be the initial event of a (1,2)-tree T' with total order at
least U, using the bound in (14), after Step 1 of the algorithm:

E[{(1,2)-trees T of order at least ¥'}|] < m Z e~k
k>0
< 21me” /%0,

Proof of Lemma 2.2:

(i) Consider the bound in Lemma 3.1. The expected number of such (1,2)-trees is at most m™®
if ¥ > 20((a+ 1)Ilnm + 4). For each such (1,2)-tree T, the number of trials of T' is at most
%. Therefore, for any constant « > 0, with probability at least 1 — # there is no (1,2)-tree
T for which the number of trials of the basic events corresponding to the vertices in Vo (T') is
larger than 22((a+ 1)Inm +4) € O(%Inm). Thus, with probability at least 1 — — there is
no 2-component of size greater than O(% Inm).

(ii) Recall that in Step 3, we have a new set of basic events for each 2-component C' that we consider:
for each event E; which is a core event or a participating event in CE¢, we consider E! = E;|p
as a basic event, where F/ C F; is the set of trials of E; that are in CE¢. First we must show
that if the assumptions of Remark 1 hold then the conditions of Theorem 1.5 hold for this new
set of basic events.

Suppose that |F/| = «;|F;|, for some a; < 1. Note that since |F/| > €|Fi|: a; > €. For this new
set of basic events, we have p} = e~ Wil = ¢=<ilFil "and for all S C F!:

13

o if | S| > €|F/| then Pr[E!|s] < pi, and
o if |S| < ¢|F/| then Pr[E!|s] = 0.

We need to show that with z; = e=°¢ IFil; g, < e ! and pff <z HEJ',GN(E;)(l — x;), or

equivalently

P
~< JI (-

2
E/eN(E)

If the conditions of Remark 1 hold, i.e. for z} = e~ IR zt < e7! and (2) holds then, since

2 | F _ 53 A —
x; = e aillil < =o€ || — !, therefore: z; < e~! and

§2
Pi— om0l < T (-af)= [(12—l (15)
i EleN(E]) ELEN(E])

Thus:

/e
Pi _ —(1-8)ai|F| < e~ (1=8)e*|Fi] since a; > €

T,
< I a-em by (15)
ElEN(E)
< H (1- 6_552°‘i|Fj|) since a; > €
ELeN(E))
= II a-=
EleN(E})

as wanted. Therefore, we can run Step 1 on each 2-component and Lemma 2.1 holds.

Now we show that with high probability all the 2-components after this second run of Step 1
have size O(Ilnln m). Let C be a 2-component generated after the first run of Step 1 with order
at most olnm. We will prove in Section 6.2, Lemma 6.2, that there are at most o(In m)e‘sk
events of order at most k that are participating in C'. Therefore, by Lemma 3.1, the expected
number of (1,2)-trees of order at least ¥ is at most

Z o(lnm)e®*e 20 < g(lnm) Z e =R/
k>0 k>0

< 300(lnm)e” /%,

for sufficiently small §, which in turn is at most (lnm)~* if ¥ > 25((av+ 1) Inln m +In(300)).
Therefore, since the number of trials of a (1,2)-tree with order ¥ is at most %, with probability
at least 1 — m, for any constant o > 0, there is no 2-component of size greater than

B((a+1)Inlnm +1n(300)) € O(2 lnlnm).

14

4 Expected Linear Time

In this section we show that under reasonably general assumptions (that are clarified below), the
algorithm of Theorem 1.5 can be implemented in a way such that its expected running time is linear
in M = Y, |F.

The first assumption is that the requirements of Remark 1 hold, and therefore, we can run Steps
3 and 4 of the algorithm.

The second assumption is t; = O(1), i.e. we can carry out each random trial in constant time.
Let {o1,09,...,0,} be the set of possible outcomes of a trial f; € F, where z is a constant. For each
(possibly reduced) event E; we will keep 2 different integers #y,...,7,, where 7; is the number of
trials in F; whose outcome is 0, 1 < j < z. Let’s call this set of integers Info(E;).

The last assumption is that for each E;, knowing Info(E;), we can evaluate in O(1) time whether
E; holds or not (and therefore t; = O(1)). Having these assumptions, we show that each step of the
algorithm can be implemented in time O(MM).

Step 1: In this step, first we choose an outcome for each trial f; uniformly at random. This can
be done in time O(n).

For the BFS procedure, the important point is that each event E; will be evaluated at most once
for each trial f, € F;. Also, whenever E]|FJ’ is true (and so we will have a core event on F]’)7 after

performing R = R — F}, we update info(E;) for all neighboring events Ej of E;. Therefore, Info(E;)
will be updated at most | Fj| times and each update takes constant time. So the overall running time
of finding the 1-components will be O(A).

To compute the 2-components, it is obvious that each event is checked at most once to see if it
is dangerous or not. Thus, the total running time of finding the 2-components is O(M). We repeat
Step 1 until all the 2-components produced have “order” at most plnm, for some constant p (where
we mean order in the sense that we defined it in Section 3). By the proof of Lemma 2.2, the expected
number of times we have to repeat Step 1 would be O(1). So, in time O(M) we find 2-components
all of which have “order” at most plnm.

Since we want to obtain expected linear time, we do not perform exhaustive search (Step 2).
Instead we perform Step 3.

Step 3: Suppose that C? is some 2-component with “order” ¥. Therefore, the sum of the number
of trials of all (possibly reduced) events of C? is at most % We apply Step 1 to this 2-component,
independently from the other 2-components. We repeat this until the produced 2-components of C*
all have “order” at most pln % Again, using the proof of Lemma 2.2, the expected number of times
that we have to repeat this is at most O(1). So the total time spent to find small 2-components in
C? would be O(%) By summing this up over all 2-components, the total running time of Step 3 will
be at most O(M).

Step 4: Assume that the 2-components produced for C? in Step 3 are C? C% ..., C?% Finding a
good set of outcomes for the trials of C? using exhaustive search takes at most O (277! Ypec? |Fjl)

Therefore, using the fact that ZEjeC? |F;| < %, the total running time of Step 4 on C? would be at
most:

iO (wgln%(\y/d) — O((\I//e)%lnx-l'z)_

By Lemma 3.1, the expected number of 2-components C? having “order” at least ¥ is at most

15

21me~Y/29, Since

Z O((\I//G)% lnx—l—Z)e—‘lJ/ZO
=1

is a convergent sum, the total running time for the exhaustive search on all 2-components is at most:

Llnm
€

3 O0((/e) < M 2)me=Y2 = O(m).
U=1

5 Proof of Theorem 1.6

Assume that we color each vertex uniformly at random with colors {1,2,...,C}. For each vertex v;
of the hypergraph we define a trial f; that has C' outcomes, one for each possible color. For each
edge e; we define C' sets of trials, one for each color 1 < ¢ < C. For each color ¢, let F, ; be the set
of trials whose corresponding vertices are in e;. Note that the set of trials for a fixed j and different
values of ¢ is the same, |F. ;| = |e;|, and F.; is intersecting at most C(8]ej|e”™ + 1) other sets of
size at most k. For each set S of trials and each color ¢, define d.(S) to be the number of trials in §
whose outcome is ¢, and define the bad event E, ; to be the event that |d.(F. ;) — |eC—J|| > % Using
Chernoff’s bound for the tails of binomial distribution we have:

L el ale]
PrE,,] = PIBIN(e} z)— 2> “
< ge—o?leil/3C
< eleglfac

The last inequality holds if A is sufficiently small. For each set S C F, ;, we define E. j|s, the event
E. ; restricted to S, to be the event that |d.(S) — %| > % Let € = %, Dej = e~cleil. Since we
want to obtain expected linear time, we must show that the stronger assumptions of Remark 1 hold.
Solet . ; = e=9¢"Ij1 for sufficiently small 8. By the Chernoff bound, Pi[E, ;] < pc,; and if | S| > €le;]
then P1[E,. ;|s] < p.; and if |S| < €|e;| then Pr[E,. j|s] = 0. Using the fact that 1 — 2 > ™%, for
0<z< %, we have:

. C B . wk_l_l
Le,y H (1 — x&t) > 6—553|3J| H (1 B 6_663k) (Blejle)
Fink#0 k>1/A

6_553|€j|exp{—250’|ej| Z 6_553]“67]“}

E>1/A
(For C" = C' 4 1 and sufficiently small A)

1,1/
exp { [_563 _ (%)] |6]‘|} (Where a = 67_563)

—c?ej]

v

v

e (if 8 and ~ are sufficiently small)

N 2

= PZ,J‘-
So we satisfy all the requirements of Theorem 1.5 and Remark 1, and therefore, there is a randomized
algorithm that runs in expected linear time that finds the outcomes of the trials, such that each set

16

F, ; is partitioned into at most 3 subsets Sc ; 1, S¢,j 2, Sc ;3 such that E. ; restricted to each of them
does not hold, i.e. for 1 <k <3, |dc(Sc k) — |S|| < a|ej|. Thus, for each set F, ;:

el S|
do(Fej) — 2 < Y del(Sejr) — =
C 1<k<3 ¢
ale;
- C

This gives the required coloring of the vertices of H.

6 Details of the Proof of Theorem 1.5

Proof of Inequality (4): Suppose that T}, T3, ..., T} are the 1-trees of T and let Z;1 be the event
that 7! is built during Step 1 of the algorithm. Then

T
Pr[Z7] < Pr[Zp).

=1
For each 7, let (); be the sequence of 1-trees (not necessarily in T') corresponding to the 1-components
that are built before the first 1-component containing any reduced event of a basic event correspond-
ing to a vertex of T}'. Note that by this definition, given @Q; and T} we can uniquely determine the
set of core events that must be formed in any 1-component whose corresponding 1-tree is T!. Letting
this set of (possible) core events be P and by using (3):

PrZplQ] =Pzl < [»s (16)

Ejw;eVe(T})

We also have:

r i—1
7] < HPI’[ZTﬂ A Zp1]. (17)
=1 7=1
If we define Q; to be the set of all sequences ; each of which contains T!,..., T |, then:
i—1
PrZp| A\ Zri] = > Pi{Z1|Qi] x Pr[Qi] /\ Z. (18)
J=1 Qi€Q;
Using (16) and (18):
i—1
ZT1|/\ZT1 < II kaPrQ|/\ZT1

J=1 Ey: UkEVC() Q:€9;

H Dk.

Eyvp EVC(Tll)

IA

Now combining this with (17) yields:

T]Sﬁ II »= 10 »-

=1 Ejw;eVe(T}) EjwjeVe(T)

17

|
In the rest of this section, we prove the upper bound of E[Xq ,] used to prove Inequality (12).
To do that, the following technical lemma, which is proved in [6], is very helpful.
6.1 A Technical Lemma

Consider some fixed set) of basic events. Assume that for every event A € () we have a non-negative
random variable A4, called contribution. Let us define the contribution Ag of () to be the sum of
the contributions of all events of (). Also,

S ={RCN(Q):Ar=1}.

Lemma 6.1 [6] Let v > ﬁ be an arbitrary constant. Furthermore, let Q) be any set of basic events

and (AB)pge N(Q) be any sequence of contributions with the property that:
(1) the contribution of any event in N (R) is either 0 or at least 1/+.
(ii) 1{(A, B) € Q x N(Q) : Pr[1 < Ag < k] > 0}] < e,

(11) there is a ¢ > % s0 that for every event B € N(Q), Pr[Ap = k] < e~ independently of other
events of positive contributions.

Then
B[S < e7?2e/®,

6.2 Bounding the Expected Number of Extensions of a Specific Order

The main purpose of this section is to bound E[Xg ,]. First we focus on those extensions of @) that
only use 1-tree edges.

Lemma 6.2 For every event E;:
{E) € N(E:) < |Fj| < k)| < "N F|
Proof: By Inequality (1) of Theorem 1.5:

2 3 2 A 2 .
e~ € |F;] < 6—56 |F3| H (1 _ 6—56 |FJ|)
EjEN(E,’)

< H exp (_6—552 |Fj|)

Ej;eN(E;)

= exp (_ Z 6—562|Fj|)
Ej;eN(E;)

— E|F| > Z =05
EjeN(Ei)
The lemma then follows easily from the last inequality. [|

18

Lemma 6.3 Fvery event E; has order at least %

Proof: By one of the requirements of Theorem 1.5: z; < % Therefore:

¢l < ool — Op, = €| F;| > i
' €
|

Now we are going to apply Lemma 6.1. For every event E; € N(Q), let the contribution Ap; of
E; be defined as Op;, if E; gets heads tag, after performing the helper experiment, and 0 otherwise.
So condition (i) of Lemma 6.1 holds by Lemma 6.3.

Recall that the edges between) and R can have either of two possible directions. That is, there
are up to two possibilities for connecting E; € () to E; € R. To consider both of these possibilities,
we assume that there are (virtually) two copies of each E; € R, one for each possible directed edge.
Therefore, using Lemma 6.2, the above assumption, and the fact that Og; < k implies |F;| < %:

{(ELEj) € Qx N(@): Prl1 < Ap, < 1] > 0} U{(Ej, i) € N(Q) x Q : Pafl < Ap, < K] > 0}
< Y heq 2¢ | R
< Qe‘skOQ.

So condition (ii) is true with ¢ = 20¢. For condition (iii), we are going to use the same trick as
used by Czumaj and Scheideler [7]. That is, we are going to use only part of the probability for an
event to get heads tag and save the other part for when we want to consider 2-tree edges. Since each

event E; gets heads tag with probability p;, therefore Pr[Ag; = Op;] = p;. For the reason mentioned

above, and by setting ¢ = %, we get Pr[Ag;, = Op,] < ¢ %5 and so condition (iii) of Lemma 6.1

holds, too. Thus, if we denote by Xéﬂ, the number of extensions R with contribution r where all
the events in R have heads tags and are connected to the events in () using only 1-tree edges after
performing the helper experiment, then:

E[X},] < e7"/4elal?, (19)

Now consider the case that there is a 2-tree edge from an event in) having heads tags to a
pseudo dangerous event E;. This case is significantly different from the previous one since E; itself
does not have a probability. Instead, using the same idea as in [7], we “borrow” probabilities from
the basic events that are intersecting E; and have a core event (this is the point we use the other
part of the probability of a core event that we reserved in the previous case). We define the virtual
order of the pseudo-dangerous event E;, denoted by wg;, to be the sum of the orders of the set .S
of core events that are intersecting E; and whose corresponding pseudo l-components were merged
into a pseudo 2-component because of E;. That is: wg; = > 5 csOp,. Note that the events in S
must cover at least €| F}| trials of E;. Therefore:

wg; = Z Og, = Z €|Fe| > €*|F;| = €Op; - (20)
E.es E.es

Since for every core event E, € S we still have a probability e~?F:/2 available, we can assign a
probability of e~ “Fi 2 o E;. Now we are ready to apply Lemma 6.1 again. Define the contribution

19

Ap; of Ej as wg; if the events in S got heads tags after the helper experiment, and 0 otherwise.
Condition (i) follows with v = ¢ from Lemma 6.3 and (20). By Lemma 6.2 and (20):

{E; € N(E,) : wg; < k}| <|{E; € N(E,) : €|F;| < k}| < €| Fj| = **wp,.

So we satisfy condition (ii). Finally, condition (iii) holds with ¢ = 1/2. Thus, it follows from Lemma
6.1 that if we denote the expected number of extensions R with contribution r of events having heads
tags that are connected to ¢ by a path of length two of 2-tree edges, by Xér, then:

E[X3,] < e"/*e%e/, (21)
Lemma 6.4 For sufficiently small §:
EI:XQJ’] S e—T/SeOQ/16‘

Proof: Using (19) and (21), we bound the expected number of extensions R of a set @ with Op = r.
Let Us, ={0,1/5,1/6+1,...,r}.

E[Xq, < Y E[X{JEX} 1)
keU{?,r
< Z ¢—k/4,00/24 ,~(r—k)/4,0q/48
keU{?,r
S (r_ %+1)6—T/460Q/16
< /800116
if ¢ is sufficiently small. [

Acknowledgment: Most of this work was done when I was a graduate student in the De-
partment of Computer Science at the University of Toronto. I would like to thank Mike Molloy,
for introducing me to the problem and for many useful discussions and suggestions. I extend my
appreciation to two anonymous referees for their very helpful suggestions and comments.

References

[1] N. Aron, “A parallel algorithmic version of the Local Lemma”, Random Structures and Al-
gorithms 2 (1991), 367-378. A preliminary version appeared in Proc. of 32nd IEEE Symp.
Foundations of Computer Science, (FOCS) 1991.

[2] N. Aron, C. McDiarRMID, AND B. REED, “Acyclic coloring of graphs”, Random structures
and Algorithms 2 (1991), 277-288.

[3] N. ALoN anD J.H. SPENCER, “The probabilistic Method”, WileyInterscience Ser. Discrete
Math and Optimization, Wiley, New York, 2000.

[4] J. BECK, “An algorithmic approach to the Lovasz Local Lemma”, Random Structures and
Algorithms, 2 (1991), 343-365.

20

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]
[18]

[19]

[20]

J. BECK AND S. LobDHA, “Efficient Proper 2-coloring of Almost Disjoint Hypergraphs”, in Proc.
of 13th annual ACM-SIAM Symp. on Discrete Algorithms, (SODA) 2002.

A. Czumas AND C. SCHEIDELER, “Coloring non-uniform hypergraphs: A new algorithmic

approach to the general Lovasz local lemma”, Random Structures and Algorithms 17 (2000).
Earlier version in Proc. of 11th annual ACM-SIAM Symp. on Discrete Algorithms, (SODA)
2000, 30-39.

A. CzuMa) AND C. SCHEIDELER, “An algorithmic approach to the general Lovdsz local lemma
with applications to scheduling and satisfiability problems”, Proc. of 32nd ACM Symp. on
Theory of Computing, (STOC) 2000, 38-47.

P. ERDOS AND L. LovAsz, “Problems and results on 3-chromatic hypergraphs and some related
questions”, Infinite and Finite Sets (A. Hajnal et. al. eds), Colloq. Math. Soc. J. Bolyai, 11
(1975), pp. 609-627.

P. ERDOS AND J. SELFRIDGE, “On a combinatoriall game”, J. Comb. Theory Ser. A 14 (1973),
298-301.

A .M. Friezg, “Disjoint paths in expander graphs via random walks: a short survey”, Proc. Of
Random 98 LNCS 1518 (1998), 1-14.

A.M. Frieze, “Edge disjoint paths in expander graphs”, SIAM J. on Computing 30(6) 2001,
1790-1801.

A.M. FriEze AND M. MoLLoy, “Splitting an expander graph”, J. of Algorithms 33 (1999),
166-172.

J. Kann, “Asymptotically good list-colorings”, J. Comb. Theory Ser. A 73 (1996), 1-59.

T. LeigaTon, C. Lu, S. RA0, AND A. SRINIVASAN, “New algorithmic aspects of the Local
Lemma with applications to routing and partitioning”, SIAM J. on Computing 31(2), 2001,
626-641. Earlier version appeared as two separate papers, both in Proc. of the 10th annual
ACM-SIAM Symp. on Discrete Algorithms, (SODA) 1999.

T. LeiGHTON, B.M. Maas, aAND S.B. Rao, “Packet routing and job-shop scheduling in
O(Congestion + Dilation) steps”, Combinatorica 14 (1994), 167-180.

T. LEIGHTON AND S. Rao, “Circuit switching: a multicommodity flow based approach”, Proc.
of a Workshop on Randomized parallel computing, 1996.

M. MorLoy aND B. REED, “Graph Colouring via the Probabilistic Method”, Springer, 2002.

M. MoLroy aND B. REED, “Further algorithmic aspects of the Local Lemma”, In Proc. of the
30th ACM Symp. on Theory of Computing, (STOC) 1998, 524-529.

M. Morroy anD B. REED, “A bound on the total chromatic number”, Combinatorica 18
(1998), 241-280.

B. REED, “w, A, and \”, J. Graph Theory 27 (1998), 177-212.

21

