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Abstra
t

In his seminal result, Be
k gave the �rst algorithmi
 version of the Lov�asz Lo
al Lemma by

giving polynomial time algorithms for 2-
oloring and partitioning uniform hypergraphs. His work

was later generalized by Alon, and Molloy and Reed. Re
ently, Czumaj and S
heideler gave an

eÆ
ient algorithm for 2-
oloring non-uniform hypergraphs. But the partitioning algorithm ob-

tained based on their se
ond paper only applies to a more limited range of hypergraphs, so mu
h

so that their work doesn't imply the result of Be
k for the uniform 
ase. Here we give an algo-

rithmi
 version of the general form of the Lo
al Lemma whi
h 
aptures (almost) all appli
ations

of the results of Be
k and Czumaj and S
heideler, with an overall simpler proof. In parti
ular, if

H is a non-uniform hypergraph in whi
h every edge e

i

interse
ts at most je

i

j2

�k

other edges of

size at most k, for some small 
onstant �, then we 
an �nd a partitioning of H in expe
ted linear

time. This result implies the result of Be
k for uniform hypergraphs along with a speedup in his

running time.

Keywords: Probabilisti
 Method, Lov�asz Lo
al Lemma, Random trial, Hypergraph 
oloring.

1 Introdu
tion

The probabilisti
 method is used to prove the existen
e of an obje
t with 
ertain properties by

showing that a randomly 
hosen obje
t in an appropriate probability spa
e has the desired properties

with positive probabilities. Some appli
ations, for example, are in proving the existen
e of eÆ
ient

routing algorithms [15℄, disjoint paths in expander graphs [10, 11, 16℄, and many graph 
oloring

problems [2, 13, 17, 19, 20℄. In most appli
ations, the probability that the randomly sele
ted obje
t

has the desired property is not only positive, but is a
tually high and frequently tends to 1 as the

parameters of the problem tend to in�nity. In these 
ases, the proof yields a randomized algorithm

for 
onstru
ting an obje
t with the required properties: we simply pi
k obje
ts at random until we

�nd one. Under fairly general 
onditions, these algorithms 
an be derandomized using the method

of 
onditional probabilities due to Erd�os and Selfridge [9℄.

�
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On the other hand, there are some tools, by whi
h we 
an show that a 
ertain event happens with

positive, but exponentially small, probability. One of these tools is the Lo
al Lemma, �rst proved

by Erd�os and Lov�asz [8℄, whi
h turned out to be an extremely powerful tool.

Lemma 1.1 (General Lo
al Lemma) Let E

1

; : : : ; E

n

be a set of \bad" events in an arbitrary

probability spa
e and let G be the dependen
y graph for them. That is, for every i, 1 � i � n, the

event E

i

is mutually independent from all E

j

with (i; j) 62 G. Assume that there exist x

i

2 [0; 1) for

all 1 � i � n with Pr[E

i

℄ � x

i

Q

(i;j)2G

(1� x

j

), for all i. Then with positive probability no bad event

E

i

o

urs.

There are many appli
ations of the Lo
al Lemma (see [2, 3, 8, 10, 12, 13, 15, 16, 19, 20℄). Perhaps

the most typi
al example of an appli
ation of the LLL is the hypergraph 2-
oloring problem, whi
h


an be formulated as follows:

Corollary 1.2 [8℄ Let A

1

; A

2

; : : : be n-element subsets of a �nite set X, and assume that every

A

i

interse
ts at most 2

n�3

other A

j

, n � 2. Then there is a 2-
oloring of X su
h that no A

i

is

mono
hromati
.

For the Lo
al Lemma, the simple general randomized pro
edure we mentioned above does not

produ
e a polynomial time algorithm. Therefore, we need some more elegant te
hniques to get an

algorithmi
 version of this lemma. In a breakthrough paper, Be
k [4℄ developed the �rst algorith-

mi
 version of the LLL by giving a polynomial time algorithm for 2-
oloring uniform hypergraphs,

provided that the 
ondition 2

n�3

is repla
ed by a weaker bound 2

�n

, su
h as � =

1

48

. Alon [1℄

des
ribed a parallel version of this algorithm, for smaller values of �. These methods were further

generalized by Molloy and Reed [18℄ to yield eÆ
ient algorithms for a wider range of appli
ations

of the LLL. Re
ently, some other algorithmi
 versions of the LLL have been presented by various

authors [5, 6, 7, 14, 17℄. Czumaj and S
heideler [6℄ extended the result of Be
k [4℄ to non-uniform

hypergraphs, by showing that:

Corollary 1.3 [6℄ There exist 
onstants �; �; �, su
h that for every hypergraph H, if every edge

e 2 H has size at least � and interse
ts at most �jej2

�k

other edges of size at most k, then there is

randomized algorithm that �nds a 2-
oloring of H in polynomial time w.h.p. The expe
ted running

time of the algorithm is linear in

P

e2H

jej.

In [4℄, Be
k studied a dis
repan
y version of the 2-
oloring problem, whi
h is also 
alled the hypergraph

partitioning problem, and gave the �rst polynomial time algorithm for it. Roughly speaking, this is

the problem of 2-
oloring the verti
es of a hypergraph, su
h that in ea
h edge the number of nodes

of ea
h 
olor are relatively 
lose. More formally:

Theorem 1.4 [4℄ Assume that 0 < � � 1 is a given real number. Let H(V;E) be an n-uniform

hypergraph in whi
h ea
h edge interse
ts at most 2


n

other edges, where 
 = 
(�). If n is large

enough with respe
t to �, then we 
an �nd a 2-
oloring f : V �! f�1;+1g in polynomial time su
h

that, with f(e) =

P

v2e

f(v): for ea
h e 2 H, jf(e)j � �n.

Among the known algorithmi
 versions of the LLL, only the result of Czumaj and S
heideler [7℄


an be used to extend this result to some non-uniform hypergraphs, but their result is somewhat

weaker than Theorem 1.4, as it requires that every edge interse
ts at most O(2

O(k

�

)

) other edges of
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size at most k, for some small 
onstant �. As a 
onsequen
e, their result is not strong enough to

imply Theorem 1.4 for uniform hypergraphs.

Here we give a new and stronger algorithmi
 version of the LLL, whi
h implies all the appli
ations

of the results of Be
k [4℄ and Czumaj and S
heideler [6, 7℄. In parti
ular this result extends Theorem

1.4 to non-uniform hypergraphs. The overall analysis of the algorithm is simpler and under some

slightly stronger 
onditions its expe
ted running time is linear. Before stating our main theorem, we

need a few de�nitions and notation.

Let F = ff

1

; : : : ; f

n

g be a set of random trials, and E = fE

1

; : : : ; E

m

g be a set of \bad" events,

where ea
h E

i

is determined by the out
omes of the trials in F

i

� F . Two events E

i

and E

j

are 
alled

neighbors if F

i

\ F

j

6= ;. By N(E

i

) we mean the set of neighbors of event E

i

. During the 
ourse of

our algorithm, we will need to break some of the events into at most three smaller sub-events. For

this reason, we need to assume that for every event E

i

and every set S � F

i

, the event E

i

restri
ted

to S is well-de�ned and is denoted by E

i

j

S

. For example, 
onsider the problem of partitioning a

non-uniform hypergraph H(V;E) into two parts. That is, given H and real number � > 0, we want

to �nd a 2-
oloring f : V �! f�1; 1g su
h that with f(e

i

) =

P

v2e

i

f(v), for ea
h edge e

i

2 E we

have jf(e

i

)j � �je

i

j. For ea
h vertex v

i

we will have a random trial f

i

whi
h determines the 
olor to

be assigned to v

i

and for ea
h edge e

j

2 E the bad event E

j

will be the event that jf(e

j

)j > �je

j

j. If

S

1

; S

2

; S

3

is a partition of the vertex set of e

j

, T

1

; T

2

; T

3

is the 
orresponding partition of the trial set

of E

j

, and if we de�ne f(S

x

) =

P

v2S

x

f(v) (1 � x � 3), then E

j

j

T

x


an be de�ned as the event that

jf(S

x

)j >

�jS

x

j

3

. By this de�nition, if none of E

j

j

S

x

(1 � x � 3) happens it means that jf(S

x

)j �

�jS

x

j

3

,

for 1 � x � 3, and sin
e f(e

j

) =

P

1�x�3

f(S

x

), therefore jf(e

j

)j �

P

1�x�3

jf(S

x

)j � �je

j

j. Thus E

j

does not happen.

Theorem 1.5 Assume that F and E are de�ned as above. There exists a 
onstant Æ su
h that for

any 0 < � � 1 the following holds:

Suppose that every trial f

i

2 F has a 
onstant number of out
omes and we 
an 
arry out the random

trial in time t

1

. Let p

i

= e

��jF

i

j

and suppose that for all S � F

i

it holds that:

� if jSj > �jF

i

j then Pr[E

i

j

S

℄ � p

i

,

� if jSj � �jF

i

j then Pr[E

i

j

S

℄ = 0, and

� knowing the out
omes of the trials in S, we 
an evaluate whether E

i

j

S

holds or not in time t

2

.

Furthermore assume that for x

i

= e

�Æ�

2

jF

i

j

it holds that x

i

�

1

e

and:

p

�

i

� x

i

Y

E

j

2N(E

i

)

(1� x

j

); 1 � i � m: (1)

Then there is a randomized algorithm that �nds the out
omes of the random trials in time O((t

1

+

t

2

)�Poly(n+m)) with high probability, where Poly(n+m) is a polynomial in (n+m), su
h that for

every event E

i

, the set F

i

is partitioned into at most 3 subsets S

i;1

; S

i;2

; S

i;3

, so that E

i

j

S

i;1

, E

i

j

S

i;2

,

and E

i

j

S

i;3

are all false.

Remark 1: If we have the stronger assumption that for x

0

i

= e

�Æ�

3

jF

i

j

: x

0

i

� e

�1

and

p

�

2

i

� x

0

i

Y

E

j

2N(E

i

)

(1� x

0

j

); 1 � i � m; (2)

Then:
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(i) We 
an still get polynomial running time even if the number of out
omes of ea
h random trial

f

i

2 F is polylogarithmi
 in n +m.

(ii) Under some reasonably general assumptions, the expe
ted running time of the algorithm is

linear in

P

m

i=1

jF

i

j. As an example, this applies to the hypergraph partitioning problem. We

talk about this in more detail in Se
tion 4.

It is straightforward to 
he
k that (2) implies (1).

Remark 2: Throughout the paper, we do not attempt to �nd the optimal values of the 
onstants;

rather we give the proofs based on their existen
e. As an example, it 
an be veri�ed that Æ � 1=600

is enough for the theorem to hold.

Theorem 2.1 in Czumaj and S
heideler [7℄ needs the stronger requirements p

i

= e

�jF

i

j

�

and x

i

=

e

�ÆjF

i

j

�

2

(whi
h are even stronger than those in Remark 1). This is why their theorem does not mat
h

Theorem 1.4 for non-uniform hypergraphs. Also, the requirement of their theorem 
orresponding to

Inequality (1) is stronger than Inequality (1), and they don't spe
ify into how many sets ea
h event

E

i

might be partitioned.

More importantly, there is an error in their theorem in that it only guarantees polynomial running

time if the number of out
omes of ea
h trial is 
onstant (rather than polylogarithmi
 in n + m as

they 
laim) unless an inequality stronger than the one in their theorem is satis�ed.

1

Our proof is

similar to that of [7℄ with an overall simpler analysis. Using Theorem 1.5 we 
an show that:

Theorem 1.6 Let H(V;E) be a hypergraph with verti
es v

1

; : : : ; v

n

and edges e

1

; : : : ; e

m

. Suppose

that a real 0 < � < 1 and an integer C are given. There exist 
onstants 0 < �; 
; � < 1, su
h

that if every edge e

j

has size at least 1=� and interse
ts at most �je

j

je


k

other edges of size at

most k, then we 
an �nd a C-
oloring f : V �! f1; 2; : : : ; Cg in expe
ted linear time, su
h that if

d

i

(e

j

) = jfv 2 e

j

: f(v) = igj then for ea
h 1 � i � C and ea
h 1 � j � m:

jd

i

(e

j

)�

je

i

j

C

j �

�je

i

j

C

:

One appli
ation of the hypergraph partitioning problem is in splitting expander graphs [12℄.

Frieze and Molloy [12℄ use an asymmetri
 version of the LLL to prove the existen
e of good splittings

for expander graphs. The result of [7℄ is not general enough to repla
e the non-
onstru
tive version

of the LLL in the proof of [12℄, but it is not very diÆ
ult to 
he
k that we 
an use Theorem 1.6 for

this appli
ation. However, this doesn't yield a polynomial time algorithm, due to the fa
t that the

number of events that Molloy and Frieze [12℄ de�ne to apply the LLL, is exponential in the size of

input.

The organization of the paper is as follows. In the next se
tion we present the polynomial

time algorithm for Theorem 1.5. Se
tion 3 
ontains the analysis of the algorithm and the proof

of 
orre
tness for it. More details of the proof are explained in Se
tion 6. In Se
tion 4 we show

the 
onditions under whi
h the expe
ted running time of the algorithm would be linear. Finally, in

Se
tion 5 we explain how to use Theorem 1.5 to prove Theorem 1.6.

1

The reason is that Step 3 of their algorithm 
annot ne
essarily be performed, unless it is proved that the re-

quirements of their theorem holds for the new set of (possibly redu
ed) events that have to be 
onsidered for ea
h

2-
omponent. This, of 
ourse, does not ne
essarily hold unless we start with an stronger inequality.
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2 Des
ription of the Algorithm

2.1 Overview of the Algorithm

The goal is to �nd a set of out
omes for the trials in F su
h that ea
h trial set F

i

(for event E

i

2 E)

is partitioned into at most three subsets S

1

; S

2

; S

3

where all E

i

j

S

1

, E

i

j

S

2

, and E

i

j

S

3

are false. The

main idea of the algorithm is essentially the same as the ones in Be
k [4℄ and Czumaj and S
heideler

[6, 7℄. There are two main steps in the algorithm:

Step 1: Choose an out
ome for ea
h trial uniformly at random.

Step 2: Sele
t a (possibly empty) subset of trials of ea
h event and redo them.

Of 
ourse, after Step 1, there might be many bad events that hold. Therefore, we must redo the

trials in them. The general idea of this part of the algorithm is similar to the other known algorithmi


versions of the Lo
al Lemma, whi
h is to show that the 
onne
ted 
omponents 
onstru
ted by these

bad events are disjoint, and then to try to handle ea
h one separately in later steps. To a
hieve

this, we might break some of the basi
 events into some smaller events. For example, 
onsider the

situation in whi
h an event E

i

is true (and therefore its trials have to be redone). If there is another

event E

j

2 N(E

i

) whi
h is also true then of 
ourse E

i

and E

j

will be in the same 
omponent and we


annot redo their trials independently. What if E

j

and the restri
ted event E

j

j

F

j

�F

i

are both false,

but E

j

has more than �jF

j

j trials in 
ommon with E

i

? In this 
ase, although we don't have to redo

the trials of E

j

(be
ause it is false), there is this possibility that after redoing the trials of E

i

, E

j

be
omes true, although a large portion of it, i.e. E

j

j

F

j

�F

i

remains un
hanged. This might happen,

for instan
e, if E

j

j

F

j

\F

i

be
omes true. For this reason, we break event E

j

into two parts; one event

is E

1

j

= E

j

j

F

j

\F

i

and the other is E

2

j

= E

j

j

F

j

�F

i

. Ea
h of these is 
alled a redu
ed event. Now

we 
onsider the event E

1

j

to be in the same 
omponent as E

i

(sin
e it has 
ommon trials with E

i

).

If we �nd a set of out
omes for the trials in this 
omponent that makes all the (possibly redu
ed)

events in the 
omponent false, then E

1

j

will be
ome false. Sin
e the trials of E

2

j

are disjoint form the


omponent and therefore are not a�e
ted by this pro
ess of redoing the trials of the events of the


omponent, E

2

j

remains false. Hen
e, the trial set of E

j

is partitioned into two sets, one de�ning E

1

j

and one de�ning E

2

j

, where both of these events are false at the end.

So our �rst goal after Step 1 is to �nd 
onne
ted 
omponents of bad (possibly redu
ed) events.

However, we 
annot only fo
us on these 
omponents and redo their trials independently. The reason

is that there might be an event, su
h as E

k

, whi
h is false even restri
ted to any subset S � F

k

and

E

k

does not interse
t any other event in more than �jF

k

j trials. Therefore E

k


annot be
ome true if

we redo the trials of any single event in N(E

k

). So it does not belong to any 
omponent even as a

redu
ed event. But it is possible that E

k

is interse
ting too many bad events of di�erent 
omponents

that are true, so many so that the that the total number of trials that E

k

has in 
ommon with those

events is more than �jF

k

j. In this 
ase, if we are not 
areful enough when we redo the trials of those


omponents, then E

k

may end-up being true after all. So, although E

k

(even restri
ted to any subset

of its trial set) is not true, it is \dangerous" as it is interse
ting too many events that are true. So

we must 
onsider the trials of the (possibly redu
ed) events of the 
omponents that are 
onne
ted

by dangerous events together. This will result in larger 
onne
ted 
omponents.

However, if an event E

x

is not true (even when restri
ted to any subset of F

x

) and it is not

dangerous, then by redoing the trials of these larger 
omponents, E

x


annot be
ome true, sin
e

the subset S of trials of E

x

that may have been redone in the se
ond step has size at most �jF

x

j.

5



Therefore Pr[E

x

j

S

℄ = 0. Also E

x

j

F

x

�S

is not true either by our assumption. So E

x

remains false

after Step 2.

It 
an be shown that there is a suitable set of out
omes of the random trials of these 
omponents

su
h that every (redu
ed) event is false and the dangerous events are not true either. So if the size

of ea
h of these 
omponents is small enough, then we 
an �nd these suitable out
omes by exhaustive

sear
h in Step 2! We show that in fa
t this is the 
ase. That is, with high probability, there is no


omponents whi
h has more than O(lnm) trials. So exhaustive sear
h yields polynomial running

time.

2.2 Details of the Algorithm

In this subse
tion, we des
ribe how to perform ea
h step of the algorithm in more details. We also

explain the extra steps for the 
ases that we have the stronger assumptions of Remark 1.

Step 1: Choose an out
ome for ea
h trial f

i

2 F uniformly at random.

We 
all events E

1

; : : : ; E

m

basi
 events and any event de�ned by a basi
 event E

i

restri
ted

to a subset S � F

i

is 
alled a redu
ed event and is denoted by E

i

j

S

. Now we �nd the 
onne
ted


omponents of bad events using a Breadth First Sear
h (BFS) algorithm:

Set R = F /* R is going to be the set of remaining trials of F */

for i=1 to m do

if E

i

j

F

i

\R

is true then

R = R� fF

i

\Rg

BFS (E

i

j

F

i

\R

)

Pro
edure BFS (E: event)

Fathers = fEg;

CE = fEg /* CE will be the set of 
ore events of the 1-
omponent */

repeat

Children = ;

for all E

j

2 N (Fathers) in in
reasing j do

F

0

j

= F

j

\R

if E

j

j

F

0

j

is true then /* So jF

0

j

j � �jF

j

j*/

R = R� F

0

j

Children = Children [ fE

j

j

F

0

j

g

CE = CE [ fE

j

j

F

0

j

g

endif

Fathers = Children

endfor

until Children = ;

We 
all ea
h 
onne
ted 
omponent found by the BFS algorithm a 1-
omponent and CE the set

of 
ore events of the 1-
omponent. Every basi
 event E

j

that has at least �jF

j

j trials in 
ommon with

CE is 
alled a parti
ipating event of the 1-
omponent. For every parti
ipating event E

j

let F

0

j

� F

j

6



be the set of trials of E

j

that are not in CE. It 
an be seen that if we redo the trials in the 
ore

events, E

j

j

F

0

j

, the redu
ed event of E

j

indu
ed by its trials whi
h are not in CE, 
annot be true,

otherwise E

j

j

F

0

j

would have been added to the 1-
omponent as a 
ore event. Another fa
t is that by

this algorithm, every basi
 event is redu
ed to at most one redu
ed (
ore) event.

After �nding 1-
omponents, it might happen that some basi
 events are not 
ore events of any

1-
omponent but are interse
ting (or maybe parti
ipating in) \too many" 1-
omponents and so after

redoing the trials in ea
h of the 1-
omponents, these basi
 events be
ome true. Su
h a basi
 event is


alled dangerous. More formally, a basi
 event E

i

, that is not a 
ore event, is dangerous if more than

�jF

i

j of its trials belong to (di�erent) 1-
omponents. So we introdu
e the 2-
omponent stru
tures.

A 2-
omponent is basi
ally a maximal set of 1-
omponents that are 
onne
ted by dangerous events.

The 
ore set of a 2-
omponent C is the union of the 
ore sets of its 1-
omponents and is denoted by

CE

C

. An event E

i

is parti
ipating in a 2-
omponent if at least �jF

i

j trials of it are 
overed by the


ore events of the 2-
omponent. So every dangerous event is also a parti
ipating event. For every

basi
 event E

i

that is not parti
ipating in any 2-
omponent let F

0

i

� F

i

be the (possibly empty) set

of trials of E

i

that are in the 
ore events of the 2-
omponents and let F

00

i

= F

i

� F

0

i

. By de�nition,

jF

0

i

j < �jF

i

j and therefore, even after redoing the trials of the 
ore events of the 2-
omponents, E

i

j

F

0

i


annot be
ome true. Sin
e E

i

j

F

00

i

is not true either (otherwise it would have been added as a 
ore

event to a 1-
omponent), therefore F

i

is partitioned into at most two subsets F

0

i

and F

00

i

, su
h that

even after redoing the trials of the 
ore events of the 2-
omponent E

i

j

F

0

i

and E

i

j

F

00

i

are both false.

Lemma 2.1 The following statements are true:

(i) Every basi
 event is parti
ipating in at most one 2-
omponent.

(ii) For every 2-
omponent C, there is a set of out
omes of the trials of the 
ore set of C su
h that

ea
h parti
ipating event is partitioned into at most two subsets, ea
h of whi
h is false.

Proof: (i) If an event E

i

is parti
ipating in two di�erent 2-
omponents then it has at least �jF

i

j

trials in 
ommon with the 
ore events of ea
h of them. In that 
ase, it would be a dangerous event

and those two 2-
omponents would have been merged into one 2-
omponent, a 
ontradi
tion.

(ii) Every basi
 event parti
ipates as at most one 
ore event in CE

C

. For every parti
ipating basi


event E

i

, we 
an 
onsider the union of the trials of E

i

that are 
overed by the 1-
omponents of C, as

one redu
ed event E

0

i

. Let us denote the trial set of E

0

i

by F

0

i

. By de�nition of a parti
ipating event,

the size of F

0

i

is at least �jF

i

j. So every parti
ipating event E

i

is divided into at most two parts: one

redu
ed event whose trial set is F

0

i

and is a subset of CE

C

, and another part whi
h has no interse
tion

with CE

C

. Note that F

i

�F

0

i


orresponds to S

i;1

de�ned in Theorem 1.5, and F

0

i


orresponds to S

i;2

for now (but may a
tually be divided later into at most two subsets, 
orresponding to S

i;2

and S

i;3

).

The event E

i

j

F

i

�F

0

i

is false, even if we redo the trials of CE

C

. So if we prove the existen
e of a set of

out
omes of the trials of CE

C

that makes every 
ore event and E

i

j

F

0

i

false, then we are done. The

existen
e of this set of out
omes 
an be proved by the Lo
al Lemma. Ea
h basi
 event appears as at

most one (possibly redu
ed) event and the probability of ea
h redu
ed event E

0

i

satis�es Pr[E

0

i

℄ � p

i

.

So the 
onditions of the Lo
al Lemma in the statement of the theorem hold.

Therefore, we 
an 
onsider ea
h 2-
omponent independently. The main lemma (Lemma 2.2,

part (i)) shows that with high probability, the number of trials in the set of 
ore events of any

2-
omponent, whi
h we 
all the size of the 2-
omponent, will be at most O(lnm). After the �rst

step, if there are any 2-
omponents of size greater than O(lnm) we redo the �rst step. The expe
ted

7



number of times we have to redo it is at most a 
onstant. Thus, if the number of out
omes of the

random trials in F is 
onstant, then we 
an use exhaustive sear
h in the next step:

Step 2: If the number of out
omes of the random trials is O(1) and we don't require expe
ted

linear time then using exhaustive sear
h on ea
h 2-
omponent �nd a suitable set of out
ome for the

random trials of the 
ore events su
h that no 
ore event is true. The algorithm will stop at this

point.

If the number of out
omes of the random trials is polylogarithmi
 in n + m (and therefore

exhaustive sear
h on 2-
omponents of size O(lnm) does not yield polynomial running time) or if we

want speed up in the algorithm then, instead of doing exhaustive sear
h at this point, we may run

Step 1 on ea
h of the 
reated 2-
omponents independently, to obtain suÆ
iently small 2-
omponents.

To be able to do this we need the stronger assumptions explained in Remark 1.

More spe
i�
ally, for ea
h 2-
omponent C and ea
h event E

i

whi
h is a 
ore event or a parti
i-

pating event in CE

C

, let F

0

i

� F

i

be the set of trials of E

i

that are in CE

C

and let E

0

i

= E

i

j

F

0

i

.

Step 3: If the stronger 
onditions of Remark 1 hold then for ea
h 2-
omponent of size O(lnm)

obtained by Step 1, independently, 
onsider the set of redu
ed events E

0

i

de�ned above as the new

set of basi
 events and apply Step 1 to them, to �nd suÆ
iently small 2-
omponents.

Lemma 2.2 (Main Lemma) For any 
onstant � > 0:

(i) After the �rst step, with probability at least 1 �

1

m

�

, there is no 2-
omponent of size more than

O(

�

�

lnm).

(ii) If the assumptions of Remark 1 hold we 
an do Step 3. Furthermore, after Step 3, with probability

at least 1�

1

(lnm)

�

, there is no 2-
omponent of size more than O(

�

�

ln lnm).

If we get to run Step 3 then, by the se
ond part of Lemma 2.2, with high probability we will

get 2-
omponents ea
h of whi
h has size at most O(ln lnm). Now we 
an �nd the required set of

out
omes of the trials of the 
ore sets of these small 2-
omponents using exhaustive sear
h.

Step 4: Using exhaustive sear
h �nd a suitable set of out
omes for the random trials of 
ore

events of the new 2-
omponents su
h that no 
ore event is true anymore.

Re
all from the proof of Lemma 2.1 that after Step 1 of the algorithm, ea
h event E

i

is partitioned

into at most two sets, one of whi
h 
orresponds to S

i;1

, and the other one is F

0

i

. After Step 3 of the

algorithm, the event indu
ed by F

0

i

might be divided into two smaller sets. These two sets 
orrespond

to S

i;2

and S

i;3

. Therefore the total number of sets to whi
h an event E

i

might be partitioned is at

most three.

3 Corre
tness of the Algorithm

In this se
tion we prove Lemma 2.2. Our proof uses some key ideas from both [4℄ and [7℄. In

parti
ular, we in
orporate the \sum over all trees" approa
h from [4℄ into the \levels analysis" from

[7℄.

The main idea of the proof is to asso
iate tree-like stru
tures to 1- and 2-
omponents that 
an be


reated by the algorithm. These stru
tures are purely 
ombinatorial and are introdu
ed to �nd an

upper bound on the expe
ted number of 2-
omponents of a 
ertain size 
reated by the algorithm. The

stru
ture asso
iated to a 2-
omponent will be 
alled a (1,2)-tree. We show how to 
onstru
t a (1,2)-

tree from a 2-
omponent and then prove that the expe
ted number of (1,2)-trees is exponentially

8



small (in terms of their sizes). Then this will be used to show that with high probability there is no

2-
omponents of size larger than O(lnm) after step 1 of the algorithm, whi
h is what we need in the

main lemma.

More spe
i�
ally, to a 1-
omponent C

1

we asso
iate a dire
ted tree T

1

= (V

C

; E

C

) as follows:


reate a vertex v

i

for ea
h basi
 event E

i

that has a 
ore event in C

1

and 
reate edge (v

i

; v

j

) if E

i

was a father of E

j

during the BFS pro
edure and i is the smallest index among the fathers of E

j

.

We 
all this stru
ture a 1-tree. The index of the vertex asso
iated to event E

i

is the same as the

index of E

i

, whi
h is i. Note that the vertex 
orresponding to the initial event of C

1

will be the root

of T

1

.

To a 2-
omponent C

2

we asso
iate a tree-like stru
ture T

2

= (V

C

[ V

D

; E

C

[ E

D

), where V

C

and E

C

are the unions of the vertex sets and the edge sets of all the 1-trees 
orresponding to the

1-
omponents of C

2

, respe
tively. Let D 2 C

2

be a dangerous event. Assume that there are k

1-
omponents in C

2

interse
ting D, 
alled C

1

1

; : : : ; C

1

k

. We 
reate a vertex v

D

in V

D

. For ea
h C

1

i

let v

1

i

be the vertex 
orresponding to a 
ore event interse
ting D with the smallest index in C

1

i

. We


reate the (undire
ted) edge (v

1

i

; v

D

) in E

D

for every 1 � i � k. This tree is 
alled a (1,2)-tree. For


onsisten
y, we 
all ea
h edge of E

C

a 1-tree edge and ea
h edge of E

D

a 2-tree edge. For a (1,2)-tree,

the node in V

C

that has only outgoing edges and has the minimum index 
orresponds to the initial

event of the �rst 1-
omponent of the 
orresponding 2-
omponent.

It is easy to see that for ea
h 2-
omponent there is a unique (1,2)-tree. Also, given a (1,2)-tree

T

2

we 
an uniquely determine the 1-
omponents that 
orrespond to the 1-trees of T

2

, and the order

in whi
h the events were added to ea
h 1-
omponent, by looking at the dire
tion of the edges of the

1-trees. In parti
ular, the �rst 1-
omponent is the one that 
orresponds to the 1-tree whose root has

the smallest index amongst the roots of the 1-trees of T

2

. But we 
annot uniquely spe
ify the trial

sets of the 
ore events of a 2-
omponent. The reason is that it 
an happen that a basi
 event has a


ore (redu
ed) event in one 2-
omponent, say C, and overlaps with the trials of another 2-
omponent,

say C

0

. This 
an happen if C

0

is 
onstru
ted before C. But given only the (1,2)-tree 
orresponding

to C we 
annot determine that some of the trials of this basi
 event are not in C. This is the problem

for whi
h Czumaj and S
heideler [7℄ introdu
ed a more 
ompli
ated stru
ture, namely 3-
omponents

and the related tree stru
tures, in order to make a one to one mapping. But this problem 
an be

solved in a signi�
antly easier way as we don't require a one to one mapping between 2-
omponents

and (1,2)-trees. If we show that with very high probability there is no (1,2)-tree of a 
ertain size

then it de�nitely shows that with at least the same probability there is no 2-
omponent of that size.

So to prove the main lemma, it is enough to show that with probability at least 1 �

1

m

�

there is no

(1,2)-tree of size greater than O(

�

�

lnm), after Step 1 of the algorithm. So from now on, our goal is

to show this statement, whi
h will easily imply the main lemma.

In order to 
ount the number of (1,2)-trees of a 
ertain size we need to give a pre
ise de�nition

for the size of a (1,2)-tree. Let's de�ne the order of a basi
 event E

i

(or any redu
ed event of it),

denoted by O

E

i

, to be �jE

i

j. For a set P of (possibly redu
ed) events, we de�ne the order of P ,

denoted by O

P

, to be the sum of the orders of the events in P . The order of a (1,2)-tree T , denoted

by O

T

, is the sum of the orders of the events whose 
orresponding verti
es are in V

C

(T ).

A set P of redu
ed events is a \possible set of 
ore events" if there is a set of out
omes of the trials

in F and a run of Step 1 of the algorithm su
h that all the events in P are in the set of 
ore events

of (possibly di�erent) 2-
omponents produ
ed. Similarly, a (1,2)-tree T is a \possible (1,2)-tree" if

there is a set of out
omes of the trials in F and a run of Step 1 of the algorithm that produ
es a

2-
omponent 
orresponding to T .
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Consider any �xed possible set P of 
ore events. To �nd an upper bound on the probability that

all the events in P be
ome 
ore after Step 1 of the algorithm, an important point to note is that

these events are disjoint. Sin
e ea
h (possible) 
ore event in P that is a redu
ed event of a basi


event E

i

has size at least �jF

i

j, by the 
onditions of Theorem 1.5, the probability of it to be
ome

true is at most p

i

= e

��jF

i

j

, at the beginning of the algorithm and independently from other events.

Therefore, if Z

P

denotes the event that the events of P a
tually be
ome 
ore after Step 1 of the

algorithm, then:

Pr[Z

P

℄ �

Y

E

i

2P

p

i

: (3)

For a possible (1,2)-tree T , let Z

T

denote the event that T be
omes a (1,2)-tree after Step 1 of

the algorithm. Using (3) it is straightforward (but subtle) to show that:

Pr[Z

T

℄ �

Y

E

j

:v

j

2V

C

(T )

p

j

: (4)

The proof of (4) is given in Se
tion 6.

Now our goal is to prove the following lemma, by whi
h the main lemma 
an be proved easily.

Lemma 3.1 The expe
ted number of (1,2)-trees T with order at least 	 is at most 21me

�	=20

.

For a possible (1,2)-tree T , we say T starts from E

0

, if E

0

is the initial event of the �rst 1-
omponent

of T . De�ne

T = fpossible (1,2)-trees T with order O

T

= 	 that start at E

0

g:

Now let T

0

� T be the set of (1,2)-trees obtained after Step 1 of the algorithm that are also in T .

By this de�nition and (4):

E[jT

0

j℄ =

X

T2T

Pr[Z

T

℄ �

X

T2T

Y

E

j

:v

j

2V

C

(T )

p

j

: (5)

Computing a good upper bound for E[jT

0

j℄ by bounding the right-hand-side of (5) dire
tly, is very


ompli
ated and involves dealing with dependen
ies of probabilities of neighboring events of the

trees in T

0

. Instead, we pro
eed indire
tly by de�ning a whole new experiment and a new set, whi
h

will be 
alled T

00

. We show that E[jT

00

j℄ is equal to the right-hand-side of Inequality (5), then we

bound E[jT

00

j℄ and this bound 
ombined with (5) will give us an upper bound for E[jT

0

j℄. The new

experiment, 
alled the helper experiment, is as follows: for every basi
 event E

i

2 E we 
ip a 
oin

whi
h 
omes up heads with probability p

i

. We assign a tag to event E

i

based on the result of the


oin 
ip. The tag is either a heads tag or a tails tag. The dependen
y graph of the events is de�ned

in a natural way: 
reate a vertex for ea
h event and two verti
es are adja
ent i� the 
orresponding

events interse
t. Consider the 
onne
ted 
omponents of the events that have a heads tag in the


orresponding dependen
y graph, and 
all ea
h of them a pseudo 1-
omponent. Every event E

j

having a tails tag, whose trial set is interse
ting at least two di�erent pseudo 1-
omponents and at

least �jF

j

j of its trials are part of pseudo 1-
omponents, is a pseudo dangerous event. A maximal set

of pseudo 1-
omponents 
onne
ted by pseudo dangerous events is a pseudo 2-
omponent.

By these de�nitions, ea
h possible 2-
omponent C

2


an be asso
iated to a unique possible pseudo

2-
omponent PC

2

in a natural way: the events of PC

2

having heads tags are pre
isely the basi


events of the 
ore events of C

2

and the pseudo dangerous events of PC

2

are pre
isely the dangerous
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events of C

2

. This mapping is valid sin
e the union of the trial sets of the 
ore events of C

2

is a

subset of the union of the trial sets of the basi
 events of C

2

, whi
h is the same as the union of the

trial sets of events of PC

2

with heads tags. Therefore, if a basi
 event is a dangerous event in C

2

it

will be a pseudo dangerous event in PC

2

. Consequently, any possible (1,2)-tree 
an be asso
iated to

a unique pseudo 2-
omponent. Note that neither of these 
orresponden
es is a one to one mapping.

For a �xed set of events P , let Z

0

P

denote the event that after performing the helper experiment

all the events in P get heads tags. So by this de�nition:

Pr[Z

0

P

℄ =

Y

E

i

2P

p

i

: (6)

Also, for a �xed possible (1,2)-tree T de�ne the event Z

0

T

to be the event that we get the 
orresponding

pseudo 2-
omponent after performing the helper experiment. Then:

Pr[Z

0

T

℄ =

Y

E

j

:v

j

2V

C

(T )

p

j

: (7)

De�ne T

00

� T to be the set of (1,2)-trees whose 
orresponding pseudo 2-
omponent is 
reated after

performing the helper experiment. By this de�nition:

E[jT

00

j℄ =

X

T2T

Pr[Z

0

T

℄ =

X

T2T

Y

E

j

:v

j

2V

C

(T )

p

j

: (8)

Sin
e the right-most expressions in (5) and (8) are the same, therefore:

E[jT

0

j℄ � E[jT

00

j℄: (9)

This simpli�es our analysis signi�
antly, sin
e we 
an now 
ontinue the analysis based on the helper

experiment, and bound E[jT

00

j℄ to get a bound for E[jT

0

j℄.

For ea
h (1,2)-tree T 2 T

00

, we 
onsider the verti
es of V

C

(T ) level-wise. The only vertex in level

zero is the one 
orresponding to E

0

. All the verti
es in V

C

(T ) 
onne
ted to it by 1-tree edges, and

those that are in V

C

(T ) but at distan
e 2 from it, using only 2-tree edges, are in the se
ond level.

Everything that is 
onne
ted to a node in the se
ond level using a 1-tree edge, or by a path of length

two of 2-tree edges, (regardless of the dire
tions of the edges) is in the third level, and so on. Note

that the edges between level i and i+ 1 may have di�erent dire
tions. So the levels we 
onsider for

T do not ne
essarily follow the dire
tions of the edges in the 1-trees of T .

Remark 3: A 
areful reader might have noti
ed the huge di�eren
e that we would have had if we

were to analyze T

0

, rather than T

00

. Namely, the dire
tion of the edges between di�erent levels would

play a 
ru
ial role in 
omputing the probabilities of the events, whi
h would involve 
al
ulating very


ompli
ated 
onditional probabilities. We get rid of these 
ompli
ations by swit
hing to the helper

experiment.

De�ne the order of a level to be the sum of the orders of the events that 
orrespond to the verti
es

in that level. We will show in Se
tion 6, Lemma 6.3, that the order of ea
h level should be at least

1=Æ. For any two sets Q and R of events, we say R is an extension of Q if there exists a (1,2)-tree

T 2 T and an integer i, su
h that Q is the set of events 
orresponding to the verti
es in level i and

R is the set of events 
orresponding to the verti
es in level i+ 1 of T . For the moment just 
onsider

those (1,2)-trees in T

00

with k levels, whose level i has order S

i

, for a �xed set of S

1

; : : : ; S

k

. Denote

11



these (1,2)-trees by T

00

S

1

;:::;S

k

. If we denote the order of T , ex
luding the initial event E

0

, by  , that

is  = 	 � S

0

, and we let l

1

; : : : ; l

k

denote possible extensions for levels 1; : : : ; k, respe
tively, then

using (8):

E[jT

00

S

1

;:::;S

k

j℄ = e

�S

0

X

all l

1

's

O

l

1

=S

1

X

all l

2

's

O

l

2

=S

2

: : :

X

all l

k

's

O

l

k

=S

k

k

Y

t=1

Y

E

j

2l

t

p

j

= e

�S

0

X

all l

1

's

O

l

1

=S

1

(

Y

E

j

1

2l

1

p

j

1

X

all l

2

's

O

l

2

=S

2

(

Y

E

j

2

2l

2

p

j

2

: : :

X

all l

k

's

O

l

k

=S

k

Y

E

j

k

2l

k

p

j

k

)) : : :): (10)

Denote the set of all extensions R with O

R

= r of a set Q by EXT(Q; r). For a set Q of events

let X

Q;r

be the number of extensions R su
h that R 2 EXT(Q; r) and all events in R have heads

tags. Therefore, by (6):

E[X

Q;r

℄ =

X

R:R2EXT(Q;r)

Pr[Z

0

R

℄ =

X

R:R2EXT(Q;r)

Y

E

j

2R

p

j

: (11)

By this equation, the most internal summation in (10) is in fa
t E[X

l

k�1

;S

k

℄. In Se
tion 6, Lemma

6.4, we show that E[X

Q;r

℄ � e

�r=8

e

O

Q

=16

. Therefore, E[X

l

k�1

;S

k

℄ � e

�S

k

=8

e

S

k�1

=16

. Using this fa
t,

Inequality (10) 
an be written as:

E[jT

00

S

1

;:::;S

k

j℄ � e

�S

0

k�1

Y

i=0

e

�S

i+1

=8

e

S

i

=16

: (12)

We need the following 
ombinatorial lemma to prove Lemma 3.1.

Lemma 3.2 Let N

+

x

denote the set of integers greater than or equal to x. For 1 � k � Æ , de�ne

EQ

k

to be the equation S

1

+ S

2

+ : : :+ S

k

=  , where the domain of ea
h variable S

i

(1 � i � k) is

N

+

1

Æ

. Then for suÆ
iently small Æ > 0, the sum of the number of the solutions of all equations EQ

k

(1 � k � Æ ) is at most e

 =80

.

Proof: Let's 
all the equation r

1

+ r

2

+ : : :+ r

Æ 

=  , in whi
h the r

i

's are the variables whose

domain is N

+

0

, the referen
e equation. To ea
h solution of equation EQ

k

, for 1 � k � Æ , we

asso
iate a unique solution of the referen
e equation: set r

i

= S

i

, for 1 � i � k, and r

j

= 0, for

k < j � Æ . Therefore, the sum of the number of solutions of all EQ

k

equations (for 1 � k � Æ )

with domain N

+

k

, is not more than the number of solutions of the referen
e equation with domain

N

+

0

. From elementary 
ombinatori
s we know that the number of non-negative integer solutions of

the referen
e equation is

�

 +Æ �1

Æ �1

�

, whi
h is less than

�

 +Æ 

Æ 

�

. Using Stirling's approximation for n!:

 

 + Æ 

Æ 

!

�

[ (1+ Æ)℄

 +Æ 

(Æ )

Æ 

 

 

�

e

Æ 

(1 + Æ)

Æ 

Æ

Æ 

� e

Æ (1+ln (1+

1

Æ

))

� e

 =80

12



if Æ is suÆ
iently small.

Proof of Lemma 3.1: Using (12), de�nition of T

00

S

1

;:::;S

k

, and Lemma 3.2:

E[jT

00

j℄ �

Æ 

X

k=1

X

1

Æ

�S

1

;:::;S

k

� 

P

1�i�k

S

i

= 

E[jT

00

S

1

;:::;S

k

j℄

� e

�S

0

Æ 

X

k=1

X

1

Æ

�S

1

;:::;S

k

� 

P

1�i�k

S

i

= 

k�1

Y

j=0

e

�S

j+1

=8

e

S

j

=16

� e

�S

0

e

� =8

e

	=16

Æ 

X

k=1

X

1

Æ

�S

1

;:::;S

k

� 

P

1�i�k

S

i

= 

1

� e

�	=8

e

	=16

e

	=80

= e

�	=20

(13)

for suÆ
iently small Æ. Therefore, using (9) and (13):

E[jT

0

j℄ � e

�	=20

: (14)

Sin
e we have at most m events that 
an be the initial event of a (1,2)-tree T with total order at

least 	, using the bound in (14), after Step 1 of the algorithm:

E[jf(1,2)-trees T of order at least 	gj℄ � m

X

k�	

e

�k=20

� 21me

�	=20

:

Proof of Lemma 2.2:

(i) Consider the bound in Lemma 3.1. The expe
ted number of su
h (1,2)-trees is at most m

��

if 	 � 20((�+ 1) lnm + 4). For ea
h su
h (1,2)-tree T , the number of trials of T is at most

	

�

. Therefore, for any 
onstant � > 0, with probability at least 1 �

1

m

�

there is no (1,2)-tree

T for whi
h the number of trials of the basi
 events 
orresponding to the verti
es in V

C

(T ) is

larger than

20

�

((� + 1) lnm + 4) 2 O(

�

�

lnm). Thus, with probability at least 1�

1

m

�

there is

no 2-
omponent of size greater than O(

�

�

lnm).

(ii) Re
all that in Step 3, we have a new set of basi
 events for ea
h 2-
omponent C that we 
onsider:

for ea
h event E

i

whi
h is a 
ore event or a parti
ipating event in CE

C

, we 
onsider E

0

i

= E

i

j

F

0

i

as a basi
 event, where F

0

i

� F

i

is the set of trials of E

i

that are in CE

C

. First we must show

that if the assumptions of Remark 1 hold then the 
onditions of Theorem 1.5 hold for this new

set of basi
 events.

Suppose that jF

0

i

j = �

i

jF

i

j, for some �

i

� 1. Note that sin
e jF

0

i

j � �jF

i

j: �

i

� �. For this new

set of basi
 events, we have p

0

i

= e

��jF

0

i

j

= e

���

i

jF

i

j

, and for all S � F

0

i

:

13



� if jSj > �jF

0

i

j then Pr[E

0

i

j

S

℄ � p

0

i

, and

� if jSj � �jF

0

i

j then Pr[E

0

i

j

S

℄ = 0.

We need to show that with x

i

= e

�Æ�

2

jF

0

i

j

: x

i

� e

�1

and p

0�

i

� x

i

Q

E

0

j

2N(E

0

i

)

(1 � x

j

), or

equivalently

p

0�

i

x

i

�

Y

E

0

j

2N(E

0

i

)

(1� x

j

):

If the 
onditions of Remark 1 hold, i.e. for x

0

i

= e

�Æ�

3

jF

i

j

: x

0

i

� e

�1

and (2) holds then, sin
e

x

i

= e

�Æ�

2

�

i

jF

i

j

� e

�Æ�

3

jF

i

j

= x

0

i

, therefore: x

i

� e

�1

and

p

�

2

i

x

0

i

= e

�(1�Æ)�

3

jF

i

j

�

Y

E

0

j

2N(E

0

i

)

(1� x

0

j

) =

Y

E

0

j

2N(E

0

i

)

(1� e

�Æ�

3

jF

j

j

): (15)

Thus:

p

0�

i

x

i

= e

�(1�Æ)�

2

�

i

jF

i

j

� e

�(1�Æ)�

3

jF

i

j

sin
e �

i

� �

�

Y

E

0

j

2N(E

0

i

)

(1� e

�Æ�

3

jF

j

j

) by (15)

�

Y

E

0

j

2N(E

0

i

)

(1� e

�Æ�

2

�

i

jF

j

j

) sin
e �

i

� �

=

Y

E

0

j

2N(E

0

i

)

(1� x

j

)

as wanted. Therefore, we 
an run Step 1 on ea
h 2-
omponent and Lemma 2.1 holds.

Now we show that with high probability all the 2-
omponents after this se
ond run of Step 1

have size O(ln lnm). Let C be a 2-
omponent generated after the �rst run of Step 1 with order

at most � lnm. We will prove in Se
tion 6.2, Lemma 6.2, that there are at most �(lnm)e

Æk

events of order at most k that are parti
ipating in C. Therefore, by Lemma 3.1, the expe
ted

number of (1,2)-trees of order at least 	 is at most

X

k�	

�(lnm)e

Æk

e

�k=20

� �(lnm)

X

k�	

e

�k=25

� 30�(lnm)e

�	=25

:

for suÆ
iently small Æ, whi
h in turn is at most (lnm)

��

if 	 � 25((�+ 1) ln lnm+ ln(30�)).

Therefore, sin
e the number of trials of a (1,2)-tree with order 	 is at most

	

�

, with probability

at least 1 �

1

(lnm)

�

, for any 
onstant � > 0, there is no 2-
omponent of size greater than

25

�

((�+ 1) ln lnm+ ln(30�)) 2 O(

�

�

ln lnm).
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4 Expe
ted Linear Time

In this se
tion we show that under reasonably general assumptions (that are 
lari�ed below), the

algorithm of Theorem 1.5 
an be implemented in a way su
h that its expe
ted running time is linear

in M =

P

m

i=1

jF

i

j.

The �rst assumption is that the requirements of Remark 1 hold, and therefore, we 
an run Steps

3 and 4 of the algorithm.

The se
ond assumption is t

1

= O(1), i.e. we 
an 
arry out ea
h random trial in 
onstant time.

Let f�

1

; �

2

; : : : ; �

x

g be the set of possible out
omes of a trial f

i

2 F , where x is a 
onstant. For ea
h

(possibly redu
ed) event E

i

we will keep x di�erent integers �

1

; : : : ; �

x

, where �

j

is the number of

trials in F

i

whose out
ome is �

j

, 1 � j � x. Let's 
all this set of integers Info(E

i

).

The last assumption is that for ea
h E

i

, knowing Info(E

i

), we 
an evaluate in O(1) time whether

E

i

holds or not (and therefore t

2

= O(1)). Having these assumptions, we show that ea
h step of the

algorithm 
an be implemented in time O(M).

Step 1: In this step, �rst we 
hoose an out
ome for ea
h trial f

i

uniformly at random. This 
an

be done in time O(n).

For the BFS pro
edure, the important point is that ea
h event E

i

will be evaluated at most on
e

for ea
h trial f

a

2 F

i

. Also, whenever E

j

j

F

0

j

is true (and so we will have a 
ore event on F

0

j

), after

performing R = R� F

0

j

, we update info(E

l

) for all neighboring events E

l

of E

j

. Therefore, Info(E

l

)

will be updated at most jF

l

j times and ea
h update takes 
onstant time. So the overall running time

of �nding the 1-
omponents will be O(M).

To 
ompute the 2-
omponents, it is obvious that ea
h event is 
he
ked at most on
e to see if it

is dangerous or not. Thus, the total running time of �nding the 2-
omponents is O(M). We repeat

Step 1 until all the 2-
omponents produ
ed have \order" at most � lnm, for some 
onstant � (where

we mean order in the sense that we de�ned it in Se
tion 3). By the proof of Lemma 2.2, the expe
ted

number of times we have to repeat Step 1 would be O(1). So, in time O(M) we �nd 2-
omponents

all of whi
h have \order" at most � lnm.

Sin
e we want to obtain expe
ted linear time, we do not perform exhaustive sear
h (Step 2).

Instead we perform Step 3.

Step 3: Suppose that C

2

is some 2-
omponent with \order" 	. Therefore, the sum of the number

of trials of all (possibly redu
ed) events of C

2

is at most

	

�

. We apply Step 1 to this 2-
omponent,

independently from the other 2-
omponents. We repeat this until the produ
ed 2-
omponents of C

2

all have \order" at most � ln

	

�

. Again, using the proof of Lemma 2.2, the expe
ted number of times

that we have to repeat this is at most O(1). So the total time spent to �nd small 2-
omponents in

C

2

would be O(

	

�

). By summing this up over all 2-
omponents, the total running time of Step 3 will

be at most O(M).

Step 4: Assume that the 2-
omponents produ
ed for C

2

in Step 3 are C

2

1

; C

2

2

; : : : ; C

2

r

. Finding a

good set of out
omes for the trials of C

2

i

using exhaustive sear
h takes at most O(x

jC

2

i

j

P

E

j

2C

2

i

jF

j

j).

Therefore, using the fa
t that

P

E

j

2C

2

i

jF

j

j �

	

�

, the total running time of Step 4 on C

2

would be at

most:

r

X

i=1

O

�

x

�

�

ln

	

�

(	=�)

�

= O((	=�)

�

�

lnx+2

):

By Lemma 3.1, the expe
ted number of 2-
omponents C

2

having \order" at least 	 is at most

15



21me

�	=20

. Sin
e

1

X

	=1

O((	=�)

�

�

lnx+2

)e

�	=20

is a 
onvergent sum, the total running time for the exhaustive sear
h on all 2-
omponents is at most:

�

�

lnm

X

	=1

O((	=�)

�

�

lnx+2

)me

�	=20

= O(m):

5 Proof of Theorem 1.6

Assume that we 
olor ea
h vertex uniformly at random with 
olors f1; 2; : : : ; Cg. For ea
h vertex v

i

of the hypergraph we de�ne a trial f

i

that has C out
omes, one for ea
h possible 
olor. For ea
h

edge e

j

we de�ne C sets of trials, one for ea
h 
olor 1 � 
 � C. For ea
h 
olor 
, let F


;j

be the set

of trials whose 
orresponding verti
es are in e

j

. Note that the set of trials for a �xed j and di�erent

values of 
 is the same, jF


;j

j = je

j

j, and F


;j

is interse
ting at most C(�je

j

je


k

+ 1) other sets of

size at most k. For ea
h set S of trials and ea
h 
olor 
, de�ne d




(S) to be the number of trials in S

whose out
ome is 
, and de�ne the bad event E


;j

to be the event that jd




(F


;j

)�

je

j

j

C

j >

�je

j

j

C

. Using

Cherno�'s bound for the tails of binomial distribution we have:

Pr[E


;j

℄ = Pr[jBIN(je

j

j;

1

C

)�

je

j

j

C

j >

�je

j

j

C

℄

� 2e

��

2

je

j

j=3C

� e

��

2

je

j

j=4C

:

The last inequality holds if � is suÆ
iently small. For ea
h set S � F


;j

, we de�ne E


;j

j

S

, the event

E


;j

restri
ted to S, to be the event that jd




(S)�

jSj

C

j >

�je

j

j

3C

. Let � =

�

2

60C

, p


;j

= e

��je

j

j

. Sin
e we

want to obtain expe
ted linear time, we must show that the stronger assumptions of Remark 1 hold.

So let x


;j

= e

�Æ�

3

je

j

j

, for suÆ
iently small Æ. By the Cherno� bound, Pr[E


;j

℄ � p


;j

and if jSj > �je

j

j

then Pr[E


;j

j

S

℄ � p


;j

and if jSj � �je

j

j then Pr[E


;j

j

S

℄ = 0. Using the fa
t that 1 � x � e

�2x

, for

0 � x �

1

2

, we have:

x


;j

Y

F

j

\F

t

6=;

(1� x

s;t

) � e

�Æ�

3

je

j

j

Y

k�1=�

�

1� e

�Æ�

3

k

�

C(�je

j

je


k

+1)

� e

�Æ�

3

je

j

j

exp

8

<

:

�2�C

0

je

j

j

X

k�1=�

e

�Æ�

3

k

e


k

9

=

;

(For C

0

= C + 1 and suÆ
iently small �)

� exp

("

�Æ�

3

�

 

2�C

0

a

1=�

1� a

!#

je

j

j

)

(where a = e


�Æ�

3

)

� e

��

3

je

j

j

(if � and 
 are suÆ
iently small)

= p

�

2


;j

:

So we satisfy all the requirements of Theorem 1.5 and Remark 1, and therefore, there is a randomized

algorithm that runs in expe
ted linear time that �nds the out
omes of the trials, su
h that ea
h set
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F


;j

is partitioned into at most 3 subsets S


;j;1

; S


;j;2

; S


;j;3

su
h that E


;j

restri
ted to ea
h of them

does not hold, i.e. for 1 � k � 3, jd




(S


;j;k

)�

jSj

C

j �

�je

j

j

3C

. Thus, for ea
h set F


;j

:

jd




(F


;j

)�

je

j

j

C

j �

X

1�k�3

jd




(S


;j;k

)�

jSj

C

j

�

�je

j

j

C

:

This gives the required 
oloring of the verti
es of H .

6 Details of the Proof of Theorem 1.5

Proof of Inequality (4): Suppose that T

1

1

; T

1

2

; : : : ; T

1

r

are the 1-trees of T and let Z

T

1

i

be the event

that T

1

i

is built during Step 1 of the algorithm. Then

Pr[Z

T

℄ � Pr[

r

^

i=1

Z

T

1

i

℄:

For ea
h i, let Q

i

be the sequen
e of 1-trees (not ne
essarily in T ) 
orresponding to the 1-
omponents

that are built before the �rst 1-
omponent 
ontaining any redu
ed event of a basi
 event 
orrespond-

ing to a vertex of T

1

i

. Note that by this de�nition, given Q

i

and T

1

i

we 
an uniquely determine the

set of 
ore events that must be formed in any 1-
omponent whose 
orresponding 1-tree is T

1

i

. Letting

this set of (possible) 
ore events be P and by using (3):

Pr[Z

T

1

i

jQ

i

℄ = Pr[Z

P

℄ �

Y

E

j

:v

j

2V

C

(T

1

i

)

p

j

: (16)

We also have:

Pr[Z

T

℄ �

r

Y

i=1

Pr[Z

T

1

i

j

i�1

^

j=1

Z

T

1

j

℄: (17)

If we de�ne Q

i

to be the set of all sequen
es Q

i

ea
h of whi
h 
ontains T

1

1

; : : : ; T

1

i�1

, then:

Pr[Z

T

1

i

j

i�1

^

j=1

Z

T

1

j

℄ =

X

Q

i

2Q

i

Pr[Z

T

1

i

jQ

i

℄� Pr[Q

i

j

i�1

^

j=1

Z

T

1

j

℄: (18)

Using (16) and (18):

Pr[Z

T

1

i

j

i�1

^

j=1

Z

T

1

j

℄ �

Y

E

k

:v

k

2V

C

(T

1

i

)

p

k

X

Q

i

2Q

i

Pr[Q

i

j

i�1

^

j=1

Z

T

1

j

℄

�

Y

E

k

:v

k

2V

C

(T

1

i

)

p

k

:

Now 
ombining this with (17) yields:

Pr[Z

T

℄ �

r

Y

i=1

Y

E

j

:v

j

2V

C

(T

1

i

)

p

j

=

Y

E

j

:v

j

2V

C

(T )

p

j

:
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In the rest of this se
tion, we prove the upper bound of E[X

Q;r

℄ used to prove Inequality (12).

To do that, the following te
hni
al lemma, whi
h is proved in [6℄, is very helpful.

6.1 A Te
hni
al Lemma

Consider some �xed set Q of basi
 events. Assume that for every event A 2 Q we have a non-negative

random variable �

A

, 
alled 
ontribution. Let us de�ne the 
ontribution �

Q

of Q to be the sum of

the 
ontributions of all events of Q. Also,

S

Q

 

= fR � N(Q) : �

R

=  g:

Lemma 6.1 [6℄ Let 
 >

1

288

be an arbitrary 
onstant. Furthermore, let Q be any set of basi
 events

and (�

B

)

B2N(Q)

be any sequen
e of 
ontributions with the property that:

(i) the 
ontribution of any event in N(R) is either 0 or at least 1=
.

(ii) jf(A;B) 2 Q�N(Q) : Pr[1 � �

B

� k℄ > 0gj � 
e


k

:

(iii) there is a � �

1

6

so that for every event B 2 N(Q), Pr[�

B

= k℄ � e

��k

independently of other

events of positive 
ontributions.

Then

E[jS

Q

 

j℄ � e

�� =2

e


=48

:

6.2 Bounding the Expe
ted Number of Extensions of a Spe
i�
 Order

The main purpose of this se
tion is to bound E[X

Q;r

℄. First we fo
us on those extensions of Q that

only use 1-tree edges.

Lemma 6.2 For every event E

i

:

jfE

j

2 N(E

i

) : jF

j

j � kgj � �

2

e

Æ�

2

k

jF

i

j

Proof: By Inequality (1) of Theorem 1.5:

e

��

2

jF

i

j

� e

�Æ�

2

jF

i

j

Y

E

j

2N(E

i

)

(1� e

�Æ�

2

jF

j

j

)

�

Y

E

j

2N(E

i

)

exp

�

�e

�Æ�

2

jF

j

j

�

= exp

0

�

�

X

E

j

2N(E

i

)

e

�Æ�

2

jF

j

j

1

A

=) �

2

jF

i

j �

X

E

j

2N(E

i

)

e

�Æ�

2

jF

j

j

:

The lemma then follows easily from the last inequality.
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Lemma 6.3 Every event E

i

has order at least

1

�Æ

.

Proof: By one of the requirements of Theorem 1.5: x

i

�

1

e

. Therefore:

e

�Æ�

2

jF

i

j

� e

�1

=) O

E

i

= �jF

i

j �

1

�Æ

:

Now we are going to apply Lemma 6.1. For every event E

j

2 N(Q), let the 
ontribution �

E

j

of

E

j

be de�ned as O

E

j

, if E

j

gets heads tag, after performing the helper experiment, and 0 otherwise.

So 
ondition (i) of Lemma 6.1 holds by Lemma 6.3.

Re
all that the edges between Q and R 
an have either of two possible dire
tions. That is, there

are up to two possibilities for 
onne
ting E

i

2 Q to E

j

2 R. To 
onsider both of these possibilities,

we assume that there are (virtually) two 
opies of ea
h E

j

2 R, one for ea
h possible dire
ted edge.

Therefore, using Lemma 6.2, the above assumption, and the fa
t that O

E

j

� k implies jF

j

j �

k

�

:

jf(E

l

; E

j

) 2 Q�N(Q) : Pr[1 � �

E

j

� k℄ > 0g [ f(E

j

; E

l

) 2 N(Q)� Q : Pr[1 � �

E

j

� k℄ > 0gj

�

P

E

l

2Q

2�

2

e

Æ�k

jF

l

j

� 2e

Æk

O

Q

:

So 
ondition (ii) is true with 
 = 2O

Q

. For 
ondition (iii), we are going to use the same tri
k as

used by Czumaj and S
heideler [7℄. That is, we are going to use only part of the probability for an

event to get heads tag and save the other part for when we want to 
onsider 2-tree edges. Sin
e ea
h

event E

j

gets heads tag with probability p

j

, therefore Pr[�

E

j

= O

E

j

℄ = p

j

. For the reason mentioned

above, and by setting � =

1

2

, we get Pr[�

E

j

= O

E

j

℄ � e

��O

E

j

and so 
ondition (iii) of Lemma 6.1

holds, too. Thus, if we denote by X

1

Q;r

the number of extensions R with 
ontribution r where all

the events in R have heads tags and are 
onne
ted to the events in Q using only 1-tree edges after

performing the helper experiment, then:

E[X

1

Q;r

℄ � e

�r=4

e

O

Q

=24

: (19)

Now 
onsider the 
ase that there is a 2-tree edge from an event in Q having heads tags to a

pseudo dangerous event E

j

. This 
ase is signi�
antly di�erent from the previous one sin
e E

j

itself

does not have a probability. Instead, using the same idea as in [7℄, we \borrow" probabilities from

the basi
 events that are interse
ting E

j

and have a 
ore event (this is the point we use the other

part of the probability of a 
ore event that we reserved in the previous 
ase). We de�ne the virtual

order of the pseudo-dangerous event E

j

, denoted by w

E

j

, to be the sum of the orders of the set S

of 
ore events that are interse
ting E

j

and whose 
orresponding pseudo 1-
omponents were merged

into a pseudo 2-
omponent be
ause of E

j

. That is: w

E

j

=

P

E

s

2S

O

E

s

. Note that the events in S

must 
over at least �jF

j

j trials of E

j

. Therefore:

w

E

j

=

X

E

s

2S

O

E

s

=

X

E

s

2S

�jF

s

j � �

2

jF

j

j = �O

E

j

: (20)

Sin
e for every 
ore event E

s

2 S we still have a probability e

�O

E

s

=2

available, we 
an assign a

probability of e

�w

E

j

=2

to E

j

. Now we are ready to apply Lemma 6.1 again. De�ne the 
ontribution
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�

E

j

of E

j

as w

E

j

if the events in S got heads tags after the helper experiment, and 0 otherwise.

Condition (i) follows with 
 = Æ from Lemma 6.3 and (20). By Lemma 6.2 and (20):

jfE

j

2 N(E

i

) : w

E

j

� kgj � jfE

j

2 N(E

i

) : �

2

jF

j

j � kgj � �

2

e

Æk

jF

i

j = e

Æk

w

E

i

:

So we satisfy 
ondition (ii). Finally, 
ondition (iii) holds with � = 1=2. Thus, it follows from Lemma

6.1 that if we denote the expe
ted number of extensions R with 
ontribution r of events having heads

tags that are 
onne
ted to Q by a path of length two of 2-tree edges, by X

2

Q;r

, then:

E[X

2

Q;r

℄ � e

�r=4

e

O

Q

=48

: (21)

Lemma 6.4 For suÆ
iently small Æ:

E[X

Q;r

℄ � e

�r=8

e

O

Q

=16

:

Proof: Using (19) and (21), we bound the expe
ted number of extensions R of a set Q with O

R

= r.

Let U

Æ;r

= f0; 1=Æ; 1=Æ+ 1; : : : ; rg.

E[X

Q;r

℄ �

X

k2U

Æ;r

E[X

1

Q;k

℄E[X

2

Q;(r�k)

℄

�

X

k2U

Æ;r

e

�k=4

e

O

Q

=24

e

�(r�k)=4

e

O

Q

=48

� (r�

1

Æ

+ 1)e

�r=4

e

O

Q

=16

� e

�r=8

e

O

Q

=16

;

if Æ is suÆ
iently small.
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