
Approximating Buy-at-Bulk and Shallow-light k-Steiner trees∗

MohammadTaghi Hajiaghayi † Guy Kortsarz‡ Mohammad R. Salavatipour§

Abstract

We study two related network design problems with two cost functions. In the buy-at-bulk
k-Steiner tree problem we are given a graph G(V, E) with a set of terminals T ⊆ V including a
particular vertex s called the root, and an integer k ≤ |T |. There are two cost functions on the
edges of G, a buy cost b : E −→ R

+ and a distance cost r : E −→ R
+. The goal is to find a subtree

H of G rooted at s with at least k terminals so that the cost
∑

e∈H
b(e)+

∑

t∈T−s
dist(t, s) is min-

imized, where dist(t, s) is the distance from t to s in H with respect to the r cost. We present an
O(log4 n)-approximation algorithm for the buy-at-bulk k-Steiner tree problem. The second and
closely related one is bicriteria approximation algorithm for Shallow-light k-Steiner trees. In the
shallow-light k-Steiner tree problem we are given a graph G with edge costs b(e) and distance costs
r(e), and an integer k. Our goal is to find a minimum cost (under b-cost) k-Steiner tree such that
the diameter under r-cost is at most some given bound D. We develop an (O(log n), O(log3 n))-
approximation algorithm for a relaxed version of Shallow-light k-Steiner tree where the solution
has at least k

8
terminals. Using this we obtain an (O(log2 n), O(log4 n))-approximation algorithm

for the shallow-light k-Steiner tree and an O(log4 n)-approximation algorithm for the buy-at-bulk
k-Steiner tree problem. Our results are recently used to give the first polylogarithmic approxi-
mation algorithm for the non-uniform multicommodity buy-at-bulk problem [9].

1 Introduction

We study network design problems on graphs with two cost functions on the edges. These are the
buy-at-bulk k−Steiner tree problem and the shallow-light k−Steiner tree problem. Suppose we are
given an undirected graph G(V,E) with a terminal set T ⊆ V , a specific vertex s ∈ T called the
root, and an integer k ≤ |T | ≤ |V | = n; vertices in V − T are called Steiner nodes. A Steiner tree
is a subgraph of G that is a tree and contains a required number of the terminal nodes (possibly
all of them). In the buy-at-bulk k−Steiner tree problem, along with graph G, we also have two
(non-related) cost functions on the edges of G: buy cost b : E −→ R

+ and distance cost (sometimes
also called rent cost) r : E −→ R

+. We use the term non-uniform to denote that b and r are not
related. All variants studied here are non-uniform. Our goal is to find a Steiner tree H spanning at
least k vertices of T including the root (also known as k-Steiner tree) which minimizes the following:

∗A preliminary version of this paper appeared in the Proceedings of 9th International Workshop on Approximation
Algorithms for Combinatorial Optimization Problems (APPROX) 2006, LNCS 4110, pp 153-163, 2006.

†Department of Computer Science, Carnegie Mellon University. E-mail: hajiagha@cs.cmu.edu. Supported in part
by IPM under grant number CS1383-2-02.

‡Department of Computer Science, Rutgers University-Camden. E-mail: guyk@crab.rutgers.edu.
§Department of Computing Science, University of Alberta. E-mail: mreza@cs.ualberta.ca. Supported by NSERC

grant No. G121210990, and a faculty start-up grant from University of Alberta.

1

∑

e∈H

b(e) +
∑

t∈T−s

L(t, s), (1)

where L(t, s) =
∑

e∈P (t,s) r(e) with P (t, s) being the unique path from t to s in H.

Buy-at-bulk network optimization problems with two cost functions, have been studied exten-
sively, sometimes under different names such as cost-distance (where one function defines buy cost
and another function defines length). These problems have practical importance. Consider for ex-
ample the case that every edge can either be bought or rented (but not both). The chosen edges
are required to provide bandwidth to satisfy some multicommodity demands. As we shall see later,
this model is equivalent to the above buy-at-bulk model (in which every edge has both rent and buy
costs). The rent or buy (but not both) version of the problem captures the practical setting where it
is needed to decide whether to buy an edge and pay b(e) once (typically b(e) is relatively large) or to
rent the edge e. If the user decides to rent the edge, then the pay is r(e) per every commodity that
goes via e. Buy-at-bulk problems have been studied through a long line of papers in the operation
research and computer science communities after the problem was introduced by Salman et al. [28]
(see e.g. [2, 8, 16, 17, 18, 19, 25, 27]).

The second problem we consider is a variant of the shallow-light network design problem. A
graph G(V,E) and a collection T ⊆ V of terminals are given in addition to cost and length functions
b, r : E −→ R

+ and two bounds, a cost bound B and a length bound D. The cost of a spanning
subtree H(V,E ′) is b(E′) =

∑

e∈E′ b(e). For a path P , L(P) =
∑

e∈P r(e). The distance between
u, v in H is distH(u, v) = L(Pu,v) so that Pu,v is the unique path between u, v in H. The diameter of
H is diam(H) = maxu,v distH(u, v). Throughout, whenever we talk about the cost of a path or the
cost of a tree we mean the cost under b-cost and whenever we say length or diameter we mean under
r-cost. Assuming a spanning subtree H(V,E ′) with cost at most B and diameter at most D exists,
the shallow-light spanning tree problem is to find H. The more general shallow-light k-Steiner tree
problem requires to select for an input k a tree spanning k terminal nodes that meets the diameter
and cost bounds D and B, respectively. Even the shallow-light spanning tree (k = n) special case
is NP-hard and also NP-hard to approximate within a factor better than c log n for some universal
constant c [5]. Thus we focus on approximation algorithms. An (α, β) bi-criteria approximation
algorithm for the shallow-light k-Steiner tree problem is an algorithm that delivers a tree H ′ with
at least k terminals (vertices in T) whose diameter is at most α · D, and whose cost is at most β
times the cost of a D-diameter minimum cost tree. The constraint that only k < n nodes have to be
picked makes this problem considerably harder than the usual shallow-light spanning tree problem,
namely, the k = n case.

The paper is organized as follows. In the rest of this section we discuss some different models
of cost functions on the edges and the relations between them followed by a description of our
techniques. Section 2 contains our main algorithm for the shallow-light k-Steiner tree as well as a
reduction algorithm from buy-at-bulk k-Steiner tree.

1.1 Subadditive monotone functions

Our algorithm for the buy-at-bulk variant applies in a slightly more general setting of minimizing
∑

e fe with every fe being a monotone subadditive function. This is related to economies of scale.
Typically, a capacity (or bandwidth) on a link can be purchased in some discrete units u1 < u2 <
. . . < ur with costs c1 < c2 < . . . < cr such that the cost per bandwidth decreases c1/u1 > c2/u2 >
. . . > cr/ur. The capacity units are sometimes referred to as cables or pipes. The cables induce

2

a monotone concave (or more generally a sub-additive) function f : R+ → R+ where f(b) is the
minimum cost of cables of total capacity at least b.

It is possible to deal with concave monotone functions as follows (see [2, 27]). The function fe

is approximated by a collection of simple piece-wise linear functions of the form a + bx. We replace
an edge e with cost function fe by a a collection of parallel edges, one for each of the simpler linear
functions. Given a function f : R+ → R+, and a fixed ε ≥ 0, for integer i ≥ 0 let gi : R+ → R+ be
a linear function defined by gi(x) = f(ai) + f(ai)/ai · x where a = (1 + ε). It can be verified that if
f is monotone and sub-additive then for all x ≥ 1, 1

2+ε mini gi(x) ≤ f(x) ≤ mini gi(x).

1.2 Related work

In the buy-at-bulk multicommodity problem we are given p source-sink pairs, {si, ti}p
i=1. A subset

E′ of the edges is feasible if for every i, an si to ti path exists in G′ = (V,E′), namely, si, ti belong
to the same connected component in G′. The cost of E ′ is

∑

e∈E′ b(e) +
∑

i distG′(si, ti) where
the distance is with respect to r, and the goal is to find a minimum cost feasible E ′. If we are
also given an integer k ≤ p and must find a solution that connects k (out of p) si, ti pairs then we
have the buy-at-bulk k-multicommodity problem. It is easy to see that the buy-at-bulk Steiner (but
not k-Steiner) tree problem is a special case of the buy-at-bulk multicommodity problem in which
all the sinks are at a single vertex (namely the root). The buy-at-bulk k-Steiner tree problem is a
special case of the buy-at-bulk k-multicommodity problem. However, it is shown in [20] that if the
buy-at-bulk k-multicommodity problem admits a polylogarithmic approximation ratio then so does
the dense-k-subgraph problem (see [13]). For a long time now (11 years since the journal version and
14 years since the conference version [24]) the best known approximation algorithm for the dense
k-subgraph problem is O(n1/3−ε) for some positive ε > 0 [13], and it is widely believed that the dense
k-subgraph problem admits no polylogarithmic approximation ratio. If indeed the dense k-subgraph
problem admits no polylogarithmic approximation factor, then the result in our paper shows that
the case of single source (but many sinks), namely buy-at-bulk k-Steiner tree, is provably easier to
approximate than the general case of arbitrary source-sink pairs.

In the uniform version of the buy-at-bulk multicommodity problem all the buy values along edges
are equal. The best approximation factor known for the uniform case is O(log n) due to the results
of Awerbuch and Azar [3], Bartal [6] and Fakcharoenphol et al. [12]. Kumar et al. [25] and Gupta
et al. [18] present a constant factor approximation algorithm for a the case the cost of buying each
edge is equal to M times the cost of renting the edge (per unit length) for a fixed M . The single
sink uniform version also admits constant-factor approximation algorithms [17, 19].

Meyerson et al. [27] study the buy-at-bulk Steiner tree or equivalently, the non-uniform single
sink buy-at-bulk multicommodity problem for which they give a randomized O(log n)-approximation
algorithm that was derandomized by Chekuri, Khanna, and Naor [10] via an LP formulation. Note
that none of these algorithms yield any polylogarithmic approximation ratio for the k-Steiner tree
case. For the most general case, the best known ratio for the non-uniform buy-at-bulk multicom-
modity problem was exp(O(

√
log n log log n)) by Charikar and Karagiozova [8]. Recently [9], we have

improved this result to a polylogarithmic approximation factor using the results of this paper.

On the lower bound side, Andrews [1] showed that unless NP ⊆ ZPTIME (npolylog n) the buy-at-
bulk multicommodity problem has no O(log1/2−ε n)-approximation algorithm for any ε > 0. Under
the same assumption, the uniform variant admits no O(log1/4−ε n)-approximation algorithm for any
constant ε > 0. For the single sink case, Chuzhoy et al. [11] showed that the problem cannot be

3

approximated better than Ω(log log n) unless NP ⊆ DTIME(nlog log log n).

The buy-at-bulk k-Steiner tree problem generalizes the classic Steiner tree, k-MST, and more
generally k-Steiner tree problems when the rent cost is zero. See for example [15]. As we mentioned
above, the buy-at-bulk Steiner tree problem first was studied by Meyerson et al. [27], but we are not
aware of any result on buy-at-bulk k-MST or buy-at-bulk k-Steiner tree.

The shallow-light k−Steiner tree problem generalizes the Shallow-light Steiner problem [26] which
is the special case of k = |T |. It generalizes the k-MST problem [7, 4, 7, 14, 15] which is the case
D = ∞ and also the bounded diameter spanning tree problem [22] which is the zero costs case. Even
the k = |T | special case is NP-hard and also NP-hard to approximate within a factor better than
c log n for some universal constant c [5]. For k = |T | an (O(log n), O(log n))-approximation algorithm
is given in [26]. The constraint that only k < n nodes have to be picked seems to make this problem
harder to approximate than the usual shallow-light Steiner tree problem, namely, the k = |T | case.

1.3 Our results

We give the first approximation algorithm for the buy-at-bulk k-Steiner tree problem:

Theorem 1.1 Given an instance of the shallow-light k-Steiner tree problem with diameter bound D
we can obtain a k

8 -Steiner tree with diameter at most O(log n ·D) and cost at most O(log3 n ·OPT),
where OPT is the cost of an optimum shallow-light k-Steiner tree with diameter bound D.

Theorem 1.2 There is a polynomial time O(log4 n)-approximation algorithm for the buy-at-bulk
k-Steiner tree problem

Theorem 1.3 The shallow-light k-Steiner subtree problem admits an (O(log2 n), O(log4 n)) bicrite-
ria approximation algorithm that runs in polynomial time

It is worth mentioning that Theorem 1.3 is one of the main tools we use to obtain the first
polylogarithmic approximation algorithm for the non-uniform multicommodity buy-at-bulk problem
in the subsequent work [9]. In the same place, we show that using rounding a solution to an LP
formulation of the problem, we can improve the result of Theorem 1.2 to an O(log3 n)-approximation
algorithm.

1.4 Equivalent models

There are three different models for the buy-at-bulk k-Steiner tree problem. This holds also for the
other versions of the problem like the buy-at-bulk multicommodity problem. Below we describe these
three models and show that in fact they are all equivalent.

Model A. The unique cost model: Every edge e of G is given with either a buy cost b(e) or
a rent cost r(e). For buy edges we have to pay b(e) to use them. For rent edges we have to pay
r(e) · f(e) where f(e) is the amount of demand routed over that edge, i.e., the number of terminals
t ∈ T − s for which e lies on the unique s, t-path in the Steiner tree solution.

Model B. The rent or buy model: Every edge e is given with both a buy cost b(e) and a rent
cost r(e). For every edge in the solution, we have to decide whether to buy e and pay b(e) or rent it
and pay r(e) · f(e). However, it is not possible to both buy and rent the edge.

Model C. The rent and buy or cost-distance model: This is the model we defined earlier, i.e.

4

every edge is given with both a buy cost b(e) and a rent cost r(e). The cost we pay for every edge
in the solution is b(e) + r(e) · f(e). This model first has been considered by Meyerson et al. [27].

The following theorem shows that all these three models are in fact equivalent. We will be
working with Model C in the rest of the paper.

Theorem 1.4 All the three models A, B, and C are equivalent.

Proof: We show how each model can be formulated by the other models. Here, we write, e.g.,
C −→ A short for “it is possible to model Model A via Model C”.

1. C −→ A: We mimic model A by model C as follows. We will have the same set of vertices
as in model A. An edge that does not have a buy cost (in A) is given 0 buy cost in C, and
otherwise, it is given 0 rent cost. Note that by definition of Model C zero rent or buy costs do
not affect the overall cost and so can be ignored. This is the same affect as in model A.

2. B −→ C: An edge e = (v, u) in model C is replaced by two edges e1 = (v, we), e2 = (we, u)
(in model B) for some new and specific for e vertex we. The buy cost of (v, we) is b(e) and its
rent cost is ∞. The rent cost of (we, u) is r(e) and its buy cost is ∞. The new we nodes are
not terminals. The edges e1 cannot be rented and the edge e2 cannot be bought. Observe that
for the two serial edge e1, e2 to be used, a solution both has to pay b(e) buy cost and r(e) rent
cost for using these edges. This mimics model C.

3. A −→ B: An edge e = (u, v) in B is replaced by by two parallel edges e1, e2 between u, v (it
can be replaced by paths of length 2 if parallel edges are needed to be avoided). The edge e1

will have rent cost r(e) and the edge e2 will have buy cost b(e). Clearly, if e2 is bought then
there is no need to rent e1. Otherwise, e1 needs to be rented, unless the (u, v) is not used. This
is equivalent to choosing exactly either to rent or to buy e (but not both).

1.5 The technique used

Our technique is quite general and may find other applications in the future. Note that the number
t = |T | of terminals may be much larger than k. Fixing some optimum solution let a terminal be a
true terminal if it belongs to the optimum solution.

We try to find a shallow-light k
8 -Steiner tree that has cost at most O(log3 n ·OPT) and diameter

at most O(D log n). At any given time, our algorithm maintains a collection C of rooted trees. The
goal is to increase the size of some of the trees in C so that one of them will eventually have at least
k
8 terminals with cost and diameter bounded as above. The algorithm runs in rounds and in every
round we may have several iterations (of some loop). At the beginning of every round, each terminal
is a singleton tree. In every iteration of a round we perform a test. If the test result is successful,
then we merge two trees of C into a larger connected component and go to the next iteration. If
the test fails then we end this round, delete some of the terminals (temporarily), and start the next
round of the algorithm with a new (smaller) set of terminals. As stated above, we initialize again
each terminal to be a component of size 1, ignoring any mergers that were done in the last failed
round.

The key property of the test is that the number of true terminals among the roots of the trees
in C (which is exactly the number of true terminals deleted among all terminals deleted) in the case

5

of a failure can be seen to be at most c · k/ log2 n for some constant c. On the other hand, we make
sure that the number of roots removed in case of a failure is c′ · k/ log n for some constant c′. Thus,
intuitively, in every failure we delete “many” terminals but only “few” true terminals.

It is shown that eventually there will be a round in which one of the trees will reach size k
8 or

more. Moreover, the deleted true terminals prior to this round almost do not affect the cost of the
output solution because a constant fraction of the true terminals always remains.

2 The algorithms

2.1 Reducing the buy-at-bulk k-Steiner tree problem to a shallow-light k-Steiner

tree problem

In this section, we show how to prove Theorem 1.2 using Theorem 1.1. A bicriteria network design
problem [26] (A,B, S) is defined by identifying two objective functions, A and B, and specifying a
membership requirement in a class of subgraphs S. Typically, there is a budget constraint on the
first objective and we seek to minimize the second objective function. This way, the (diameter, cost,
k-Steiner tree) problem is naturally defined as follows: we are given an undirected graph G(V,E)
with terminal set T , an integer k ≤ |T |, diameter bound D, and two cost functions b : E −→ R

+ and
r : E −→ R

+ on the edges. Our goal is to find a minimum b-cost (i.e. minimizing the cost under the
b function) Steiner tree with k terminals in G such that the diameter of the tree under the r-cost is
at most D. We can assume that a particular terminal s ∈ T , called the root belongs to the solution
(we can simply guess this node s). Therefore, we are solving the rooted shallow-light k-Steiner tree.
We may relax the condition of requiring at least k terminals being in the solution to at least σk
terminals be in the solution for some constant σ ≤ 1. We call this variation the relaxed shallow-light
k-Steiner tree.

We say an algorithm is an (α, β)-approximation algorithm for an (A,B, S)-bicriteria problem if
in the solution produced the first objective (A) value is within factor at most α of the budget and the
second objective (B) value is at most β times the minimum for any solution that is within the budget
on A. Marathe et al. [26] gave an (O(log n), O(log n))-approximation algorithm for the (diameter,
cost, Spanning tree) problem. In Theorem 1.1 we show how to obtain an (O(log n), O(log3 n))-
approximation algorithm for the relaxed shallow-light k-Steiner tree where the solution has at least
k
8 terminals. More specifically, the algorithm takes another parameter M . If there is a shallow-light
k-Steiner tree with diameter D and cost at most M , then the algorithm is guaranteed to returns a
solution with diameter at most O(log n ·D) and cost at most O(log3 n ·M); otherwise the algorithm
may fail (not return any solution). So if M ≥ OPT, where OPT is the cost of an optimum solution
with diameter D, then the algorithm will return a solution of cost at most O(log3 n · M). We will
start from a trivial upper bound for OPT and do a binary search to find a value of M for which
the algorithm succeeds (in returning a solution of cost at most O(log3 n ·M)) while it fails for M/2.
In this case, clearly OPT ≥ M

2 . Thus our solution of cost O(log3 n · M) and diameter at most
O(log n · D) is indeed an (O(log n), O(log3 n))-approximation.

Similarly, the algorithm for buy-at-bulk k-Steiner tree takes a parameter M . Again, we do a
binary search to find a value of M for which the algorithm succeeds (in returning a solution of cost at
most O(log4 n·M)) while it fails for M/2. We start with the trivial upper bound of

∑

e c(e)+|T |·r(e)
for M . Throughtout the rest, we assume that M ≥ OPT is a given parameter.

Lemma 2.1 If there is an (α, β)-approximation algorithm for the relaxed shallow-light rooted k-

6

Steiner tree problem such that the solution has at least k
8 terminals, then we have an approximation

algorithm for (rooted) buy-at-bulk k-Steiner tree problem that given a parameter M ≥ OPT returns
a solution of cost at most O((α + β) log k · M).

Proof: Consider the input graph G(V,E) for the buy-at-bulk k-Steiner tree problem and assume
that M ≥ OPT. We mark every vertex with r-distance larger than M to s as “to be ignored”.
Clearly these vertices cannot be part of any optimal solution. Then, while k > 0 we do the following
steps:

1. Run the (α, β)-approximation algorithm A for the relaxed shallow-light k
2 -Steiner tree with

diameter (under r-cost) bounded by D = 4M
k and parameter M .

2. Mark all the terminals (except the root) of the solution of A as Steiner nodes.

3. Decrease k by the number of new terminals found in this stage.

Since the root belongs to all the (sub)trees found in each iteration of the while loop, at the end
we will get a connected graph, call it H, which spans k terminals. We can easily get a k-Steiner tree
of cost no more than the total cost of H by taking the union of shortest paths (with respect to rent)
from each of the terminals in H to the root and deleting unused edges. So it is enough to upper
bound the total cost of H and this is what we do next.

At some iteration let k′ be the number of yet unspanned terminals. Consider an optimal solution
H∗ for buy-at-bulk k′-Steiner tree instance and iteratively delete every leaf of H ∗ with r-distance to
s (the root) larger than 2M

k′ . We delete at most k′

2 terminals. Otherwise, more than k′/2 terminals
have rent distance at least 2M/k′ ≥ 2OPT /k′ to the root s and this is a contradiction as the total
cost is more than OPT. So we are left with a tree rooted at s containing at least k′

2 terminals. An

(α, β)-approximation algorithm for the relaxed shallow-light k′

2 -Steiner tree finds a tree containing s

with at least k′

16 new terminals with r-distance to S is at most β · 2M
k′ and cost bounded by αM . Given

the bound from the root s, this adds at most k ′ · β · 2M
k′ = 2βM to the rent cost of the solution. The

buy cost added is at most αM . So we have covered a constant fraction of the remaining terminals at
cost at most αM and the diameter increase is at most 2βM . By a standard set-cover like arguments
(see [23]), after at most O(log k) iterations, we have a tree with k terminals whose total cost is at
most O((α + β) log k · M).

Proof of Theorem 1.2:
By Theorem 1.1 there is an (O(log n), O(log3 n))-approximation algorithm for the relaxed shallow-
light rooted k-Steiner tree. Thus, using Lemma 2.1, with α = O(log n) and β = O(log3 n), and the
arguments before Lemma 2.1 we have an O(log3 n log k)-approximation algorithm and therefore an
O(log4 n)-approximation algorithm for (rooted) buy-at-bulk k-Steiner tree.

Proof of Theorem 1.3: We use an algorithm similar to that of Lemma 2.1; iteratively apply the
algorithm for Theorem 1.1. At each iteration, we obtain a Steiner tree rooted at r covering a constant
fraction (namely at least 1

8) of the required number of terminals, with cost at most O(log3 n · OPT)
and diameter at most O(log n · D). Thus after at most O(log k) iterations, we cover at least k
terminals at cost at most O(log4 n · OPT) and diameter at most O(log2 n · D).

2.2 Algorithm for relaxed shallow-light k-Steiner tree

In this subsection we prove Theorem 1.1. Our algorithm is inspired by the algorithms of [26] (for
shallow-light Steiner tree) and [4] for the (standard) k-MST problem. Recall that the input consists

7

of a graph G(V,E) with two edge costs b and r, D is a bound on the diameter under the r cost,
T ⊆ V is the set of terminals including the root s, k is the number of terminals we wish to cover, and
ε is an error parameter. We also assume that OPT is the cost of an optimum solution and M ≥ OPT
is a given parameter.

First note that we can delete every vertex with r-distance to s larger than D (since they cannot
be in the optimum solution). So all the vertices that remain are at distance at most D from s and
so are at distance at most 2D from each other in G. Next we transform G into another graph, Gc,
which we call the completion of G by doing the following. For every pair of vertices u, v ∈ V we find
a (1 + ε)-approximate minimum cost u, v-path under b-cost with length (under r-cost) at most 2D.
Let p∗(u, v) denote this cost. For this, we use the FPTAS algorithm of Hassin [21] which runs in

time O(|E|(n2

ε log n
ε)). We add a new edge between u and v with b-cost equal to the cost of p∗(u, v)

and r-cost equal to the length of p∗(u, v). Later on, in any solution of Gc that uses this new edge, we
can replace it with path p∗(u, v) in G at no extra cost and without increasing the length (diameter).
Therefore:

Lemma 2.2 If we have a bicriteria solution of cost X and diameter Y in Gc then we can find (in
polynomial time) a solution of cost at most X and diameter at most Y in G.

By this lemma, and since G ⊆ Gc, it is enough to work with graph Gc. By the argument before
the lemma, we can assume Gc is a complete (multi)graph.

Before presenting the algorithm, we should note that the “rooted” and “un-rooted” versions of
this problem are reducible to each other at the cost of a constant factor loss in the approximation
ratio. Clearly, if we can solve the rooted version we can also solve the un-rooted version by simply
trying all the terminals as the root and choose the smallest solution. On the other hand, if we have
an algorithm for the un-rooted version we can do the following. Delete every node v ∈ Gc for which
the cost of edge sv is larger than (1 + ε)M . Solve the un-rooted problem and if the solution does
not contain the root v then add the root. This is done by arbitrarily adding an edge from v to some
node in T . This will increase the cost by at most (1 + ε)M and the diameter by at most 2D. Hence,
it is enough to present an approximation algorithm for “un-rooted” shallow-light k-Steiner tree.

We focus on graph Gc and give an algorithm which finds a shallow-light k
8 -Steiner tree in it that

has cost at most O(log3 n ·M) and diameter at most O(D log n). As said earlier, the algorithm runs
in rounds and in every round we may have several iterations (of some loop). At every round we start
with every terminal as a singleton connected component (tree). Initially, every terminal is the center
of its own component (root of the tree). In every iteration of a round we perform a test. Each test
has one of two outcomes: “success” or “failure”. If the test is a success, we merge two connected
components by connecting their centers (roots of the trees) using a path, making one of them the
new center, and go to the next iteration. A single failure in an iteration inside a round causes the
entire round to be a failure (so we end that round). After a failed round some of the centers (roots)
of trees (which are terminals) are deleted, we exit the loop, and start the next round of algorithm
with a new (smaller) set of terminals. As stated above we initialize again each terminal to be a
component of size 1, ignoring any mergers that were done in the last failed round.

Our goal is to find a connected component (tree) containing at least k
8 terminals. We say that a

round is failure-free if it has no failures at all. The number of connected components is reduced by 1
by every test that ends with success. Thus, a failure-free round will eventually end with a connected
component with at least k

8 terminals. Clearly, either we fail at every round, in which case the set
of terminals eventually turns empty, or we will eventually have a failure-free round. We later show
that the first case above cannot happen.

8

Assume that in round i of the algorithm the number of terminals is ti, where t1 = t = |T |. At
each iteration of the loop in each round i, we divide the connected components into O(log ti) clusters,
where cluster j (for j ≥ 3) contains all the connected components for each of which the number of
terminals is between ti/2

j+1 and ti/2
j .

Definition 2.1 In every iteration of round i (for every i ≥ 1), a cluster is called light if the total
number of terminals in the union of the connected components in that cluster is at most ti

2 log ti
.

Otherwise, it is called heavy.

Lemma 2.3 In every iteration of round i (for every i ≥ 1) there are at least ti
2 terminals in heavy

clusters.

Proof: There are at most log ti light clusters as there are at most log ti clusters in total, and
therefore they have a total of at most ti

2 terminals. The rest of the terminals must belong to heavy
clusters.

In any round i and any iteration of this round, we compute the light and heavy clusters. Assuming
that there are at least k

2 terminals remaining in Gc, we show (in the Main Lemma) that there is a
heavy cluster with at least two connected components. Then we pick such a heavy cluster arbitrarily,
say cluster Cj . Assume that all the components of Cj have between p and 2p terminals where
p = ti/2

j+1. For every two components in Cj we consider the edge connecting their centers (recall
that since we are in Gc this edge may be obtained from the approximate minimum cost path with
length at most 2D between those vertices in G). Two connected components ca and cb in Cj are
called reachable if the cost of the edge connecting their centers is at most 16 log2 t · pM/k. If two
centers are reachable, by charging each terminal in the two component by 8 log2 t ·M/k, we can pay
for the cost of this merger. In that case, at any given time, the total cost of a component is at most
the total amount we have charged to the terminals in that component, which we show later is at
most O(log3 n · M/k). This can be used to obtain an upper bound on the cost of each connected
component. We test to see if there is a pair of reachable connected components in Cj . If there is
such a pair of components, then we merge the components by adding the edge between their centers
and then charge every terminal in the two components by 8 log2 t · M/k. Since there are at least 2p
vertices in ca and cb combined, the total charge is enough to pay for the cost of connecting the two
components. We make one of the centers of ca or cb (arbitrarily) to be the new center of the new
(merged) component and proceed to the next iteration of this round.

Otherwise, if our test fails because there are no two reachable centers in Cj (i.e. the cost of every
edge between the centers of components in Cj is larger than 16 log2 t ·M · p/k) then we delete all the
centers (roots) of the connected components of Cj (which are all terminals). Assuming that Cj has
xj clusters, we set ti+1 = ti − xj, and then exit the loop and start round i + 1. Below is the formal
description of the algorithm.

1. Set the counter i (for round) to 1 and let t1 = t = |T |.

2. Every terminal is a connected component by itself and is the center of that component.

3. Repeat until there is a connected component with k
8 terminals:

(a) Compute light and heavy clusters.

(b) Throw away (ignore) every heavy cluster which has only one connected component and
pick an arbitrary heavy cluster, say Cj, which has at least two components.

9

(c) If there are two components ca and cb in Cj such that the cost of the edge connecting
their centers is at most 16 log2 t · pM/k then we do the following merger:
/* The test succeeded */

i. Merge the components by adding that edge.

ii. Charge every node in the two components by 8 log2 t · M/k.

iii. Make one of the two centers the center of the new (merged) component and goto step
(a).

(d) Otherwise, /* The test failed */

i. Delete all the centers of components of Cj and reset the charges of all nodes to 0.

ii. Set ti+1 = ti − xj where xj is the number of components of Cj .

iii. Set i = i + 1, exit this loop and goto Step 2.

Below we show that every component participates in at most O(log n) merger operations and
each time the diameter increases by at most 2D. This will be enough to show that the diameter
will always be in O(D log n). Also, as said earlier, we show that the cost of each component with p
terminals is at most O(log3 n · pM/k). Finally, we show that the algorithm succeeds in that there is
a failure-free round before all the terminals are deleted in Step 3(d).

Lemma 2.4 In any round i ≥ 1, every component participates in at most O(log n) merger opera-
tions.

Proof: Each time a component participates in a merger the number of terminals of the components
it belongs to is multiplied by at least 3

2 . This follows as the size of the large component is at most 2p
for some integer p and of the smaller one at least p. Therefore there are at most O(log n) (or more
precisely O(log k)) iterations involving that component.

Lemma 2.5 In any round i ≥ 1 of algorithm, for every component ca that may be obtained from σ
merge operations, the length (under r-cost) between the center of ca and any other node in ca is at
most 2σD.

Proof: The proof is by induction on σ and noting the fact that whenever we merge two components
the length of the edge we add (between the centers) is at most 2D.

Corollary 2.6 In any round i ≥ 1, every component has diameter at most O(D log n), always.

Proof: Follows from Lemmas 2.4 and 2.5.

Lemma 2.7 In any round i ≥ 1, every terminal is charged at most O(log n) times and the total
charge of every terminal is O(log3 n · M/k).

Proof: Recall that every time a terminals is charged, the number of terminals in its new (merged)
cluster grows by at least a 3/2 factor. Thus, each terminal participates in at most O(log n) mergers
before we find a component with k

8 terminals or before the round fails (after which the charges are
all reset to zero). Furthermore, each time a terminal is charged 8 log2 t ·M/k. So the total charge of
every terminal at any given time is O(log3 n · M/k)

By this lemma, if the algorithm terminates with a k
8 -Steiner tree then the cost of the tree is

at most O(log3 n · M). Also, by Corollary 2.6 the diameter is at most O(D log n). Thus we only
need to argue that the algorithm does find a k

8 -Steiner tree and for that we need to show that the

algorithm terminates before the number of terminals goes down below k
8 . Since at every failed round

10

the number of terminals is reduced, after at most t rounds the number of terminals becomes zero
unless the algorithm terminates earlier with a feasible solution. Hence, if we show that the the set of
terminals can never be smaller than k

2 then it means that the algorithm terminates before we have

fewer than k
2 terminals. We also need to prove that we can perform step 3(b) of algorithm (i.e. find

a heavy cluster with at least two connected components). These are proved in our main lemma,
below. For that, we use the following pairing lemma:

Lemma 2.8 [26] Let T be an arbitrary tree and let v1, v2, . . . , v2q be an even number of vertices in
T . There exists a pairing of the vi (into q pairs) so that the unique paths joining the respective pairs
are edge-disjoint.

In the following lemma, we claim some properties on terminals not previously discarded by some
failed round. We fix some optimal tree OPT and use that tree for proving these claims. We use
OPT to refer to both the optimal solution and its cost. As some of the terminals in OPT may have
been deleted by the failed rounds, the original OPT as defined over G does not exist any longer
(the removal of deleted terminals may have destroyed that tree). Nevertheless, we can still use this
original OPT to prove properties on Gc.

Lemma 2.9 (Main Lemma) Let ki be the number of terminals of OPT that are in Gc at the
beginning of any round i ≥ 1. If ki ≥ k

2 then:

1. There is at least one heavy cluster with at least two connected components (so we can perform
step 3(b) of the algorithm).

2. ki+1 ≥ k
2 .

Proof:

1) By Lemma 2.3 there are at least ti
2 ≥ ki

2 ≥ k
4 terminals in heavy clusters. Throw away every cluster

with only one connected component. These components have a total of at most k
8 + k

16 + . . . < k
4

terminals. Therefore, there is at least one heavy cluster with at least two components.

2) Note that by definition of ki, k1 = k and ki ≤ ti. Suppose at some iteration of round i and
for some heavy cluster Cj chosen by the algorithm, no pair of centers are reachable to each other;
so we have to delete all the centers of Cj from Gc. Assume that all the components of Cj have size
between pi and 2pi.

Proposition 2.10 The number of centers of components of Cj that belong to OPT (namely, the
number of true terminals among centers) is at most k/(8pi log2 t).

Proof: Otherwise, using the pairing lemma (Lemma 2.8), we can pair those centers in OPT such
that the paths connecting the pairs in OPT are all edge-disjoint. By averaging, there is at least one
path with cost at most 16pi log2 t ·OPT /k ≤ 16pi log2 t ·M/k contradicting our assumption (because
if there was such a path we would have merged the two components).

Therefore, by Proposition 2.10, the number of terminals of OPT in Gc goes down by a factor of
at most 1 − 1/(8pi log2 t). On the other hand, since Cj is a heavy cluster and we have at most 2pi

nodes in every component of Cj, there are at least ti/(2 log ti)/(2pi) = ti/(4pi log ti) components in
Cj. This is also a lower bound on the number of centers (terminals) that are deleted in round i.
Therefore, the number of terminals in Gc goes down by a factor of at least 1 − 1/(4pi log ti). Hence:

ki

(

1 − 1

8pi log
2 t

)

≤ ki+1 ≤ ti+1 ≤ ti

(

1 − 1

4pi log ti

)

≤ ti

(

1 − 1

4pi log t

)

11

We now use the following two inequalities:

If x ≤ 1/2, then 1 − x ≥ e−2x (2)

and
1 − x ≤ e−x (3)

Using Inequality (2) and since 1/(8pi log2 t) < 1/2, it follows that 1−1/(8pi log2 t) ≥ e−1/(4pi log2 t).
On the other hand from Inequality (3): (1 − 1

4pi log t) ≤ e−1/(4pi log t). Thus

k · exp

(

−
i
∑

`=1

1

4p` log2 t

)

≤ k
∏

di
`=1

(

1 − 1

8p` log2 t

)

≤ ki+1 ≤ ti+1

≤ t
i
∏

`=1

(

1 − 1

4p` log t

)

≤ t · exp

(

−
i
∑

`=1

1

4p` log t

)

.

Note that both sequences ti and ki are decreasing but at different rates and ti is lower bounded by
ki. Also,

∑i
`=1

1
4p`

≤ log t · ln t, because for this value ti+1 ≤ t · e− ln t = 1. Plugging this upper bound

on
∑i

`=1
1

4p`
in the ki+1 lower bound we get that ki+1 ≥ k ln t/ log t ≥ k/2. Therefore, kj is always

at least k/2.

Acknowledgments: The first author would like to thank Kamal Jain and Kunal Talwar for
some initial discussions on the buy-at-bulk k-Steiner tree problem.

References

[1] M. Andrews, Hardness of buy-at-bulk network design., in Proceedings of the 45th Symposium on Foun-
dations of Computer Science (FOCS ’04), 2004, pp. 115–124.

[2] M. Andrews and L. Zhang, Approximation algorithms for access network design, Algorithmica, 34
(2002), pp. 197–215.

[3] B. Awerbuch and Y. Azar, Buy-at-bulk network design, in Proceedings of the 38th Annual Symposium
on Foundations of Computer Science (FOCS ’97), IEEE Computer Society, 1997, pp. 542–547.

[4] B. Awerbuch, Y. Azar, A. Blum, and S. Vempala, New approximation guarantees for minimum-
weight k-trees and prize-collecting salesmen, SIAM J. Comput., 28 (1999), pp. 254–262.

[5] J. Bar-Ilan, G. Kortsarz, and D. Peleg, Generalized submodular cover problems and applications,
Theoretical Computer Science, 250 (2001), pp. 179–200.

[6] Y. Bartal, On approximating arbitrary metrices by tree metrics, in Proceedings of the thirtieth annual
ACM symposium on Theory of computing (STOC ’98), New York, NY, USA, 1998, ACM Press, pp. 161–
168.

[7] A. Blum, R. Ravi, and S. Vempala, A constant-factor approximation algorithm for the k mst problem
(extended abstract), in Proceedings of the twenty-eighth annual ACM symposium on Theory of computing
(STOC ’96), New York, NY, USA, 1996, ACM Press, pp. 442–448.

[8] M. Charikar and A. Karagiozova, On non-uniform multicommodity buy-at-bulk network design, in
STOC ’05: Proceedings of the thirty-seventh annual ACM symposium on Theory of computing, New
York, NY, USA, 2005, ACM Press, pp. 176–182.

[9] C. Chekuri, M. Hajiaghayi, G. Kortsarz, and M. R. Salavatipour, Polylogarithmic approx-
imation algorithm for non-uniform multicommodity buy-at-bulk, in Proceedings of 47th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’06), 2006, pp. 677–686.

12

[10] C. Chekuri, S. Khanna, and J. Naor, A deterministic algorithm for the cost-distance problem, in Pro-
ceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms (SODA ’01), Philadelphia,
PA, USA, 2001, Society for Industrial and Applied Mathematics, pp. 232–233.

[11] J. Chuzhoy, A. Gupta, J. S. Naor, and A. Sinha, On the approximability of some network design
problems, in Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms (SODA
’05), Philadelphia, PA, USA, 2005, Society for Industrial and Applied Mathematics, pp. 943–951.

[12] J. Fakcharoenphol, S. Rao, and K. Talwar, A tight bound on approximating arbitrary metrics by
tree metrics, J. Comput. System Sci., 69 (2004), pp. 485–497.

[13] U. Feige, G. Kortsarz, and D. Peleg, The dense k-subgraph problem, Algorithmica, 29 (2001),
pp. 410–421.

[14] N. Garg, A 3-approximation for the minimum tree spanning k vertices, in Proceedings of the 37th Annual
IEEE Symposium on Foundations of Computer Science, 1996, pp. 302–309.

[15] N. Garg, Saving an epsilon: a 2-approximation for the k-mst problem in graphs, in Proceedings of the
thirty-seventh annual ACM symposium on Theory of computing (STOC ’05), New York, NY, USA, 2005,
ACM Press, pp. 396–402.

[16] S. Guha, A. Meyerson, and K. Munagala, Hierarchical placement and network design problems, in
Proceedings of the 41st Annual Symposium on Foundations of Computer Science (FOCS ’00), Washington,
DC, USA, 2000, IEEE Computer Society, pp. 603–612.

[17] S. Guha, A. Meyerson, and K. Munagala, A constant factor approximation for the single sink edge
installation problems, in Proceedings of the thirty-third annual ACM symposium on Theory of computing
(STOC ’01), New York, NY, USA, 2001, ACM Press, pp. 383–388.

[18] A. Gupta, A. Kumar, M. Pal, and T. Roughgarden, Approximation via cost-sharing: a simple
approximation algorithm for the multicommodity rent-or-buy problem, in Proceedings of the 44rd Sympo-
sium on Foundations of Computer Science (FOCS ’03), IEEE Computer Society, 2003, pp. 606–615.

[19] A. Gupta, A. Kumar, and T. Roughgarden, Simpler and better approximation algorithms for net-
work design, in Proceedings of the thirty-fifth ACM symposium on Theory of computing (STOC ’03),
ACM Press, 2003, pp. 365–372.

[20] M. Hajiaghayi and K. Jain, The prize-collecting generalized Steiner tree problem via a new approach
of primal-dual schema, in Proceedings of the 17th annual ACM-SIAM symposium on Discrete algorithms
(SODA ’06), Philadelphia, PA, USA, 2006, Society for Industrial and Applied Mathematics, pp. 631–640.

[21] R. Hassin, Approximation schemes for the restricted shortest path problem, Math. Oper. Res., 17 (1992),
pp. 36–42.

[22] R. Hassin and A. Levin, Minimum restricted diameter spanning trees, in Approx 2002, 2002, pp. 175–
184.

[23] D. S. Johnson, Approximation algorithms for combinatorial problems, J. Comput. System Sci., 9 (1974),
pp. 256–278. Fifth Annual ACM Symposium on the Theory of Computing (Austin, Tex., 1973).

[24] G. Kortsarz and D. Peleg, On choosing a dense subgraph, in Proceedings of 34th Annual Symposium
on Foundations of Computer Science (FOCS’93), IEEE Computer Society, 1993, pp. 692–701.

[25] A. Kumar, A. Gupta, and T. Roughgarden, A constant-factor approximation algorithm for the
multicommodity rent-or-buy problem, in Proceedings of the 43rd Symposium on Foundations of Computer
Science (FOCS ’02), Washington, DC, USA, 2002, IEEE Computer Society, pp. 333–.

[26] M. V. Marathe, R. Ravi, R. Sundaram, S. S. Ravi, D. J. Rosenkrantz, and H. B. Hunt, III,
Bicriteria network design problems, J. Algorithms, 28 (1998), pp. 142–171.

[27] A. Meyerson, K. Munagala, and S. Plotkin, Cost-distance: two metric network design, in Proceed-
ings of the 41st Annual Symposium on Foundations of Computer Science (FOCS ’00), IEEE Computer
Society, 2000, p. 624.

13

[28] F. S. Salman, J. Cheriyan, R. Ravi, and S. Subramanian, Approximating the single-sink link-
installation problem in network design, SIAM J. on Optimization, 11 (2000), pp. 595–610.

14

