A Polynomial Time Algorithm for Strong Edge Coloring of Partial
k-Trees

Mohammad R. Salavatipour *
Department of computer Science, University of Toronto
10 King’s College Rd., Toronto, ON, M5S 3G4, Canada

mreza@cs.toronto.edu

Abstract

A matching M in a graph is called induced if there is no edge in the graph connecting two edges
of M. The strong edge coloring problem is to find an edge coloring of a given graph with minimum
number of colors such that each color class is an induced matching. This problem is known to be
NP-complete, even in very restricted cases. Here, we show that it can be solved in polynomial time
on graphs with bounded treewidth, i.e partial k-trees. This answers an open question of [14].

1 Introduction

For a given graph G = (V, E), an induced matching is a set M C E such that there is no edge in F
connecting two edges of M. That is, the subgraph induced by the vertices of M is precisely M. A
strong edge coloring of G is an assignment of colors to the edges of G such that every color class is an
induced matching. Obviously, the goal is to use as few colors as possible. Perhaps the most important
open question on the strong edge coloring problem is the conjecture of Erdos and Negetfil (see [7], [8])
, which states that every graph of maximum degree A has a strong edge coloring with at most %AQ
colors. It is not difficult to see that strong edge coloring of a graph G is equivalent to coloring the square
of the line graph of G, denoted by L(G)?, where the square of a graph is obtained by adding edges
between every two vertices in that graph of distance exactly two (see [6]). The problem of coloring the
square of a graph has many applications, for example, in the Frequency Channel Assignment problem,
or in approximating the Hessian matrices of certain nonlinear functions using a minimum number of
gradient evaluations [15]. Coloring the square of a graph is a well studied problem and is proved to be
NP-complete even for planar graphs of bounded degree.

Although there are efficient algorithms for the standard matching problem, finding a maximum
induced matching (called MIM from now on) is NP-complete, even for bipartite graphs with maximum
degree 4 [20] and for 3-regular graphs [13]. On the other hand, the MIM problem is solvable in polynomial
time for trees [9], chordal graphs [6], circular arc graphs [10], trapezoid graphs, co-comparability graphs
[11], and weakly chordal graphs [21]. The main idea of the most of these algorithms is to show that
for a class C of graphs, if G € C then L(G)? € C as well. This immediately yields a polynomial time
algorithm for the MIM problem, because an induced matching of G is equivalent to an independent set
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of L(@)? and finding a maximum independent set is polynomially solvable for each of these classes of
graphs.

A similar idea reduces the strong edge coloring problem to the standard vertex coloring problem,
which is polynomially solvable for these graphs. Therefore, the strong edge coloring problem can be
solved in polynomial time on chordal graphs and co-comparability graphs. This was noticed by Mahdian
[14]. But the strong edge coloring problem is NP-complete in general, and remains NP-complete even
for bipartite graphs with girth at least 4 [14].

Based on the results of [1] and [5], one can easily find a polynomial (and in fact linear) time algorithm
for MIM for partial k-trees, since this problem can be expressed in Extended Monadic Second Order
Logic (EMSOL). For the strong edge coloring problem the situation is more complicated. It is not
difficult to express the strong edge coloring problem in EMSOL as long as the number of colors (and
therefore the maximum degree of the graph) is bounded. But no one knows whether this problem can
be expressed in EMSOL if the maximum degree of the graph is not bounded, and so we need a different
approach for this problem in general case.

In this paper, we solve this problem by removing the restriction of having bounded maximum degree.
In other words, we show that the strong edge coloring problem can be solved in polynomial time on
graphs with bounded treewidth, i.e. partial k-trees. This answers one of the open questions of [14].

2 Preliminaries and Definitions

We consider only simple undirected graphs. Let M be an induced matching of a graph G = (V, E). If
H C @ is a subgraph of G, by M|H we mean the set of edges of M that are in H. Clearly, M|H is an
induced matching of H as well.

A strong edge coloring of G = (V, E) is an assignment of integers f : E — N such that for every
two edges e = (u,v) and € = (u',v"), if either (u,v") € E or (u/,v) € E or one of the end points of e
and ¢’ are common, then f(e) # f(¢’). The minimum number of colors (integers) required in a strong
edge coloring of G is called the strong chromatic index of G.

The notion of treewidth was introduced by Robertson and Seymour [16, 17, 18] in their long and
deep series of papers on graph minors.

Definition 2.1 A tree-decomposition of a graph G = (V, E) is a pair (X,T), where T(I,F) is a tree,
and X ={X;|i € I} is a family of subsets of V', one for each node of T, such that:

° Ui, Xi=V.
e for each edge (u,v) € E, there exists an i € I such that u,v € X;.
e for all 1,5,k € I, if j is on the path from i to k in T, then X; N X} C Xj.

The treewidth of a tree-decomposition (X,T") is max;er |X;| — 1. The treewidth of a graph G is the
minimum treewidth over all possible tree-decompositions of G.
A natural generalization of trees is the class of k-trees, which is defined recursively as follows:

e A complete graph on k vertices is a k-tree.

o If G = (V,FE) is a k-tree and C' C G is a clique of size k and =z ¢ V, then H = (V U {z},E U
{(u,z)|u € C}) is a k-tree.



e There are no further k-trees.

A graph is called a partial k-tree if it is a subgraph of a k-tree. It can be shown [19] that every
graph G has treewidth at most k if and only if it is a partial k-tree. Bodlaender [3] shows that for fixed
k, there is a linear time algorithm that determines whether a given graph G is a partial k-tree, and if
S0, outputs a tree-decomposition of G with treewidth at most k.

We say a tree-decomposition (X, T') of treewidth k is smooth, if T'is a binary tree and:

o foralli e It |X;|=k+1,

e every internal node X; has two children, and if X; and Xg are its children, then either X; = X
or XR = Xi,

o forall (4,5) € F: k <|X;NX;| <k+1, and
e for each edge (u,v) € E, there is at least one leaf i € I, with u,v € Xj.

It can be shown that any tree-decomposition of a graph G can be transformed into a smooth tree-
decomposition of G with the same treewidth and size O(n) in linear time. (see [2] and [3]). For the
purpose of our algorithms, we assume that along with the input graph we are given a smooth tree-
decomposition of it.

For a given graph G with treewidth at most k, let (X,7') be a smooth tree-decomposition of it. For
each node X; of T' we define T; to be the subtree of T rooted at . We define V; and E; to be the vertex
set and edge set of the graph induced by the vertices that are in some node of T;. More precisely, if X;
is a leaf then V; = X; and E; = {(u,v) € E|u,v € X;}; if X; is an internal node with children X and
Xpg then V; =V, U Vg and E; = E, U Eg. We denote by G; the graph with vertex set V; and edge set
E;. Note that by these definitions, the only common vertices of Gy = (Vz, Er) and Gr = (Vg, Er) are
in Xz

For the purpose of the algorithm, we need to define another set of edges. We know that for every
edge e = (u,v) € E, there is at least one leaf i of tree T such u,v € X;. We fix one such 7 as the
representative of edge e, and denote it by rep(e). If X; is a leaf in T" then E! is defined to be the set of
edges of the graph whose representative is 4, and if X; has children X; and Xp then E} = E] U E,.
Equivalently, E! = {e € E|rep(e) € T;}. Note that by this definition, for every node X;: E! C E;, and
if X; has two children X7, and Xg then £} N E}, = (. We denote the graph on vertex set V; and edge
set E! by G.

3 The Strong Edge Coloring Algorithm

Here we prove the main result of this paper:

Theorem 3.1 For every fized integer k, there is a deterministic algorithm that, given a graph G with
94(k+1)+1

) whether G has a
strong edge coloring using at most s colors or not, and if so finds such a strong edge coloring.

treewidth k on n wvertices and an integer s, determines in time O (n(s +1)

We give a partial proof of this theorem by describing an algorithm to determine whether a strong
edge coloring of G with at most s colors exists or not. This dynamic programming algorithm, which is
easier to describe, can be easily modified (by storing some extra information in the tables) so that it
finds a strong edge coloring with s colors, if one exists.



Let (X,T) be a smooth tree-decomposition of G and let C' = {1,2,...,s} be the set of colors. For
a node X; of T', a mapping f : E] — C' is called a partial coloring of G),. A partial coloring of G is
proper if it is a strong edge coloring of G with respect to the edges in G;. More precisely, mapping
[ is proper if for every two edges e,e’ € EJ, if e and € have a common endpoint or there is an edge
¢ € E; (and not necessarily in E}), then f(e) # f(¢/). A proper partial coloring is eztendible, if it can
be extended to a strong edge coloring of G. Consider a partial coloring f of G). For a vertex v € V;, we
define L¢(v) to be the set of colors of the edges in Ej incident with v, and L?c(v) to be the set of colors
of the edges in E} that are incident with vertices that are adjacent to v by edges in E;. We also define
Ny(Xi,c) C X; and N?(Xi,c) C X; as follows:

Ny(Xi,c)={veE X;:ce€ Lg(v)},
N?(Xi,c) ={veX;:ce L?c(v) — Ly(v)}.

For each pair A, B C X;, we define CLy(A, B) C C, the color class function of f on X;, as:
CLf(A,B) ={c€C: A= Ng(X;,¢),B=N;Xic)}
From this definition, we immediately have:

Observation 3.2 Let f be a partial coloring of G} and let CLy be the color class function of f. Then
{CL{(A,B): A, B C X;} is a partitioning of C.

Let P(X;) be the power set of X;. A mapping PC : P(X;) x P(X;) — C is called a pair count of
X if there exists a partial coloring f of G, such that:

VA,B € P(X;) : PC(A, B) = |CL(A, B)|.

In this case, PC' is called the pair count of the partial coloring f. By this definition and observation
3.2 it follows that, for a pair count PC of Xj:

> PC(A,B)=s.

A,BCX;

A pair count PC of X; is active if it is the pair count of a proper partial coloring. The following
lemma shows that the active pair counts can be seen as equivalence classes of proper partial colorings.
So, instead of considering all possible proper partial colorings of G, it is enough to consider only different
active pair counts of node Xj.

Lemma 3.3 Let f and g be two proper partial colorings of G that have the same pair count. Then f
1s extendible if and only if g is extendible.

Proof: Suppose that f is extendible. Since f and g have the same pair count, there is a relabeling of
the colors 7 : C' — C, such that for all e € E] that are adjacent to a vertex of X; or to a neighbor of
a vertex of X;: f(e) = w(g(e)). This implies that the coloring m o g can be extended to a strong edge
coloring h of G: let h(e) = m(g(e)) for e € E!, and h(e) = f(e) otherwise. Therefore, 7=! o h is a strong
edge coloring of G that extends g. Thus, g is extendible. By symmetry, the same arguments work if we
assume that ¢ is extendible. [ |



So the only information needed to determine whether a proper partial coloring is extendible or not
is its pair count.

For each node X; of T', we compute a table of all active pair counts of that node. Since |X;| =k +1
there are at most (s + 1)22(k+1) active pair counts for X;, which is polynomial in the input size. We
compute the table of an internal node after computing the tables of its two children. The tables of the
leaves can be computed directly, as they don’t have any children. The goal is to compute the table of
active pair counts of X, the root of T'. Since G, = G and E] = E, a proper partial coloring of G, is,
by definition, a strong edge coloring of G. Thus, G has a strong edge coloring with s colors, if and only
if the table computed for X, is not empty.

For a leaf X;, we enumerate all proper partial colorings f : £ — min(s, |E%[), and compute the

pair count of each and store it in a table, if it is not already in the table. Since |E;| < w, the

number of distinct partial colorings of E; is O(1), and so is the running time of computing the table of
X;.

Now let’s see how to compute the table of active pair counts of an internal node X;, after computing
the table of its children. Suppose that X; and Xp are the two children of X;. Recall that T is a
smooth tree-decomposition, and therefore, X; N Xp = k. Without loss of generality, assume that
X1 = X;, and let X1, = {vg,v1,...,v;} and Xp = {v1,v2,..., 0541} If f is a partial coloring of G7,
then by f|G, and f|G'; we mean the restriction of f to E} and EY,, respectively. We call a mapping
QC : P(XL) x P(XL) x P(XRg) X P(Xgr) — C a quad count on X; if there exists a partial coloring f
of GY, such that for each quadruple (Az, Br,, Ag, Br) with Ar, By, C X1, and Ar, Br C Xp:

QC(AL,BL,AR,BR) = |CLfL(AL,BL) N CLfR(AR,BR)|,

where fr, = f|G', and fr = f|G'. This quad count is called the quad count of partial coloring f. A
quad count QC' of X; is active if it is the quad count of a proper partial coloring. The following lemma
shows how to compute the set of all active quad counts of X;, knowing the set of all active pair counts
of XL and XRZ

Lemma 3.4 A quad count QC of X; is active if and only if it satisfies conditions (a) and (b) defined
below:

(a) If QC(AL,Br, Ag,Br) > 0 then

(a.]) AL ﬂAR = @
(0.2) A, NBg = 0.
(0.3) ArN B =0.
(a.4) Yu,v € A, U Ag : (u,v) € Ej.
(b) There exist active pair counts PCp, and PCg of X1, and X, respectively, such that:

(b.1) For each pair Ap, B, C X|,:

PCr(AL,BL) =), QC(AL, BL, A, B).
A,BCXp



(b.2) For each pair Agr,Br C Xg:

PCr(Ar,Br) =), QC(A, B, Ag, Br).
A,BCX.

Proof: Necessity: Assume that QC is an active quad count and f is a proper partial coloring whose
quad count is QC. Let fr = f|G, and fr = f|G’;. It is easy to see that the pair counts of fr and fr
are equal to PC, and PCp as defined in conditions (b.1) and (b.2), respectively. Therefore, PC}, and
PCpR are active pair counts.

Now assume that QC (AL, B, Ar,Br) > 0, for some A;,B;, C X; and Ag, Bg C Xg. From the
definition of a quad count, it follows that if v € A, N AR then there are two distinct edges incident with
v, one in E} and one in EY%, that have the same color in f, contradicting that f is a proper partial
coloring. We get similar contradictions if any of conditions (a.2) to (a.4) are violated.

Sufficiency: Assume that QC' is a quad count of X; that satisfies conditions (a) and (b). We want
to show that QC is active. Let f be a partial coloring whose quad count is QC' and define f;, = f|G,
fr = f|G%, and let PCy, and PCy, be the pair counts of f;, and fg, respectively. Suppose that hr,
and hp are two proper partial colorings of G, and G, whose pair counts are equal to PCy, and PCk,
respectively. By definitions of fr, fr, and conditions (b.1) and (b.2):

VAL,BL Q XL . PCL(AL,BL) — PCfL(AL,BL),

and
VAR,BR g XR : PCR(AR,BR) = PCfR(AR,BR).

It is not difficult to see that there exist two relabelings of the colors, 7y : C — C and g : C — C,
such that the color class functions of 7y, o hy, and fr, are equal, and similarly for 7z o hg and fr. That
is:

VAL,BL - XL : CLﬁLth(AL,BL) = CLfL(AL,BL), (1)
VAR,BR - XR . CLﬂRohR(AR,BR) = CLfR(AR,BR). (2)

Now define the coloring f' : E! — C as follows: f'(e) = mpohr(e), ife € E}, and f'(e) = nrohg(e)
if e € EY,. By this definition and Equations (1) and (2), f’ has the same quad count as f does, which
is QC. We show that f’ is a proper partial coloring, and therefore, QC is an active quad count. Note
that 77, o hy, and g o hr are two proper partial colorings. By way of contradiction, assume that f’ is
not proper.

First consider the case that e; = (u,v) and ey = (u/,v) are two distinct edges of E! with f'(e;) =
f'(e2). Since e; and ey cannot be both in E} or E', (because wp,0hy, and mrohp are both proper), without
loss of generality, we assume that e; € £} and ey € EY,. Therefore, v € X1, N X, which implies that
there exist subsets Ay, By, C X, and Ar, Bg C Xpg, for whichv € AyNAg and QC (AL, Br, Agr,Bgr) > 1
(because of f'(e1)). But this contradicts condition (a.1).

The other possibility for f’ to be an improper partial coloring is when there are three edges e; =
(u1,v), eg = (ug,v'), and e3 = (v,v'), where ej,e2 € E! and e3 € Ej, such that f'(e;) = f'(e2). Since
7z, o hy, is proper, e; and ey cannot be both in E}. Otherwise, e3 ¢ E;, which implies that v,v" € Vp,
and therefore e;,es ¢ E), a contradiction. Similar arguments show that e; and ey cannot be both in
E'%. So let’s assume that e; € E} and e € E%. This means that v € Vi, and v' € Vi. Using the
fact that F; = Er U Eg: e3 € Er or e3 € Er. Consider the case that e3 € Er. This implies that



v € VN Vg, i.e. v € X N Xg. Therefore, there exist subsets Ay, By, € X1, and Agr,Br C Xg, for
which QC(AL, Br, Ag, Br) > 1 (because of f'(e1)) and, either v € A, N Bg or v,v' € Ay U Ag. The
case that v € Ay N Br contradicts condition (a.2) and the second case, together with the fact that
es = (v,v') € E;, contradicts (a.4). If we consider the case that e3 € E similar arguments contradict
conditions (a.3) or (a.4).

Thus, there are no two edges of the same color in f’ that are either adjacent or connected to an
edge from E;. This completes the proof that f’ is a proper partial coloring of G. [ ]

To compute the set of all active quad counts of X;, first we consider all (not necessarily active) quad
counts of X;. There are at most (s + 1)24(k+1) quad counts QC on X;. For each quad count QC, we
determine whether QC is active or not by checking conditions (a) and (b) in Lemma 3.4. Checking
condition (a) takes constant time, as |AL|, |BL|, |Ar|, and |Bg| are all bounded by & + 1. Condition

. . 2
(b) can be checked in time O((s + 1)22(k+1)+1) because there are at most ((s + 1)22(k+1)> pairs of PCY,

24(k+1)

and PCp. Since the number of quad counts on X; is at most (s + 1) , all active quad counts on

X; can be computed in time

0 ((S n 1)22(k+1)+1 (8 n 1)24(k+1)) -0 ((8 n 1)24(k+1)+1) .

We will show how to compute all active pair counts of X; having all active quad counts of X;. To
do so, we need the following lemma.

Lemma 3.5 Assume that f is a partial coloring of G}, fr = f|G",, and fr = f|G. Let CLy, CLy,,
and CLy, be the color class functions of f, fr, and fg, respectively. Then for all A,B C X;:

CLf(A?B) = U (CLfL(ALaBL) mCLfR(ARaBR))a (3)
where the union is taken over all quadruples (Ar, Br, Ar, Br) satisfying:

AZALUAR—{’U]H_l}, (4)
BZBIUBLUBR—{U/H_I}, (5)

where
B'={veX,—A:3ue ALUAg s.t. (u,v) € E;}.

Proof: First consider some color ¢ € CL¢(A, B). We want to show it belongs to the right-hand-side of
(3). Since CLy, and CLy, are each a partitioning of C, therefore, ¢ belongs to exactly one CLy, (Ay,, By,)
and exactly one CLy, (AR, Bgr). By definition of fr and fr: Ar C A, (Agr — {vk+1}) C A, Br C B,
and (Br — {vk+1}) € B. To complete the proof of this part we prove that A C A, U A — {vky1}
and B C B'U By U Bg — {vgs1}. For each vertex v € X;, which is incident with a colored edge e
(ie. v € A), since E] = E} UE}L: e € E} or e € Ey. Therefore, v € Ay, or v € Ag, which implies
ACALUAR —{vg41}. For each vertex v € X; which is adjacent (by an edge (v,u) € E;) to a colored
edge e (i.e. v € B), either e € E} or e € E,. If e € E} and (v,u) € Ey, then clearly v € By. If e € E
and (v,u) € Er then v € Br. Otherwise, let’s assume e € £} and (v,u) € E; — Er, (a similar argument
works for the case that e € E, and (v,u) € E; — Egr). This means that v € Ay, and therefore, v € B'.
So in all cases v € B'U By, U Br — {vg41}, which implies B C B'U B, U B — {vk+1}. Thus, ¢ belongs
to the right-hand-side of Equation (3).



Now assume that ¢ is a color in the right-hand-side of (3). This means that there exists some quadru-
ple (A, By, A, Br) satisfying Equations (4) and (5), such that ¢ € (CLy, (Ar,Br) N CLy, (AR, Br)).
So the vertices in X; that are incident with an edge of E with color ¢ are those in Ay, and the ver-
tices of X; that are incident with an edge of E%, with color ¢ are those in Ag — {vgy1}. Therefore,
Ny(Xi,¢) = Ap U Ag — {vg41}. Similarly, it is not difficult to see that the vertices of X; that are not
incident with color ¢ but one of their neighbors is incident with color ¢, are precisely those that are in
B"U B U Bg — {vg 41}, which means that N7(X;,¢) = B. Thus ¢ € CLy(4, B). n

Lemma 3.6 A pair count PC of X; is active if and only if there exists an active quad count QC of X;
such that for each pair A, B C X;:

PC(A,B) =Y QC(AL, B, Ar, Br), (6)
where the summation is taken over all quadruples (Ar, By, Ar, Br) satisfying Equations (4) and (5).

Proof: Necessity: Assume that PC is an active pair count of X; and f is a proper partial coloring of
G whose pair count is PC. Let QC be the quad count of f. Therefore, QC' is active. We show that
PC and QC satisfy Equation (6). Define f;, = f|G', and fr = f|G’%, and let CL; be the color class
function of f on X;. Similarly, define CLy, and CLy,. By definition of a quad count:

QC(AL,BL,AR,BR) = |CLfL(AL,BL) N CLfR(AR,BR)|. (7)
An important observation at this point is that
{CLfL(AL,BL) N CLfR(AR,BR) : AL,BL C X, and AR,BR - XR}

is a partition of C. Therefore:
U (€L (AL, Bu) 01 CLp (AR, BR)| = Y (CLy, (AL, Bu) N CLpy(ArsBr)l, (8)

where the union and summation are taken over all quadruples that satisfy (4) and (5). Using (3), (7),
(8), and definition of an active pair count it follows that PC and QC satisfy (6).

Sufficiency: Assume that QC' is an active quad count on X;, and f is a proper partial coloring of
G} whose quad count is QC. Define fr,, fr, CLy, CLy,, and CLy, as in the previous case. Then by
Lemma 3.5, Equation (6), and definition of a quad count:

CLiAB) = | (CLy (AL BL) N CLyy(Ar, Br)
= Y NCLy (AL BL) N CLyy(Ag, Br))|

= > QC(AL, By, Ag, Br)
= PC(4,B),

where the union and summations are taken over all quadruples that satisfy (4) and (5). Therefore, the
mapping PC defined as in Equation (6) would be an active pair count. [

Using Lemma, 3.6 we compute all active pair counts of X; from active quad counts of X;. There are
at most (s+ 1)24(k+1) different quad count QC of X;, and for each QQC we can compute the corresponding



pair count satisfying Equation (6) in O(1). Therefore, having all the active quad counts of X;, we can
compute all the active pair counts of X; in time O((s + 1)2*“*").

Overall, since the number of nodes of T is O(n), we can compute all the tables of all the nodes
(including the root) of T', in time
0 (n(s+1)*""™)

This completes the proof of Theorem 3.1.

4 Concluding Remarks

In this paper, we gave the first polynomial time algorithm for the strong edge coloring problem on
partial k-trees, for fixed k. We didn’t describe how to find a strong edge coloring using the specified
number of colors. But this can be done, by doing slight modifications in the algorithm (using extra
bookkeeping). We skip the details.

Although the running time of the given algorithm is polynomial, it is doubly exponential in k, like
many other algorithms for different problems on graphs with bounded treewidth. Hence, it remains an
open problem to find an algorithm with a better running time. Perhaps the technique used for finding
linear time algorithms for standard edge-coloring [23] and total coloring [12] of partial k-trees might
be helpful here. However, it is worth to mention that, this algorithm can be parallelized, to be run in
O(logn) time on a CRCW PRAM, using the same techniques as in Bodlaender and Hagerup [4], and
Zhou et al. [22].

Acknowledgments: The author would like to thank the referees for their helpful comments and
suggestions.
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