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Abstra
t

A mat
hing M in a graph is 
alled indu
ed if there is no edge in the graph 
onne
ting two edges

of M . The strong edge 
oloring problem is to �nd an edge 
oloring of a given graph with minimum

number of 
olors su
h that ea
h 
olor 
lass is an indu
ed mat
hing. This problem is known to be

NP-
omplete, even in very restri
ted 
ases. Here, we show that it 
an be solved in polynomial time

on graphs with bounded treewidth, i.e partial k-trees. This answers an open question of [14℄.

1 Introdu
tion

For a given graph G = (V;E), an indu
ed mat
hing is a set M � E su
h that there is no edge in E


onne
ting two edges of M . That is, the subgraph indu
ed by the verti
es of M is pre
isely M . A

strong edge 
oloring of G is an assignment of 
olors to the edges of G su
h that every 
olor 
lass is an

indu
ed mat
hing. Obviously, the goal is to use as few 
olors as possible. Perhaps the most important

open question on the strong edge 
oloring problem is the 
onje
ture of Erd�os and Ne�set�ril (see [7℄, [8℄)

, whi
h states that every graph of maximum degree � has a strong edge 
oloring with at most

5

4

�

2


olors. It is not diÆ
ult to see that strong edge 
oloring of a graph G is equivalent to 
oloring the square

of the line graph of G, denoted by L(G)

2

, where the square of a graph is obtained by adding edges

between every two verti
es in that graph of distan
e exa
tly two (see [6℄). The problem of 
oloring the

square of a graph has many appli
ations, for example, in the Frequen
y Channel Assignment problem,

or in approximating the Hessian matri
es of 
ertain nonlinear fun
tions using a minimum number of

gradient evaluations [15℄. Coloring the square of a graph is a well studied problem and is proved to be

NP-
omplete even for planar graphs of bounded degree.

Although there are eÆ
ient algorithms for the standard mat
hing problem, �nding a maximum

indu
ed mat
hing (
alled MIM from now on) is NP-
omplete, even for bipartite graphs with maximum

degree 4 [20℄ and for 3-regular graphs [13℄. On the other hand, the MIM problem is solvable in polynomial

time for trees [9℄, 
hordal graphs [6℄, 
ir
ular ar
 graphs [10℄, trapezoid graphs, 
o-
omparability graphs

[11℄, and weakly 
hordal graphs [21℄. The main idea of the most of these algorithms is to show that

for a 
lass C of graphs, if G 2 C then L(G)

2

2 C as well. This immediately yields a polynomial time

algorithm for the MIM problem, be
ause an indu
ed mat
hing of G is equivalent to an independent set

�
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of L(G)

2

and �nding a maximum independent set is polynomially solvable for ea
h of these 
lasses of

graphs.

A similar idea redu
es the strong edge 
oloring problem to the standard vertex 
oloring problem,

whi
h is polynomially solvable for these graphs. Therefore, the strong edge 
oloring problem 
an be

solved in polynomial time on 
hordal graphs and 
o-
omparability graphs. This was noti
ed by Mahdian

[14℄. But the strong edge 
oloring problem is NP-
omplete in general, and remains NP-
omplete even

for bipartite graphs with girth at least 4 [14℄.

Based on the results of [1℄ and [5℄, one 
an easily �nd a polynomial (and in fa
t linear) time algorithm

for MIM for partial k-trees, sin
e this problem 
an be expressed in Extended Monadi
 Se
ond Order

Logi
 (EMSOL). For the strong edge 
oloring problem the situation is more 
ompli
ated. It is not

diÆ
ult to express the strong edge 
oloring problem in EMSOL as long as the number of 
olors (and

therefore the maximum degree of the graph) is bounded. But no one knows whether this problem 
an

be expressed in EMSOL if the maximum degree of the graph is not bounded, and so we need a di�erent

approa
h for this problem in general 
ase.

In this paper, we solve this problem by removing the restri
tion of having bounded maximum degree.

In other words, we show that the strong edge 
oloring problem 
an be solved in polynomial time on

graphs with bounded treewidth, i.e. partial k-trees. This answers one of the open questions of [14℄.

2 Preliminaries and De�nitions

We 
onsider only simple undire
ted graphs. Let M be an indu
ed mat
hing of a graph G = (V;E). If

H � G is a subgraph of G, by M jH we mean the set of edges of M that are in H. Clearly, M jH is an

indu
ed mat
hing of H as well.

A strong edge 
oloring of G = (V;E) is an assignment of integers f : E �! N su
h that for every

two edges e = (u; v) and e

0

= (u

0

; v

0

), if either (u; v

0

) 2 E or (u

0

; v) 2 E or one of the end points of e

and e

0

are 
ommon, then f(e) 6= f(e

0

). The minimum number of 
olors (integers) required in a strong

edge 
oloring of G is 
alled the strong 
hromati
 index of G.

The notion of treewidth was introdu
ed by Robertson and Seymour [16, 17, 18℄ in their long and

deep series of papers on graph minors.

De�nition 2.1 A tree-de
omposition of a graph G = (V;E) is a pair (X;T ), where T (I; F ) is a tree,

and X = fX

i

ji 2 Ig is a family of subsets of V , one for ea
h node of T , su
h that:

�

S

i2I

X

i

= V .

� for ea
h edge (u; v) 2 E, there exists an i 2 I su
h that u; v 2 X

i

.

� for all i; j; k 2 I, if j is on the path from i to k in T , then X

i

\X

k

� X

j

.

The treewidth of a tree-de
omposition (X;T ) is max

i2I

jX

i

j � 1. The treewidth of a graph G is the

minimum treewidth over all possible tree-de
ompositions of G.

A natural generalization of trees is the 
lass of k-trees, whi
h is de�ned re
ursively as follows:

� A 
omplete graph on k verti
es is a k-tree.

� If G = (V;E) is a k-tree and C � G is a 
lique of size k and x 62 V , then H = (V [ fxg; E [

f(u; x)ju 2 Cg) is a k-tree.
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� There are no further k-trees.

A graph is 
alled a partial k-tree if it is a subgraph of a k-tree. It 
an be shown [19℄ that every

graph G has treewidth at most k if and only if it is a partial k-tree. Bodlaender [3℄ shows that for �xed

k, there is a linear time algorithm that determines whether a given graph G is a partial k-tree, and if

so, outputs a tree-de
omposition of G with treewidth at most k.

We say a tree-de
omposition (X;T ) of treewidth k is smooth, if T is a binary tree and:

� for all i 2 I: jX

i

j = k + 1,

� every internal node X

i

has two 
hildren, and if X

L

and X

R

are its 
hildren, then either X

L

= X

i

or X

R

= X

i

,

� for all (i; j) 2 F : k � jX

i

\X

j

j � k + 1, and

� for ea
h edge (u; v) 2 E, there is at least one leaf i 2 I, with u; v 2 X

i

.

It 
an be shown that any tree-de
omposition of a graph G 
an be transformed into a smooth tree-

de
omposition of G with the same treewidth and size O(n) in linear time. (see [2℄ and [3℄). For the

purpose of our algorithms, we assume that along with the input graph we are given a smooth tree-

de
omposition of it.

For a given graph G with treewidth at most k, let (X;T ) be a smooth tree-de
omposition of it. For

ea
h node X

i

of T we de�ne T

i

to be the subtree of T rooted at i. We de�ne V

i

and E

i

to be the vertex

set and edge set of the graph indu
ed by the verti
es that are in some node of T

i

. More pre
isely, if X

i

is a leaf then V

i

= X

i

and E

i

= f(u; v) 2 Eju; v 2 X

i

g; if X

i

is an internal node with 
hildren X

L

and

X

R

then V

i

= V

L

[ V

R

and E

i

= E

L

[E

R

. We denote by G

i

the graph with vertex set V

i

and edge set

E

i

. Note that by these de�nitions, the only 
ommon verti
es of G

L

= (V

L

; E

L

) and G

R

= (V

R

; E

R

) are

in X

i

.

For the purpose of the algorithm, we need to de�ne another set of edges. We know that for every

edge e = (u; v) 2 E, there is at least one leaf i of tree T su
h u; v 2 X

i

. We �x one su
h i as the

representative of edge e, and denote it by rep(e). If X

i

is a leaf in T then E

0

i

is de�ned to be the set of

edges of the graph whose representative is i, and if X

i

has 
hildren X

L

and X

R

then E

0

i

= E

0

L

[ E

0

R

.

Equivalently, E

0

i

= fe 2 Ejrep(e) 2 T

i

g. Note that by this de�nition, for every node X

i

: E

0

i

� E

i

, and

if X

i

has two 
hildren X

L

and X

R

then E

0

L

\ E

0

R

= ;. We denote the graph on vertex set V

i

and edge

set E

0

i

by G

0

i

.

3 The Strong Edge Coloring Algorithm

Here we prove the main result of this paper:

Theorem 3.1 For every �xed integer k, there is a deterministi
 algorithm that, given a graph G with

treewidth k on n verti
es and an integer s, determines in time O

�

n(s+ 1)

2

4(k+1)+1

�

whether G has a

strong edge 
oloring using at most s 
olors or not, and if so �nds su
h a strong edge 
oloring.

We give a partial proof of this theorem by des
ribing an algorithm to determine whether a strong

edge 
oloring of G with at most s 
olors exists or not. This dynami
 programming algorithm, whi
h is

easier to des
ribe, 
an be easily modi�ed (by storing some extra information in the tables) so that it

�nds a strong edge 
oloring with s 
olors, if one exists.
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Let (X;T ) be a smooth tree-de
omposition of G and let C = f1; 2; : : : ; sg be the set of 
olors. For

a node X

i

of T , a mapping f : E

0

i

�! C is 
alled a partial 
oloring of G

0

i

. A partial 
oloring of G

0

i

is

proper if it is a strong edge 
oloring of G

0

i

with respe
t to the edges in G

i

. More pre
isely, mapping

f is proper if for every two edges e; e

0

2 E

0

i

, if e and e

0

have a 
ommon endpoint or there is an edge

e

00

2 E

i

(and not ne
essarily in E

0

i

), then f(e) 6= f(e

0

). A proper partial 
oloring is extendible, if it 
an

be extended to a strong edge 
oloring of G. Consider a partial 
oloring f of G

0

i

. For a vertex v 2 V

i

, we

de�ne L

f

(v) to be the set of 
olors of the edges in E

0

i

in
ident with v, and L

2

f

(v) to be the set of 
olors

of the edges in E

0

i

that are in
ident with verti
es that are adja
ent to v by edges in E

i

. We also de�ne

N

f

(X

i

; 
) � X

i

and N

2

f

(X

i

; 
) � X

i

as follows:

N

f

(X

i

; 
) = fv 2 X

i

: 
 2 L

f

(v)g;

N

2

f

(X

i

; 
) = fv 2 X

i

: 
 2 L

2

f

(v)� L

f

(v)g:

For ea
h pair A;B � X

i

, we de�ne CL

f

(A;B) � C, the 
olor 
lass fun
tion of f on X

i

, as:

CL

f

(A;B) = f
 2 C : A = N

f

(X

i

; 
); B = N

2

f

(X

i

; 
)g:

From this de�nition, we immediately have:

Observation 3.2 Let f be a partial 
oloring of G

0

i

and let CL

f

be the 
olor 
lass fun
tion of f . Then

fCL

f

(A;B) : A;B � X

i

g is a partitioning of C.

Let P(X

i

) be the power set of X

i

. A mapping PC : P(X

i

)� P(X

i

) �! C is 
alled a pair 
ount of

X

i

if there exists a partial 
oloring f of G

0

i

, su
h that:

8A;B 2 P(X

i

) : PC(A;B) = jCL

f

(A;B)j:

In this 
ase, PC is 
alled the pair 
ount of the partial 
oloring f . By this de�nition and observation

3.2 it follows that, for a pair 
ount PC of X

i

:

X

A;B�X

i

PC(A;B) = s:

A pair 
ount PC of X

i

is a
tive if it is the pair 
ount of a proper partial 
oloring. The following

lemma shows that the a
tive pair 
ounts 
an be seen as equivalen
e 
lasses of proper partial 
olorings.

So, instead of 
onsidering all possible proper partial 
olorings of G

0

i

, it is enough to 
onsider only di�erent

a
tive pair 
ounts of node X

i

.

Lemma 3.3 Let f and g be two proper partial 
olorings of G

0

i

that have the same pair 
ount. Then f

is extendible if and only if g is extendible.

Proof: Suppose that f is extendible. Sin
e f and g have the same pair 
ount, there is a relabeling of

the 
olors � : C �! C, su
h that for all e 2 E

0

i

that are adja
ent to a vertex of X

i

or to a neighbor of

a vertex of X

i

: f(e) = �(g(e)). This implies that the 
oloring � Æ g 
an be extended to a strong edge


oloring h of G: let h(e) = �(g(e)) for e 2 E

0

i

, and h(e) = f(e) otherwise. Therefore, �

�1

Æ h is a strong

edge 
oloring of G that extends g. Thus, g is extendible. By symmetry, the same arguments work if we

assume that g is extendible.
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So the only information needed to determine whether a proper partial 
oloring is extendible or not

is its pair 
ount.

For ea
h node X

i

of T , we 
ompute a table of all a
tive pair 
ounts of that node. Sin
e jX

i

j = k+1

there are at most (s + 1)

2

2(k+1)

a
tive pair 
ounts for X

i

, whi
h is polynomial in the input size. We


ompute the table of an internal node after 
omputing the tables of its two 
hildren. The tables of the

leaves 
an be 
omputed dire
tly, as they don't have any 
hildren. The goal is to 
ompute the table of

a
tive pair 
ounts of X

r

, the root of T . Sin
e G

r

= G and E

0

r

= E, a proper partial 
oloring of G

0

r

is,

by de�nition, a strong edge 
oloring of G. Thus, G has a strong edge 
oloring with s 
olors, if and only

if the table 
omputed for X

r

is not empty.

For a leaf X

j

, we enumerate all proper partial 
olorings f : E

0

j

�! min(s; jE

0

j

j), and 
ompute the

pair 
ount of ea
h and store it in a table, if it is not already in the table. Sin
e jE

0

j

j �

(k+1)(k+2)

2

, the

number of distin
t partial 
olorings of E

0

j

is O(1), and so is the running time of 
omputing the table of

X

j

.

Now let's see how to 
ompute the table of a
tive pair 
ounts of an internal node X

i

, after 
omputing

the table of its 
hildren. Suppose that X

L

and X

R

are the two 
hildren of X

i

. Re
all that T is a

smooth tree-de
omposition, and therefore, X

L

\ X

R

= k. Without loss of generality, assume that

X

L

= X

i

, and let X

L

= fv

0

; v

1

; : : : ; v

k

g and X

R

= fv

1

; v

2

; : : : ; v

k+1

g. If f is a partial 
oloring of G

0

i

,

then by f jG

0

L

and f jG

0

R

we mean the restri
tion of f to E

0

L

and E

0

R

, respe
tively. We 
all a mapping

QC : P(X

L

)� P(X

L

)�P(X

R

)� P(X

R

) �! C a quad 
ount on X

i

if there exists a partial 
oloring f

of G

0

i

, su
h that for ea
h quadruple (A

L

; B

L

; A

R

; B

R

) with A

L

; B

L

� X

L

and A

R

; B

R

� X

R

:

QC(A

L

; B

L

; A

R

; B

R

) = jCL

f

L

(A

L

; B

L

) \ CL

f

R

(A

R

; B

R

)j;

where f

L

= f jG

0

L

and f

R

= f jG

0

R

. This quad 
ount is 
alled the quad 
ount of partial 
oloring f . A

quad 
ount QC of X

i

is a
tive if it is the quad 
ount of a proper partial 
oloring. The following lemma

shows how to 
ompute the set of all a
tive quad 
ounts of X

i

, knowing the set of all a
tive pair 
ounts

of X

L

and X

R

:

Lemma 3.4 A quad 
ount QC of X

i

is a
tive if and only if it satis�es 
onditions (a) and (b) de�ned

below:

(a) If QC(A

L

; B

L

; A

R

; B

R

) > 0 then

(a.1) A

L

\A

R

= ;.

(a.2) A

L

\B

R

= ;.

(a.3) A

R

\B

L

= ;.

(a.4) 8u; v 2 A

L

[A

R

: (u; v) 62 E

i

.

(b) There exist a
tive pair 
ounts PC

L

and PC

R

of X

L

and X

R

, respe
tively, su
h that:

(b.1) For ea
h pair A

L

; B

L

� X

L

:

PC

L

(A

L

; B

L

) =

X

A;B�X

R

QC(A

L

; B

L

; A;B):

5



(b.2) For ea
h pair A

R

; B

R

� X

R

:

PC

R

(A

R

; B

R

) =

X

A;B�X

L

QC(A;B;A

R

; B

R

):

Proof: Ne
essity: Assume that QC is an a
tive quad 
ount and f is a proper partial 
oloring whose

quad 
ount is QC. Let f

L

= f jG

0

L

and f

R

= f jG

0

R

. It is easy to see that the pair 
ounts of f

L

and f

R

are equal to PC

L

and PC

R

as de�ned in 
onditions (b.1) and (b.2), respe
tively. Therefore, PC

L

and

PC

R

are a
tive pair 
ounts.

Now assume that QC(A

L

; B

L

; A

R

; B

R

) > 0, for some A

L

; B

L

� X

L

and A

R

; B

R

� X

R

. From the

de�nition of a quad 
ount, it follows that if v 2 A

L

\A

R

then there are two distin
t edges in
ident with

v, one in E

0

L

and one in E

0

R

, that have the same 
olor in f , 
ontradi
ting that f is a proper partial


oloring. We get similar 
ontradi
tions if any of 
onditions (a.2) to (a.4) are violated.

SuÆ
ien
y: Assume that QC is a quad 
ount of X

i

that satis�es 
onditions (a) and (b). We want

to show that QC is a
tive. Let f be a partial 
oloring whose quad 
ount is QC and de�ne f

L

= f jG

0

L

,

f

R

= f jG

0

R

, and let PC

f

L

and PC

f

R

be the pair 
ounts of f

L

and f

R

, respe
tively. Suppose that h

L

and h

R

are two proper partial 
olorings of G

0

L

and G

0

R

, whose pair 
ounts are equal to PC

L

and PC

R

,

respe
tively. By de�nitions of f

L

, f

R

, and 
onditions (b.1) and (b.2):

8A

L

; B

L

� X

L

: PC

L

(A

L

; B

L

) = PC

f

L

(A

L

; B

L

);

and

8A

R

; B

R

� X

R

: PC

R

(A

R

; B

R

) = PC

f

R

(A

R

; B

R

):

It is not diÆ
ult to see that there exist two relabelings of the 
olors, �

L

: C �! C and �

R

: C �! C,

su
h that the 
olor 
lass fun
tions of �

L

Æ h

L

and f

L

are equal, and similarly for �

R

Æ h

R

and f

R

. That

is:

8A

L

; B

L

� X

L

: CL

�

L

Æh

L

(A

L

; B

L

) = CL

f

L

(A

L

; B

L

); (1)

8A

R

; B

R

� X

R

: CL

�

R

Æh

R

(A

R

; B

R

) = CL

f

R

(A

R

; B

R

): (2)

Now de�ne the 
oloring f

0

: E

0

i

�! C as follows: f

0

(e) = �

L

Æh

L

(e), if e 2 E

0

L

, and f

0

(e) = �

R

Æh

R

(e)

if e 2 E

0

R

. By this de�nition and Equations (1) and (2), f

0

has the same quad 
ount as f does, whi
h

is QC. We show that f

0

is a proper partial 
oloring, and therefore, QC is an a
tive quad 
ount. Note

that �

L

Æ h

L

and �

R

Æ h

R

are two proper partial 
olorings. By way of 
ontradi
tion, assume that f

0

is

not proper.

First 
onsider the 
ase that e

1

= (u; v) and e

2

= (u

0

; v) are two distin
t edges of E

0

i

with f

0

(e

1

) =

f

0

(e

2

). Sin
e e

1

and e

2


annot be both inE

0

L

or E

0

R

(be
ause �

L

Æh

L

and �

R

Æh

R

are both proper), without

loss of generality, we assume that e

1

2 E

0

L

and e

2

2 E

0

R

. Therefore, v 2 X

L

\X

R

, whi
h implies that

there exist subsetsA

L

; B

L

� X

L

and A

R

; B

R

� X

R

, for whi
h v 2 A

L

\A

R

andQC(A

L

; B

L

; A

R

; B

R

) � 1

(be
ause of f

0

(e

1

)). But this 
ontradi
ts 
ondition (a.1).

The other possibility for f

0

to be an improper partial 
oloring is when there are three edges e

1

=

(u

1

; v), e

2

= (u

2

; v

0

), and e

3

= (v; v

0

), where e

1

; e

2

2 E

0

i

and e

3

2 E

i

, su
h that f

0

(e

1

) = f

0

(e

2

). Sin
e

�

L

Æ h

L

is proper, e

1

and e

2


annot be both in E

0

L

. Otherwise, e

3

62 E

L

whi
h implies that v; v

0

62 V

L

,

and therefore e

1

; e

2

62 E

0

L

, a 
ontradi
tion. Similar arguments show that e

1

and e

2


annot be both in

E

0

R

. So let's assume that e

1

2 E

0

L

and e

2

2 E

0

R

. This means that v 2 V

L

and v

0

2 V

R

. Using the

fa
t that E

i

= E

L

[ E

R

: e

3

2 E

L

or e

3

2 E

R

. Consider the 
ase that e

3

2 E

R

. This implies that

6



v 2 V

L

\ V

R

, i.e. v 2 X

L

\ X

R

. Therefore, there exist subsets A

L

; B

L

� X

L

and A

R

; B

R

� X

R

, for

whi
h QC(A

L

; B

L

; A

R

; B

R

) � 1 (be
ause of f

0

(e

1

)) and, either v 2 A

L

\ B

R

or v; v

0

2 A

L

[ A

R

. The


ase that v 2 A

L

\ B

R


ontradi
ts 
ondition (a.2) and the se
ond 
ase, together with the fa
t that

e

3

= (v; v

0

) 2 E

i

, 
ontradi
ts (a.4). If we 
onsider the 
ase that e

3

2 E

L

similar arguments 
ontradi
t


onditions (a.3) or (a.4).

Thus, there are no two edges of the same 
olor in f

0

that are either adja
ent or 
onne
ted to an

edge from E

i

. This 
ompletes the proof that f

0

is a proper partial 
oloring of G

0

i

.

To 
ompute the set of all a
tive quad 
ounts of X

i

, �rst we 
onsider all (not ne
essarily a
tive) quad


ounts of X

i

. There are at most (s + 1)

2

4(k+1)

quad 
ounts QC on X

i

. For ea
h quad 
ount QC, we

determine whether QC is a
tive or not by 
he
king 
onditions (a) and (b) in Lemma 3.4. Che
king


ondition (a) takes 
onstant time, as jA

L

j, jB

L

j, jA

R

j, and jB

R

j are all bounded by k + 1. Condition

(b) 
an be 
he
ked in time O((s+ 1)

2

2(k+1)+1

) be
ause there are at most

�

(s+ 1)

2

2(k+1)

�

2

pairs of PC

L

and PC

R

. Sin
e the number of quad 
ounts on X

i

is at most (s + 1)

2

4(k+1)

, all a
tive quad 
ounts on

X

i


an be 
omputed in time

O

�

(s+ 1)

2

2(k+1)+1

(s+ 1)

2

4(k+1)

�

= O

�

(s+ 1)

2

4(k+1)+1

�

:

We will show how to 
ompute all a
tive pair 
ounts of X

i

having all a
tive quad 
ounts of X

i

. To

do so, we need the following lemma.

Lemma 3.5 Assume that f is a partial 
oloring of G

0

i

, f

L

= f jG

0

L

, and f

R

= f jG

0

R

. Let CL

f

, CL

f

L

,

and CL

f

R

be the 
olor 
lass fun
tions of f , f

L

, and f

R

, respe
tively. Then for all A;B � X

i

:

CL

f

(A;B) =

[

(CL

f

L

(A

L

; B

L

) \CL

f

R

(A

R

; B

R

)); (3)

where the union is taken over all quadruples (A

L

; B

L

; A

R

; B

R

) satisfying:

A = A

L

[A

R

� fv

k+1

g; (4)

B = B

0

[B

L

[B

R

� fv

k+1

g; (5)

where

B

0

= fv 2 X

i

�A : 9u 2 A

L

[A

R

s.t. (u; v) 2 E

i

g:

Proof: First 
onsider some 
olor 
 2 CL

f

(A;B). We want to show it belongs to the right-hand-side of

(3). Sin
e CL

f

L

and CL

f

R

are ea
h a partitioning of C, therefore, 
 belongs to exa
tly one CL

f

L

(A

L

; B

L

)

and exa
tly one CL

f

R

(A

R

; B

R

). By de�nition of f

L

and f

R

: A

L

� A, (A

R

� fv

k+1

g) � A, B

L

� B,

and (B

R

� fv

k+1

g) � B. To 
omplete the proof of this part we prove that A � A

L

[ A

R

� fv

k+1

g

and B � B

0

[ B

L

[ B

R

� fv

k+1

g. For ea
h vertex v 2 X

i

, whi
h is in
ident with a 
olored edge e

(i.e. v 2 A), sin
e E

0

i

= E

0

L

[ E

0

R

: e 2 E

0

L

or e 2 E

0

R

. Therefore, v 2 A

L

or v 2 A

R

, whi
h implies

A � A

L

[A

R

� fv

k+1

g. For ea
h vertex v 2 X

i

whi
h is adja
ent (by an edge (v; u) 2 E

i

) to a 
olored

edge e (i.e. v 2 B), either e 2 E

0

L

or e 2 E

0

R

. If e 2 E

0

L

and (v; u) 2 E

L

then 
learly v 2 B

L

. If e 2 E

0

R

and (v; u) 2 E

R

then v 2 B

R

. Otherwise, let's assume e 2 E

0

L

and (v; u) 2 E

i

�E

L

(a similar argument

works for the 
ase that e 2 E

0

R

and (v; u) 2 E

i

�E

R

). This means that u 2 A

L

and therefore, v 2 B

0

.

So in all 
ases v 2 B

0

[B

L

[B

R

� fv

k+1

g, whi
h implies B � B

0

[B

L

[B

R

� fv

k+1

g. Thus, 
 belongs

to the right-hand-side of Equation (3).
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Now assume that 
 is a 
olor in the right-hand-side of (3). This means that there exists some quadru-

ple (A

L

; B

L

; A

R

; B

R

) satisfying Equations (4) and (5), su
h that 
 2 (CL

f

L

(A

L

; B

L

) \ CL

f

R

(A

R

; B

R

)).

So the verti
es in X

i

that are in
ident with an edge of E

0

L

with 
olor 
 are those in A

L

, and the ver-

ti
es of X

i

that are in
ident with an edge of E

0

R

with 
olor 
 are those in A

R

� fv

k+1

g. Therefore,

N

f

(X

i

; 
) = A

L

[ A

R

� fv

k+1

g. Similarly, it is not diÆ
ult to see that the verti
es of X

i

that are not

in
ident with 
olor 
 but one of their neighbors is in
ident with 
olor 
, are pre
isely those that are in

B

0

[B

L

[B

R

� fv

k+1

g, whi
h means that N

2

f

(X

i

; 
) = B. Thus 
 2 CL

f

(A;B).

Lemma 3.6 A pair 
ount PC of X

i

is a
tive if and only if there exists an a
tive quad 
ount QC of X

i

su
h that for ea
h pair A;B � X

i

:

PC(A;B) =

X

QC(A

L

; B

L

; A

R

; B

R

); (6)

where the summation is taken over all quadruples (A

L

; B

L

; A

R

; B

R

) satisfying Equations (4) and (5).

Proof: Ne
essity: Assume that PC is an a
tive pair 
ount of X

i

and f is a proper partial 
oloring of

G

0

i

whose pair 
ount is PC. Let QC be the quad 
ount of f . Therefore, QC is a
tive. We show that

PC and QC satisfy Equation (6). De�ne f

L

= f jG

0

L

and f

R

= f jG

0

R

, and let CL

f

be the 
olor 
lass

fun
tion of f on X

i

. Similarly, de�ne CL

f

L

and CL

f

R

. By de�nition of a quad 
ount:

QC(A

L

; B

L

; A

R

; B

R

) = jCL

f

L

(A

L

; B

L

) \ CL

f

R

(A

R

; B

R

)j: (7)

An important observation at this point is that

fCL

f

L

(A

L

; B

L

) \ CL

f

R

(A

R

; B

R

) : A

L

; B

L

� X

L

and A

R

; B

R

� X

R

g

is a partition of C. Therefore:

�

�

�

[

(CL

f

L

(A

L

; B

L

) \ CL

f

R

(A

R

; B

R

))

�

�

�

=

X

j(CL

f

L

(A

L

; B

L

) \ CL

f

R

(A

R

; B

R

))j; (8)

where the union and summation are taken over all quadruples that satisfy (4) and (5). Using (3), (7),

(8), and de�nition of an a
tive pair 
ount it follows that PC and QC satisfy (6).

SuÆ
ien
y: Assume that QC is an a
tive quad 
ount on X

i

, and f is a proper partial 
oloring of

G

0

i

whose quad 
ount is QC. De�ne f

L

, f

R

, CL

f

, CL

f

L

, and CL

f

R

as in the previous 
ase. Then by

Lemma 3.5, Equation (6), and de�nition of a quad 
ount:

jCL

f

(A;B)j =

�

�

�

[

(CL

f

L

(A

L

; B

L

) \ CL

f

R

(A

R

; B

R

))

�

�

�

=

X

j(CL

f

L

(A

L

; B

L

) \ CL

f

R

(A

R

; B

R

))j

=

X

QC(A

L

; B

L

; A

R

; B

R

)

= PC(A;B);

where the union and summations are taken over all quadruples that satisfy (4) and (5). Therefore, the

mapping PC de�ned as in Equation (6) would be an a
tive pair 
ount.

Using Lemma 3.6 we 
ompute all a
tive pair 
ounts of X

i

from a
tive quad 
ounts of X

i

. There are

at most (s+1)

2

4(k+1)

di�erent quad 
ount QC of X

i

, and for ea
h QC we 
an 
ompute the 
orresponding

8



pair 
ount satisfying Equation (6) in O(1). Therefore, having all the a
tive quad 
ounts of X

i

, we 
an


ompute all the a
tive pair 
ounts of X

i

in time O((s+ 1)

2

4(k+1)

).

Overall, sin
e the number of nodes of T is O(n), we 
an 
ompute all the tables of all the nodes

(in
luding the root) of T , in time

O

�

n(s+ 1)

2

4(k+1)+1

�

:

This 
ompletes the proof of Theorem 3.1.

4 Con
luding Remarks

In this paper, we gave the �rst polynomial time algorithm for the strong edge 
oloring problem on

partial k-trees, for �xed k. We didn't des
ribe how to �nd a strong edge 
oloring using the spe
i�ed

number of 
olors. But this 
an be done, by doing slight modi�
ations in the algorithm (using extra

bookkeeping). We skip the details.

Although the running time of the given algorithm is polynomial, it is doubly exponential in k, like

many other algorithms for di�erent problems on graphs with bounded treewidth. Hen
e, it remains an

open problem to �nd an algorithm with a better running time. Perhaps the te
hnique used for �nding

linear time algorithms for standard edge-
oloring [23℄ and total 
oloring [12℄ of partial k-trees might

be helpful here. However, it is worth to mention that, this algorithm 
an be parallelized, to be run in

O(log n) time on a CRCW PRAM, using the same te
hniques as in Bodlaender and Hagerup [4℄, and

Zhou et al. [22℄.
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