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1 Introduction

Comparing the shapes of curves – or sequenced data in general – is a challenging task that arises in many different
contexts. The Fréchet distance and its variants (e.g. dynamic time-warping [28]) have been used as a similarity
measure in various applications such as matching of time series in databases [29], comparing melodies in music infor-
mation retrieval [36], matching coastlines over time [32], as well as in map-matching of vehicle tracking data [5,39],
and moving objects analysis [7,8]. See [2,3] for algorithms for computing the Fréchet distance.

Informally, for a pair of such curves f, g : [0, 1]→ D, for some ambient metric space (D, d), their Fréchet distance
is the minimum length of a leash needed to traverse both curves in sync. To this end, imagine a person traversing f
starting from f(0), and a dog traversing g starting from g(0), both traveling continuously along these curves without
ever moving backwards. Then the Fréchet distance is the infimum over all possible traversals, of the maximum distance
between the person and the dog. This notion can be formalized via a reparameterization: a continuous bijection

φ : [0, 1] → [0, 1]. The width of φ, i.e., the longest leash needed by φ, is width(φ) = sup
t∈[0,1]

d
(
f(t), g(φ(t))

)
, where

d(x, y) is the distance between x and y on D. Consequently, the Fréchet distance between f and g is defined to be

dF (f, g) = inf
φ:[0,1]→[0,1]

width(φ),

where φ ranges over all orientation-preserving homeomorphisms.
While this measure captures similarities between two curves when the underlying space is Euclidean, it is not as

informative for more complicated underlying spaces such as a surface. For example, imagine walking a dog in the

A preliminary version of this paper appeared in SoCG 2012 [25].

S. Har-Peled
Department of Computer Science, University of Illinois, Urbana-Champaign; sariel@illinois.edu. Work on this paper was partially
supported by NSF AF awards CCF-0915984, CCF-1421231, and CCF-1217462.

A. Nayyeri
School of Electrical Engineering & Computer Science, Oregon State University; nayyeria@eecs.oregonstate.edu.

M. Salavatipour
Department of Computing Science, University of Alberta; Supported by NSERC and Alberta Innovates. Part of this work was done while
visiting Toyota Technological Institute at Chicago; mreza@cs.ualberta.ca.

A. Sidiropoulos
Department of Computer Science & Engineering, and Department of Mathematics, The Ohio State University; sidiropoulos.1@osu.edu.
Research supported in part by the NSF grants CCF 1423230 and CAREER 1453472.

sariel@illinois.edu
nayyeria@eecs.oregonstate.edu
mreza@cs.ualberta.ca
sidiropoulos.1@osu.edu


f

g

`(τ)

µ(σ)

`(τ)

µ(σ)

(i) (ii)

Fig. 1.1: (i) Two curves f and g, and (ii) the parameterization of their homotopic Fréchet distance.

woods. The leash might get tangled as the dog and the person walk on two different sides of a tree. Since the Fréchet
distance cares only about the distance between the two moving points, the leash would “magically” jump over the
tree. In reality, when there is no “magic” leash that jumps over a tree, one has to take into account the extra length
needed (for the leash) to pass over such obstacles.

Homotopic Fréchet distance. To address this shortcoming, homotopic Fréchet distance , a natural extension of the
above notion was introduced by Chambers et al. [10]. Informally, revisiting the above person-dog analogy, we consider
the infimum over all possible traversals of the curves, but this time, we require that the person is connected to the
dog via a leash, i.e., a curve that moves continuously over time. Furthermore, one keeps track of the leash during the
motion, where the purpose is to minimize the maximum leash length needed.

To this end, consider a homotopy h : [0, 1]2 → D, which can also be viewed as a homeomorphism between the
unit square and D. For parameters σ, τ ∈ [0, 1] consider the one dimensional functions `(τ) = h(τ, ·) : [0, 1] → D and
µ(σ) = h(·, σ) : [0, 1] → D. These are parameterized curves that are the natural restrictions of h into one dimension.
We require that µ(0) = f and µ(1) = g. The homotopy width of h is width(h) = sup

τ∈[0,1]
‖`(τ)‖, and the homotopic

Fréchet distance between f and g is

dH(f, g) = inf
h:[0,1]2→D

width(h),

where the infimum is over all homeomorphisms h between [0, 1]2 and D, and ‖·‖ denotes the length of a curve. Note
that `(·), in particular, specifies a reparametrization between the curves f and g.

Clearly, dH(f, g) ≥ dF (f, g) and, furthermore, dH(f, g) can be arbitrarily larger than dF (f, g). We remark that
dH(f, g) = dF (f, g) for any pair of curves in the Euclidean plane, as we can always pick the leash to be a straight line
segment between the person and the dog. In other words, the map h in the definition of dH can be obtained from the
map φ in the definition of dF via an appropriate affine extension. However, this is not true for general ambient spaces,
where the leash might have to pass over obstacles, hills, or more generally regions of positive or negative curvature,
etc. In particular, in the general settings, usually, the leash would not be a geodesic (i.e., a shortest path) during the
motion.

The homotopic Fréchet distance is referred to as the morph width of f and g, and it bounds how far a point on f
has to travel to its corresponding point in g under the morph of h [20]. The length of µ(σ) is the height of the morph
at time σ, and the height of such a morph is height(h) = supσ∈[0,1] ‖µ(σ)‖. The homotopy height between f and g,
bounded by given starting and ending leashes `(0) and `(1), is

h
(
f, g, `(0), `(1)

)
= inf

h
height(h),

where h varies over all possible morphs between f and g, such that each curve µ(σ) has one end on `(0) and one end
on `(1). See Figure 1.1 for an example. Note that if we do not constrain the endpoints of the curves during the morph
to stay on `(0) and `(1), the problem of computing the minimum height homotopy is trivial. One can contract f to a
point, send it to a point in g, and then expand it to g. To keep the notation simple, we use h(f, g) when f and g have
common endpoints.

Intuitively, the homotopy height measures how long the curve has to become as it deforms from f to g, and it
was introduced by Chambers and Letscher [11,12] and Brightwell and Winkler [6]. Observe that if we are given the
starting and ending leashes `(0) and `(1) then the homotopy height of f and g when restricted on homotopies that
agree with `(0) and `(1) is the homotopic Fréchet distance between `(0) and `(1).

Here, we are interested in the problems of computing the homotopic Fréchet distance and the homotopy height
between two simple polygonal curves that lie on the boundary of an arbitrary triangulated topological disk.
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Why are these measures interesting? For the sake of the discussion here, assume that we know the starting and ending
leash of the homotopy between f and g. The region bounded by the two curves and these leashes, forms a topological
disk, and the mapping realizing the homotopic Fréchet distance specifies how to sweep over D in a geometrically
“efficient” way (especially if the leash does not sweep over the same point more than once), so that the leash (i.e., the
sweeping curve) is never too long [20]. As a concrete example, consider the two curves as enclosing several mountains
between them on the surface – computing the homotopic Fréchet distance corresponds to deciding which mountains
to sweep first and in which order.

Furthermore, this mapping can be interpreted as surface parameterization [22,37] and can thus be used in appli-
cations such as texture mapping [4,35]. In the texture mapping problem, we wish to find a continuous and invertible
mapping from the texture, usually a two-dimensional rectangular image, to the surface.

Another interesting interpretation is when f is a closed curve, and g is a point. Interpreting f as a rubber band in
a 3d model, the homotopy height between f and g here is the minimum length the rubber band has to have so that it
can be collapsed to a point through a continuous motion within the surface. In particular, a short closed curve with
large homotopy height to any point in the surface is a “neck” in the 3d model.

To summarize, these measures seem to provide us with a fundamental understanding of the structure of the given
surface/model.

Continuous vs. discrete. Here we are interested in two possible models. In the continuous settings, as described
above, the leash moves continuously in the interior of the domain. In the discrete settings, the leash is restricted to
the triangulation edges. As such, a transition of the leash corresponds to the leash “jumping” over a single face at
each step. The two versions are similar in nature, but technically require somewhat different tools and insights. This
issue is discussed more formally in Section 2.

Previous work. The problem of computing the (standard) Fréchet distance between two polygonal curves in the plane
has been considered by Alt and Godau [3], who gave a polynomial time algorithm. Eiter and Mannila [21] studied the
easier discrete version of this problem. Computing the Fréchet distance between surfaces [23], appears to be a much
more difficult task, and its complexity is poorly understood. The problem has been shown to be NP-Hard by Godau
[24], while the best algorithmic result is due to Alt and Buchin [2], who showed that it is upper semi-computable.

Efrat et al. [20] considered the Fréchet distance inside a simple polygon as a way to facilitate sweeping it efficiently.
They also used the Fréchet distance with the underlying geodesic metric as a way to obtain a morph between two
curves. For recent work on the Fréchet distance, see [17,13,26,16,19,18] and references therein.

Chambers et al. [10] gave a polynomial time algorithm to compute the homotopic Fréchet distance between two
polygonal curves on the Euclidean plane with polygonal obstacles. Chambers and Letscher [11,12] and Brightwell and
Winkler [6] considered the notion of minimum homotopy height, and proved structural properties for the case of a
pair of paths on the boundary of a topological disk. We remark that in general, it is not known whether the optimum
homotopy has polynomially long description. In particular, it is not known whether the problem is in NP.

Variants of the Fréchet distance for curves that are known to be computationally hard, include (i) the problem of
finding the most similar simple (i.e., no self crossings) curve to a given curve on a surface [38], and (ii) computing the
optimal Fréchet distance when allowing shortcuts anywhere on one of the curves [9]. Chambers and Wang [14] study
a measure of similarity between curves that involves the minimum area spanned by a homotopy.

For a Riemannian 2-disk with boundary length L, diameter d and area A � d, Papasoglu [34] showed that there
is a homotopy that contracts the disk to a point, such that the maximum length of the homotopy curve is at most
L+ 2d+O

(√
A
)
. Chambers and Rotman [15] showed that given such a homotopy with maximum length L (i.e., any

contraction of a disk to a point), one can modify it into a homotopy using only the loops of a base point p, contracting
the disk into p, with maximum length L+ 2d+ ε, where ε > 0 is arbitrarily small.

Our results. In this paper, we consider the problems of computing the homotopic Fréchet distance and the homotopy
height between two simple polygonal curves that lie on the boundary of a triangulated topological disk D that is
composed of n triangles. We give a polynomial time O(log n)-approximation algorithm for computing the homotopy
height between f and g. Our approach is based on a simple, yet delicate divide and conquer approach.

We use the homotopy height algorithm as an ingredient for a O(log n)-approximation algorithm for the homotopic
Fréchet distance problem. Here is a high-level description of our algorithm for approximating the homotopic Fréchet
distance: We first guess (i.e., search over) the optimum (i.e., dH(f, g)). Using this guess, we classify parts of D as
“obstacles”, i.e., regions over which a short leash cannot pass. Consider the punctured disk obtained from D after
removing these obstacles. Intuitively, two leashes are homotopic if one can be continuously deformed to the other
within the punctured disk, while its endpoints remain on the boundary during the deformation. Observe that the
leashes of the optimum solution are homotopic. We describe a greedy algorithm to compute a “small” number of
homotopy classes out of infinitely many choices. The homotopic Fréchet distance constrained to paths inside one of
these classes is a polynomial approximation to the homotopic Fréchet distance in D. We can then perform a binary
search over this interval to acquire a better approximation. An extended version of the homotopy height algorithm is
used in this algorithm in several places.
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The O(log n) factor shows up in the homotopic Fréchet distance algorithm only because it uses the homotopy
height as a subroutine. Thus, any constant factor approximation algorithm for the homotopy height problem implies
a constant factor approximation algorithm for the homotopic Fréchet distance.

We also shortly sketch, in Appendix A, an algorithm for sweeping the boundary of a convex polytope in three
dimensions, by a guard that is connected by a continuously moving leash to a base point on the boundary of the
polytope. This algorithm is a warm-up exercise for the more involved problem studied in this paper, and it might be
of independent interest.

Organization. We provide basic definitions in Section 2. Then we consider the discrete version of the homotopy height
problem in Section 3. Later, in Section 4, we describe an algorithm to approximately find the shortest homotopy in the
continuous settings. In Section 5, we address the homotopic Fréchet distance, for both the discrete and the continuous
cases. We conclude in Section 6.

2 Background

2.1 Planar graphs

Let G = (V,E) be a simple undirected graph with edge weights w : E → IR+. For any u, v ∈ V we denote by dG(x, y)
the shortest-path distance between u and v in G, where every edge e has length w(e). An embedding of G in the
plane maps the vertices of G to distinct points in the plane and its edges to disjoint paths except for the endpoints.
The faces of an embedding are maximal connected subsets of the plane that are disjoint from the union of the (images
of the) edges of the graph. The notation ∂f refers to the boundary of a single face f . The term plane graph refers
to a graph together with its embedding in the plane.

The dual graph G∗ of a plane graph G is the (multi-)graph whose vertices correspond to the faces of G, where two
faces are joined by a (dual) edge if and only if their corresponding faces are separated by an edge of G. Thus, any
edge e in G corresponds to a dual edge e∗ in G∗, any vertex v in G corresponds to a face v∗ in G∗ and any face f in
G∗ corresponds to a vertex f∗ in G∗.

A walk W in G is a sequence of vertices (v1, v2, · · · , vk) such that each adjacent pair ei = (vi, vi+1) is an edge in

G. The length of W is ‖W‖ =
∑k−1
i=1 w(ei).

Let vi and vj be two vertices that appear on W . Here, W [vi, vj ] denotes the sub-walk of W that starts at the
first appearance of vi and ends at the first appearance of vj after vi on W . For two walks, W1 = (v1, v2, . . . , vi) and
W2 = (vi, vi+1, . . . , vj), their concatenation is W1 ·W2 = (v1, v2, . . . , vi, vi+1, . . . , vj).

A walk with all the vertices being distinct is a path . The term (u, v)-walk refers to a walk that starts at u and
ends in v, and (u, v)-path is defined similarly. A walk is closed if its first and last vertices are identical. A closed path
is a cycle . Two walks cross if and only if their images cross in the plane. That is, no infinitesimal perturbation makes
them disjoint.

2.2 Piecewise linear surfaces and geodesics

A piecewise linear surface is a 2-dimensional manifold composed of a finite number of Euclidean triangles by
identifying pairs of equal length edges. In this paper, we work with piecewise linear surfaces that can be embedded in
three dimensional space such that all triangles are flat and the surface does not cross itself. This assumption lets us
exploit existing shortest paths algorithms for polyhedral surfaces¬.

A triangulated surface is non-degenerate if no interior vertex has curvature 0, i.e., when for every non-boundary
vertex x, the sum of the angles of the triangles incident to x is not equal to 2π.

Assumption 1 We assume that the input surface is always non-degenerate. One can turn any triangulated surface into
being non-degenerate by perturbing all edge lengths by a factor of at most 1 + ε, for some ε = O(1/n2) (alternatively,
one can perturb the vertices and edges). This changes the metric of the surface by at most a factor of 1 + 1/n, and
thus the minimum height of a homotopy. Such a factor will be negligible for our approximation guarantee.

A path γ on the surface D is a function γ : [0, 1] → D; γ(0) and γ(1) are the endpoints of the path, and ‖γ‖
denotes the length of γ. The path γ is simple if and only if it is bijective. A path is a geodesic if and only if it
is locally a shortest path; i.e., it cannot be shortened by an infinitesimal perturbation. In particular, global shortest
paths are geodesics. The terms path or curve are used interchangeably, and mean the same thing. A path or a curve
is polygonal if it is composed of a finite number of line segments.

¬However, all of these algorithms should work verbatim even if the surface is not embedded in 3d, assuming it is an oriented and has
the topology of a disk. Nevertheless, we keep this assumption to make the discussion more concrete and hopefully more intuitive.
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Fig. 2.1: From left to right: face-flip, spike/reverse spike, person-move and dog-move.

2.2.1 Computing shortest paths on a polyhedral surface

Mitchell et al. [33] describe an algorithm to compute the shortest path distance from a single source to the whole
surface in O(n2 log n) time. Underlying this algorithm are the following two observations:

(A) Shortest paths from the source s can not intersect in their interior.
(B) Consider two points p and p′ on an edge e of D, and their two shortest paths ζ and ζ ′, respectively, to the

source s. Furthermore, assume that these shortest paths approach e from the same side. Then, all the shortest
paths from s to the points on the edge e between p and p′ (coming from the same side of e as ζ and ζ ′), must
lie inside the disk on D having the boundary s · ζ · e[p, p′] · ζ ′. This property requires that the topology of the
input surface to be either a disk or, more generally, a punctured disk.

These two observations still hold when the source is an edge instead of a point. As such, the algorithm of Mitchell
et al. [33] can be adapted to compute the shortest path distance from an edge to the whole surface (with the same
running time). This requires modifying the wavefront maintenance and propagation to be the distance from an edge
instead from a point.

As such, by running this modified algorithm O(n) times, one can compute, in O(n3 log n) time, the shortest path
from a set of O(n) edges to the whole surface.

Signature & medial points. Any shortest path in D is a polygonal line that intersects every edge at most once and
passes through a face along a segment. Moreover, the shortest path crossing an edge looks locally like a straight line
segment, if one rotates the adjacent faces so that they are coplanar. See [33] for more details.

Let S be a set of edges of D, and let ζ be a shortest path from S to a point p ∈ D. The signature of ζ is defined
to be the ordered set of edges and vertices (crossed or used) by ζ. Since ζ is locally a straight line segment, we can
rotate all faces that intersect ζ one by one so that ζ becomes a straight line. It follows that two geodesics with the
same signature from p are identical. A point p on the surface is a medial point with respect to S if there are more
than one shortest paths (with different signatures) from p to S.

Note that a shortest path has a vertex of D in its interior, if and only if, the vertex is a boundary vertex, or the
vertex has negative curvature (i.e., the total sum of the angles of the triangles adjacent to this vertex is larger than
2π). In particular, a vertex with positive curvature (i.e., total sum of angles < 2π), which is not on the boundary of
D, can not be in a signature of a shortest path, see also Assumption 1.

2.3 Homotopy and leash function

Let L and R be two paths with the same endpoints s and t on a surface D. A homotopy h : [0, 1] × [0, 1] → D is a
continuous function, such that h(·, 0) = L, h(·, 1) = R, h(0, ·) = s and h(1, ·) = t. So, for each τ ∈ [0, 1], h(·, τ) is an
(s, t)-path. The height of such a homotopy (as defined previously) is defined to be supτ∈[0,1] ‖h(·, τ)‖.

Let B and C be two disjoint curves. A curve connecting a point in B to a point in C is a (B,C)-leash . A (B,C)-
leash function is a function f that maps every τ ∈ [0, 1] to a leash with endpoints b(τ) ∈ B and c(τ) ∈ C such
that b : [0, 1] → B and c : [0, 1] → C are reparametrizations of B and C, respectively. A (B,C)-leash function f is
continuous if the leash f(τ) varies continuously with τ . The height of a leash function f is supτ∈[0,1] ‖f(τ)‖. Recall
that the Fréchet distance between B and C is the height of the minimum height (B,C)-leash function. The homotopic
Fréchet distance between B and C is the height of the minimum height continuous (B,C)-leash function.

2.3.1 The discrete version

Let W1 be an (s, t)-walk and f be a face in an embedded planar graph G. Assume that α1 is a subwalk of W1 and
∂f = α1 · α2, where α1 and α2 are walks that share endpoints u and v, such that u is closer to s on W1. The face
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flip operation is the following: The walk W2 = W1[s, u] · α2 ·W1[v, t] is the result of flipping W1 over f . In this case,
W1 and W2 are one face flip operation apart. See Figure 2.1.

Now, let W1 be an (s, t)-walk, and suppose W1 = W ′1 ·W ′′1 . Also, let u be the common endpoint of W ′1 and W ′′1 ,
and let e = (u, v) be any edge in G. By applying a spike to W1 we obtain W2 = W ′1 · (u, v) · (v, u) ·W ′′1 . Equivalently,
we can obtain W1 from W2 via a reverse spike . In this case, W1 and W2 are one spike operation apart.

In general, W1 and W2 are one operation apart if one can transform one to the other using a single face flip, spike,
or reverse spike. Chambers and Letscher [11,12] introduce the same set of operations with the names: face lengthening,
face shortening, spike and reverse spike.

Let L and R be two (s, t)-walks on the outer face of G. The sequence of walks (L = W0,W1, . . . ,Wm = R) is a
(L,R)-discrete homotopy if, for i = 1, . . . ,m, Wi and Wi−1 are one operation apart. We may use the word homotopy
as a short form of discrete homotopy when it is clear from the context. The height of the homotopy is defined to be
the length of the longest walk in its sequence. The homotopy height between L and R, is the height of the shortest
possible (L,R)-homotopy.

Definition 1 Let B = (b0, b1, . . . , bk) and C = (c0, c1, . . . , ck′) be walks of G. The walk W1 =
(
bi = w1, w2, . . . , wk =

cj
)

changes to the walk W2 =
(
bi+1, bi = w1, w2, . . . , wk

)
after a person move . Similarly, the walk W1 =

(
bi =

w1, w2, . . . , wk = cj
)

changes to the walk W2 =
(
w1, w2, . . . , wk = cj , cj+1

)
after a dog move . A leash operation is

a dog move, a person move, a face flip, a spike or a reverse spike.

Definition 2 An (B,C)-walk is a walk that has one endpoint on B and one endpoint on C. A sequence of (B,C)-walks,
(W1,W2, . . . ,Wq) is called an (B,C)-leash sequence if

(i) W1 is a (b0, c0)-walk,
(ii) Wq is a (bk, ck′)-walk, and
(iii) we have that, for i = 1, . . . , q−1, Wi changes to Wi+1 by performing a sequence of leash operations containing

either at most one dog move and no person moves, or at most one person move and no dog moves.
The height of a leash sequence is the length of its longest walk.

Definition 3 The discrete Fréchet distance of B and C is the height of the minimum height (B,C)-leash sequence.
The homotopic discrete Fréchet distance of B and C is the height of the minimum height (B,C)-leash sequence,
where two consecutive walks differ by a single leash operation (and this is not required in the discrete Fréchet distance,
where two consecutive walks might “jump”).

3 Approximating the height – the discrete case

In this section, we give an approximation algorithm for finding a discrete homotopy of minimum height in a topological
disk D, whose boundary is defined by two walks L and R that share their endpoints s and t. The disk D is a triangulated
edge-weighted planar graph. The ideas developed here are used later for the continuous case, see Section 4.

3.1 Preliminaries

We are given an edge-weighted plane graph G all of whose faces (except possibly the outer face) are triangles. Let
s, t ∈ ∂G and L and R be two non-crossing (s, t)-walks on ∂G in counter-clockwise and clockwise order, respectively.
We use D to denote the topological disk enclosed by L · R. The vertices of G (inside or on the boundary of D) are
also the vertices of D. Our goal is to find a minimum height homotopy from L to R of non-crossing walks. Recall that
a homotopy is a sequence of walks, where every two consecutive walks differ by either a triangle, or an edge (being
traversed twice).

Lemma 1 Let x and y be vertices of G that are at graph distance ρ. Then any discrete homotopy between L and R
has height at least ρ.

Proof Fix a homotopy of height δ. This homotopy contains an (s, t)-walk ω that passes through x, and an (s, t)-walk
χ that passes through y. We have, by the triangle inequality, that ρ = dG(x, y) ≤ ‖ω[s, x]‖+ ‖χ[s, y]‖ , and, similarly,
ρ ≤ ‖ω[x, t]‖+ ‖χ[y, t]‖. Therefore, ρ ≤ (‖ω‖+ ‖χ‖)/2 ≤ max(‖ω‖ , ‖χ‖) ≤ δ, as required. ut
Lemma 2 Suppose d1 is the maximum distance of a vertex of G from L, d2 is the largest edge weight, and let dL =
max {d1, d2}. Furthermore, let D, L, and R be defined as above. Then any discrete homotopy between L and R has
height at least dL.

Proof The height is at least d1 by Lemma 1. On the other hand, for every homotopy between L and R, and for every
edge e, there exists a walk in the homotopy that passes through e. Therefore, the height of the homotopy is at least
d2. ut

The discrete Fréchet distance defined here is different than the more standard definition, which is usually defined over sequences of
points.
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3.2 The algorithm

Theorem 1 Let D be an edge-weighted triangulated topological disk with n faces such that its boundary is formed by
two walks L and R that share endpoints s and t. Then one can compute, in O(n log n) time, a homotopy from L to R
of height at most ‖L‖ + ‖R‖ + O(dL log n), where dL is the largest among (i) the maximum distance of a vertex of D
from L, and (ii) the maximum edge weight.

In particular, the generated homotopy has height O(hopt log n), where hopt is the minimum homotopy height between
L and R.

Proof We present a recursive algorithm that reduces the problem to sub-problems with a smaller number of triangles.
The recursion might create instances where the boundary walks L and R are not interior disjoint. For such instances, it
is immediate that one can obtain a solution by computing a homotopy independently for each maximal disk bounded
by L · R, and composing them to obtain the desired homotopy between L and R. We may therefore focus on the case
where L and R are interior disjoint.

Let b(δ, dL, n) be the maximum possible height of a homotopy obtained by our algorithm for any disk of perimeter
δ that is composed of n faces and has dL as defined in the statement of the theorem. We prove by induction that
b(δ, dL, n) ≤ δ + c0dL log n for some constant c0, implying the theorem statement. Note that the inductive argument
implies that b is linear in δ.

The base case n = 0 is easy. Indeed, if we have two edges (u, v) and (v, u) consecutive in R (or in L) we can retract
these two edges. By repeating this we arrive at both L and R being identical, and we are done. The case n = 1 is
handled in a similar fashion. After one face flip, the problem reduces to the case n = 0. Hence, b(‖L‖+ ‖R‖ , dL, 1) ≤
‖L‖+ ‖R‖+ dL.

For n > 1, compute for each vertex of G its shortest path to L, and consider the set of edges E used by all these
shortest paths. Clearly, these shortest paths can be chosen so that L ∪ E form a tree. We consider each edge of R to
be “thick” and have two sides (i.e., we think about these edges as being corridors – this is done to guarantee that in
the recursive scheme, done below, there are exactly two subproblems to each instance). If E uses an edge of R then
it uses the inner copy of this edge, while R uses the outer side. Similarly, we consider each original vertex of R to be
two vertices (one inside and the other one on the boundary R). The set E would use only the inner vertices of R, while
R would use only the outer vertices. To keep the graph triangulated we also arbitrarily triangulate inside each thick
edge of R by adding corridor edges. Each corridor edge either connects two copies of a single vertex (thus has weight
zero) or copies of two neighbors on R (and so has the same weight as the original edge).

Clearly, if we cut D along the edges of E , what remains is a simple triangulated polygon (it might have “thin”
corridors along the edges of R). One can find a diagonal uv such that each side of the diagonal contains at least dn/3e
triangles and at most b2n/3c triangles of the original G. We emphasize that we count only the “real” triangles of G.
This can be achieved as follows: We first assign weight zero to the faces within corridors and unit weight to all other
faces. Then we find a diagonal uv such that each side contains faces with total weight at least dn/3e. Furthermore,
because the faces inside corridors have weight zero, we can ensure that if the separating edge uv is a corridor edge
(i.e., corresponding to an edge e of R) then u and v are copies of the same vertex. Indeed, if not, we can change
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Fig. 3.2: (I–III) Illustration of case (C) in the proof Theorem 1. (IV-V) How the shortest path tree get sent to the
recursive subproblem.

the separating edge so this property holds, and the new separating edge separates regions with the same weight, see
Figure 3.1 (I). We use this property in the following case analysis®.

(A) Consider the case¯ that u and v are both vertices of R. In this case, let R[u, v] be the portion of R in between u and
v, and let D2 be the disk having R[u, v] ·uv as its outer boundary. Let D1 be the disk D\D2. Let M = R[s, u] ·uv ·R[v, t],
see Figure 3.1 (II).

Clearly, the distance of any vertex of D1 from L is at most dL. By induction, there is a homotopy of height
b(‖L‖ + ‖M‖ , dL, b2n/3c) from L to M. Similarly, the distance of any vertex of D2 from uv is at most its distance to
L. Therefore, by induction, there is a homotopy between uv and R[u, v] of height at most b(‖R[u, v]‖+ dL, dL, b2n/3c).
Clearly, we can extend this to a homotopy of M to R of height ‖R[s, u]‖+ b(‖R[u, v]‖+ dL, dL, b2n/3c) +‖R[v, t]‖ which
using induction hypothesis is at most ‖R‖+ dL + c0dL logb2n/3c ≤ ‖R‖+ c0dL log n, for sufficiently large c0.

Putting these two homotopies together results in the desired homotopy from L to R.

(B) Consider the case that v is a vertex of E and u is a vertex of R. So, v is an inner vertex of R (that belongs to E)
and u is an outer vertex of R. Recall that we can assume that v and u are inner and outer copies of the same vertex
of R. Let πv be the shortest path in D from v to L, and let v′ be its endpoint on L.

Consider the disk D1 having the “left” boundary L1 = L[s, v′] · πv · vu and R1 = R[s, u] as its “right” boundary,
see Figure 3.1 (III). This disk contains at most b2n/3c triangles, and by induction, it has a homotopy of height
b(‖L1‖+ ‖R1‖ , dL, b2n/3c). To see why we can apply the recursion, observe that u and v are copies of the same vertex
of R. That is, all shortest paths of vertices inside D1 to L are completely inside D1. As such, the distance of all vertices
in D1 to L1 are at most dL.

Similarly, the topological disk D2 with the left boundary L2 = uv · πv · L[v′, t] and the right boundary R2 = R[u, t]
has a homotopy of height b

(
‖L2‖+ ‖R2‖ , dL, b2n/3c

)
.

We combine these two homotopies as follows. Let L′ be the walk obtained by concatenating L1 and L2. Note that
L′ consists of a copy of L and two copies of πv. Clearly, there exists a homotopy between L and L′ of height at most
‖L‖ + 2dL, which is obtained by a sequence of spike moves along πv. We compose the resulting homotopy with the
homotopy of D1 that moves L1 to R1, followed by the homotopy of D2 that moves L2 to R2. The result is a homotopy
between L and R of height at most

max


‖L‖+ 2dL,

b
(
‖L1‖+ ‖R1‖ , dL, b2n/3c

)
+ ‖L2‖ ,

‖R1‖+ b
(
‖L2‖+ ‖R2‖ , dL, b2n/3c

)
.

If the first number is the maximum, we are done. Otherwise, using the induction hypothesis, the above value is at
most ‖L‖+ ‖R‖+ 2dL + c0dL logb2n/3c which is at most ‖L‖+ ‖R‖+ c0dL log n for sufficiently large c0.

(C) Here we handle the case that u and v are both vertices of L∪E . Then as before, let u′ and v′ be the closest points
on L to u and v, respectively. Now, let πu (resp. πv) be the shortest path from u (resp. v) to u′ (resp. v′). Note that
we might have u′ = v′.

Consider the disk D1 having L1 = L[u′, v′] as left boundary, and R1 = πu ·uv ·πv as right boundary, see Figure 3.2..
This disk contains between n/3 and 2n/3 triangles of the original surface. The distance of any vertex of D1 to L1

®Note, that the corridors were used only in generating this partition, and are an artifact that is not necessarily sent to the recursive
subproblems. In particular, one can describe this partition scheme without using the corridors, but it seems somewhat messier and less
intuitive.

¯Strictly speaking this case is not possible because of the corridor diagonals. Nevertheless, it provides a good warm-up exercise for the
followup cases which are more involved.
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(when restricted to D1) is at most dL, and therefore by induction, there is a homotopy from L1 to R1 of height at most
α = b(‖L1‖+ ‖R1‖ , dL, b2n/3c) ≤ ‖L[u′, v′]‖+ 3dL + c0dL logb2n/3c. This yields a homotopy of height α1 = ‖L[s, u′]‖+
α+‖L[v′, t]‖, from L to L2 = L[s, u′]·πu·uv·πv·L[v′, t]. It is straightforward to check that α1 ≤ ‖L‖+3dL+c0dL logb2n/3c).

Next, let D2 be the disk with its left boundary being L2 and its right boundary being R2 = R. Observe, that as
before, the maximum distance of any vertex of D2 to L2 is at most dL. As before, by induction, there is a homotopy from
L2 to R2 of height α2 = b(‖L2‖+‖R2‖ , dL, b2n/3c). Since ‖L2‖ ≤ ‖L‖+3d, we have α2 ≤ b(‖L‖+‖R‖+3dL, dL, b2n/3c).

In all cases the length of the homotopy is at most

‖L‖+ ‖R‖+ 3dL + c0dL logb2n/3c ≤ ‖L‖+ ‖R‖+ c0dL log n,

if we choose c0 sufficiently large. The final guarantee of approximation follows as dL ≤ hopt, by Lemma 2.
We can compute the shortest path tree in linear time using the algorithm of Henzinger et al. [27]. The separating

edge can also be found in linear time using DFS. So, the running time for a graph with n faces is T (n) = T (n1) +
T (n2) +O(n), where n1 + n2 = n and n1, n2 ≤ (2/3)n. It follows that T (n) = O(n log n). ut

Remark 1 (A) In the algorithm of Theorem 1, it is not necessary that we have the shortest paths from L to all the
vertices of D. Instead, it is sufficient if we have a tree structure that provides paths from any vertex of D to L of
distance at most dL in this tree, and we send the relevant portions of the tree into the recursive subproblems. We
will use this property in the continuous case, where recomputing the shortest path tree is relatively expensive. This is
demonstrated in Figure 3.2 (IV–V).

(B) A more careful analysis shows that the height of the homotopy generated by Theorem 1 is at most max(‖L‖ , ‖R‖)+
O(dL log n).

(C) Note, that if dL = O(max(‖L‖ , ‖R‖)/ log n) then Theorem 1 provides a constant factor approximation. This is
the situation when L and R are close to each other compared to their relative length.

(D) Note, that the O(n log n) running time algorithm cannot explicitly output the list of paths in the homotopy.
Indeed, that list requires O(n2) space to be stored and so O(n2) time to output. The output of the algorithm of the
above lemma is a shortest path tree T together with an ordered list of edges. Each edge e = (u, v) in the list represents
an (s, t)-walk T [s, u]·(u, v)·T [v, t], where T [s, u] and T [v, t] are the unique (s, u)-path and (v, t)-path in T , respectively.

4 Approximating the height – the continuous case

In this section we extend the algorithm from Section 3 to the continuous case. The continuous case is somewhat similar
to the solution to the problem of sweeping over the boundary of a convex polytope in three dimensions from a base
point. Since this is tangential for our main trust, we delegated describing this algorithm to Appendix A, but the reader
might still benefit from reading it first.

4.1 Preliminaries

We are given a piecewise linear triangulated topological disk, D, with n triangles, and we consider the underlying
metric to be the geodesic distance on this surface°. The boundary of D is composed of two paths L and R with shared
endpoints s and t, and the task at hand is to compute a morphing from L to R that minimizes the distance traversed
by each point of L during this motion. See Section 2.3 for the formal definition.

Here, we build a homotopy of height at most ‖L‖+‖R‖+O(d log n), where d is the maximum distance of any point
in D from either L or R. We use the following observations (see Section 2.2.1 for details):
(A) The shortest path from a vertex to the whole surface can be computed in O(n2 log n) time.
(B) The shortest path from a set of O(n) edges to the whole surface can be computed in O(n3 log n) time.
(C) A shortest path (i.e., a geodesic) intersects a face along a segment and it locally looks like a segment if the adjacent

faces are rotated to be coplanar.
See Section 2.2.1 for more details.

4.2 Homotopy height if edges are short

Similar to the discrete case, d1 is the maximum distance for any point of D from L, d2 is the maximum length of any
edge, and dL = max(d1, d2). Here, we assume d2 ≤ 2d1. In this case we can obtain the desired approximation algorithm
via an argument that is similar to the one used in the discrete case.

As in the discrete case, let E be the union of all the shortest paths from the vertices of D to L (as before, we
treat the edges and vertices of R as having infinitesimal thickness). For a vertex v of D, its shortest path πv is a

°Formally, for two points p, q ∈ D, their geodesic distance is the length of the shortest path inside D connecting p with q.
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polygonal path that crosses between faces (usually) in the middle of edges (it might also go to a vertex, merge with
some other shortest paths and then follow a common shortest path back to L). In particular, each such shortest path
might intersect a face of D along a single segment. Thus, the polygon resulting from cutting D along E , call it P , is
a polygon that has complexity O(n2). A face of P is a hexagon, a pentagon, a quadrilateral, or a triangle. However,
each such face has at most three edges that are portions of the edges of D. The degree of a face is i if it has i edges
that are portions of the edges of D. Observe that, each triangle of D is now decomposed into a set of faces. Obviously,
each triangle of D contains at most one face of degree 3 in P . Overall, there are O(n) faces of degree 3 in P .

Now consider C∗, the dual of the graph that is inside the polygon (ignore the edges on the boundary). More
precisely, C∗ has a vertex corresponding to each face inside the polygon P , let np be number of vertices of C∗. Two
vertices of C∗ are adjacent if and only if their corresponding faces share a portion of an edge of D (this shared edge
is a diagonal of P ). Note that because P is simply connected C∗ is a tree. Since the maximum degree of the tree
C∗ is 3, there is an edge that is a good separator (i.e., a separator that has at most 2/3 of the faces on one side)±.
Since the length of the edge is at most 2d1 it can be used in a similar fashion as the proof of Theorem 1. However,
in the recursion of the continuous case we avoid recomputing the shortest paths (i.e., we use the old shortest paths
and distances computed in the original disk), see Remark 1. So, we compute the shortest paths once in the beginning
in O(n3 log n) time. Then in each step we can find the separator in O

(
n2
)

time. Namely, the total time spent on
computing the separators is T (np) = T (n1) + T (n2) +O(n2), where n1 + n2 = np and n1, n2 ≤ (2/3)(n1 + n2); since
np = O(n2), T (n) = O(n2 log n). As such, the total running time is dominated by the computation of the shortest
paths. The output is a list of O(n2) paths each of complexity O(n), and so it can be explicitly presented in O(n3) time
and space. Note that, we need a continuous deformation between any two consecutive paths in the list, which can be
implicitly presented by a collection of functions in linear time and space (this is similar to what we describe below in
the beginning of Section 4.3).

The proof of Theorem 1 then goes through literally in this case. Since all the edges have length at most 2d1, by
assumption, we obtain the following.

Lemma 3 Let D be a topological disk with n faces where every face is a triangle (here, the distance between any two
points on the triangle is their Euclidean distance). Furthermore, the boundary of D is formed by two walks L and R
(that share two endpoints s, t). Let d1 be the maximum distance of any point of D from L. Finally, assume that all
edges of D have length at most 2d1. Then one can compute, in O(n3 log n) time, a continuous homotopy from L to R
of height at most ‖L‖+ ‖R‖+O(d1 log n).

4.3 Homotopy height if there are long edges

4.3.1 Breaking the disk into strips, pockets and chunks

For any two points in D consider a shortest path π connecting them. The signature of π is the ordered sequence of
edges (crossed or used) and vertices used by π, see Section 2. For a point p ∈ R, let sg(p) denote the signature of the
shortest path from p to L. The signature sg(p) is well defined in R except for a finite set of medial points, where there
are two (or more) distinct shortest paths from L to p. In particular, let ΠR be the set of all shortest paths from any
medial point on R to L. Observe that, the medial points are the only points (on R) where the signature of the shortest
path from R to L changes in any non-degenerate triangulation.

Cutting D along the paths of ΠR breaks D into corridors. If the intersection of a corridor with R is a point
(resp. segment) then it is a delta (resp. strip), see Figure 4.1 (I). In a strip C, all the shortest paths to L from the
points in the interior of the segment C ∩ R have the same signature. Intuitively, strips have a natural way to morph
from one side to the other. We further break each delta into chunks and pockets, as follows.

±The existence of such a tree edge separator is folklore – its proof is provided by Lewis et al. [30].
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Consider a delta C with an apex c (i.e., the point of R on the boundary of C). For a point x ∈ L∩C, its signature
(in relation to C), is the signature of the shortest path from x to c (restricted to lie inside C). Again, we partition
L ∩ C into maximum intervals that have the same signature, and let P be the set of endpoints of these intervals. For
each point p ∈ P , consider all the different shortest paths from c to p inside the delta C, and cut C along these paths.
This breaks C into regions. If a newly created region has a single intersection point with both L and R, then it is a
pocket , otherwise, it is a chunk . Clearly, this process decomposes C into pockets and chunks. See Figure 4.1 (II).

Applying the above partition scheme to all the deltas results in a decomposition of D into strips, chunks and
pockets.

Analysis. Recall, that d1 is the maximum distance of any point of D to L, and let d3 be the maximum distance of any
point of D to R. Also, let

d = max(d1, d3). (4.1)

Now, consider a chunk C ′. Its intersection with L is a segment, and its intersection with R is a point (i.e., the apex c
of the delta).

Lemma 4 A strip C cannot have any vertex of D in its interior.

Proof Let eL = L∩C and eR = R∩C be two edges bounding a strip. For two points p, p′ in the interior of eR, consider
their corresponding shortest paths ζ and ζ ′ to L. By definition, these two paths have the same signature sg(ζ) = sg(ζ ′).
If not, then by a limit argument, there must be a point p′′ ∈ eR in between these two points, which has two different
shortest path with different signature arriving to it; that is, p′′ is a medial point, implying that eR is broken into (at
least) two edges, and it can not be the right side of a strip.

Now, for i = 1, . . . ,m, let ei be the ith edge of D that intersect ζ, as we move from L to R along ζ. Observe that
for any i, the edges ei, ei+1 belong to some triangle 4i of D, which ζ and ζ ′ goes through. In particular, being shortest
paths, ζ and ζ ′ each intersect 4i along a segment. In particular, let Bi be the region of 4i bounded by ζ and ζ ′. The
region Bi does not contain any vertex of D in its interior, and it thus follows that the region C enclosed between ζ
and ζ ′ (i.e.,

⋃
iBi) does not contain any vertex of D. Now, applying this argument to a sequence of points (p, p′) that

converge to the endpoint of eR, implies the claim. ut

Remark Lemma 4 testifies that no vertex of D can be interior to a strip. However, strangely enough, a strip might be
pinched together by some middle vertices. To see that, visualize a terrain with saddle points (i.e., passes high in the
mountains), and the strip is made out of two triangle like shapes (with eL and eR as their respective bases), connected
by the unique path between the two extreme saddle points².

The somewhat more challenging case to handle is that of pockets. A pocket is a topological disk such that its
intersections with L and R are both single points, and the two boundary paths between these intersections are of
length at most 2d. The overall perimeter of a pocket is of length at most 4d, see Figure 4.2 (I). Pockets are handled
by using the recursive scheme developed for the discrete case.

4.3.2 The algorithm in detail

We use the algorithm of Section 4.3.1 to break the given disk D into strips, chunks and pockets (notice, that we assume
nothing on the length of the edges). Next, order the resulting regions according to their order along L, and transform
each one of them at time, such that starting with L we end up with R. In each such chunk or strip, the homotopy has
height (roughly) proportional to its perimeter, while for a pocket the situation is more involved.

²Thus, a strip might look like a dissected butterfly. Sad indeed.
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(A) Morphing a chunk/strip S: Let σL = L∩S and σR = R∩S, and let πt and πb be the top and bottom paths
forming the two sides of S. There is a natural homotopy from πt · σL to σR · πb.

The strip/chunk S has no vertex of D in its interior, and therefore it is formed by taking planar quadrilaterals
and gluing them together along common edges. Observe that by the triangle inequality, all such edges of any
of these quadrilaterals are of length at most max(‖σL‖ , ‖σR‖) + 4d. It is now easy to check that we can collapse
each such quadrilateral in turn to obtain the required homotopy. Since each of πt and πb is composed of two
shortest paths (Figure 4.2 demonstrates why such a path can potentially be made of two shortest paths), there
is a linear number of such quadrilaterals. See Figure 4.2 (II) for an example.

(B) Morphing a pocket: We apply the algorithm of Lemma 3 recursively to a pocket.

Specifically, the above decomposes D into m chunk/strips/pockets: D1, . . . ,Dm ordered by their intersection with L.
Each such disks Di has a left (resp. right) subcurve Li = L ∩ Di, (resp. Ri = L ∩ Di), and similarly, it has a top curve
Ti = Di−1 ∩Di and a bottom curve Bi = Di ∩Di+1, for i = 1, . . . ,m. In the end of the ith iteration, of this morphing
process, the current curve is going to be

Mi = R1 · . . . · Ri · Bi · Li+1 · · · · · Lm.

Specifically, at the ith iteration, the algorithm morph Mi−1 to Mi, as described above (depending on what kind of
region it is). In particular, initially M0 = L and in the end Mm = R. As such, this results in the desired homotopy.

4.3.3 Analysis

Why can we apply Lemma 3 to a pocket. A pocket has perimeter at most 4d, and there is a point on its boundary,
such that the distance of any point in it to this base point is at most 2d. Indeed, the boundary of d in the worst
case, is made out of four shortest paths in the original disk, and as such, its total length is at most 4d, see Eq. (4.1).
Furthermore, the distance of any point in the pocket to the apex on R, is at most 2d.

Now, by the triangle inequality, we have that if in a topological disk D all the points of D are in distance at most
2d from some point c, then the longest edge in D has length at most 4d. Therefore, all the edges inside a pocket cannot
be longer than 4d.

Running time. The shortest paths from R to L can be computed in O(n3 log n) time. The shortest paths inside a delta
to its apex can be computed in O(n2 log n) time. Since there is a linear number of deltas, the total running time for
building the strips is O(n3 log n).

Lemma 5 The number of paths in ΠR is O
(
|V(D)|

)
, where V(D) is the set of vertices of D.

In particular, the total number of parts (i.e., strips, chunks, and pockets) generated by the above decomposition is
O
(
|V(D)|

)
.

Proof Let {σ1, σ2, . . . , σk} be the paths in ΠR sorted by the order of their endpoints along R. Observe that these
paths are geodesics and so one can assume that they are interior disjoint, or share a suffix (or a prefix). Now, if li ∈ L
and ri ∈ R are the endpoints of σi, for i = 1, . . . , k, then these endpoints are sorted along their respective curves. In
particular, let Di be the disk with boundary L[s, li] ·σi+1 ·R[s, ri]. We have that D1 ⊆ D2 ⊆ · · · ⊆ Dk. The signatures of
σi and σi+2 must be different as otherwise they would be consecutive. Furthermore, because of the inclusion property,
if an edge or a vertex of D intersects σi but does not intersect σi+1 then it cannot intersect any later path. Therefore,
every other path in ΠR can be charged to vertices or edges that are added or removed from the signature of the
respective path. Since an edge or a vertex can be added at most once, and deleted at most once, this implies the
desired bound on the number of paths.

The second claim follows readily by the above. ut

The following bounds the quality of the morphing for a pocket or a chunk.

Lemma 6 Consider a strip or a chunk S generated by the above partition of D. Let σL = L ∩ S and σR = R ∩ S. Let
πt and πb be the top and bottom paths forming the two sides of S that do not lie on R or L.

(A) We have ‖πb‖ ≤ 2d and ‖πt‖ ≤ 2d.
(B) If ‖σL‖ > 0 or ‖σR‖ > 0 then there is no vertex of D in the interior of S.
(C) If ‖σL‖ > 0 or ‖σR‖ > 0 then there is a homotopy from πt · σL to σR · πb of height max(‖σL‖ , ‖σR‖) + 4d. We

can compute such a homotopy in linear time.

Proof (A) If the strip was generated by the first stage of partitioning then the claim is immediate.
Otherwise, consider a delta C with an apex c. For any point x ∈ L ∩ C we claim that there is a path of length at

most 2d to c. Indeed, consider the shortest path πx from x to R in D. If this path goes to c the claim holds immediately.
Otherwise, the shortest path (that has length at most d) must cross either the top or bottom shortest path forming
the boundary of C that are emanating from c. We can now modify πx, so that after its intersection point with this
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shortest path, it follows it back to c. Clearly, the resulting path has length at most 2d and lies inside the resulting
chunk.

(B) Follows readily from the argument of Lemma 4.
(C) Immediate from the algorithm description. ut

4.4 The result

Theorem 2 Suppose that we are given a triangulated piecewise linear surface with the topology of a disk, such that
its boundary is formed by two walks L and R. Then there is a continuous homotopy from L to R of height at most
‖L‖+‖R‖+O(d log n), where d is the maximum geodesic distance of any point of D from either L or R. This homotopy
can be computed in O

(
n3 log n

)
time, and it is a O(log n) approximation to the optimal minimum height homotopy.

Proof The algorithm is described above. The quality of approximation (i.e., O(log n)) follows from plugging in the
above into the analysis of Theorem 1. Indeed, the intermediate curves M0, . . . ,Mm have length at most ‖L‖+‖R‖+2d.
The intermediate morphing of a strip or a chunk might result in a curve of length ‖L‖+ ‖R‖+ 4d, as can be verified
easily. As such, any further expansion in the length needed is a result of the recursive morphing of a pocket, thus
accounting for the additional O(d log n) term.

Note, that max(d/2, L,R) is a lower bound on the height of the optimal homotopy. ut

5 Approximating the homotopic Fréchet distance

In this section, fix D to be a triangulated topological disk with n faces. Let the boundary of D be composed of T, R, B,
and L, four internally disjoint walks appearing in clockwise order along the boundary. Also, let tl = L∩T, bl = L∩B,
tr = R ∩ T, and br = R ∩ B³. See Figure 5.1.

5.1 Approximating the regular Fréchet distance

5.1.1 The continuous case

Let dF (T,B) (resp. dH(T,B)) be the regular (resp. homotopic) Fréchet distance between T and B. Clearly, dF (T,B) ≤
dH(T,B). The following lemma implies that the Fréchet distance can be approximated within a constant factor.

Lemma 7 Let D, n, L, T, R, and B be as above. Then, for the continuous case, one can compute, in O
(
n3 log n

)
time, reparametrizations of T and B of width at most 2δ, where δ = dF (T,B).

Proof In the following, consider D to be the region bounded by these four curves L, T, R, and B. We decompose D
into strips, chunks and pockets using the algorithm of Section 4.3.1. Let Π be the set of shortest paths from all points
of T to the curve B. As in the algorithm of Section 4.3.1, let ΠT be the set of all shortest paths from medial points on
T to B. Arguing as in Lemma 5, we have that the set ΠT is composed of a linear number of paths. The paths in ΠT

do not cross and so partition D into a set of regions. Each region is bounded by a portion of T, a portion of B and
two paths in ΠT. A region is a delta if the two paths of ΠT in its boundary share a single endpoint (on T), it is a
pocket if they share two endpoints (one on T and one on B), and it is strip if they share no endpoints.

Obviously, the (endpoints of the) paths in Π cover all of the vertices of T. The paths in Π also cover all of B except
for the bases of deltas. Now, for each delta we compute the set of all shortest paths from the vertices of its base to its
apex inside the delta. Let ΠB be the set of all such paths in all deltas. Clearly, the union of ΠB and ΠT is a set of
non-crossing paths whose endpoints cover all the vertices of T and B.

The shortest path from any point of T to B is at most δ. So, all paths in Π have length at most δ. Similarly, the
shortest path from a point of B to T is at most δ. Now, consider a delta C with apex c. Let b be a point on the base

³We use the same notation to argue about the discrete and continuous problems.
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of C (and so on B). The shortest path πb from b to T has length at most δ. Let x be the first point that πb intersects
a boundary path of C, πC . Now, πb[b, x] · πC [x, c] has length at most 2δ and it is inside C. We conclude that all paths
in ΠB have length at most 2δ.

The paths in ΠB ∪ ΠT decompose D into strips and corridors. The left and right portions of a strip is of length
at most 2δ, and its top and bottom sides have as such Fréchet distance at most 2δ from each other. Similarly, the
leash can jump over a pocket from the left leash to the right leash. Doing this to all corridors and pockets, results in
reparametrizations of L and R such that their maximum length of a leash for these reparametrizations are at most
2δ. This implies that the Fréchet distance is at most 2δ, and we have an explicit reparametrization that realizes this
distance.

As for the running time, in O(n3 log n) time, one can compute all shortest paths from T to the whole surface. Then
one can, in O(n2 log n) time, compute the shortest paths inside each of the linear number of deltas. It follows that the
total running time is O(n3 log n). ut

5.1.2 The discrete case

We can use a similar idea to the decomposition into deltas, pockets and strips as done in the proof of Lemma 7.

Lemma 8 Let D be a triangulated topological disk with n faces, and T and B be two internally disjoint walks on
the boundary of D. Then, for the discrete case, one can compute, in O(n) time, reparametrizations of T and B that
approximate the discrete Fréchet distance between T and B. The computed reparametrizations have width at most 3δ,
where δ is the maximum of the Fréchet distance between T and B, and the maximum length of an edge on

Proof First, compute the set of shortest paths, ΠT = {ζ1, ζ2, · · · , ζk}, from vertices of T to the path B. To this end, we
(conceptually) collapse all the vertices of B into a single vertex, and compute the shortest path from this meta vertex
to all the vertices in T. Let T be the resulting shortest path tree.

Next, for i = 1, . . . , k− 1, let ei = titi+1 be the ith edge of T, and let let ζi be the shortest path from ti to B, with
bi being its endpoint on B, and consider the region Di bounded by the curve ζi · ei · ζi+1 · B[bi+1, bi]. Now, compute
the shortest path tree Ti inside Di, from the two vertices of ei to all the other vertices of Di. For each internal vertex
v of B[bi+1, bi], the shortest path to either ti or ti+1 inside Di can be retrieved from Ti. Let Πi be the set of all such
shortest paths for internal vertices of B[bi+1, bi], and let Π = ΠT ∪

⋃
iΠi.

As for the length of the paths in Π, observe that the shortest path ψ, in D, from such a vertex v to T has length
at most δ. If ψ wanders outside Di then one can modify it to lie in Di. Specifically, if this path intersect, say, ζi then
we can modify it into a path from v to ti, and the modified path has length ≤ ‖ψ‖+ ‖ζi‖ ≤ 2δ.

Now, every edge of T or B must be used by a valid leash sequence, see Definition 2. As such, the height of any
leash sequence is at least the length of the longest such edge. Note, that two consecutive paths in Π might be either
share an endpoint or adjacent, in either the top or bottom curve. As such, the set Π can be turned into a valid leash
sequence by adding at most two moves, in the worst case both a person and a dog move, between two such consecutive
paths. Let Π ′ denote the resulting leash sequence. Now, every path in Π ′ has length at most 2δ + δ, as the modified
added paths are longer by at most the length of a single edge of T or B, Thus, the leash sequence Π ′ has height at
most 3δ.

Using the algorithm of Henzinger et al. [27] to compute the shortest paths from B takes linear time. Since all the
regions are disjoint, and every edge appears on the boundary of at most two regions, we can compute all the shortest
paths inside all these regions to T in O(n) time overall (this step requires careful implementation to achieve this
running time). ut

Remark 2 (A) The paths realizing the Fréchet distance computed by Lemma 8 are stored using an implicit data-
structure (essentially shortest path trees that are intertwined). This is why the space used is linear and why it can be
constructed in linear time. Of course, an explicit representation of the sequence of walks realizing the Fréchet distance
might require quadratic space in the worst case.

(B) We emphasize that two consecutive paths of Π ′, from the proof of Lemma 8, might enclose a region that have
(potentially) many interior vertices. Thus, the leash might “jump” over obstacles – the remainder of this section deals
with removing this drawback.

5.2 Minimum reparameterization width if there are no mountains

The following lemma implies a O(log n)-approximation algorithm for the case that all vertices in D are sufficiently
close to both of the two curves.

Lemma 9 Let D be a triangulated topological disk with n faces, and T and B be two internally disjoint walks on the
boundary of D. Further, assume for all p ∈ D, the distance between p and T is at most x, and the distance between p
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and B is at most x. Then one can compute reparametrization of B of width O(x log n). The running time is O
(
n4 log n

)
(resp. O

(
n2
)
) in the continuous (resp. discrete) case.

In particular, if x = O(dH(T,B)) then this is an O(log n)-approximation to the optimal homotopic Fréchet distance.

Proof Consider the continuous case. Using the algorithm of Lemma 7 we compute a reparametrization of B of width
δ, realizing approximately the regular Fréchet distance, where δ = O(x). Let `(t) denote the leash at time t that we
obtain from the reparametrization mentioned above. Note that the leash `(·) is not required to deform continuously
in t. In particular, for a given time t ∈ [0, 1], let `−(t) = limt′→t− `(t

′) and `+(t) = limt′→t+ `(t
′), where limt′→t− and

limt′→t+ are the left-sided and right-sided limits, respectively. By definition, the leash is discontinuous at t if and only
if `−(t) 6= `+(t).

Naturally, the above reparameterization can be used as long as it is continuous. Whenever the leash jumps over
a gap (i.e., the leash is discontinuous at this point in time), say at time t, we are going to replace this jump by a
(`−(t), `+(t))-homotopy between the two leashes. Clearly, this would result in the desired continuous homotopy.

To this end, observe that all the vertices inside the disk with boundary `−(t) · `+(t) have distance O(x) to T and
B, and thus also to `−(t) and `+(t). Hence, using the algorithm of Theorem 2, compute an (`−(t), `+(t))-homotopy
with height O(x log n). Since a gap must contain a vertex there are O(n) gaps, so this filling in is done at most O(n)
times. Computing the initial reparameterization takes O

(
n3 log n

)
time. Each gap can be filled in O(n3 log n) time.

The discrete case is similar. The Fréchet distance here can be computed in linear time using the algorithm of
Lemma 8 (see also Remark 2). However, we can only obtain the value of the Fréchet distance as well as an implicit
representation of the actual deformation in linear time. Indeed we can compute an explicit listing of the paths in O(n2)
time. Each path in the list can be charged to a single face or edge of D. It immediately follows that the number of
paths is linear. For any two consecutive paths, πi and πi+1 in the list, we can fill in the possible gap and compute the
explicit solution in O(n2i ) time, where ni is the number of faces between πi and πi+1, see Theorem 1 and Remark 1
(D). Since

∑
ni = O(n) the total running time of the algorithm is O(n2). ut

The above lemma demonstrates that if the starting and ending leashes are known (i.e., the region of the disk D
swept over by the morph) then an approximation algorithm can be obtained. The challenge is that a priori, we do not
know these two leashes, as the input is a topological disk D with the two curves T and B on its boundary, and the
start/end leashes might be curves that lie somewhere in the interior of D.

5.3 A Decision Procedure for the Homotopic Fréchet distance in the presence of mountains

Here, we are handling both the discrete and continuous cases together.
For a parameter τ ≥ 0, a vertex v ∈ V(D) is τ-tall if its distance to T or B is larger than τ (intuitively τ is a

guess for the value of dH(T,B)). Here, we consider the case where there are τ -tall vertices. Intuitively, one can think
about tall vertices as insurmountable mountains. Thus, to find a good homotopy between T and B, we have to choose
which “valleys” to use (i.e., what homotopy class the solution we compute belongs to if we think about tall vertices
as punctures in the disk). As a concrete example, consider Figure 5.2 (I), where there are three tall vertices, and two
possible solutions are being shown.

In the discrete case, we subdivide each edge in the beginning so that if an edge has length > 2τ , then the vertex
inserted in the middle of it is τ -tall. Observe that, if τ > dH(T,B) then no leash of the optimum homotopic motion
can afford to contain a τ -tall vertex. We use Mτ to denote the set of all τ -tall vertices in V(D).

Now, let ω and ω′ be two walks connecting points on T and B. The walks ω and ω′ are homotopic in D \Mτ if
and only if they are homotopic in D\Mτ after contracting T and B (each to a single point). Two non-crossing walks ω
and ω′ are homotopic if and only if T ·B · ω · ω′ contains no tall vertices. It is straightforward to check that homotopy
is an equivalence relation. So it partitions (T,B)-paths into homotopy classes; we call each class a τ -homotopy class
or simply a homotopy class (given that τ is fixed).
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For a homotopy class h, let πL,h (resp. πR,h) be the left geodesic (resp. right geodesic); that is, πL,h denotes the
shortest path in h from tl to bl (resp. from tr to br).

Let ω be any walk in h from b ∈ B to t ∈ T. The left tall set of h, denoted by Ml(h) = Ml(ω), is the set of all τ -tall
vertices to the left of ω. Namely, Ml(h) is the set of tall vertices inside the disk with boundary L · T[tl, t] · ω · B[bl, b].
where L is the “left” portion of the boundary of D, having endpoints tl and bl. We similarly define the right tall set
of h, Mr(h) = Mr(ω), to be the set of all τ -tall vertices to the right of ω. See Figure 5.2 (II).

Note that the sets Ml(h) and Mr(h) do not depend on the particular choice of ω, since all paths in h are homotopic
and so have the same set of τ -tall vertices to their left and right side. However, we emphasize that the left and right
tall sets do not identify homotopy classes. Figure 5.2 (III) demonstrates two non-homotopic paths with identical left
and right tall sets.

The set h is τ-extendable from the left if and only if ‖πL,h‖ ≤ τ and there is a homotopy class h′, such that
‖πL,h′‖ ≤ τ and Ml(h) ⊂ Ml(h

′). In particular, h is τ-saturated if it is not τ -extendable and ‖πL,h‖ ≤ τ .

5.3.1 On the left and right geodesics

Lemma 10 Let h be a τ -saturated homotopy class, where τ ≥ dH(T,B). Then ‖πR,h‖ ≤ 4τ .

Proof Let hopt be the homotopy class of the leashes in the optimum solution. Of course, no leash in the optimum
solution contains a τ -tall vertex. Further, all leashes in the optimal solution are homotopic because there is a homotopy
that contains all of them by definition.

Since h is saturated the set Ml(h) is not a proper subset of Ml(hopt). It follows that either Ml(h) = Ml(hopt) or
Ml(h) intersects Mτ\Ml(hopt) = Mr(hopt)

If Ml(h) = Ml(hopt) then either h = hopt, and in particular ‖πR,h‖ =
∥∥πR,hopt∥∥ ≤ τ , or πL,h crosses πR,hopt .

Otherwise, the set Ml(h) ∩Mr(hopt) is not empty. Again, it follows that πL,h crosses πR,hopt .
Therefore, we only need to address the case that πL,h crosses πR,hopt .
Let x be the first intersection point between πL,h and πR,hopt , as one traverses πL,h from tl to bl. Let x′ be the last

intersection point of πL,h[tl, x] with πL,hopt
. Similarly, y is the last intersection point between πL,h and πR,hopt , and y′

is the first intersection of πL,h[y, bl] and πL,hopt . Observe that the interiors of πL,h[x
′, x] and πL,h[y, y

′] do not intersect
the curves πL,hopt and πR,hopt . See Figure 5.3 (I).

As the curves πL,h and πR,h are homotopic (by definition), the disk with the boundary T · πL,h · B · πR,h does not
contain any tall vertex, and T · πL,h · B is homotopic to πR,h.

Consider the walk T′ = πR,hopt
[tr, x] · πL,h[x, x′] · πL,hopt [x′, tl], see Figure 5.3 (II). The walk T′ is homotopic to T.

Similarly, B′ = πL,hopt [bl, y
′] ·πL,h[y′, y] ·πR,hopt [y, br] is homotopic to B. It follows that πR,h is homotopic to T′ ·πL,h ·B′.

As πR,h is the shortest path in its homotopy class with these endpoints, it follows that

‖πR,h‖ ≤ ‖T′ · πL,h · B′‖ ≤ ‖πL,h‖+
(∥∥πL,hopt∥∥+ ‖πL,h‖+

∥∥πR,hopt∥∥) ≤ 4τ,

as T′ and B′ are disjoint, and T′ ∪ B′ ⊆ πR,hopt ∪ πL,hopt ∪ πL,h. ut

A region that contains no τ -tall vertices can still, potentially, contain τ -tall points (that are not vertices) on its
edges or faces. We next prove that this does not happen in our setting.

Lemma 11 For any τ ≥ 0, let h be a τ -homotopy class, such that max(‖πL,h‖ , ‖πR,h‖) ≤ x, where x ≥ τ ≥ dH(T,B).
Let D′ be the disk with boundary T · πR,h · B · πL,h. Then all the points inside D′ are within distance O(x) to both T
and B in D′.

Proof We first consider the continuous case. By the definition of τ -homotopy, the disk D′ has no τ -tall vertices.
Furthermore, by the definition of x, we have that the distance of any point on T to B, restricted to paths in D′ is at
most δ1, where δ1 = x+ dF (T,B) ≤ 2x. Indeed, the shortest path from any point on T to B in D, either stays inside
D′, or alternatively intersects either πL,h or πR,h.
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We can now deploy the decomposition of D′ into strips, pockets and chunks as done in Section 4.3.1. Every strip
(or a chunk) is being swept by a leash of length at most δ2 = 2δ1 ≤ 4x (the factor two is because a strip might rise
out of a delta), and therefore the claim trivially holds for points inside such regions.

Every pocket P has perimeter of length at most ‖∂P‖ ≤ δ3 = 2δ2 = 8x (the perimeter also contains two points of T
and B and they are in distance at most δ2 from each other in either direction along the perimeter). So, consider such a
pocket P. Since D′ contains no τ -tall vertices, P does not contain any tall vertex. Let e be an edge in P (or a subedge
if it intersects the boundary of P). The two endpoints of e are in P, and such an endpoint is either a (not tall) vertex
or it is contained in ∂P. In either case, these endpoints are in distance at most x from ∂P, and so they are in distance
at most δ4 = 2x+‖∂P‖ /2 = 2x+δ2 ≤ 6x from each other even if the geodesic distance is restricted to P . We conclude
that ‖e‖ ≤ δ4, and consequently, any point in e is in distance at most δ5 = ‖e‖ /2 + x+ δ2 ≤ 3x+ x+ 8x ≤ 12x from
T and B.

Now, consider any point p in P, and consider the face F that contains it. Since the surface is triangulated, F is a
triangle. Clipping F to P results in a planar region F ′ that has perimeter at most δ6 = 3δ4 + ‖∂P‖ ≤ 3 · 6x + δ3 ≤
(18 + 8)x ≤ 26x (note, that an edge might be fragmented into several subedges, but the distance between the furthest
two points along a single edge is at most δ4 using the same argument as above). Thus, the furthest a point of P can
be from an edge of P is at most δ7 = δ6/2π ≤ 5x. Hence, the maximum distance of a point of P from either T or B
(inside D′) is at most δ5 + δ7 ≤ 12x+ 5x = 17x.

The discrete case is easy. Any edge of length ≥ 2τ was split, by introducing a middle vertex, which must be τ -tall.
So the claim immediately holds. ut

5.3.2 The decision algorithm

Lemma 12 Let D, n,T, L,B,R, tl, bl as in the first paragraph of Section 5 and τ as in the previous subsection, and let
X ⊆ V(D) be a set of τ -tall vertices. Consider the shortest path σl (between tl and bl) that belongs to any homotopy
class h such that X ⊆ Ml(h). Then the path σl can be computed in O

(
n4 log n

)
(resp. O(n log n)) time in the continuous

(resp. discrete) case.

Proof For each vertex of v ∈ X, compute its shortest path ψv to L in D. Cut the disk D along these paths. The result
is a topological disk D′. Compute the shortest path ζ in D′ between tl and bl.

We claim that ζ = σl. To this end, consider σl and any path ψv computed by the algorithm. We claim that σl and
ψv do not cross in their interior. Indeed, if σl cross ψv an odd number of times, then v is inside the disk σl · T · R · B,
which contradicts the condition that v ∈ X ⊆ Ml(h). Clearly, σl and ψv cannot cross in their interiors more than once,
because otherwise, one can shorten one of them, which is a contradiction as they are both shortest paths. Thus, σl is
a path in D′ connecting tl to bl, thus implying that ζ is σl.

As for the running time, each shortest path computation takes time O(n2 log n), in the continuous (resp. discrete)
case. The resulting disk has complexity O

(
n2
)
, and computing a shortest path in it takes O

(
n4 log n

)
time in the

continuous case. In the discrete case, computing the paths can be done by collapsing L to a vertex, forbid the shortest
path tree edges, and run a shortest path algorithm in the remaining graph. Clearly, this takes O(n log n) time. ut

Lemma 13 Let D be a triangulated topological disk with n faces, and T and B be two internally disjoint walks on D’s
boundary. Given τ > 0, one can compute a τ -saturated homotopy class, in O(n5 log n) (resp. O(n2 log n)) time, in the
continuous (resp. discrete) case.

Proof Start with an empty initial set X = ∅. At each iteration, try adding one of the τ -tall vertices v ∈ Mτ of D to
X, by using Lemma 12. The algorithm of Lemma 12 outputs a path σ between tl and bl and a set X ′ ⊃ X ∪ {v}.

If σ is of length at most τ update X to be the new set X ′, otherwise reject v. If v is rejected then the left geodesic
of any superset of X ∪ {v} has length larger than τ . It follows that v cannot be accepted in any later iteration, so we
do not need to reinspect it. Clearly, after trying all the vertices of Mτ , the set X defines the desired saturated class,
which can be computed by using the algorithm of Lemma 12. ut

Lemma 14 Let D be a triangulated topological disk with n faces, and T and B be two internally disjoint walks on the
boundary of D. Given a real number x > 0, one can either:

(A) Compute a homotopy from T to B of width O(x log n), or
(B) Return that x < dH(T,B).

The running time of this procedure is O
(
n5 log n

)
(resp. O

(
n2 log n

)
) in the continuous (resp. discrete) case.

Proof Assume x ≥ δH = dH(T,B), and we use x as a guess for this value δH . Using Lemma 13, one can compute a
x-saturated homotopy class, h. Lemma 10 implies that both πL,h and πR,h are at most 4x. Let D′ ⊆ D be the disk
with boundary T · πL,h · B · πR,h. By Lemma 11, all the vertices in D′ are in distance O(x) from T and B (this holds
for all points in D′ in the continuous case). That is, there are no O(x)-tall vertices in D′. Finally, Lemma 9 implies
that a continuous leash sequence of height ≤ Z = O(x log n) between T and B, inside D′, can be computed.
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Thus, if x is larger than dH(T,B) then this algorithm returns the desired approximation; that is, a homotopy of
width ≤ Z. If the width of the generated homotopy is however larger than Z (a value that can be computed directly
from x), then the value of x was too small. That is, the algorithm fails in this case only if x < dH(T,B). In the case
of such failure, return that x is too small. ut

5.4 A strongly polynomial approximation algorithm

For a vertex v ∈ V(D), define cost(v) to be the length of the shortest path between tl and bl that has v on its left side.
Similarly, for a set of vertices X ⊆ V(D), let Cost(X) be the length of the shortest path between tl and bl that has X
on its left side. For a specific v or X, one can compute cost(v) and Cost(X) by invoking the algorithm of Lemma 12
once.

5.4.1 The algorithm

(I) Identifying the tall vertices. Observe that using the algorithm of Lemma 14, we can decide given a candidate
value δH for dH(T,B) if it is too large, too small, or leads to the desired approximation. Indeed, if the algorithm
returns an approximation of values O(δH log n) but fails for δH/2, we know it is the desired approximation.
For each vertex v ∈ V(D) let αv be the maximum distance of v to either T or B. Note that v cannot be a-tall
for any a ≥ αv. Sort these values, and using binary search, compute the vertex w, with the minimum value αw,
such that Lemma 14 returns a parameterization with homotopic Fréchet distance O(αw log n). If the algorithm
of Lemma 14 returns that αw/n is too small of a guess, then [αw/n, αw log n] contains δH . In this case, we
can use binary search to find an interval [γ/2, γ] that contains δH and use Lemma 14 to obtain the desired
approximation. Similarly, if v is the tallest vertex shorter than w, then we can assume that αvn is too small of
a guess, otherwise we are again done as [αv, αvn] contains δH .
Therefore, in the following, we know that the desired distance δH lies in the interval [x, y] where x = αvn and
y = αw/n, and for every vertex u of D it holds that (i) αu ≤ x/n, or (ii) αu ≥ yn. Naturally, we consider all
the vertices that satisfy (ii) as tall vertices, by setting τ = 2x/n. In the following, let M denote the set of these
τ -tall vertices.

(II) Computing candidate homotopy classes. Start with X0 = ∅. In the ith iteration, the algorithm computes
the vertex vi ∈ M \Xi−1, such that Cost(Xi−1 ∪ {vi}) is minimized, and set Xi = Xi−1 ∪ {vi}. Let hi be the
homotopy class having Xi on its left side, and M \Xi on its right side.

(III) Binary search over candidates. We approximate the homotopic Fréchet width of each one of the classes
h1, . . . , hn. Let x be the minimum homotopic Fréchet width computed among these n candidates.
Next, do a binary search in the interval [x/n2, x] for the homotopic Fréchet distance. We return the smallest
width reparametrization computed as the desired approximation.

5.4.2 Analysis

Lemma 15 (i) For any X ′ ⊆ X ⊆ V(D), we have Cost(X ′) ≤ Cost(X).
(ii) For any x ∈ X ⊆ V(D), we have cost(x) ≤ Cost(X).
(iii) For X,Y ⊆ V(D), we have that Cost(X ∪ Y ) ≤ Cost(X) + Cost(Y ).

Proof (i) Observe that the path realizing Cost(X ′) is less constrained than the path realizing Cost(X), therefore it
might only be shorter.

(ii) Follows immediately from (i).

(iii) Consider the disk D and the two paths σX and σY realizing Cost(X) and Cost(Y ), respectively. The close
curves σx · L and σY · L encloses two topological disks. Consider the union of these two disks, and its connected outer
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boundary σX∪Y ∪ L. Clearly, σX∪Y connects tl and bl, and it has all the points of X and Y on one side of it, and
finally ‖σX∪Y ‖ ≤ ‖σX‖+ ‖σY ‖ as σX∪Y ⊆ σX ∪ σY . See Figure 5.4.

Lemma 16 The cheapest homotopic Fréchet parameterization computed among h1, . . . , hn has width O(dH(T,B)n log n).

Proof Consider the set Y that is the subset of tall vertices on the left side of the optimal solution. Let i be the
first index such that Y ⊆ Xi and Y 6⊆ Xi−1. Let v be any vertex in Y \ Xi−1. By construction, we have that
Cost(Xi) ≤ Cost(Xi−1 ∪ {v}), and furthermore, for all j ≤ i, we have that Cost(Xj) ≤ Cost(Xj−1 ∪ {v}), by the
greediness in the construction of X1, . . . , Xi. Now, we have

Cost(Xi) ≤ Cost(Xi−1 ∪ {v}) (by construction of Xi)

≤ Cost(Xi−1) + cost(v) (by Lemma 15 (iii))

≤ Cost(Xi−1) + Cost(Y ) (by Lemma 15 (ii))

≤ (Cost(Xi−2) + Cost(Y )) + Cost(Y ) (applying same argument to Xi−1)

= Cost(Xi−2) + 2Cost(Y )

≤ · · · ≤ iCost(Y ) ≤ nCost(Y ).

Now, setting τ = Cost(Xi), it follows that Xi is τ -saturated. Applying Lemma 10, implies that ‖πR,hi‖ ≤ 4τ . Observe,
that the disk defined by T, πL,hi , B, πR,hi cannot contain any tall vertex (by construction).

Now, plugging this into Lemma 9 implies the homotopic Fréchet width of hi (starting with πL,hi and ending up
with πR,hi , so D in Lemma 9 is bounded by T,B, πL,hi , πR,hi) is O(τ log n), which implies the claim since Cost(Xi) ≤
nCost(Y ) ≤ ndH(T,B). ut

5.4.3 The algorithm

Theorem 3 Let D be a triangulated topological disk with n faces, and T and B be two internally disjoint walks on the
boundary of D. One can compute a homotopic Fréchet parameterization of T and B of width O(dH(T,B) log n), where
dH(T,B) is the homotopic Fréchet distance between T and B in D.

The running time of this procedure is O
(
n6 log n

)
(resp. O

(
n3 log n

)
) in the continuous (resp. discrete) case.

Proof Consider the algorithm described in the previous subsection. For correctness, observe that the algorithm either
found the desired value, or identified correctly the tall vertices. Next, by Lemma 16, the range the algorithm searches
over contains the desired value.

The algorithm requires O(n2) calls to Lemma 12, which takes O
(
n6 log n

)
(resp. O

(
n3 log n

)
) time in the continuous

(resp. discrete) case. Then the algorithm requires the method of Lemma 9 to compute the homotopic Fréchet distance
of the classes h1, . . . , hn. The algorithm also performs O(log n) calls to the algorithm of Lemma 14. ut

6 Conclusions

We presented a O(log n) approximation algorithm for approximating the homotopy height and the homotopic Fréchet
distance between curves on piecewise linear surfaces. It seems quite believable that the approximation quality can be
further improved, and we leave this as the main open problem. Since our algorithm works both for the continuous
and discrete cases, it seems natural to conjecture that this algorithm should also work for more general surfaces and
metrics.

Another problem for further research is to solve our main problem without the restriction that the two curves lie
on the boundary of the disk.

Connection to planar separator. Our basic algorithm (Theorem 1) is inspired to some extent by the proof of the
planar separator theorem [31]. In particular, our result implies sufficient conditions to having a separator that can
continuously deform from enclosing nothing in a planar graph, till it encloses the whole graph, without being too long
at any point in time. As a result, our work can be viewed as extending the planar separator theorem. A natural open
problem is to extend our work to graphs with higher genus.
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A Sweeping a convex polytope, star unfolding, and banana peels

Consider a convex polytope P in three dimensions, a base point b on its boundary, and the problem of finding the minimum length leash
needed for a guard that walks on the polytope such that the leash sweeps over all the points on the surface of the polytope. Specifically,
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at any point in time, the guard maintains a connection to the base point b via a path (i.e., the leash) connecting it to the base point, and
the leash has to move continuously as the guard moves around.

For a point p on the boundary of P, let dP (p) be the geodesic distance from b to p (i.e., the length shortest path ζ that lies on the
boundary of P connecting b to p). Let M be the medial axis of this distance – formally, a point p is on the medial axis if there are two
distinct shortest paths ζ and ψ from b to p, such that ‖ζ‖ = ‖ψ‖ = dP (p). It is known that M is a tree in this case [1].

Now, let Π be the union of all the shortest paths from b to the vertices of P (we assume that no vertex is on the medial axis, which
holds under general position assumption). The set Π is also a tree. Surprisingly, if you cut ∂P along Π, then the resulting polygon can
be flattened on the plane. Maybe even more surprisingly, this even holds if one cuts ∂P along M . This is known as star unfolding of a
polytope, see Agarwal et al. [1] for details.

Consider cutting ∂P along both M and Π. This breaks P into a collection of polygons Q, where each polygon Q ∈ Q, has no vertices of
P in its interior, and has b as a vertex. As such, one can unfold this Q into the plane. Here, the two paths of Π adjacent to b that belong
to the boundary of Q maps in this unfolding to two straight edges. The rest of the boundary Q is a closed connected portion of M . One
can think about Q as being a “leaf” in a decomposition of ∂P (i.e., think about the sides of a banana peel). Here, shortest paths from b
to any point on p ∈ ∂P that belongs to Q results in a straight segment in (the planar embedded version of) the polygon Q. As such, the
polygons of Q completely capture the structure of all the shortest paths on ∂P to b.

Back to the problem of sweeping ∂P. For the points of MQ = M∩∂Q, we can sweep the region of ∂Q that corresponds to Q, by walking
along the curve MQ (say counterclockwise), and the leash being the shortest path in ∂P (that lies inside Q). This completely sweeps over
the region of Q. We then continue this sweeping in the next polygon of Q adjacent to Q around b. We continue in this fashion till all the
boundary of the polytope is swept over. Note, that the leash is moving continuously, and during this motion, the maximum length of the
leash is the distance to the furthest point on ∂P from b. We conclude that this is an optimal solution and using the known algorithms for
computing shortest paths [1].

Let us recap the algorithm: We compute the medial axis M of b on ∂P, under the shortest path distance on the boundary of the
polytope. Next, the parameterize a point p(t) to move continuously around the tree M (i.e., traversing along each edge twice, in both
direction). At each point in time, the leash is connected via the shortest path to the base point b.

Lemma 17 Given a convex polytope P in three dimensions, and a base point p ∈ ∂P, one can compute in polynomial time, a continuous
motion of a point p(t), t ∈ [0, 1], and an associated leash `(t) connecting p(t) with b, such that (i) the leash sweeps over all the points of
∂P, (ii) the leash moves continuously, (iii) a point of ∂P get swept over only once during this motion, and (iv) the maximum length of
the leash is maxp∈∂P dP (p), which is optimal.

The above is in sharp contrast to our original problem of computing the homotopy height, as the two ends of the leash must move
along two prespecified curves L and R. Furthermore, because of that we no longer have the property that the leashes do not jump, as the
leash head no longer moves along the medial axis, as the resulting paths might be too long (compared to the optimal morph). Nevertheless,
the above captures our basic strategy of breaking the input disk into smaller slivers, induced by shortest paths, and solving the problem
in each sliver separately, and gluing the solutions together.
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