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Abstract. Given a planar graph G, what is the largest subset of vertices of G' that induces
a forest? Albertson and Berman [2] conjectured that every planar graph has an induced sub-
graph on at least half of the vertices that is a forest. For bipartite planar graphs, Akiyama and
Wanatabe [1] conjectured that there is always an induced forest of size at least %”. Here we
prove that every triangle-free (and therefore every bipartite) planar graph on n vertices has an
induced forest of size at least %.

1. Introduction

All graphs in this paper are simple and finite. Consider a graph G with vertex set V' and
edge set £ and let R be a subset of vertices. The subgraph of G induced by R is denoted
by Gg. It Gy is a forest then we call it an induced forest of G'. The following conjecture
was posed by Albertson and Berman [2]:

Conjecture 1. [2] Every planar graph has an induced forest with least half of the vertices.

Note that this conjecture, if true, would immediately imply that every planar graph has
an independent set with at least one-quarter of the vertices, a fact whose only known
proof relies on the Four Color Theorem.

Another formulation of this conjecture is in terms of decycling number. The decycling
number of a graph G is the smallest number of vertices which can be removed from G so
that the resultant graph has no cycles. So Conjecture 1 states that the decycling number
of every planar graph G' on n vertices is at most 7. Finding the decycling number of a
graph is NP-hard, even restricted to planar graphs, bipartite graphs, and perfect graphs.
Therefore, finding the largest induced forest of a given planar graph is a hard problem.
For this reason, it is natural to try to find lower bounds for the size of the largest induced
forest of a planar graph.

A coloring of a graph G is acyclic if the union of every two color-classes is an acyclic
graph. The best known lower bound on the size of the largest induced forest of a planar
graph is due to Borodin [6], who proved that every planar graph has an acyclic 5-coloring.
This implies that every planar graph on n vertices has an induced forest of size at least
%". For outerplanar graphs, Hosono [8] proved that there is always an induced forest
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with at least 2?” vertices and this is best possible. Borodin and Glebov [7] have proved a
stronger result for planar graphs of girth at least 5: the vertex set of a such graph can be
partitioned into an independent set and another set that induces a forest. For bipartite
planar graphs, Akiyama and Wanatabe [1] raised the following conjecture:

Conjecture 2. [1] Every bipartite planar graph with n vertices has an induced forest of
size at least %".

This conjecture, if true, is sharp as shown by Q)3 (the cube). Motivated by this conjec-
ture, Alon [3] and Alon et al. [5] studied the size of the largest induced forests in bipartite
and sparse graphs. Alon et al. [5] showed, among other things, that every (not necessarily
planar) triangle-free graph with n vertices and m edges has an induced forest of size n— .
Since in every triangle-free planar graph m < 2n — 4, their result implies a lower bound
of 5 + 1 for the size of the largest induced forest in triangle-free planar graphs. Here we

prove a better lower bound in terms of the number of vertices. Our main result is:

Theorem 1. Fvery triangle-free planar graph on n vertices and m edges has an induced
forest of size at least (29”3%].

Again, since every triangle-free planar graph has at most 2n — 4 edges, Theorem 1
implies:

Corollary 1. Every triangle-free planar graph on n vertices has an induced forest of size
at least [1o247.

Let’s define f(n) as the minimum, over all n vertex triangle-free planar graphs, of the
maximum size of an induced forest and v = lim,, ,, @ It can be seen that 7 exists and
(by [5] and because of the cube): 3 < < 2. Therefore, Corollary 1 improves the lower
bound for v to % < 7. Our proof uses the Discharging Method and is constructive. That
is, it yields a quadratic time algorithm that, given a triangle-free planar graph G, finds an
induced forest of G' on at least 22287 vertices in time O(n?). In the rest of this section,
we explain the notation and definitions. Then we prove some properties for a possible
minimum counter-example to Theorem 1 in the next section and prove the theorem based
on those properties. Sections 3 to 5 contain more details of the proof.

The vertex set, edge set, and face set of an embedded planar graph G are denoted by
V(G), E(G), and F(G) (or simply V, E, and F), respectively. Degree of a vertex v € V,
denoted by d(v), is the number of edges incident with it. The minimum and maximum
degree of G are denoted by 0(G) and A(G) (or simply § and A), respectively. A k-cycle
is a cycle of size k. The size of a face f € F, denoted by |f]|, is the number of edges in
the boundary of F', counting cut-edges (bridges) twice. We call a vertex of degree i, at
least 7, and at most ¢, an i-vertex, a >i-vertex, and a <i-vertex, respectively. We define
an i-face, > i-face, and < i-face, similarly. Through a slight abuse of notation, we say
“vertices of a face f” to refer to the vertices that are on the boundary of f. We also write
f=wvwy... v, if vy,..., v are the vertices on the boundary of f, consecutively. The size
of an induced forest G of a graph G (induced by R C V') is the number of vertices of R.
We denote the class of triangle-free planar graphs by G. For a subset V' C V' by G — V'
we mean the subgraph of G induced by the vertices in V' — V'. By G + E’, where E’ is
a subset of edges on V', we mean the graph with vertex set V' and edge set £ U E'. If
E'" C E, by G — E' we mean the graph obtained from G by deleting the edges in E'.
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2. Proof of Theorem 1

By way of contradiction, assume that Theorem 1 is false and let G € G together with a
planar embedding of it be a counter-example to this theorem with the minimum number
of vertices. Let n = |[V(G)|, m = |E(G)|, and ¢ = 220" Clearly G is connected and has
at least five vertices.

Lemma 1. A(G) < 4.

Proof. Let v be a > 5-vertex of G. By definition of G, G' = G — v has an induced forest

of size W > . Clearly that is an induced forest of G' as well. O

Lemma 2. G is 2-edge-connected, i.e. bridge-less.

Proof. Let e be a bridge in G and C; and C be the two connected components of G — e,
having n; and ny vertices and my and msy edges, respectively. By definition of G, C; and

C5 have induced forests of size 29”13;6m1 and 29"23’26”“, respectively. The union of these

29n—6(m1+m2)
= - -

two gives an induced forest in G of size
The following three lemmas are proved in the next three sections.

Lemma 3. §(G) > 3.

Lemma 4. No 5-face in G has more than three 3-vertices.

Lemma 5. No 4-face in G has a 3-vertex.

Now we prove that the properties listed above lead to a contradiction. To each vertex
v € V we assign a charge of ch(v) = d(v) — 6 and to each face f € F' we assign ch(f) =
2|f|— 6. By Euler’s formula, |V| — |E|+|F| = 2, the total charge is >, ch(z) = —12.
Recall that by Lemma 3, G has no < 2-vertices. Therefore, by this set of initial charges
and by Lemmas 3 and 1, the only elements in V' U F' that have negative charges are 3-,
and 4-vertices, having charges —2 and —1, respectively. Now we redistribute the charges
by applying the following discharging rule:

Discharging rule: Every face sends 1 to each of its 3-vertices and % to each of its
4-vertices.

By this rule, vertices do not lose any charges in the discharging phase. Also, every
3-vertex and every 4-vertex receives a total of 3 and 2 units of charge, respectively, from
the faces it is incident with (recall that G is bridge-less). Therefore:

Lemma 6. For every vertex v has non-negative charge.
Lemma 7. Fvery face f has non-negative charge.

Proof. Let |f| = k. If k > 6 then f sends at most &k units of charge to its vertices, which
is at most 2|f| — 6 for £ > 6. If £ =5 then, by Lemma 4, f has at most three 3-vertices
and therefore, it sends at most 3 x 1 +2 x £ =4 = 2|f| — 6 to its vertices. If k = 4 then,
by Lemma 5, it has only 4-vertices and sends 4 x % = 2| f| — 6 units of charge to them. O

By Lemmas 6 and 7, the total charge is non-negative, while the initial charge was
—12. This contradiction completes the proof of Theorem 1. The algorithm for finding an
induced forest of size at least ¢ has at most n iterations. In each iteration we apply the
initial charges and the discharging rule as described above. Since in a planar graph the
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number of edges and faces is linear in the number of vertices, applying the initial charges
and the discharging rule takes O(n) time. Then we can find an element with negative
charge in O(n). This element must be in a configuration of vertices and faces as described
in Lemmas 1 to 5. Once we find such a structure, using the proof of the corresponding
lemma we construct graph G’ which has fewer vertices. Then we solve the problem on G,
recursively. Having an induced forest in G', again the proof of the corresponding lemma
shows how to modify it into an induced forest of size at least ¢ in GG. Therefore, the overall
running time of the algorithm will be O(n?).

3. Proof of Lemma 3

Note that by Lemma 1 every vertex in G is a < 4-vertex. If v is a 1-vertex in GG then
G' = G — v has a forest induced by a set R’ of size at least w > ¢ — 1. Clearly
R = R'U {v} induces a forest in G. So §(G) > 2. Our next goal is to show that every

2-vertex is adjacent to 3-vertices only.
Lemma 8. GG does not have a 2-vertex adjacent to a 4-vertex.

Proof. Otherwise, if u is a 2-vertex adjacent to a 4-vertex v then we set G' = G — {u, v}.
Clearly G' € G and so there is a set R' C V(G") of size W}# > ¢ — 1 that induces
a forest in G'. It is easy to see that R = R'U{u} induces a forest (of size > ¢) in G, since
u adjacent to at most one vertex in R', i.e. it’s a leaf in Gy (subgraph of G induced by
R). O

Lemma 9. G does not have a 2-vertex adjacent to a 2-vertex and a 3-vertex.

Proof. Assume that u is a 2-vertex adjacent to a 2-vertex v and a 3-vertex w. Then
G' = G — {u,v,w} has a forest induced by a set R’ of size 29(71_3)3# > p—2. It
follows that R = R' U {u, v} induces a forest (of size > ¢) in G. O

Lemma 10. G does not have a 2-vertex adjacent to two 2-vertices.

Proof. Assume that u is a 2-vertex adjacent to 2-vertices v and w.

Case 1: If v and w have another common neighbor x then, by previous lemma (applied to
v) and by Lemma 1, d(z) = 3. But this implies that x is incident to a bridge, contradicting
Lemma 2.

Case 2: If x is the other neighbor of w and is not adjacent to v then G' = G — {u, v, w,z}
has a forest induced by a set R' of size W > ¢ — 3. Then R = R' U {u,v,w}
induces a forest (of size > ¢) in G. O

Lemmas 8 to 10 imply that every 2-vertex is adjacent to 3-vertices only.
Lemma 11. G does not have a 3-vertex adjacent to two 2-vertices.

Proof. Let u be a 3-vertex adjacent to two 2-vertices v and w, and let G' = G — {u, v, w}.
Then G’ has a forest induced by a set R’ of size W > ¢ — 2. It’s easy to see
that R = R'U {v, w} induces a forest (of size > ¢) in G (with both v and w being leaves
in GR) U

Lemma 12. G does not have a 4-face with a 2-vertex.
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Proof. Assume that f = vjvovgvy is a 4-face with d(v;) = 2. Therefore, by Lemmas 8 to
10: d(v2) = d(v4) = 3, and by Lemma 11: d(v3) > 3.

Case 1: Suppose there is a vertex u € {vy,v3} adjacent to both vy and vy. Note that
uvy € E as G is triangle-free. If d(u) > 4 or d(vs) > 4 then G' = G — {vy,...,v4,u} has a
forest induced by a set R’ of size w > ¢ — 3. Therefore, R = R' U {vy, va, 04}
induces a forest (of size > ¢) in G. So let’s assume that d(u) = d(vs) = 3.

If v and v, are the only common neighbors of v3 and u then G' = G — {vy, v2,v4} +
{uvs} (the graph obtained from G by removing vertices vy, v, v, and adding edge uvs)
is triangle-free and planar. By definition of G, G’ has a forest induced by a set R’ of
size 20=3-6m=5) ~ ', _ 9 Let R = R'U {vy,vs} (note that R has at least ¢ vertices).
Since uvs € G' and uvs € G, u and vz are not in the same connected component of G .
Therefore, the possible neighbors of v, in R', i.e. v3 and u, are not in the same connected
component of G . So Gy is a forest.

If w is another common neighbor of vz and u then d(w) > 3, or else G is only the
graph on {vy,..., vy, u, w} which trivially has an induced forest of size ¢. If w is a 3-
vertex adjacent to z (and to u and v3) then z is incident to a bridge, contradicting
Lemma 2. If d(w) = 4 then G' = G — {vy,...,v4,u, w} has a forest induced by a set R’ of

w > p—4. 50 R = R'U{vy, v, v3,u} induces a forest (of size > ¢) in G.

Case 2: Suppose v; and vz are the only common neighbors of v, and v,. Recall that
d(vy) = d(vs) = 3. Let u be the other neighbor of v, and w be the other neighbor of v,.
First assume that at least one of u or w, say u, is a 4-vertex. Then G' = G—{vy,...,vq,u}
has a forest induced by a set R’ of size W > ¢ — 3. It’s easy to see that
R = R'U{vy, vy, 04} induces a forest (of size > ¢) in G, with vy being a leaf.

So let’s assume that d(u) = d(w) = 3. If ww € F then G' = G — {v1,...,v4,u, w} has
a forest induced by a set R’ of size W > ¢ — 4. Since only one neighbor of u
remains in G', R = R' U {u, vy, v9,v4} induces a forest of size at least ¢ in G. lf uw ¢ E
then let G' = G — {vy,v9,v3} + {uvs}. It's easy to see that G’ is planar. Also, the only
case in which G’ has a triangle is when uwv, belongs to a triangle. This happens only if
uw € G’ (since the only neighbor of vy in G' is w), but uw ¢ G and therefore uw ¢ G'.
Thus G' € G and has a forest induced by a set R' of size w > ¢ — 2. Then
R = R'U {vy, v} induces a forest (of size > ¢) in G, because uv, € G' but uvy & G, so
u and vy are not in the same connected components of G'g. This implies that G is a
forest. O

size

Now we are ready to prove Lemma 3. Let u be a 2-vertex in G which belongs to two
faces f; and f, and is adjacent to v and w. By Lemma 2: f; # f, and by Lemmas 8 to
10: d(v) = d(w) = 3. By Lemma 12 both of f; and f, are > 5-faces. Therefore, v and
w do not have any common neighbor other than u. Let G' = G — {u} + {vw}. Clearly
G' is planar and because v and w do not have any other common neighbor, vw does
not create any triangle in G', i.e. G' € G. So it has a forest induced by a set R' of size
29(”_1)3# > ¢ — 1. We claim that R = R’ U {u} induces a forest (of size > ¢) in G:
Since vw € G' and vw ¢ G, v and w are not in the same connected components of G .
That is u is connecting two different connected components of Gg/, i.e. G is a forest.

This completes the proof of Lemma 3.
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4. Proof of Lemma 4

Note that by Lemmas 1 and 3, from now on, we can assume that every vertex in G' has
degree 3 or 4. Lemma 4 follows easily from Lemmas 13 and 14 below.

Lemma 13. G does not have a 5-cycle with exactly four 3-vertices.

Proof. Assume that C' = vjv9v3v4v5 is a 5-cycle, with vy, ..., v, all being 3-vertices and
d(vs) = 4. Let uy,...,uy be the third neighbors of vy,..., vy, respectively. Note that u;’s
may or may not be distinct, but since G is triangle-free: u; # u;;; (1 <i < 3). So if they
are not distinct then u; = us, or uy = uy, or u; = uy. Below we consider these possibilities.

If uy is distinct from ug and wuy then, with G' = G—{vy,...,v5,u1 }: |E(G)|—|E(G")| >
13. Clearly G' € G and therefore, it has a forest induced by a set R' C V(G') of size at
least 29(71_6);# = ¢ — 3. It’s not hard to see that R = R' U {vy, vy, v4} induces a
forest (of size > @) in G, because each of vy and vy is adjacent to at most one vertex in
R’ and vy is adjacent to vy only.

If uy = uy or if u; = ug and wuy is distinct from ug, then let G' = G — {vq, ..., v5, us}.
Since G' € G and |E(G)| — |E(G")| > 13, G' has a forest induced by a set R of size
w = ¢ — 3. It is easy to see that R = R'U{vy, vy, v4} induces a forest (of size
> ) in G.

Finally, consider the case that w; = w3 and us = wuy. This can happen if one of
uy or us is inside the 5-cycle C' and the other is outside of C. In this case let G' =
G —{v1,...,v5,us,us}. Since G’ € G and |E(G)| — |E(G")| > 13, G’ has a forest induced
by a set R’ of size at least w > ¢ — 4. Now R = R' U {vy,v9,v3,v4} induces
a forest of size at least ¢ in GG, a contradiction. O

Lemma 14. G does not have a 5-face with five 3-vertices.

Proof. Suppose that f = vgvivov3v, and all v;’s have degree 3. Let u; be the third neighbor
of v; (0 <7 < 4). The following statements are true:

-(i) u;’s are distinct: Because G is triangle-free u; is distinct from w;;q, (0 <7 < 4,
where all the additions for indices are in mod 5). If, for instance, uy = uy, then no other
u; (i # 2) can be equal to uy. Also, by planarity, we cannot have u; = ug at the same
time as ug = us. So, by symmetry, the only possibility is when uy = us. In this case let
G' = G —{vy,...,vs,up}. Because G' € G and |E(G)| — |E(G")| > 11, G’ has a forest
induced by a set R' of size at least 29(”_6);% > p — 4. It’s not hard to see that
R = R'U{wvy, vy, vq,v3} induces a forest (of size > ) in G. This is because each of v; and
vs is adjacent to at most one vertex in R’ (namely u; and u3), and u; and ug are in different
connected components of G’%,, because they are on different sides of the separating cycle
VoU1V2Ug.

-(ii) d(u;)) = 3 (0 < i < 4): If one of u;’s, say wg, is a 4-vertex then let G' =
G —{vo,...,vs,up}. Since G' € G and |E(G)| — |E(G")| = 13, G’ has a forest induced by
a set R of size W = ¢ —3. Then R = R'"U{wvy, v, v3} induces a forest (of size
> ) in G.

-(iii) wu; € E (0 < i,j < 4): Without loss of generality, we fix i = 0 and consider
the cases when ugu; € E or uguy € E (the other situations reduce to one of these two by
symmetry). If upu; € E then we set G' = G — {vy, ..., vy, up, u1 }. Because G' € G and
m—13) >p— 4.

|E(G)|— |E(G")] = 13, G’ has a forest induced by a set R' of size %
Then, as each of ug and v3 is adjacent to at most one vertex in R', R = R'U{uqg, vo, vy, v3}
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induces a forest (of size > ¢) in G. If uyuy € E then we set G' = G — {vy, ..., vy, ug, u}.
Again G' € G and |E(G)| — |E(G')| = 13, so G' has a forest induced by a set R’ of size
at least ¢ — 4. It follows that R = R' U {ug, v1,ve,v4} induces a forest (of size > ¢) in G.
This is because each of ug, vy, and vy is adjacent to at most one vertex in R and vy is
only adjacent to v; in R.

-(iv) There is a vertex w adjacent to both u, and wu;: If not, G' = G —
{vo,...,vs} + {uous} is in G and has a forest induced by a set R’ of size 2026n9)
¢ — 3. Then, R = R" U {vy, vy, v3} induces a forest (of size > ¢) in G, because ug and u;
are in different connected components of G (as ugu; is in G’ and not in G). So adding
vp and vy does not create a cycle, i.e. G is a forest.

So C" = wvyupwuyvy is a 5-cycle with all ug, vy, vi, u; having degree 3. Therefore, by
Lemma 13: d(w) = 3, and by (i) above applied to C": wvy & E and wvy ¢ E. Also, by (iii)
applied to C": wuy ¢ E and wvs € E. So with G' = G—{wy, .. ., vy, ug, uy, us, w}: |E(G)|—
|E(G")| > 17. Since G" € G, G' has a forest induced by a set R' of size 29(71_9);# >
¢ — 5. Because each of wug,ui, vy is adjacent to at most one vertex in R, R = R' U
{ug, w1, v1,v9,v4} induces a forest (of size > ¢) in G. This completes the proof of lemma
14. O

5. Proof of Lemma 5

Lemma 5 follows easily from Lemmas 15 to 18 below.

Lemma 15. G does not have a 4-cycle with exactly one j-vertex.

Proof. let C' = vyv 0903 be a 4-cycle with d(vy) = 4 and d(v;) = d(vy) = d(v3) = 3. Define
G' = G — {vy,...,v3}. Note that because G is triangle-free, vovy ¢ E and vivs ¢ E.
Therefore, |E(G)| — |E(G')] = 9 and as G’ has a forest induced by a set R’ of size

M,}# > ¢ — 2. Clearly R = R' U {vy,vs3} induces a forest (of size > ¢) in G. O

Lemma 16. G does not have a 4-cycle with four 3-vertices.
Proof. Let C' = vyvivavs be a 4-cycle with d(v;) = 3 and wu; be the third neighbor of v;
(0<i<3).

-(i) w;’s are distinct: As G is triangle-free, u; is distinct from u; ;. So, without loss

of generality, assume that ug = uy and let G' = G — {vy, ..., v3,up}. Because G' € G and
|E(G)| — |E(G")| > 9, G" has a forest induced by a set R’ of size W > p— 3.

It follows easily that R = R'U {vp, v1, ve} induces a forest (of size > ¢) in G, with vy and
vy being leaves in Gg.

-(ii) C is a 4-face, i.e. all u;’s are either inside or outside of cycle C: By way of
contradiction, assume that C' is a separating cycle. At least two of uy, ..., us are inside or
at least two of them are outside of C'. Without loss of generality, suppose that uy and u; (for
some 1 <7 < 3) are outside of C' while u; (for some 1 < j < 3 with j # 1) is inside of C.
Let G' = G—{wy,...,v3,u}. Clearly G’ has a set R’ of size at least W >p—3
of vertices that induces a forest. It is easy to see that R = R'U{vp, v;,v;} induces a forest
in G, because the only possible neighbors of {vg,v;,v,;} in R' are u; and u; which are on
different sides of cycle C', and therefore, u; and u; are in different connected components
of G",.

-(iii) All u,;’s have degree 3: Without loss of generality, assume that d(uy) = 4 and
let G' = G—{wo,...,vs,ug, u1 }. lf uguy & G then |E(G)|—|E(G')| > 13 (note that u;’s are
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all distinct). If upu; € G then by applying Lemma 15 to the 4-cycle upujvivg: d(uy) = 4,
and again |E(G)| — |E(G")| > 13. Therefore, G' has a forest induced by a set R’ of size
29(”_6);# = ¢ — 3. Clearly R = R’ U {vg,v1,v2} induces a forest (of size > ¢) in G,
because the only possible neighbors of {vy, vy, v,} in R is us.

-(iv) wous ¢ F and ujuz ¢ E: Without loss of generality, assume that upuy € E and
let « be the third neighbor of uy (other than vy and uy). Define G' = G — {vy, ..., v3, up}.
Since G’ € G, it has a forest induced by a set R’ of size at least W > @ — 3.
Note that u; and us are on different sides of separating cycle C' = ugvovivous. If x and u;
are on the same side (i.e. z and ujz are on different sides) of C’" let R = R' U {uy, vy, v3},
and if x and uz are on the same side (i.e. z and u; are on different sides) of C' then let
R = R U {uy, vy, v, }. It follows that in each case G is a forest (of size > ¢).

-(v) wiuip1 € E (0 < i < 3): Without loss of generality, fix ¢ = 0 and assume that
uou, € F. We consider two cases.

If upus € E and ujus ¢ FE then let x be the third neighbor of ug and G' = G —
{vo, ..., vs3,up,ur,x}. Clearly G’ € G and since = # uz (by the assumption that ugus ¢ E)
and x # uy (by (iv) above): |[E(G)| —|E(G")| > 13, so G' has a forest induced by a set R’
of size w > ¢ — 4. It’s not hard to see that R = R’ U {uy, vy, v1,v3} induces
a forest (of size > ) in G, because from {ug, v, v1,v3} only vz can have (at most) one
neighbor in R’ (namely us).

Suppose that (at least) one of wgug or ujus, say ugus is in E. If we set G' = G —
{vo,...,v3,up,...,us3} then |E(G)|—|E(G")| > 13, and therefore it has a forest induced by
a set R’ of size 29(71_8);# > ¢ —>5. It’s not hard to see that R = R'U{ug, uy, v, v3, vz}
induces a forest in G. The reason is that among the vertices added to R’ only u; can have
(at most) one neighbor in R'.

-(vi) Graph G+ {uguy, ujus, usus, uguy} is triangle-free and planar: By (ii) above,
planarity is easy to see. To prove triangle-freeness, assume that G+ {ugu; } has a triangle.
This means there exists a common neighbor of ug and wu;, call it . Therefore, C' =
xugovuy is a b-cycle, with four 3-vertices, wg, vg, vy, u; (by (iii) all u;’s have degree 3).
By Lemma 13 applied to C": d(z) = 3. Note that by (iv), z is distinct from uy and ug. If
we let G' = G — {wvy, ..., vs,up, us, x} then, G’ has a forest induced by a set R’ of size at
least 221 _6m-13) — ) 4 It’s easy to see that R = R' U {z, vy, v1,v9} induces a forest
(of size > ) in G. Thus, adding ugu; to G' does not create any triangles. By symmetry we
can add each of ujug, usus, and uzugy, and by (iv), no two of these edges form a triangle.
Therefore, G + {upuy, ujus, ugug, usug} is triangle-free, as wanted.

Now consider G' = G + {uguy, ujug, ugus, usug} — {vo, v1, v2, v3} which by (vi) is in G.
Therefore, it has a forest induced by a set R’ of size w > p—3. Since ugu Utz
is a 4-cycle in G" at least one of ug, ..., us is not in R'. Without loss of generality assume
that ug ¢ R'. Then R = R' U {vg, vy, v2} induces a forest (of size > ¢) in G, because u,
and uy are in different connected components of G as ujus is in G’ but not in G. O

Lemma 17. G does not have a 4-cycle with exactly two j-vertices.

Proof. Let C' = wyuiveuz be a 4-cycle with two 4-vertices. If the two 4-vertices of C
are not adjacent, say d(vg) = d(ve) = 4 and d(v;) = d(vs) = 3, then the exact same
proof of Lemma 15 works here. So suppose that the two 4-vertices of C' are adjacent, say
d(vg) = d(vy) = 4 and d(ve) = d(vs) = 3. Let {ug,wo}, {ur, w1}, {us}, and {us} be the
sets of neighbors of vy, vy, v9, and v3, respectively.
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-(i) C is a 4-face: Let G' = G — {wp,...,v3}. Since G' € G, it has a forest induced
by a set R' of size at least W > ¢ — 2. If up and ugz are on different sides
of C'in G, then us and w3 are in different connected components of G/, and therefore
R = R'"U{uvy,vs3} induces a forest (of size > ¢) in G. So, uy and ug are on the same side
of C'. If uy and wy are on different sides of C' then uy and wy are in different connected
components of G, and therefore R = R' U {vg, vo} induces a forest in G. So both u
and wy are on the same side of C. Using a similar argument it follows that u; and w;
are on the same side of C. Thus, if C' is not a 4-face, uy and uz are on one side of C',
while both of ug and wy, or both of u; and w; are on the other side. Without loss of
generality, assume that uy and wy are inside of C' while us and u3 are outside of C. Define
G' = G — {vy,v9,v3,us}. Since d(uz) > 3: |E(G)| — |E(G")| > 10. So there is a set R’ of
size at least w > ¢ — 2 that induces a forest in G'. Consider the subgraph
of G induced by R = R' U {vs,v3}. From vy and v3, only v3 can have neighbors in R,
and since neighbors of vy (i.e. ug, wp) and uz are on different sides of C', uz and vy are in
different connected components of G . Therefore, G is a forest (of size > ¢). Thus all
Uy, W, U1, W1, Uz, Uz are on the same side of C, i.e. C' is a face.

-(ii) Vertices ug, wp, uy, wy, ug, u3 are distinct: It is easily seen that since G is
triangle-free, ug, wg, uy, w; are distinct and uy # uz. Without loss of generality, assume
that up = uy and consider the separating cycle C" = ugvpvzvy (with v; and wuz being on
different sides of C"). First suppose that wy and v, are on different sides of C’ (one inside
and one outside) and let G' = G — {vy, v2, v3,up }. Since d(uy) > 3: |[E(G)| — |E(G")| > 9.
So G’ has a forest induced by a set R’ of size at least M&# > ¢ — 2. We claim
that R = R'U{wp, vo} induces a forest (of size > ¢) in G: because vy has only one possible
neighbor (namely v;) in R/, and since C’ is a separating cycle wy and vy are in different
connected components of G, that is the possible neighbors of vy in R’ (i.e. wy and vy)
are in different components of G’,,. So assume that wy and v; are on the same side of C’
and let G' = G — {wvy, vy, va, up}. Again, G’ has a forest induced by a set R’ of size at least
¢ —2. Now R = R'"U{wvp, vy} induces a forest in G (using a similar argument and the fact
that w; and vy are on different sides of uyvyv1vs). Thus uy # ug (and also wy # uy) and
by symmetry wuy,w; are distinct from wus.

-(iii) ugus € F, and ujuy € F or wyuy € F, and upuz € F or wyuz € E: By way of
contradiction, suppose that usuz & E. Let G' = G —{vy, v3} + {uzvs}. Clearly G’ is planar
and the only possible triangle it can have is uzvous, but usus ¢ E. Thus G' € G and has
a forest induced by a set R' of size W > p — 1. We claim that R = R' U {v3}
induces a forest (of size > ¢) in G. The claim is trivial if at most one of ug and vy are
in R'. If both of them are in R’ then, because vyuz € G’ and vyus € G, vy and ugz are in

different connected components of Gg. So adding v3 does not create a cycle.

If upus ¢ E and woug ¢ E then let G' = G — {vy, va,v3,us} + {vous}. The only case
in which G’ has a triangle is when one of uy and wy is connected to us, which is not
the case by our assumption.. Thus, G’ is triangle-free (and trivially planar). Note that
because d(uz) > 3: |[E(G)| — |E(G")| > 9. So G’ has a forest induced by a set R’ of size at
least W > p — 2. Let R = R U {uvy,vs3}. Note that vy has degree 1 in Gp. As
in the previous paragraph, if at most one of vy and w3 is in R’ then clearly R induces a
forest. If both vy, uz € R’ then, because vous € G" and vyus € G, vy and usz are in different
connected components of Gg. Thus R induces a forest in . This implies that ugus € E

or wouz € E. By symmetry, ujuy € E or wyuy € E.
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-(iv) One of G; = G —{wy, ..., v3,us, us} +{usw, } or Go = G —{wo,...,vs,up, us} +
{uswp} is in G: It is easy to see that both G| and G5 are planar. Assume that both have
triangles. So in G, there is a vertex x such that zu; € E(G,) and 2w, € E(G,), and in
G there is a vertex y such that yus € E(G3) and ywy € E(G2). Thus zus, zrwy, yus, ywy
are in G as well. Because of planarity of G, this implies that x = y. But in this case, since
usuz € E(G) too, zrugug forms a triangle in G, a contradiction. So at least one of G or
G2 is in g

Without loss of generality, assume that G; as defined above is in G. Since in the 4-
cycle vougusvs, vertices vy and vz have degree 3, by Lemmas 15 and 16: d(uz) > 4. Thus
|E(G)| — |E(G41)] > 13. This, together with the assumption that G; € G, imply that G,
has a forest induced by a set R of size at least W = ¢ — 3. We claim that
R = R'U{vy,vq,v3} induces a forest (of size > ¢) in G. First note that the only possible
neighbors of v; and vs in R are w; and w3, respectively. Since usw; € G and uzw; € G, u3
and w; are in different connected components of Gg . This shows that Gy is a forest. [

Lemma 18. GG does not have a 4-face with exactly three J-vertices.

Proof. Suppose that f = vgvivvs is a 4-face with d(vy) = 3 and d(vy) = d(ve) = d(v3) = 4.
Let ug be the third neighbor of vy.

-(i) upvy ¢ E: Assume, for a contradiction, that vertex ugvy € E. Let x be the fourth
neighbor of vs. If x and v3 are on different sides of the separating cycle C' = vyugvevy, then
let G' = G — {wo, v1, 09, up}. Since d(ug) > 3: |[E(G)| — |E(G")| > 10. Therefore, G’ has a
forest induced by a set R’ of size W > ¢ —2. We claim that R = R'U{vg, v}
induces a forest (of size > ¢) in G. Note that vy has at most one neighbor (namely v3)
in R'. Vertex v, may have two neighbors in R'; v3 and z, but since they are on different
sides of C, v3 and x are in different connected components of G’,,. Thus G is acyclic.

If z and vz are both inside or outside of C' then we set G' = G — {vg, v9,v3,up}. A
similar argument shows that there is a set R C V(G’) that induces a forest of size p — 2
in G" and R = R' U {vg, v2} induces a forest (of size > ¢) in G.

-(ii) Other than v, there is a common neighbor of u;, and v;, and a common
neighbor of uy and v3: By way of contradiction, suppose that vy is the only common
neighbor of ug and v;. Let G' = G — {vg, v3} + {uov, }. Clearly, G’ is planar, and because
by assumption there is no vertex adjacent to both vy and wug, G’ is triangle-free. Therefore,
it has a forest induced by a set R’ of size W > p—1. We claim R =R U{v}
induces a forest in G.. The reason is that vz € R and because ugv; € G' and ugv, € G, ug
and v; are in different connected components of Gg. Thus uy and v; must have a common
neighbor other than vy. By symmetry, uy and vz have a common neighbor other than vy.

Assume that © # vy is connected to both ug and v; and y # vy is connected to both
up and vs.

(iii) « # y: By way of contradiction, assume that x = y, i.e. x is adjacent to ug, vy,
and vs (see Figure 1). So vpupzv, is a 4-cycle with at least one 3-vertex; vy. By Lemmas 15
and 17 (and Lemma 1) uy and x are 4-vertices. Let u; be the fourth neighbor of v; (other
than vy, vo, ) and uz be the fourth neighbor of v3 (other than vy, vs, ). Note that u; = ug
is possible. If Cy = voupxv, is a 4-face then, since d(vy) = 3 and d(uy) = d(z) = d(vy) = 4,
it violates part (i) above (because of the edge xvs). Therefore, C is a separating cycle.
Similar argument applied to Cy = vyuprvs shows that Cs is a separating cycle, too. Let z
be the fourth neighbor of x (other than vy, uy, and v3). If z and v, are on different sides
of C1 (i.e. when z is inside C) then define G' = G — {wvp, v1,v3, ug, z,u1}. As G' € G and
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Fig. 1. part (iii) in the proof of Lemma 18

|E(G)| — |[E(G")| > 14, there is a set R’ C V(G") of size at least 29(71_6);# > ¢ —3,
which induces a forest in G'. It is easy to see that R = R’ U{vg, vy, z} induces a forest (of
size > ) in G, since the only possible neighbor of v; in R’ (i.e. v3) and the only possible
neighbor of = in R’ (i.e. z) are in different connected components of G' (because of the
separating cycle C). We get a similar contradiction if z and v, are on different sides of
(. Thus we can assume that z is outside of C'; and Cs (i.e. the same side as vy is). If none
of the neighbors of ug is inside C then C' is indeed a 4-face unless u, is inside of C. But
in this case vyu; will be a bridge, which in turn contradicts Lemma 2. Thus at least one
neighbor of ug, call it p, is inside C (note that p = u; is possible). Similar arguments show
that at least one neighbor of ug, call it ¢, is inside Cy (note that ¢ = ug is possible). If u;
is not inside C; then uyp will be a bridge, contradicting Lemma 2. So u, is inside (', too.
Similarly, us is inside Cy (or else uyq is a bridge). Now define G' = G — {wvy, .. ., v3, ug, v }.
Since G' € G and |E(G)| — |E(G")| > 15, there is a set R C V(G') of size at least
W > ¢ — 3, which induces a forest in G'. Then R = R' U {vg, vy, 2} induces
a forest of size p in G because u; and z are in different connected components of G’ (as
they are on different sides of C}). This contradiction implies that = # y.

So vy is adjacent to wvg,ve,x,u; and w3 is adjacent to vy, vs,y, and ug (recall that
uy; = ug is possible). As in the previous paragraph, by Lemmas 15 and 17 applied to
4-cycles vougzv, and vougyvs: d(ug) = d(z) = d(y) = 4. Let z be the fourth neighbor
of ug. Since G is triangle-free, among the six vertices vy, v, v3, ug, x, y, the only possible
edges are e; = ugvy (i.e. when z = vy), eo = zv3 (i.e. when = = u3), and e3 = yv; (i.e.
when y = wu;). By part (i) proved above: e; ¢ E. Furthermore, because of planarity of G,
at any time, at most one of ey or ez exists.

-Ifes ¢ FE, and e3 ¢ E: Define G' = G — {wy, ...,vs,up, z,y}. In this case, |E(G)| —
|E(G")| > 18, and so G" has a forest induced by a set R’ of size at least W >
@ — 3. It is easy to see that R = R' U {vy,vs, up} induces a forest (of size > ¢) in G,
since they are non-adjacent and each has at most one neighbor in R'.

-If e € E(G) or e3 € E(G): Suppose that es € E(G) (the argument for case e3 €
E(G) is symmetric). In this case, we define G' = G — {vy, vy, v3, ug, z,y}. Therefore
|E(G)| — |E(G")| > 15 and so G' has a forest induced by a set R’ of size at least ¢ — 3.

Let R = R' U {vp,vs,up}. The only case in which R induces a cycle in G is when the
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possible neighbors of uy and v in R’ (namely z and v, respectively), are in the same
connected component of G,. But this cannot happen, because z and v, are on different
sides of the separating cycle C' = vgvyzv3. Therefore G is a forest.

O
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