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Abstra
t. Given a planar graph G, what is the largest subset of verti
es of G that indu
es

a forest? Albertson and Berman [2℄ 
onje
tured that every planar graph has an indu
ed sub-

graph on at least half of the verti
es that is a forest. For bipartite planar graphs, Akiyama and

Wanatabe [1℄ 
onje
tured that there is always an indu
ed forest of size at least

5n

8

. Here we

prove that every triangle-free (and therefore every bipartite) planar graph on n verti
es has an

indu
ed forest of size at least

17n+24

32

.

1. Introdu
tion

All graphs in this paper are simple and �nite. Consider a graph G with vertex set V and

edge set E and let R be a subset of verti
es. The subgraph of G indu
ed by R is denoted

by G

R

. If G

R

is a forest then we 
all it an indu
ed forest of G. The following 
onje
ture

was posed by Albertson and Berman [2℄:

Conje
ture 1. [2℄ Every planar graph has an indu
ed forest with least half of the verti
es.

Note that this 
onje
ture, if true, would immediately imply that every planar graph has

an independent set with at least one-quarter of the verti
es, a fa
t whose only known

proof relies on the Four Color Theorem.

Another formulation of this 
onje
ture is in terms of de
y
ling number. The de
y
ling

number of a graph G is the smallest number of verti
es whi
h 
an be removed from G so

that the resultant graph has no 
y
les. So Conje
ture 1 states that the de
y
ling number

of every planar graph G on n verti
es is at most

n

2

. Finding the de
y
ling number of a

graph is NP-hard, even restri
ted to planar graphs, bipartite graphs, and perfe
t graphs.

Therefore, �nding the largest indu
ed forest of a given planar graph is a hard problem.

For this reason, it is natural to try to �nd lower bounds for the size of the largest indu
ed

forest of a planar graph.

A 
oloring of a graph G is a
y
li
 if the union of every two 
olor-
lasses is an a
y
li


graph. The best known lower bound on the size of the largest indu
ed forest of a planar

graph is due to Borodin [6℄, who proved that every planar graph has an a
y
li
 5-
oloring.

This implies that every planar graph on n verti
es has an indu
ed forest of size at least

2n

5

. For outerplanar graphs, Hosono [8℄ proved that there is always an indu
ed forest

�

Supported by an NSERC postdo
toral fellowship, Department of Combinatori
s and Optimization at

University of Waterloo, and a fa
ulty startup grant at University of Alberta



2 Mohammad R. Salavatipour

with at least

2n

3

verti
es and this is best possible. Borodin and Glebov [7℄ have proved a

stronger result for planar graphs of girth at least 5: the vertex set of a su
h graph 
an be

partitioned into an independent set and another set that indu
es a forest. For bipartite

planar graphs, Akiyama and Wanatabe [1℄ raised the following 
onje
ture:

Conje
ture 2. [1℄ Every bipartite planar graph with n verti
es has an indu
ed forest of

size at least

5n

8

.

This 
onje
ture, if true, is sharp as shown by Q

3

(the 
ube). Motivated by this 
onje
-

ture, Alon [3℄ and Alon et al. [5℄ studied the size of the largest indu
ed forests in bipartite

and sparse graphs. Alon et al. [5℄ showed, among other things, that every (not ne
essarily

planar) triangle-free graph with n verti
es andm edges has an indu
ed forest of size n�

m

4

.

Sin
e in every triangle-free planar graph m � 2n � 4, their result implies a lower bound

of

n

2

+ 1 for the size of the largest indu
ed forest in triangle-free planar graphs. Here we

prove a better lower bound in terms of the number of verti
es. Our main result is:

Theorem 1. Every triangle-free planar graph on n verti
es and m edges has an indu
ed

forest of size at least d

29n�6m

32

e.

Again, sin
e every triangle-free planar graph has at most 2n � 4 edges, Theorem 1

implies:

Corollary 1. Every triangle-free planar graph on n verti
es has an indu
ed forest of size

at least d

17n+24

32

e.

Let's de�ne f(n) as the minimum, over all n vertex triangle-free planar graphs, of the

maximum size of an indu
ed forest and 
 = lim

n!1

f(n)

n

. It 
an be seen that 
 exists and

(by [5℄ and be
ause of the 
ube):

1

2

� 
 �

5

8

. Therefore, Corollary 1 improves the lower

bound for 
 to

17

32

� 
. Our proof uses the Dis
harging Method and is 
onstru
tive. That

is, it yields a quadrati
 time algorithm that, given a triangle-free planar graph G, �nds an

indu
ed forest of G on at least

29n�6m

32

verti
es in time O(n

2

). In the rest of this se
tion,

we explain the notation and de�nitions. Then we prove some properties for a possible

minimum 
ounter-example to Theorem 1 in the next se
tion and prove the theorem based

on those properties. Se
tions 3 to 5 
ontain more details of the proof.

The vertex set, edge set, and fa
e set of an embedded planar graph G are denoted by

V (G), E(G), and F (G) (or simply V , E, and F ), respe
tively. Degree of a vertex v 2 V ,

denoted by d(v), is the number of edges in
ident with it. The minimum and maximum

degree of G are denoted by Æ(G) and �(G) (or simply Æ and �), respe
tively. A k-
y
le

is a 
y
le of size k. The size of a fa
e f 2 F , denoted by jf j, is the number of edges in

the boundary of F , 
ounting 
ut-edges (bridges) twi
e. We 
all a vertex of degree i, at

least i, and at most i, an i-vertex, a � i-vertex, and a � i-vertex, respe
tively. We de�ne

an i-fa
e, � i-fa
e, and � i-fa
e, similarly. Through a slight abuse of notation, we say

\verti
es of a fa
e f" to refer to the verti
es that are on the boundary of f . We also write

f = v

1

v

2

: : : v

k

, if v

1

; : : : ; v

k

are the verti
es on the boundary of f , 
onse
utively. The size

of an indu
ed forest G

R

of a graph G (indu
ed by R � V ) is the number of verti
es of R.

We denote the 
lass of triangle-free planar graphs by G. For a subset V

0

� V , by G� V

0

we mean the subgraph of G indu
ed by the verti
es in V � V

0

. By G + E

0

, where E

0

is

a subset of edges on V , we mean the graph with vertex set V and edge set E [ E

0

. If

E

0

� E, by G� E

0

we mean the graph obtained from G by deleting the edges in E

0

.
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2. Proof of Theorem 1

By way of 
ontradi
tion, assume that Theorem 1 is false and let G 2 G together with a

planar embedding of it be a 
ounter-example to this theorem with the minimum number

of verti
es. Let n = jV (G)j, m = jE(G)j, and ' =

29n�6m

32

. Clearly G is 
onne
ted and has

at least �ve verti
es.

Lemma 1. �(G) � 4.

Proof. Let v be a � 5-vertex of G. By de�nition of G, G

0

= G� v has an indu
ed forest

of size

29(n�1)�6(m�5)

32

> '. Clearly that is an indu
ed forest of G as well.

Lemma 2. G is 2-edge-
onne
ted, i.e. bridge-less.

Proof. Let e be a bridge in G and C

1

and C

2

be the two 
onne
ted 
omponents of G� e,

having n

1

and n

2

verti
es and m

1

and m

2

edges, respe
tively. By de�nition of G, C

1

and

C

2

have indu
ed forests of size

29n

1

�6m

1

32

and

29n

2

�6m

2

32

, respe
tively. The union of these

two gives an indu
ed forest in G of size

29n�6(m

1

+m

2

)

32

> '.

The following three lemmas are proved in the next three se
tions.

Lemma 3. Æ(G) � 3.

Lemma 4. No 5-fa
e in G has more than three 3-verti
es.

Lemma 5. No 4-fa
e in G has a 3-vertex.

Now we prove that the properties listed above lead to a 
ontradi
tion. To ea
h vertex

v 2 V we assign a 
harge of 
h(v) = d(v)� 6 and to ea
h fa
e f 2 F we assign 
h(f) =

2jf j�6. By Euler's formula, jV j�jEj+ jF j = 2, the total 
harge is

P

x2V [F


h(x) = �12.

Re
all that by Lemma 3, G has no � 2-verti
es. Therefore, by this set of initial 
harges

and by Lemmas 3 and 1, the only elements in V [ F that have negative 
harges are 3-,

and 4-verti
es, having 
harges �2 and �1, respe
tively. Now we redistribute the 
harges

by applying the following dis
harging rule:

Dis
harging rule: Every fa
e sends 1 to ea
h of its 3-verti
es and

1

2

to ea
h of its

4-verti
es.

By this rule, verti
es do not lose any 
harges in the dis
harging phase. Also, every

3-vertex and every 4-vertex re
eives a total of 3 and 2 units of 
harge, respe
tively, from

the fa
es it is in
ident with (re
all that G is bridge-less). Therefore:

Lemma 6. For every vertex v has non-negative 
harge.

Lemma 7. Every fa
e f has non-negative 
harge.

Proof. Let jf j = k. If k � 6 then f sends at most k units of 
harge to its verti
es, whi
h

is at most 2jf j � 6 for k � 6. If k = 5 then, by Lemma 4, f has at most three 3-verti
es

and therefore, it sends at most 3� 1 + 2�

1

2

= 4 = 2jf j � 6 to its verti
es. If k = 4 then,

by Lemma 5, it has only 4-verti
es and sends 4�

1

2

= 2jf j�6 units of 
harge to them.

By Lemmas 6 and 7, the total 
harge is non-negative, while the initial 
harge was

�12. This 
ontradi
tion 
ompletes the proof of Theorem 1. The algorithm for �nding an

indu
ed forest of size at least ' has at most n iterations. In ea
h iteration we apply the

initial 
harges and the dis
harging rule as des
ribed above. Sin
e in a planar graph the
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number of edges and fa
es is linear in the number of verti
es, applying the initial 
harges

and the dis
harging rule takes O(n) time. Then we 
an �nd an element with negative


harge in O(n). This element must be in a 
on�guration of verti
es and fa
es as des
ribed

in Lemmas 1 to 5. On
e we �nd su
h a stru
ture, using the proof of the 
orresponding

lemma we 
onstru
t graph G

0

whi
h has fewer verti
es. Then we solve the problem on G

0

,

re
ursively. Having an indu
ed forest in G

0

, again the proof of the 
orresponding lemma

shows how to modify it into an indu
ed forest of size at least ' in G. Therefore, the overall

running time of the algorithm will be O(n

2

).

3. Proof of Lemma 3

Note that by Lemma 1 every vertex in G is a � 4-vertex. If v is a 1-vertex in G then

G

0

= G� v has a forest indu
ed by a set R

0

of size at least

29(n�1)�6(m�1)

32

> '� 1. Clearly

R = R

0

[ fvg indu
es a forest in G. So Æ(G) � 2. Our next goal is to show that every

2-vertex is adja
ent to 3-verti
es only.

Lemma 8. G does not have a 2-vertex adja
ent to a 4-vertex.

Proof. Otherwise, if u is a 2-vertex adja
ent to a 4-vertex v then we set G

0

= G� fu; vg.

Clearly G

0

2 G and so there is a set R

0

� V (G

0

) of size

29(n�2)�6(m�5)

32

� '�1 that indu
es

a forest in G

0

. It is easy to see that R = R

0

[fug indu
es a forest (of size � ') in G, sin
e

u adja
ent to at most one vertex in R

0

, i.e. it's a leaf in G

R

(subgraph of G indu
ed by

R).

Lemma 9. G does not have a 2-vertex adja
ent to a 2-vertex and a 3-vertex.

Proof. Assume that u is a 2-vertex adja
ent to a 2-vertex v and a 3-vertex w. Then

G

0

= G � fu; v; wg has a forest indu
ed by a set R

0

of size

29(n�3)�6(m�5)

32

> ' � 2. It

follows that R = R

0

[ fu; vg indu
es a forest (of size � ') in G.

Lemma 10. G does not have a 2-vertex adja
ent to two 2-verti
es.

Proof. Assume that u is a 2-vertex adja
ent to 2-verti
es v and w.

Case 1: If v and w have another 
ommon neighbor x then, by previous lemma (applied to

v) and by Lemma 1, d(x) = 3. But this implies that x is in
ident to a bridge, 
ontradi
ting

Lemma 2.

Case 2: If x is the other neighbor of w and is not adja
ent to v then G

0

= G�fu; v; w; xg

has a forest indu
ed by a set R

0

of size

29(n�4)�6(m�5)

32

> ' � 3. Then R = R

0

[ fu; v; wg

indu
es a forest (of size � ') in G.

Lemmas 8 to 10 imply that every 2-vertex is adja
ent to 3-verti
es only.

Lemma 11. G does not have a 3-vertex adja
ent to two 2-verti
es.

Proof. Let u be a 3-vertex adja
ent to two 2-verti
es v and w, and let G

0

= G�fu; v; wg.

Then G

0

has a forest indu
ed by a set R

0

of size

29(n�3)�6(m�5)

32

> ' � 2. It's easy to see

that R = R

0

[ fv; wg indu
es a forest (of size � ') in G (with both v and w being leaves

in G

R

).

Lemma 12. G does not have a 4-fa
e with a 2-vertex.
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Proof. Assume that f = v

1

v

2

v

3

v

4

is a 4-fa
e with d(v

1

) = 2. Therefore, by Lemmas 8 to

10: d(v

2

) = d(v

4

) = 3, and by Lemma 11: d(v

3

) � 3.

Case 1: Suppose there is a vertex u 62 fv

1

; v

3

g adja
ent to both v

2

and v

4

. Note that

uv

3

62 E as G is triangle-free. If d(u) � 4 or d(v

3

) � 4 then G

0

= G�fv

1

; : : : ; v

4

; ug has a

forest indu
ed by a set R

0

of size

29(n�5)�6(m�9)

32

> '� 3. Therefore, R = R

0

[ fv

1

; v

2

; v

4

g

indu
es a forest (of size � ') in G. So let's assume that d(u) = d(v

3

) = 3.

If v

2

and v

4

are the only 
ommon neighbors of v

3

and u then G

0

= G � fv

1

; v

2

; v

4

g +

fuv

3

g (the graph obtained from G by removing verti
es v

1

; v

2

; v

4

and adding edge uv

3

)

is triangle-free and planar. By de�nition of G, G

0

has a forest indu
ed by a set R

0

of

size

29(n�3)�6(m�5)

32

> ' � 2. Let R = R

0

[ fv

1

; v

4

g (note that R has at least ' verti
es).

Sin
e uv

3

2 G

0

and uv

3

62 G, u and v

3

are not in the same 
onne
ted 
omponent of G

R

0

.

Therefore, the possible neighbors of v

4

in R

0

, i.e. v

3

and u, are not in the same 
onne
ted


omponent of G

R

0

. So G

R

is a forest.

If w is another 
ommon neighbor of v

3

and u then d(w) � 3, or else G is only the

graph on fv

1

; : : : ; v

4

; u; wg whi
h trivially has an indu
ed forest of size '. If w is a 3-

vertex adja
ent to x (and to u and v

3

) then x is in
ident to a bridge, 
ontradi
ting

Lemma 2. If d(w) = 4 then G

0

= G�fv

1

; : : : ; v

4

; u; wg has a forest indu
ed by a set R

0

of

size

29(n�6)�6(m�10)

32

> '� 4. So R = R

0

[fv

1

; v

2

; v

3

; ug indu
es a forest (of size � ') in G.

Case 2: Suppose v

1

and v

3

are the only 
ommon neighbors of v

2

and v

4

. Re
all that

d(v

2

) = d(v

4

) = 3. Let u be the other neighbor of v

2

and w be the other neighbor of v

4

.

First assume that at least one of u or w, say u, is a 4-vertex. Then G

0

= G�fv

1

; : : : ; v

4

; ug

has a forest indu
ed by a set R

0

of size

29(n�5)�6(m�10)

32

> ' � 3. It's easy to see that

R = R

0

[ fv

1

; v

2

; v

4

g indu
es a forest (of size � ') in G, with v

2

being a leaf.

So let's assume that d(u) = d(w) = 3. If uw 2 E then G

0

= G� fv

1

; : : : ; v

4

; u; wg has

a forest indu
ed by a set R

0

of size

29(n�6)�6(m�10)

32

> '� 4. Sin
e only one neighbor of u

remains in G

0

, R = R

0

[ fu; v

1

; v

2

; v

4

g indu
es a forest of size at least ' in G. If uw 62 E

then let G

0

= G � fv

1

; v

2

; v

3

g + fuv

4

g. It's easy to see that G

0

is planar. Also, the only


ase in whi
h G

0

has a triangle is when uv

4

belongs to a triangle. This happens only if

uw 2 G

0

(sin
e the only neighbor of v

4

in G

0

is w), but uw 62 G and therefore uw 62 G

0

.

Thus G

0

2 G and has a forest indu
ed by a set R

0

of size

29(n�3)�6(m�5)

32

> ' � 2. Then

R = R

0

[ fv

1

; v

2

g indu
es a forest (of size � ') in G, be
ause uv

4

2 G

0

but uv

4

62 G, so

u and v

4

are not in the same 
onne
ted 
omponents of G

R

0

. This implies that G

R

is a

forest.

Now we are ready to prove Lemma 3. Let u be a 2-vertex in G whi
h belongs to two

fa
es f

1

and f

2

and is adja
ent to v and w. By Lemma 2: f

1

6= f

2

and by Lemmas 8 to

10: d(v) = d(w) = 3. By Lemma 12 both of f

1

and f

2

are � 5-fa
es. Therefore, v and

w do not have any 
ommon neighbor other than u. Let G

0

= G � fug + fvwg. Clearly

G

0

is planar and be
ause v and w do not have any other 
ommon neighbor, vw does

not 
reate any triangle in G

0

, i.e. G

0

2 G. So it has a forest indu
ed by a set R

0

of size

29(n�1)�6(m�1)

32

> '� 1. We 
laim that R = R

0

[ fug indu
es a forest (of size � ') in G:

Sin
e vw 2 G

0

and vw 62 G, v and w are not in the same 
onne
ted 
omponents of G

R

0

.

That is u is 
onne
ting two di�erent 
onne
ted 
omponents of G

R

0

, i.e. G

R

is a forest.

This 
ompletes the proof of Lemma 3.
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4. Proof of Lemma 4

Note that by Lemmas 1 and 3, from now on, we 
an assume that every vertex in G has

degree 3 or 4. Lemma 4 follows easily from Lemmas 13 and 14 below.

Lemma 13. G does not have a 5-
y
le with exa
tly four 3-verti
es.

Proof. Assume that C = v

1

v

2

v

3

v

4

v

5

is a 5-
y
le, with v

1

; : : : ; v

4

all being 3-verti
es and

d(v

5

) = 4. Let u

1

; : : : ; u

4

be the third neighbors of v

1

; : : : ; v

4

, respe
tively. Note that u

i

's

may or may not be distin
t, but sin
e G is triangle-free: u

i

6= u

i+1

(1 � i � 3). So if they

are not distin
t then u

1

= u

3

, or u

2

= u

4

, or u

1

= u

4

. Below we 
onsider these possibilities.

If u

1

is distin
t from u

3

and u

4

then, with G

0

= G�fv

1

; : : : ; v

5

; u

1

g: jE(G)j�jE(G

0

)j �

13. Clearly G

0

2 G and therefore, it has a forest indu
ed by a set R

0

� V (G

0

) of size at

least

29(n�6)�6(m�13)

32

= ' � 3. It's not hard to see that R = R

0

[ fv

1

; v

2

; v

4

g indu
es a

forest (of size � ') in G, be
ause ea
h of v

2

and v

4

is adja
ent to at most one vertex in

R

0

and v

1

is adja
ent to v

2

only.

If u

1

= u

4

or if u

1

= u

3

and u

2

is distin
t from u

4

, then let G

0

= G� fv

1

; : : : ; v

5

; u

2

g.

Sin
e G

0

2 G and jE(G)j � jE(G

0

)j � 13, G

0

has a forest indu
ed by a set R

0

of size

29(n�6)�6(m�13)

32

= '� 3. It is easy to see that R = R

0

[fv

1

; v

2

; v

4

g indu
es a forest (of size

� ') in G.

Finally, 
onsider the 
ase that u

1

= u

3

and u

2

= u

4

. This 
an happen if one of

u

1

or u

2

is inside the 5-
y
le C and the other is outside of C. In this 
ase let G

0

=

G� fv

1

; : : : ; v

5

; u

1

; u

2

g. Sin
e G

0

2 G and jE(G)j � jE(G

0

)j � 13, G

0

has a forest indu
ed

by a set R

0

of size at least

29(n�7)�6(m�13)

32

� '� 4. Now R = R

0

[ fv

1

; v

2

; v

3

; v

4

g indu
es

a forest of size at least ' in G, a 
ontradi
tion.

Lemma 14. G does not have a 5-fa
e with �ve 3-verti
es.

Proof. Suppose that f = v

0

v

1

v

2

v

3

v

4

and all v

i

's have degree 3. Let u

i

be the third neighbor

of v

i

(0 � i � 4). The following statements are true:

-(i) u

i

's are distin
t: Be
ause G is triangle-free u

i

is distin
t from u

i+1

, (0 � i � 4,

where all the additions for indi
es are in mod 5). If, for instan
e, u

0

= u

2

, then no other

u

i

(i 6= 2) 
an be equal to u

0

. Also, by planarity, we 
annot have u

1

= u

3

at the same

time as u

0

= u

2

. So, by symmetry, the only possibility is when u

0

= u

2

. In this 
ase let

G

0

= G � fv

0

; : : : ; v

4

; u

0

g. Be
ause G

0

2 G and jE(G)j � jE(G

0

)j � 11, G

0

has a forest

indu
ed by a set R

0

of size at least

29(n�6)�6(m�11)

32

> ' � 4. It's not hard to see that

R = R

0

[fv

0

; v

1

; v

2

; v

3

g indu
es a forest (of size � ') in G. This is be
ause ea
h of v

1

and

v

3

is adja
ent to at most one vertex in R

0

(namely u

1

and u

3

), and u

1

and u

3

are in di�erent


onne
ted 
omponents of G

0

R

0

, be
ause they are on di�erent sides of the separating 
y
le

v

0

v

1

v

2

u

0

.

-(ii) d(u

i

) = 3 (0 � i � 4): If one of u

i

's, say u

0

, is a 4-vertex then let G

0

=

G� fv

0

; : : : ; v

4

; u

0

g. Sin
e G

0

2 G and jE(G)j � jE(G

0

)j = 13, G

0

has a forest indu
ed by

a set R

0

of size

29(n�6)�6(m�13)

32

= '� 3. Then R = R

0

[fv

0

; v

1

; v

3

g indu
es a forest (of size

� ') in G.

-(iii) u

i

u

j

62 E (0 � i; j � 4): Without loss of generality, we �x i = 0 and 
onsider

the 
ases when u

0

u

1

2 E or u

0

u

2

2 E (the other situations redu
e to one of these two by

symmetry). If u

0

u

1

2 E then we set G

0

= G � fv

0

; : : : ; v

4

; u

0

; u

1

g. Be
ause G

0

2 G and

jE(G)j � jE(G

0

)j = 13, G

0

has a forest indu
ed by a set R

0

of size

29(n�7)�6(m�13)

32

> '� 4.

Then, as ea
h of u

0

and v

3

is adja
ent to at most one vertex in R

0

, R = R

0

[fu

0

; v

0

; v

1

; v

3

g
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indu
es a forest (of size � ') in G. If u

0

u

2

2 E then we set G

0

= G� fv

0

; : : : ; v

4

; u

0

; u

2

g.

Again G

0

2 G and jE(G)j � jE(G

0

)j = 13, so G

0

has a forest indu
ed by a set R

0

of size

at least '� 4. It follows that R = R

0

[ fu

0

; v

1

; v

2

; v

4

g indu
es a forest (of size � ') in G.

This is be
ause ea
h of u

0

, v

1

, and v

4

is adja
ent to at most one vertex in R

0

and v

2

is

only adja
ent to v

1

in R.

-(iv) There is a vertex w adja
ent to both u

0

and u

1

: If not, G

0

= G �

fv

0

; : : : ; v

5

g+ fu

0

u

1

g is in G and has a forest indu
ed by a set R

0

of size

29(n�5)�6(m�9)

32

>

'� 3. Then, R = R

0

[ fv

0

; v

1

; v

3

g indu
es a forest (of size � ') in G, be
ause u

0

and u

1

are in di�erent 
onne
ted 
omponents of G

R

0

(as u

0

u

1

is in G

0

and not in G). So adding

v

0

and v

1

does not 
reate a 
y
le, i.e. G

R

is a forest.

So C

0

= v

0

u

0

wu

1

v

1

is a 5-
y
le with all u

0

; v

0

; v

1

; u

1

having degree 3. Therefore, by

Lemma 13: d(w) = 3, and by (i) above applied to C

0

: wv

2

62 E and wv

4

62 E. Also, by (iii)

applied to C

0

: wu

2

62 E and wv

3

62 E. So with G

0

= G�fv

0

; : : : ; v

4

; u

0

; u

1

; u

2

; wg: jE(G)j�

jE(G

0

)j � 17. Sin
e G

0

2 G, G

0

has a forest indu
ed by a set R

0

of size

29(n�9)�6(m�17)

32

>

' � 5. Be
ause ea
h of u

0

; u

1

; v

4

is adja
ent to at most one vertex in R

0

, R = R

0

[

fu

0

; u

1

; v

1

; v

2

; v

4

g indu
es a forest (of size � ') in G. This 
ompletes the proof of lemma

14.

5. Proof of Lemma 5

Lemma 5 follows easily from Lemmas 15 to 18 below.

Lemma 15. G does not have a 4-
y
le with exa
tly one 4-vertex.

Proof. let C = v

0

v

1

v

2

v

3

be a 4-
y
le with d(v

0

) = 4 and d(v

1

) = d(v

2

) = d(v

3

) = 3. De�ne

G

0

= G � fv

0

; : : : ; v

3

g. Note that be
ause G is triangle-free, v

0

v

2

62 E and v

1

v

3

62 E.

Therefore, jE(G)j � jE(G

0

)j = 9 and as G

0

has a forest indu
ed by a set R

0

of size

29(n�4)�6(m�9)

32

> '� 2. Clearly R = R

0

[ fv

1

; v

3

g indu
es a forest (of size � ') in G.

Lemma 16. G does not have a 4-
y
le with four 3-verti
es.

Proof. Let C = v

0

v

1

v

2

v

3

be a 4-
y
le with d(v

i

) = 3 and u

i

be the third neighbor of v

i

(0 � i � 3).

-(i) u

i

's are distin
t: As G is triangle-free, u

i

is distin
t from u

i+1

. So, without loss

of generality, assume that u

0

= u

2

and let G

0

= G� fv

0

; : : : ; v

3

; u

0

g. Be
ause G

0

2 G and

jE(G)j � jE(G

0

)j � 9, G

0

has a forest indu
ed by a set R

0

of size

29(n�5)�6(m�9)

32

> '� 3.

It follows easily that R = R

0

[ fv

0

; v

1

; v

2

g indu
es a forest (of size � ') in G, with v

0

and

v

2

being leaves in G

R

.

-(ii) C is a 4-fa
e, i.e. all u

i

's are either inside or outside of 
y
le C: By way of


ontradi
tion, assume that C is a separating 
y
le. At least two of u

0

; : : : ; u

3

are inside or

at least two of them are outside of C. Without loss of generality, suppose that u

0

and u

i

(for

some 1 � i � 3) are outside of C while u

j

(for some 1 � j � 3 with j 6= i) is inside of C.

Let G

0

= G�fv

0

; : : : ; v

3

; u

0

g. Clearly G

0

has a set R

0

of size at least

29(n�5)�6(m�10)

32

> '�3

of verti
es that indu
es a forest. It is easy to see that R = R

0

[fv

0

; v

i

; v

j

g indu
es a forest

in G, be
ause the only possible neighbors of fv

0

; v

i

; v

j

g in R

0

are u

i

and u

j

whi
h are on

di�erent sides of 
y
le C, and therefore, u

i

and u

j

are in di�erent 
onne
ted 
omponents

of G

0

R

0

.

-(iii) All u

i

's have degree 3: Without loss of generality, assume that d(u

0

) = 4 and

let G

0

= G�fv

0

; : : : ; v

3

; u

0

; u

1

g. If u

0

u

1

62 G then jE(G)j�jE(G

0

)j � 13 (note that u

i

's are
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all distin
t). If u

0

u

1

2 G then by applying Lemma 15 to the 4-
y
le u

0

u

1

v

1

v

0

: d(u

1

) = 4,

and again jE(G)j � jE(G

0

)j � 13. Therefore, G

0

has a forest indu
ed by a set R

0

of size

29(n�6)�6(m�13)

32

= '� 3. Clearly R = R

0

[ fv

0

; v

1

; v

2

g indu
es a forest (of size � ') in G,

be
ause the only possible neighbors of fv

0

; v

1

; v

2

g in R

0

is u

2

.

-(iv) u

0

u

2

62 E and u

1

u

3

62 E: Without loss of generality, assume that u

0

u

2

2 E and

let x be the third neighbor of u

0

(other than v

0

and u

2

). De�ne G

0

= G�fv

0

; : : : ; v

3

; u

0

g.

Sin
e G

0

2 G, it has a forest indu
ed by a set R

0

of size at least

29(n�5)�6(m�10)

32

> ' � 3.

Note that u

1

and u

3

are on di�erent sides of separating 
y
le C

0

= u

0

v

0

v

1

v

2

u

2

. If x and u

1

are on the same side (i.e. x and u

3

are on di�erent sides) of C

0

let R = R

0

[ fu

0

; v

0

; v

3

g,

and if x and u

3

are on the same side (i.e. x and u

1

are on di�erent sides) of C

0

then let

R = R

0

[ fu

0

; v

0

; v

1

g. It follows that in ea
h 
ase G

R

is a forest (of size � ').

-(v) u

i

u

i+1

62 E (0 � i � 3): Without loss of generality, �x i = 0 and assume that

u

0

u

1

2 E. We 
onsider two 
ases.

If u

0

u

3

62 E and u

1

u

2

62 E then let x be the third neighbor of u

0

and G

0

= G �

fv

0

; : : : ; v

3

; u

0

; u

1

; xg. Clearly G

0

2 G and sin
e x 6= u

3

(by the assumption that u

0

u

3

62 E)

and x 6= u

2

(by (iv) above): jE(G)j � jE(G

0

)j � 13, so G

0

has a forest indu
ed by a set R

0

of size

29(n�7)�6(m�13)

32

> ' � 4. It's not hard to see that R = R

0

[ fu

0

; v

0

; v

1

; v

3

g indu
es

a forest (of size � ') in G, be
ause from fu

0

; v

0

; v

1

; v

3

g only v

3


an have (at most) one

neighbor in R

0

(namely u

3

).

Suppose that (at least) one of u

0

u

3

or u

1

u

2

, say u

0

u

3

is in E. If we set G

0

= G �

fv

0

; : : : ; v

3

; u

0

; : : : ; u

3

g then jE(G)j�jE(G

0

)j � 13, and therefore it has a forest indu
ed by

a set R

0

of size

29(n�8)�6(m�13)

32

> '�5. It's not hard to see that R = R

0

[fu

0

; u

1

; v

0

; v

3

; v

2

g

indu
es a forest in G. The reason is that among the verti
es added to R

0

only u

1


an have

(at most) one neighbor in R

0

.

-(vi) Graph G+fu

0

u

1

; u

1

u

2

; u

2

u

3

; u

3

u

0

g is triangle-free and planar: By (ii) above,

planarity is easy to see. To prove triangle-freeness, assume that G+fu

0

u

1

g has a triangle.

This means there exists a 
ommon neighbor of u

0

and u

1

, 
all it x. Therefore, C

0

=

xu

0

v

0

v

1

u

1

is a 5-
y
le, with four 3-verti
es, u

0

; v

0

; v

1

; u

1

(by (iii) all u

i

's have degree 3).

By Lemma 13 applied to C

0

: d(x) = 3. Note that by (iv), x is distin
t from u

2

and u

3

. If

we let G

0

= G� fv

0

; : : : ; v

3

; u

0

; u

1

; xg then, G

0

has a forest indu
ed by a set R

0

of size at

least

29(n�7)�6(m�13)

32

> '� 4. It's easy to see that R = R

0

[ fx; v

0

; v

1

; v

2

g indu
es a forest

(of size � ') in G. Thus, adding u

0

u

1

to G does not 
reate any triangles. By symmetry we


an add ea
h of u

1

u

2

, u

2

u

3

, and u

3

u

0

, and by (iv), no two of these edges form a triangle.

Therefore, G+ fu

0

u

1

; u

1

u

2

; u

2

u

3

; u

3

u

0

g is triangle-free, as wanted.

Now 
onsider G

0

= G+ fu

0

u

1

; u

1

u

2

; u

2

u

3

; u

3

u

0

g � fv

0

; v

1

; v

2

; v

3

g whi
h by (vi) is in G.

Therefore, it has a forest indu
ed by a set R

0

of size

29(n�4)�6(m�4)

32

> '�3. Sin
e u

0

u

1

u

2

u

3

is a 4-
y
le in G

0

at least one of u

0

; : : : ; u

3

is not in R

0

. Without loss of generality assume

that u

0

62 R

0

. Then R = R

0

[ fv

0

; v

1

; v

2

g indu
es a forest (of size � ') in G, be
ause u

1

and u

2

are in di�erent 
onne
ted 
omponents of G

R

0

as u

1

u

2

is in G

0

but not in G.

Lemma 17. G does not have a 4-
y
le with exa
tly two 4-verti
es.

Proof. Let C = v

0

v

1

v

2

v

3

be a 4-
y
le with two 4-verti
es. If the two 4-verti
es of C

are not adja
ent, say d(v

0

) = d(v

2

) = 4 and d(v

1

) = d(v

3

) = 3, then the exa
t same

proof of Lemma 15 works here. So suppose that the two 4-verti
es of C are adja
ent, say

d(v

0

) = d(v

1

) = 4 and d(v

2

) = d(v

3

) = 3. Let fu

0

; w

0

g, fu

1

; w

1

g, fu

2

g, and fu

3

g be the

sets of neighbors of v

0

, v

1

, v

2

, and v

3

, respe
tively.



Large Indu
ed Forests in Triangle-free Planar Graphs 9

-(i) C is a 4-fa
e: Let G

0

= G � fv

0

; : : : ; v

3

g. Sin
e G

0

2 G, it has a forest indu
ed

by a set R

0

of size at least

29(n�4)�6(m�10)

32

> ' � 2. If u

2

and u

3

are on di�erent sides

of C in G, then u

2

and u

3

are in di�erent 
onne
ted 
omponents of G

R

0

, and therefore

R = R

0

[ fv

2

; v

3

g indu
es a forest (of size � ') in G. So, u

2

and u

3

are on the same side

of C. If u

0

and w

0

are on di�erent sides of C then u

0

and w

0

are in di�erent 
onne
ted


omponents of G

R

0

, and therefore R = R

0

[ fv

0

; v

2

g indu
es a forest in G. So both u

0

and w

0

are on the same side of C. Using a similar argument it follows that u

1

and w

1

are on the same side of C. Thus, if C is not a 4-fa
e, u

2

and u

3

are on one side of C,

while both of u

0

and w

0

, or both of u

1

and w

1

are on the other side. Without loss of

generality, assume that u

0

and w

0

are inside of C while u

2

and u

3

are outside of C. De�ne

G

0

= G � fv

1

; v

2

; v

3

; u

2

g. Sin
e d(u

2

) � 3: jE(G)j � jE(G

0

)j � 10. So there is a set R

0

of

size at least

29(n�4)�6(m�10)

32

> ' � 2 that indu
es a forest in G

0

. Consider the subgraph

of G indu
ed by R = R

0

[ fv

2

; v

3

g. From v

2

and v

3

, only v

3


an have neighbors in R

0

,

and sin
e neighbors of v

0

(i.e. u

0

; w

0

) and u

3

are on di�erent sides of C, u

3

and v

0

are in

di�erent 
onne
ted 
omponents of G

R

0

. Therefore, G

R

is a forest (of size � '). Thus all

u

0

; w

0

; u

1

; w

1

; u

2

; u

3

are on the same side of C, i.e. C is a fa
e.

-(ii) Verti
es u

0

; w

0

; u

1

; w

1

; u

2

; u

3

are distin
t: It is easily seen that sin
e G is

triangle-free, u

0

; w

0

; u

1

; w

1

are distin
t and u

2

6= u

3

. Without loss of generality, assume

that u

0

= u

2

and 
onsider the separating 
y
le C

0

= u

0

v

0

v

3

v

2

(with v

1

and u

3

being on

di�erent sides of C

0

). First suppose that w

0

and v

1

are on di�erent sides of C

0

(one inside

and one outside) and let G

0

= G� fv

0

; v

2

; v

3

; u

0

g. Sin
e d(u

0

) � 3: jE(G)j � jE(G

0

)j � 9.

So G

0

has a forest indu
ed by a set R

0

of size at least

29(n�4)�6(m�9)

32

> ' � 2. We 
laim

that R = R

0

[fv

0

; v

2

g indu
es a forest (of size � ') in G: be
ause v

2

has only one possible

neighbor (namely v

1

) in R

0

, and sin
e C

0

is a separating 
y
le w

0

and v

1

are in di�erent


onne
ted 
omponents of G

0

R

0

, that is the possible neighbors of v

0

in R

0

(i.e. w

0

and v

1

)

are in di�erent 
omponents of G

0

R

0

. So assume that w

0

and v

1

are on the same side of C

0

and let G

0

= G�fv

0

; v

1

; v

2

; u

0

g. Again, G

0

has a forest indu
ed by a set R

0

of size at least

'� 2. Now R = R

0

[fv

0

; v

2

g indu
es a forest in G (using a similar argument and the fa
t

that w

1

and v

3

are on di�erent sides of u

0

v

0

v

1

v

2

). Thus u

0

6= u

2

(and also w

0

6= u

2

) and

by symmetry u

1

; w

1

are distin
t from u

3

.

-(iii) u

2

u

3

2 E, and u

1

u

2

2 E or w

1

u

2

2 E, and u

0

u

3

2 E or w

0

u

3

2 E: By way of


ontradi
tion, suppose that u

2

u

3

62 E. Let G

0

= G�fv

0

; v

3

g+fu

3

v

2

g. Clearly G

0

is planar

and the only possible triangle it 
an have is u

3

v

2

u

2

, but u

2

u

3

62 E. Thus G

0

2 G and has

a forest indu
ed by a set R

0

of size

29(n�2)�6(m�5)

32

> '� 1. We 
laim that R = R

0

[ fv

3

g

indu
es a forest (of size � ') in G. The 
laim is trivial if at most one of u

3

and v

2

are

in R

0

. If both of them are in R

0

then, be
ause v

2

u

3

2 G

0

and v

2

u

3

62 G, v

2

and u

3

are in

di�erent 
onne
ted 
omponents of G

R

0

. So adding v

3

does not 
reate a 
y
le.

If u

0

u

3

62 E and w

0

u

3

62 E then let G

0

= G � fv

1

; v

2

; v

3

; u

2

g + fv

0

u

3

g. The only 
ase

in whi
h G

0

has a triangle is when one of u

0

and w

0

is 
onne
ted to u

3

, whi
h is not

the 
ase by our assumption.. Thus, G

0

is triangle-free (and trivially planar). Note that

be
ause d(u

2

) � 3: jE(G)j � jE(G

0

)j � 9. So G

0

has a forest indu
ed by a set R

0

of size at

least

29(n�4)�6(m�9)

32

> '� 2. Let R = R

0

[ fv

2

; v

3

g. Note that v

2

has degree 1 in G

R

. As

in the previous paragraph, if at most one of v

0

and u

3

is in R

0

then 
learly R indu
es a

forest. If both v

0

; u

3

2 R

0

then, be
ause v

0

u

3

2 G

0

and v

0

u

3

62 G, v

0

and u

3

are in di�erent


onne
ted 
omponents of G

R

0

. Thus R indu
es a forest in G. This implies that u

0

u

3

2 E

or w

0

u

3

2 E. By symmetry, u

1

u

2

2 E or w

1

u

2

2 E.
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-(iv) One of G

1

= G�fv

0

; : : : ; v

3

; u

1

; u

2

g+fu

3

w

1

g or G

2

= G�fv

0

; : : : ; v

3

; u

0

; u

3

g+

fu

2

w

0

g is in G: It is easy to see that both G

1

and G

2

are planar. Assume that both have

triangles. So in G

1

, there is a vertex x su
h that xu

3

2 E(G

1

) and xw

1

2 E(G

1

), and in

G

2

there is a vertex y su
h that yu

2

2 E(G

2

) and yw

0

2 E(G

2

). Thus xu

3

; xw

1

; yu

2

; yw

0

are in G as well. Be
ause of planarity of G, this implies that x = y. But in this 
ase, sin
e

u

2

u

3

2 E(G) too, xu

2

u

3

forms a triangle in G, a 
ontradi
tion. So at least one of G

1

or

G

2

is in G.

Without loss of generality, assume that G

1

as de�ned above is in G. Sin
e in the 4-


y
le v

2

u

2

u

3

v

3

, verti
es v

2

and v

3

have degree 3, by Lemmas 15 and 16: d(u

2

) � 4. Thus

jE(G)j � jE(G

1

)j � 13. This, together with the assumption that G

1

2 G, imply that G

1

has a forest indu
ed by a set R

0

of size at least

29(n�6)�6(m�13)

32

= ' � 3. We 
laim that

R = R

0

[ fv

1

; v

2

; v

3

g indu
es a forest (of size � ') in G. First note that the only possible

neighbors of v

1

and v

3

in R

0

are w

1

and u

3

, respe
tively. Sin
e u

3

w

1

2 G

1

and u

3

w

1

62 G, u

3

and w

1

are in di�erent 
onne
ted 
omponents of G

R

0

. This shows that G

R

is a forest.

Lemma 18. G does not have a 4-fa
e with exa
tly three 4-verti
es.

Proof. Suppose that f = v

0

v

1

v

2

v

3

is a 4-fa
e with d(v

0

) = 3 and d(v

1

) = d(v

2

) = d(v

3

) = 4.

Let u

0

be the third neighbor of v

0

.

-(i) u

0

v

2

62 E: Assume, for a 
ontradi
tion, that vertex u

0

v

2

2 E. Let x be the fourth

neighbor of v

2

. If x and v

3

are on di�erent sides of the separating 
y
le C = v

0

u

0

v

2

v

1

, then

let G

0

= G� fv

0

; v

1

; v

2

; u

0

g. Sin
e d(u

0

) � 3: jE(G)j � jE(G

0

)j � 10. Therefore, G

0

has a

forest indu
ed by a set R

0

of size

29(n�4)�6(m�10)

32

> '� 2. We 
laim that R = R

0

[fv

0

; v

2

g

indu
es a forest (of size � ') in G. Note that v

0

has at most one neighbor (namely v

3

)

in R

0

. Vertex v

2

may have two neighbors in R

0

; v

3

and x, but sin
e they are on di�erent

sides of C, v

3

and x are in di�erent 
onne
ted 
omponents of G

0

R

0

. Thus G

R

is a
y
li
.

If x and v

3

are both inside or outside of C then we set G

0

= G � fv

0

; v

2

; v

3

; u

0

g. A

similar argument shows that there is a set R

0

� V (G

0

) that indu
es a forest of size '� 2

in G

0

and R = R

0

[ fv

0

; v

2

g indu
es a forest (of size � ') in G.

-(ii) Other than v

0

, there is a 
ommon neighbor of u

0

and v

1

, and a 
ommon

neighbor of u

0

and v

3

: By way of 
ontradi
tion, suppose that v

0

is the only 
ommon

neighbor of u

0

and v

1

. Let G

0

= G� fv

0

; v

3

g+ fu

0

v

1

g. Clearly, G

0

is planar, and be
ause

by assumption there is no vertex adja
ent to both v

1

and u

0

, G

0

is triangle-free. Therefore,

it has a forest indu
ed by a set R

0

of size

29(n�2)�6(m�5)

32

> '� 1. We 
laim R = R

0

[ fv

0

g

indu
es a forest in G. The reason is that v

3

62 R and be
ause u

0

v

1

2 G

0

and u

0

v

1

62 G, u

0

and v

1

are in di�erent 
onne
ted 
omponents of G

R

0

. Thus u

0

and v

1

must have a 
ommon

neighbor other than v

0

. By symmetry, u

0

and v

3

have a 
ommon neighbor other than v

0

.

Assume that x 6= v

0

is 
onne
ted to both u

0

and v

1

and y 6= v

0

is 
onne
ted to both

u

0

and v

3

.

(iii) x 6= y: By way of 
ontradi
tion, assume that x = y, i.e. x is adja
ent to u

0

, v

1

,

and v

3

(see Figure 1). So v

0

u

0

xv

1

is a 4-
y
le with at least one 3-vertex; v

0

. By Lemmas 15

and 17 (and Lemma 1) u

0

and x are 4-verti
es. Let u

1

be the fourth neighbor of v

1

(other

than v

0

; v

2

; x) and u

3

be the fourth neighbor of v

3

(other than v

0

; v

2

; x). Note that u

1

= u

3

is possible. If C

1

= v

0

u

0

xv

1

is a 4-fa
e then, sin
e d(v

0

) = 3 and d(u

0

) = d(x) = d(v

1

) = 4,

it violates part (i) above (be
ause of the edge xv

3

). Therefore, C

1

is a separating 
y
le.

Similar argument applied to C

2

= v

0

u

0

xv

3

shows that C

2

is a separating 
y
le, too. Let z

be the fourth neighbor of x (other than v

1

, u

0

, and v

3

). If z and v

2

are on di�erent sides

of C

1

(i.e. when z is inside C

1

) then de�ne G

0

= G� fv

0

; v

1

; v

3

; u

0

; x; u

1

g. As G

0

2 G and
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v

0

v

1

v

2

v

3

x

u

0

z

p

u

1
u

3

q

Fig. 1. part (iii) in the proof of Lemma 18

jE(G)j � jE(G

0

)j � 14, there is a set R

0

� V (G

0

) of size at least

29(n�6)�6(m�14)

32

> '� 3,

whi
h indu
es a forest in G

0

. It is easy to see that R = R

0

[fv

0

; v

1

; xg indu
es a forest (of

size � ') in G, sin
e the only possible neighbor of v

1

in R

0

(i.e. v

2

) and the only possible

neighbor of x in R

0

(i.e. z) are in di�erent 
onne
ted 
omponents of G

0

(be
ause of the

separating 
y
le C

1

). We get a similar 
ontradi
tion if z and v

2

are on di�erent sides of

C

2

. Thus we 
an assume that z is outside of C

1

and C

2

(i.e. the same side as v

2

is). If none

of the neighbors of u

0

is inside C

1

then C

1

is indeed a 4-fa
e unless u

1

is inside of C

1

. But

in this 
ase v

1

u

1

will be a bridge, whi
h in turn 
ontradi
ts Lemma 2. Thus at least one

neighbor of u

0

, 
all it p, is inside C

1

(note that p = u

1

is possible). Similar arguments show

that at least one neighbor of u

0

, 
all it q, is inside C

2

(note that q = u

3

is possible). If u

1

is not inside C

1

then u

0

p will be a bridge, 
ontradi
ting Lemma 2. So u

1

is inside C

1

, too.

Similarly, u

3

is inside C

2

(or else u

0

q is a bridge). Now de�ne G

0

= G�fv

0

; : : : ; v

3

; u

0

; xg.

Sin
e G

0

2 G and jE(G)j � jE(G

0

)j � 15, there is a set R

0

� V (G

0

) of size at least

29(n�6)�6(m�15)

32

> ' � 3, whi
h indu
es a forest in G

0

. Then R = R

0

[ fv

0

; v

1

; xg indu
es

a forest of size ' in G be
ause u

1

and z are in di�erent 
onne
ted 
omponents of G

0

(as

they are on di�erent sides of C

1

). This 
ontradi
tion implies that x 6= y.

So v

1

is adja
ent to v

0

; v

2

; x; u

1

and v

3

is adja
ent to v

0

; v

2

; y, and u

3

(re
all that

u

1

= u

3

is possible). As in the previous paragraph, by Lemmas 15 and 17 applied to

4-
y
les v

0

u

0

xv

1

and v

0

u

0

yv

3

: d(u

0

) = d(x) = d(y) = 4. Let z be the fourth neighbor

of u

0

. Sin
e G is triangle-free, among the six verti
es v

1

; v

2

; v

3

; u

0

; x; y, the only possible

edges are e

1

= u

0

v

2

(i.e. when z = v

2

), e

2

= xv

3

(i.e. when x = u

3

), and e

3

= yv

1

(i.e.

when y = u

1

). By part (i) proved above: e

1

62 E. Furthermore, be
ause of planarity of G,

at any time, at most one of e

2

or e

3

exists.

- If e

2

62 E, and e

3

62 E: De�ne G

0

= G � fv

0

; : : : ; v

3

; u

0

; x; yg. In this 
ase, jE(G)j �

jE(G

0

)j � 18, and so G

0

has a forest indu
ed by a set R

0

of size at least

29(n�7)�6(m�18)

32

>

'� 3. It is easy to see that R = R

0

[ fv

1

; v

3

; u

0

g indu
es a forest (of size � ') in G,

sin
e they are non-adja
ent and ea
h has at most one neighbor in R

0

.

- If e

2

2 E(G) or e

3

2 E(G): Suppose that e

2

2 E(G) (the argument for 
ase e

3

2

E(G) is symmetri
). In this 
ase, we de�ne G

0

= G � fv

0

; v

1

; v

3

; u

0

; x; yg. Therefore

jE(G)j � jE(G

0

)j � 15 and so G

0

has a forest indu
ed by a set R

0

of size at least '� 3.

Let R = R

0

[ fv

0

; v

3

; u

0

g. The only 
ase in whi
h R indu
es a 
y
le in G is when the
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possible neighbors of u

0

and v

3

in R

0

(namely z and v

2

, respe
tively), are in the same


onne
ted 
omponent of G

0

R

0

. But this 
annot happen, be
ause z and v

2

are on di�erent

sides of the separating 
y
le C

0

= v

0

v

1

xv

3

. Therefore G

R

is a forest.
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