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Abstract. For integers p � q, a L(p; q)-labeling of a network G is an

integer labeling of the nodes of G such that adjacent nodes receive inte-

gers which di�er by at least p, and nodes at distance two receive labels

which di�er by at least q. The minimum number of labels required in

such labeling is �

p

q

(G). This arises in the context of frequency channel

assignment in mobile and wireless networks and often G is planar. We

show that if G is planar then �

p

q

(G) �

5

3

(2q � 1)� + 12p + 144q � 78.

We also provide an O(n

2

) time algorithm to �nd such a labeling. This

provides a (

5

3

+o(1))-approximation algorithm for the interesting case of

q = 1, improving the best previous approximation ratio of 2.

1 Introduction

The problem of frequency assignment arises when di�erent radio transmitters

which operate in the same geographical area interfere with each other when

assigned the same or closely related frequency channels. This situation is common

in a wide variety of real world applications related to mobile or general wireless

networks and is best modeled using graph coloring where the vertices of a graph

represent the transmitters and adjacencies indicate possible interferences.

There has been recently much interest in the L(2; 1)-labeling problem, which

is the problem of assigning radio frequencies (integers) to transmitters such that

transmitters which are close (at distance 2 apart in the graph) to each other

receive di�erent frequencies and transmitters which are very close (adjacent in

the graph) receive frequencies that are at least two apart. To keep the frequency

bandwidth small, we are interested in minimizing the di�erence of the smallest

and largest integers assigned as labels to the vertices of the graph. The minimum

range of frequencies is called �

2

1

. In many applications, the di�erences between

?
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the frequency channels must be at least some speci�c given numbers. So we study

L(p; q)-labelings, which are frequency assignments such that the transmitters

that are adjacent in the graph get labels that are at least p apart and those at

distance two get labels that are at least q apart; �

p

q

is de�ned similarly.

Several papers have studied this problem and di�erent bounds and approxi-

mation algorithms for �

2

1

have been obtained for various classes of graphs [2, 4{8,

10,11, 14, 16], most of them based on�, the maximumdegree of the graph. Much

of this study has been focussed on planar graphs. For example, this problem is

proved to be NP-complete for planar graphs in [2, 10]. Jonas [9] showed that for

planar graphs �

2

1

� 8��13. This was the best known bound until recently, when

Van den Heuvel and McGuinness [13] showed that �

p

q

� (4q�2)�+10p+38q�24.

In this paper we improve this bound asymptotically by showing that:

Theorem 1. For any planar graph G and positive integers p � q : �

p

q

(G) �

5

3

(2q � 1)�+ 12p+ 144q � 78.

Although the proof of this result is lengthy and non-trivial, it yields an easy to

implement O(n

2

) algorithm to �nd such a labeling.

For simplicity of exposition, we present the case p = q = 1. The proof of

the general case is nearly identical. For this special case, we have the following

longstanding conjecture:

Conjecture 1 (Wegner [15]). For a planar graph G:

�

1

1

(G) �

�

�+ 5 if 4 � � � 7;

d

3

2

�e+ 1 if � � 8:

This conjecture, if true, would be the best possible bound in terms of �, as

shown byWegner [15]. S.A.Wong [17] showed that �

1

1

(G) � 3�+5. Recently, Van

den Heuvel and McGuinness [13] proved that �

1

1

(G) � 2�+25. For large values

of �, Agnarsson and Halld�orsson [1] have a better asymptotic bound for �

1

1

(G).

They prove that if G is a planar graph with � � 749, then �

1

1

(G) � d

9

5

�(G)e+1,

but as they noted, this is the best asymptotic bound that they can get via their

approach. Recently, Borodin et al. [3] have been able to extend these results to

�

1

1

(G) � d

9

5

�(G)e+ 1 for planar graphs with �(G) � 47. We improve all these

results asymptotically by showing that:

Theorem 2. For a planar graph G, �

1

1

(G) �

5

3

�(G) + 78.

Remark 1. For planar graphs G with � � 241 we can actually obtain �

1

1

(G) �

5

3

�(G) + 24, but we do not present the proof for this result here, because of

space limits.

In section 5 we explain how to modify the proof of Theorem 2 to prove

Theorem 1. The technique we use is inspired by that used by Sanders and Zhao

[12] to obtain a similar bound on the cyclic chromatic number of planar graphs.

In [2] Bodlaender et al. have given approximation algorithms to compute

�

2

1

for some classes of graphs and noted that the result of Jonas [9] yields an
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8-approximation algorithm for planar graphs. In [5] Fotakis et al. use the result

of [13] to obtain a (2 + o(1))-approximation algorithm for �

1

1

on planar graphs.

They state that a major open problem is to get a polynomial time approximation

algorithm of approximation ratio < 2. Agnarsson and Halld�orsson [1] also give

a 2-approximation. The results of this paper yield a (

5

3

+ o(1))-approximation

algorithm for �

p

1

and in general a (

5

3q

(2q � 1) + o(1))-approximation algorithm

for �

p

q

, for planar graphs. The reason for this is that for a planar graph G with

maximum degree �: �

p

q

(G) � q�+ p. So, the algorithm we obtain for Theorem

1 will have approximation ratio of

5

3q

(2q � 1) + o(1) for �

p

q

.

The organization of the paper is as follows: In the next section we give an

overview of the algorithms we obtain. In Sections 3 and 4 we give some prelimi-

nary de�nitions and (the sketch of) the proof of Theorem 2. Section 5 contains

(the sketch of) the proof of Theorem 1. Finally, in Section 6 we explain the

algorithm and talk about the asymptotic tightness of the results.

2 Overview of the algorithms

We use G

2

to denote the square of G, i.e. the graph formed by joining all pairs

of vertices which are at distance at most 2 in G. It is convenient to note that

�

1

1

(G) = �(G

2

). Thus, our proof of Theorem 2 is simply a proof that the square

of any planar graph can be colored with at most

5

3

�+ 78 colors.

An edge (u; v) of G is reducible if it has the following properties:

(i) H, the graph obtained from G by contracting (u; v) has maximum degree

�(G).

(ii) Any (

5

3

�(G)+ 78)-coloring of H

2

can \easily" be extended to a coloring of

G

2

.

The exact meaning of \easily" is made clear in the proofs of Lemmas 8 and 9.

For now, it su�ces to say that this extension can be done in O(�(G)) time. We

prove that every planar graph has a reducible edge. Furthermore, that edge can

be found in O(n) time. This yields an O(n

2

) recursive algorithm for �nding the

coloring. We elaborate more on this in section 6.

We �nd a reducible edge using the Discharging Method, which was �rst

used to prove the Four Color Theorem. We start by assigning an initial charge

(that will be de�ned in the proof) to each vertex such that the sum of the

charges is negative. Then we move the charges among the vertices based on the

12 discharging rules given in Section 4. This process preserves the sum of the

charges, and so at least one vertex will have negative charge. We will show that

any vertex with negative charge will have a reducible edge in its neighborhood.

Applying the charges and discharging rules and then searching for a negative

charge vertex and then �nding the associated reducible edge can be done in O(n),

as required. We can use exactly the same procedure to develop an algorithm for

Theorem 1.
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3 Preliminaries

We assume that the given graph is a simple connected planar graph with at least

8 vertices. The vertex set and edge set of a graph G are denoted by V (G) and

E(G), respectively. The length of a path between two vertices is the number

of edges on that path. We de�ne the distance between two vertices to be the

length of the shortest path between them. The square of a graph G, denoted

by G

2

, is a graph on the same vertex set such that two vertices are adjacent in

G

2

i� their distance in G is at most 2. The degree of a vertex v is the number

of edges incident with v and is denoted by d

G

(v) or simply d(v) if it is not

confusing. We denote the maximum degree of a graph G by �(G) or simply �.

If the degree of v is i, at least i, or at most i we call it an i-vertex, a �i-vertex,

or a �i-vertex, respectively. By N

G

(v), we mean the open neighborhood of v

in G, which contains all those vertices that are adjacent to v in G. The closed

neighborhood of v, which is denoted by N

G

[v], is N

G

(v) [ fvg. We usually use

N (v) and N [v] instead of N

G

(v) and N

G

[v], respectively.

A vertex k-coloring of a graph G is a mapping C : V �! f1; : : : ; kg such

that any two adjacent vertices u and v are mapped to di�erent integers. The

minimum k for which a coloring exists is called the chromatic number of G and

is denoted by �(G). A vertex v is called big if d

G

(v) � 47, otherwise we call it a

small vertex.

From now on assume that G is a minimum counter-example to Theorem 2.

Lemma 1. For every vertex v of G, if there exists a vertex u 2 N (v), such that

d

G

(v) + d

G

(u) � �(G) + 2 then d

G

2
(v) �

5

3

�(G) + 78.

Proof. Assume that v is such a vertex. Contract v on edge (v; u). The result-

ing graph has maximum degree at most �(G) and because G was a minimum

counter-example, the new graph can be colored with

5

3

�(G) + 78 colors. Now

consider this coloring induced on G, in which every vertex other than v is col-

ored. If d

G

2
(v) <

5

3

�(G) + 78 then we can assign a color to v to extend the

coloring to v, which contradicts the de�nition of G. ut

If we de�ne H to be the graph obtained from G by contracting (u; v), the

above proof actually shows how to extend a coloring of H

2

to a coloring of G

2

.

Therefore, we have the following:

Type 1 reducible edge: An edge (u; v) where d

G

(u) + d

G

(v) � �(G) + 2 and

d

G

2
(v) <

5

3

�(G) + 78:

As we mentioned before, Van den Heuvel and McGuinness [13] showed that

�(G

2

) � 2�+ 25. So:

Observation 1. We can assume that �(G) � 160, otherwise 2�(G) + 25 �

5

3

�(G) + 78.

Lemma 2. Every �5-vertex in G must be adjacent to at least two big vertices.

Corollary 1. Every vertex of G is a �2-vertex.
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The proof of Theorem 2 becomes signi�cantly simpler if we can assume that

the underlying graph is triangulated, i.e. all faces are triangles, and has minimum

degree at least 4. To be able to make this assumption, we modify graph G in two

phases and get a contradiction from the assumption on G. In the �rst phase we

make a (simple) triangulated graph G

0

, by adding edges to every non-triangle

face of G.

Observation 2. For every vertex v, N

G

(v) � N

G

0

(v).

It is also easy to verify that:

Lemma 3. All vertices of G

0

are �3-vertices.

Lemma 4. Each �4-vertex v in G

0

can have at most

1

2

d(v) neighbors which are

3-vertices.

In the second phase we transform graph G

0

into another triangulated graph

G

00

, whose minimum degree is at least 4. Initially G

00

is equal to G

0

. As long as

there is any 3-vertex v we do the following switching operation: let x; y; z be the

three neighbors of v. At least two of them, say x and y, are big in G

0

by Lemma

2 and Observation 2. Remove edge (x; y). Since G

0

(and also G

00

) is triangulated

this leaves a face of size 4, say fx; v; y; tg. Add edge (v; t) to G

00

. This way, the

graph is still triangulated.

Observation 3. If v is a small vertex in G then N

G

(v) � N

G

00

(v).

Lemma 5. If v is a big vertex in G then d

G

00

(v) � 24.

So a big vertex v in G will not be a �23-vertex in G

00

. Let v be a big vertex

in G and x

0

; x

2

; : : : ; x

d

G

00

(v)�1

be the neighbors of v in G

00

in clockwise order.

We call x

a

; : : : ; x

a+b

(where addition is in mod d

G

00

(v)) a sparse segment in G

00

i�:

{ b � 2,

{ Each x

i

is a 4-vertex.

In the next two lemmas let's assume that x

a

; : : : ; x

a+b

is a maximal sparse seg-

ment of v in G

00

, which is not equal to all the neighborhood of v. Also assume

that x

a�1

and x

a+b+1

are the neighbors of v right before x

a

and right after x

a+b

,

respectively.

Lemma 6. There is a big vertex other than v, that is connected to all the vertices

of x

a

; : : : ; x

a+b

.

We use u to denote the big vertex, other than v, that is connected to all

x

a

; : : : ; x

a+b

.

Lemma 7. All the vertices x

a+1

; : : : ; x

a+b�1

are connected to both u and v in

G. If x

a�1

is not big in G then x

a

is connected to both u and v in G. Otherwise

it is connected to at least one of them. Similarly, if x

a+b+1

is not big in G then

x

b

is connected to both u and v in G, and otherwise it is connected to at least

one of them.
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We call x

a+1

; : : : ; x

a+b�1

the inner vertices of the sparse segment, and x

a

and x

a+b

the end vertices of the sparse segment. Consider vertex v and let's

call the maximal sparse segments of it Q

1

; Q

2

; : : : ; Q

m

in clockwise order, where

Q

i

= q

i;1

; q

i;2

; q

i;3

; : : :. The next two lemmas are the key lemmas in the proof of

Theorem 1.

Lemma 8. jQ

i

j � d

G

(v) �

2

3

�� 73, for 1 � i � m.

Proof. We prove this by contradiction. Assume that for some i, jQ

i

j � d

G

(v) �

2

3

�� 72. Let u

i

be the big vertex that is adjacent to all the inner vertices of Q

i

(in both G and G

00

). (See Figure 1).

qi,2

ui

iQ

v

Fig. 1. The con�guration of lemma 8

For an inner vertex of Q

i

, say q

i;2

, we have:

d

G

2
(q

i;2

) � d

G

(u

i

) + d

G

(v) + 2� (jQ

i

j � 3)

� �(G) + d

G

(v) � jQ

i

j+ 5

�

5

3

�(G) + 77:

If q

i;2

is adjacent to q

i;1

or q

i;3

in G then it is contradicting Lemma 1. Otherwise

it is only adjacent to v and u

i

in G, therefore has degree 2, and so along with v

or u

i

contradicts Lemma 1. ut

Therefore, if lemma 8 fails for some Q

i

, then there must be a type 1 reducible

edge with an end point in Q

i

.

Lemma 9. Consider G and suppose that u

i

and u

i+1

are the big vertices adja-

cent to all the inner vertices of Q

i

and Q

i+1

, respectively. Furthermore assume

that t is a vertex adjacent to both u

i

and u

i+1

but not adjacent to v (see Figure

2) and there is a vertex w 2 N

G

(t) such that d

G

(t)+d

G

(w) � �(G)+2. Let X(t)

be the set of vertices at distance at most 2 of t that are not in N

G

[u

i

][N

G

[u

i+1

].

If jX(t)j � 4 then:

jQ

i

j+ jQ

i+1

j �

1

3

�(G)� 69:

Proof. Again we use contradiction. Assume that jQ

i

j + jQ

i+1

j �

1

3

�(G) � 68.

Using the argument of the proof of Lemma 1, by contracting (t; w), we can color
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v

ui+1

t

qi,2

ui

qi+1,2

iQ Qi+1

w

Fig. 2. The con�guration of lemma 9

every vertex of G other than t. Note that d

G

2
(t) � d

G

(u

i

)+d

G

(u

i+1

)+ jX(t)j �

2�(G) + 4. If all the colors of the inner vertices of Q

i

have appeared on the

vertices of N

G

[u

i+1

] [X(t) � Q

i+1

and all the colors of inner vertices of Q

i+1

have appeared on the vertices of N

G

[u

i

] [ X(t) � Q

i

then there are at least

jQ

i

j � 2 + jQ

i+1

j � 2 repeated colors at N

G

2
(t). So the number of colors at

N

G

2
(t) is at most 2�(G) + 4� jQ

i

j � jQ

i+1

j+ 4, which is at most

5

3

�(G) + 76

and so there is still one color available for t, which is a contradiction.

Therefore, without loss of generality, there exists an inner vertex of Q

i+1

, say

q

i+1;2

, whose color is not in N

G

[u

i

][X(t)�Q

i

. If there are less than

5

3

�(G)+77

colors at N

G

2
(q

i+1;2

) then we could assign a new color to q

i+1;2

and assign the

old color of it to t and get a coloring for G. So there must be

5

3

�(G) + 77

di�erent colors at N

G

2
(q

i+1;2

). >From the de�nition of a sparse segment, we

have:N

G

(q

i+1;2

) � fv; u

i+1

; q

i+1;1

; q

i+1;3

g. There are at most d

G

(u

i+1

)+5 colors,

called the smaller colors, at N

G

[u

i+1

] [X(t) [ N

G

[q

i+1;1

] [ N

G

[q

i+1;3

] � fvg �

fq

i+1;2

g (note that t is not colored). So there must be at least

2

3

�(G)+72 di�erent

colors, called the larger colors, at N

G

[v]�Q

i+1

. Since jN

G

[v]j � jQ

i

j � jQ

i+1

j �

�(G) + 1 �

1

3

�(G) + 68 �

2

3

�(G) + 69, one of these larger colors must be on

an inner vertex of Q

i

, which without loss of generality, we can assume is q

i;2

.

Because t is not colored, we must have all the

5

3

�(G) + 78 colors at N

G

2
(t).

Otherwise we could assign a color to t. As there are at most �(G) + 4 colors,

all from the smaller colors, at N

G

[u

i+1

] [X(t), all the larger colors must be in

N

G

[u

i

] too. Therefore the larger colors are in both N

G

[v] and N

G

[u

i

]. Note that

jN

G

2
(q

i;2

)j � jN

G

[v]j+jN

G

[u

i

]j � 2�(G). So there are at most 2�(G)�

2

3

�(G)�

72 =

4

3

�(G)� 72 di�erent colors at N

G

2
(q

i;2

) and so we can assign a new color

to q

i;2

and assign the old color of q

i;2

, which is one of the larger colors and is

not in N

G

2
(t) � fq

i;2

g, to t and extend the coloring to G, a contradiction. ut

Another way of looking at the proof of Lemma 9 is that we showed the

following is a reducible edge:

Type 2 reducible edge: (t; w), under the assumptions of Lemma 9.
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4 Discharging Rules

We give an initial charge of d

G

00

(v) � 6 units to each vertex v. Using the Euler

formula, jV j � jEj+ jF j = 2, and noting that 3jF (G

00

)j = 2jE(G

00

)j:

X

v2V

(d

G

00

(v) � 6) = 2jE(G

00

)j � 6jV j+ 4jE(G

00

)j � 6jF (G

00

)j = �12 (1)

By these initial charges, the only vertices that have negative charges are 4- and

5-vertices, which have charges �2 and �1, respectively. The goal is to show that,

based on the assumption that G is a minimum counter-example, we can send

charges from other vertices to �5-vertices such that all the vertices have non-

negative charge, which is of course a contradiction since the total charge must

be negative by equation (1).

We call a vertex v pseudo-big (in G

00

) if v is big (in G) and d

G

00

(v) � d

G

(v)�

11. Note that a pseudo-big vertex is also a big vertex, but a big vertex might

or might not be a pseudo-big vertex. Before explaining the discharging rules, we

need a few more notations.

Suppose that v; x

1

; x

2

; : : : ; x

k

; u is a sequence of vertices such that v is adja-

cent to x

1

, x

i

is adjacent to x

i+1

, 1 � i < k, and x

k

is adjacent to u.

De�nition: By \v sends c units of charge through x

1

; : : : ; x

k

to u" we mean

v sends c units of charge to x

1

, it passes the charge to x

2

... etc, and �nally x

k

passes the charge to u. In this case, we also say \v sends c units of charge through

x

1

" and \u gets c units of charge through x

k

".

Note that in order to simplify the calculations of the total charges on vertex

x

i

, 1 � i � k, we do not take into account the charges that only pass through

x

i

. We say v saves k units of charge on a set of size l of its neighbors, if the

total charge sent from v to or through them minus the total charge sent from or

through them to v is at most l�k units. So, for example, if v is sending nothing

to u and is getting

1

2

through u then v saves

3

2

on u.

In discharging phase, a big vertex v of G:

1) Sends 1 unit of charge to each 4-vertex u in N

G

00

(v).

2) Sends

1

2

unit of charge to each 5-vertex u in N

G

00

(v).

In addition, if v is a big vertex and u

0

; u

1

; u

2

; u

3

; u

4

are consecutive neighbors

of v in clockwise or counter-clockwise order, where d

G

00

(u

0

) = 4, then:

3) If d

G

00

(u

1

) = 5, u

2

is big, d

G

00

(u

3

) = 4, d

G

00

(u

4

) � 5, and the neighbors of

u

1

in clockwise or counter-clockwise order are v; u

0

; x

1

; x

2

; u

2

then v sends

1

2

to x

1

through u

2

; u

1

.

4) If d

G

00

(u

1

) = 5, 5 � d

G

00

(u

2

) � 6, d

G

00

(u

3

) � 7, and the neighbors of u

1

in

clockwise or counter-clockwise order are v; u

0

; x

1

; x

2

; u

2

then v sends

1

2

to x

1

through u

3

; u

2

; u

1

.

5) If d

G

00

(u

1

) = 5, u

2

is big, d

G

00

(u

3

) � 5, and the neighbors of u

1

in clockwise

or counter-clockwise order are v; u

0

; x

1

; x

2

; u

2

then v sends

1

4

to x

1

through

u

2

; u

1

.
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6) If d

G

00

(u

1

) = 6, d

G

00

(u

2

) � 5, d

G

00

(u

3

) � 7, and the neighbors of u

1

in

clockwise or counter-clockwise order are v; u

0

; x

1

; x

2

; x

3

; u

2

then v sends

1

2

to x

1

through u

1

.

7) if d

G

00

(u

1

) = 6, d

G

00

(u

2

) � 6, and the neighbors of u

1

in clockwise or counter-

clockwise order are v; u

0

; x

1

; x

2

; x

3

; u

2

then v sends

1

4

to x

1

through u

1

.

if 7 � d

G

00

(v) < 12 then:

8) If u is a big vertex and u

0

; u

1

; u

2

; v; u

3

; u

4

; u

5

are consecutive neighbors of u

where all u

0

; u

1

; u

2

; u

3

; u

4

; u

5

are 4-vertices then v sends

1

2

to u.

9) if u

0

; u

1

; u

2

; u

3

are consecutive neighbors of v, such that d

G

00

(u

1

) = d

G

00

(u

2

) =

5, u

0

and u

3

are big, and t is the other common neighbor of u

1

and u

2

(other

than v), then v sends

1

2

to t.

Every �12-vertex v of G

00

that was not big in G:

10) Sends

1

2

to each of its neighbors.

A �5-vertex v sends charges as follows:

11) if d

G

00

(v) = 4 and its neighbors in clockwise order are u

0

; u

1

; u

2

; u

3

, such

that u

0

; u

1

; u

2

are big in G and u

3

is small, then v sends

1

2

to each of u

0

and

u

2

through u

1

.

12) If d

G

00

(v) = 5 and its neighbors in clockwise order are u

0

; u

1

; u

2

; u

3

; u

4

, such

that d

G

00

(u

0

) � 11, d

G

00

(u

1

) � 12, d

G

00

(u

2

) � 12, d

G

00

(u

3

) � 11, and u

4

is

big, then v sends

1

2

to u

4

.

It can be proved that after applying the discharging rules:

Lemma 10. Every vertex v that is not big in G will have non-negative charge.

Lemma 11. Every big vertex v that is not pseudo-big will have non-negative

charge.

Lemma 12. Every pseudo-big vertex v has non-negative charge.

We omit the proofs of Lemmas 10, 11, and 12 because of a lack of space.

Proof of Theorem 2: By Lemmas 10, 11, and 12 every vertex of G

00

will

have non-negative charge, after applying the discharging rules. Therefore the to-

tal charge over all the vertices ofG

00

will be non-negative, but this is contradicting

equation (1). This disproves the existence of G, a minimum counter-example to

the theorem.

5 Generalization to Bound �

p

q

The general steps of the proof of Theorem 1 are very similar to those of Theorem

2. The case q = 0 reduces to the Four Color Theorem. So let's assume that q � 1.

Let G be a planar graph which is a minimum counter-example to Theorem 1.

Recall that a vertex is big, if d

G

(v) � 47. The proof of the following lemmas and

observations are very similar to the corresponding ones for Theorem 2.
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Lemma 13. Suppose that v is a �5-vertex in G. If there exists a vertex u 2

N (v), such that d

G

(v) + d

G

(u) � �+ 2 then d

G

2
(v) � d

G

(v) +

5

3

�+ 73.

Since the bound 2(2q � 1)�+ 10p+ 38q � 24 is already proved in [13]:

Observation 4. We can assume that � � 160.

Lemma 14. Every �5-vertex must be adjacent to at least 2 big vertices.

Now construct graph G

0

from G and then G

00

fromG

0

in the same way we did

in the proof of Theorem 2. Also, we de�ne the sparse segments in the same way.

Consider vertex v and let's call the maximal sparse segments of it Q

1

; Q

2

; : : : ; Q

m

in clockwise order, where Q

i

= q

i;1

; q

i;2

; q

i;3

; : : :.

Lemma 15. jQ

i

j � d

G

(v) �

2

3

�� 70.

Lemma 16. Suppose that u

i

and u

i+1

are the big vertices adjacent to all the

vertices of Q

i

and Q

i+1

, respectively. Furthermore assume that t is a �6-vertex

adjacent to both u

i

and u

i+1

but not adjacent to v (see Figure 2) and there is

a vertex w 2 N (t) such that d

G

(t) + d

G

(w) � �(G) + 2. Let X(t) be the set of

vertices at distance at most 2 of t that are not in N [u

i

][N [u

i+1

]. If jX(t)j � 4

then:

jQ

i

j+ jQ

i+1

j �

1

3

�(G)� 69: (2)

The rest of the proof is almost identical to that of Theorem 2. We apply

the same initial charges and discharging rules, and use Lemmas 14, 15, and 16,

instead of Lemmas 2, 8, and 9, respectively.

6 The Algorithm and the Asymptotic Tightness of the

Result

Now we describe an algorithm that can be used for each of Theorems 1 or 2 to

�nd such colorings. Consider a planar graph G. One iteration of the algorithm

is to reduce the size of the problem by �nding a reducible edge in G, contracting

it, coloring the new smaller graph recursively, and then extending the coloring

to G. At each iteration, �rst we check to see if every �5-vertex is adjacent to at

least 2 big vertices or not. If not, then that vertex along with one of its small

neighbors will be a type 1 reducible edge by Lemma 2. Otherwise, we construct

the triangulated graph G

00

and apply the initial charges and the discharging

rules. As the total charge is negative, we can �nd a big vertex with negative

charge. This vertex must have at least one of the con�gurations of Lemmas 8

and 9 or 15 and 16 for the cases of Theorem 2 or 1, respectively. If it has the

con�guration of Lemma 8 then one of the inner vertices of the sparse segment

along with one of its two big neighbors will be a type 1 reducible edge. Otherwise,

if it has the con�guration of Lemma 9 then (t; w) will be a type 2 reducible edge

(recall t and w from Lemma 9). In either of these cases we reduce the size of the
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graph by one. Thus, we can iterate until the size of the graph is small enough,

i.e constant. In that case we can �nd the required coloring in constant time.

To see if there is a �5-vertex with less than 2 big neighbors we spend at

most O(n) time, where n is the number of vertices in G. Also, applying the

initial charges and discharging rules takes O(n) time. After �nding a vertex

with negative charge, �nding the suitable edge and then contracting it can be

done in O(n). Since there are O(n) iterations of the main procedure, the total

running time of the algorithm would be O(n

2

).

Now we show that these theorems are asymptotically tight, if we use this

proof technique. The results of [1] and [3] are essentially based on showing that

in a planar graph G, there exists a vertex v such that d

G

2
(v) � b

9

5

�(G)c+1. This

also leads to a greedy algorithm for coloring G

2

. However, as pointed out in [1],

this is the best possible bound. That is, there are planar graphs in which every

vertex v satis�es d

G

2
(v) � d

9

5

�(G)e. See [1] for an example. For the moment,

let's just focus on the asymptotic order of the bounds and denote the additive

constants by C. The reducible con�guration in Lemma 8, after modifying the

coe�cient from

5

3

to

9

5

, is the only con�guration needed in obtaining the bound

�(G

2

) �

9

5

�(G)+C. The extremal graph of [1] is actually an extremal graph for

this lemma, and this is the reason that we need another reducible structure, like

the one in Lemma 9, to improve previously known results asymptotically. But

there are graphs that are extremal for both of these lemmas. For an odd value of

k, one of these graphs is shown in Figure 3. In this graph G, which is obtained

based on a tetrahedron, we have to join the three copies of v

8

and remove the

multiple edges (we draw the graph in this way for clarity). The dashed lines

represent sequences of consecutive 4-vertices. Around each of v

1

; : : : ; v

4

there are

3k�5 of such vertices. It is easy to see that G does not have the con�guration of

Lemma 9. So the minimumdegree of the vertices in G

2

is of order of

5

3

�(G) and

G does not have the con�guration of Lemma9. One can easily check that if we are

going to use only

3

2

�(G)+C colors, we can get a variation of Lemma 9 in which

the coe�cient of� is

3

2

, instead of

5

3

. But even that con�guration does not appear

in the graph of Figure 3. Therefore, using these two reducible con�gurations the

best asymptotic bound that we can achieve is

5

3

�(G), and we probably need

another reducible con�guration to improve this result asymptotically.
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