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Abstract. For integers p > q, a L(p, ¢)-labeling of a network G is an
integer labeling of the nodes of GG such that adjacent nodes receive inte-
gers which differ by at least p, and nodes at distance two receive labels
which differ by at least g. The minimum number of labels required in
such labeling is AL(G). This arises in the context of frequency channel
assignment in mobile and wireless networks and often G is planar. We
show that if G is planar then AJ(G) < %(Zq —1)A + 12p 4 1449 — 78.
We also provide an O(n?) time algorithm to find such a labeling. This
provides a (% +o(1))-approximation algorithm for the interesting case of
q = 1, improving the best previous approximation ratio of 2.

1 Introduction

The problem of frequency assignment arises when different radio transmitters
which operate in the same geographical area interfere with each other when
assigned the same or closely related frequency channels. This situation is common
in a wide variety of real world applications related to mobile or general wireless
networks and is best modeled using graph coloring where the vertices of a graph
represent the transmitters and adjacencies indicate possible interferences.
There has been recently much interest in the L(2, 1)-labeling problem, which
is the problem of assigning radio frequencies (integers) to transmitters such that
transmitters which are close (at distance 2 apart in the graph) to each other
receive different frequencies and transmitters which are very close (adjacent in
the graph) receive frequencies that are at least two apart. To keep the frequency
bandwidth small, we are interested in minimizing the difference of the smallest
and largest integers assigned as labels to the vertices of the graph. The minimum
range of frequencies is called AZ. In many applications, the differences between
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the frequency channels must be at least some specific given numbers. So we study
L(p, q)-labelings, which are frequency assignments such that the transmitters
that are adjacent in the graph get labels that are at least p apart and those at
distance two get labels that are at least ¢ apart; Al is defined similarly.

Several papers have studied this problem and different bounds and approxi-
mation algorithms for A? have been obtained for various classes of graphs [2,4-8,
10,11, 14, 16], most of them based on A, the maximum degree of the graph. Much
of this study has been focussed on planar graphs. For example, this problem is
proved to be NP-complete for planar graphs in [2,10]. Jonas [9] showed that for
planar graphs A7 < 8 A—13. This was the best known bound until recently, when
Van den Heuvel and McGuinness [13] showed that Al < (4¢—2) A+10p+38¢—24.
In this paper we improve this bound asymptotically by showing that:

Theorem 1. For any planar graph G and positive integers p > q : /\Z(G) <
2(2¢ — 1)A+ 12p + 1449 — 78,

Although the proof of this result is lengthy and non-trivial, it yields an easy to
implement O(n?) algorithm to find such a labeling.

For simplicity of exposition, we present the case p = ¢ = 1. The proof of
the general case is nearly identical. For this special case, we have the following
longstanding conjecture:

Conjecture 1 (Wegner [15]). For a planar graph G:

A+5  fA<A<T
1 =~ =~ &
MG)S{[;A]H it A> 8.

This conjecture, if true, would be the best possible bound in terms of A, as
shown by Wegner [15]. S.A. Wong [17] showed that A1 (G) < 3A+5. Recently, Van
den Heuvel and McGuinness [13] proved that A} (G) < 2A + 25. For large values
of A, Agnarsson and Halldérsson [1] have a better asymptotic bound for Al (G).
They prove that if G is a planar graph with A > 749, then A} (G) < [%A(G)] +1,
but as they noted, this is the best asymptotic bound that they can get via their
approach. Recently, Borodin et al. [3] have been able to extend these results to
M(G) < [%A(G)] + 1 for planar graphs with A(G) > 47. We improve all these
results asymptotically by showing that:

Theorem 2. For a planar graph G, M\}(G) < 3A(G) + 78.

Remark 1. For planar graphs (¢ with A > 241 we can actually obtain A} (G) <
gA(G) + 24, but we do not present the proof for this result here, because of
space limits.

In section 5 we explain how to modify the proof of Theorem 2 to prove
Theorem 1. The technique we use is inspired by that used by Sanders and Zhao
[12] to obtain a similar bound on the cyclic chromatic number of planar graphs.

In [2] Bodlaender et al. have given approximation algorithms to compute
A? for some classes of graphs and noted that the result of Jonas [9] yields an
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8-approximation algorithm for planar graphs. In [5] Fotakis et al. use the result
of [13] to obtain a (2 + o(1))-approximation algorithm for A{ on planar graphs.
They state that a major open problem is to get a polynomial time approximation
algorithm of approximation ratio < 2. Agnarsson and Halldérsson [1] also give
a 2-approximation. The results of this paper yield a (% + o(1))-approximation
algorithm for A[ and in general a (;’—q(Qq — 1) + o(1))-approximation algorithm
for AL, for planar graphs. The reason for this is that for a planar graph G with
maximum degree A: /\Z(G) > qA+ p. So, the algorithm we obtain for Theorem
1 will have approximation ratio of ;’—q(Qq — 1)+ o(1) for AZ.

The organization of the paper is as follows: In the next section we give an
overview of the algorithms we obtain. In Sections 3 and 4 we give some prelimi-
nary definitions and (the sketch of) the proof of Theorem 2. Section 5 contains
(the sketch of) the proof of Theorem 1. Finally, in Section 6 we explain the
algorithm and talk about the asymptotic tightness of the results.

2 Overview of the algorithms

We use G2 to denote the square of G, i.e. the graph formed by joining all pairs
of vertices which are at distance at most 2 in (. It is convenient to note that
M (G) = x(G?). Thus, our proof of Theorem 2 is simply a proof that the square
of any planar graph can be colored with at most gA + 78 colors.

An edge (u,v) of G is reducible if it has the following properties:

(i) H, the graph obtained from G by contracting (u,v) has maximum degree
A(G).
ii) Any (2 A(G)+ 78)-coloring of H? can “casily” be extended to a coloring of
3 g g

The exact meaning of “easily” is made clear in the proofs of Lemmas 8 and 9.
For now, it suffices to say that this extension can be done in O(A(G)) time. We
prove that every planar graph has a reducible edge. Furthermore, that edge can
be found in O(n) time. This yields an O(n?) recursive algorithm for finding the
coloring. We elaborate more on this in section 6.

We find a reducible edge using the Discharging Method, which was first
used to prove the Four Color Theorem. We start by assigning an initial charge
(that will be defined in the proof) to each vertex such that the sum of the
charges is negative. Then we move the charges among the vertices based on the
12 discharging rules given in Section 4. This process preserves the sum of the
charges, and so at least one vertex will have negative charge. We will show that
any vertex with negative charge will have a reducible edge in its neighborhood.
Applying the charges and discharging rules and then searching for a negative
charge vertex and then finding the associated reducible edge can be done in O(n),
as required. We can use exactly the same procedure to develop an algorithm for
Theorem 1.
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3 Preliminaries

We assume that the given graph is a simple connected planar graph with at least
8 vertices. The vertex set and edge set of a graph (G are denoted by V() and
E(G), respectively. The length of a path between two vertices is the number
of edges on that path. We define the distance between two vertices to be the
length of the shortest path between them. The square of a graph G, denoted
by G?, is a graph on the same vertex set such that two vertices are adjacent in
G? iff their distance in G is at most 2. The degree of a vertex v is the number
of edges incident with v and is denoted by dg(v) or simply d(v) if it is not
confusing. We denote the maximum degree of a graph G' by A(G) or simply A.
If the degree of v is 7, at least 7, or at most ¢ we call it an i-vertex, a >i-vertex,
or a <i-vertex, respectively. By Ng(v), we mean the open neighborhood of v
in G, which contains all those vertices that are adjacent to v in (G. The closed
neighborhood of v, which is denoted by Ng[v], is Ng(v) U {v}. We usually use
N(v) and NJv] instead of Ng(v) and Ng[v], respectively.

A vertex k-coloring of a graph G is a mapping C' : V. — {1,...,k} such
that any two adjacent vertices u and v are mapped to different integers. The
minimum k for which a coloring exists is called the chromatic number of G' and
is denoted by x(G). A vertex v is called big if dg(v) > 47, otherwise we call it a
small vertex.

From now on assume that ¢ is a minimum counter-example to Theorem 2.

Lemma 1. For every vertex v of G, if there exists a vertex u € N(v), such that

dg(v) + dg(u) < A(G)+ 2 then dg=(v) > gA(G) + 78.

Proof. Assume that v is such a vertex. Contract v on edge (v, u). The result-
ing graph has maximum degree at most A(G) and because G was a minimum
counter-example, the new graph can be colored with gA(G) + 78 colors. Now
consider this coloring induced on (, in which every vertex other than v is col-
ored. If dg2(v) < gA(G) + 78 then we can assign a color to v to extend the
coloring to v, which contradicts the definition of G. ad

If we define H to be the graph obtained from G by contracting (u,v), the
above proof actually shows how to extend a coloring of H? to a coloring of G2.
Therefore, we have the following:

Type 1 reducible edge: An edge (u,v) where dg(u) + dg(v) < A(G)+ 2 and
dg2(v) < gA(G) + 78.
As we mentioned before, Van den Heuvel and McGuinness [13] showed that

x(G?) <2A + 25. So:

Observation 1. We can assume that A(G) > 160, otherwise 2A(G) + 25 <
SA(G) +78.

Lemma 2. Bvery <b-vertex in G must be adjacent to at least two big vertices.

Corollary 1. Fvery vertex of G is a >2-vertex.
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The proof of Theorem 2 becomes significantly simpler if we can assume that
the underlying graph is triangulated, i.e. all faces are triangles, and has minimum
degree at least 4. To be able to make this assumption, we modify graph G in two
phases and get a contradiction from the assumption on G. In the first phase we
make a (simple) triangulated graph G’ by adding edges to every non-triangle
face of 5.

Observation 2. For every verter v, Ng(v) C Ngi(v).
It is also easy to verify that:

Lemma 3. All vertices of G’ are >3-vertices.

Lemma 4. Fach >4-vertex v in G' can have at most %d(v) neighbors which are
3-vertices.

In the second phase we transform graph G’ into another triangulated graph
G", whose minimum degree is at least 4. Initially G is equal to G’. As long as
there is any 3-vertex v we do the following switching operation: let z, y, z be the
three neighbors of v. At least two of them, say x and y, are big in G/ by Lemma
2 and Observation 2. Remove edge (z,y). Since G’ (and also G') is triangulated
this leaves a face of size 4, say {x,v,y,t}. Add edge (v,t) to G”. This way, the
graph is still triangulated.

Observation 3. If v is a small verter in G then Ng(v) C Ng»(v).
Lemma 5. If v is a big verter in G then dgn(v) > 24.

So a big vertex v in G will not be a <23-vertex in G. Let v be a big vertex

in G and xo,®s,...,%4,,()-1 be the neighbors of v in G" in clockwise order.
We call 24, ..., 2446 (Where addition is in mod dgv (v)) a sparse segment in G
iff:

—b>2,

— FEach z; 1s a 4-vertex.

In the next two lemmas let’s assume that z,, ..., 244 1S a maximal sparse seg-
ment of v in G, which is not equal to all the neighborhood of v. Also assume
that x,_1 and x44441 are the neighbors of v right before x, and right after z,4s,
respectively.

Lemma 6. There is a big vertex other than v, that is connected to all the vertices
Ofl‘a, ceesLatb-

We use u to denote the big vertex, other than v, that is connected to all
Las---sLatb:

Lemma 7. All the vertices 441, ..., %qq46—1 are connected to both u and v in
G. If xq_1 is not big in G then x4 is connected to both u and v in G. Otherwise
it 1s connected to at least one of them. Simalarly, if xqyp41 15 not big in G then
zp 1s connected to both u and v in G, and otherwise it s connected to at least
one of them.
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We call z441,...,Zqa46—1 the inner vertices of the sparse segment, and z,
and zq4p the end vertices of the sparse segment. Consider vertex v and let’s
call the maximal sparse segments of it @1, Qs, ..., @ in clockwise order, where

Qi = ¢i1,4,2,9,3, . ... The next two lemmas are the key lemmas in the proof of
Theorem 1.

Lemma 8. |Q;] < dg(v) — %A — 73, for1 <i<m.

Proof. We prove this by contradiction. Assume that for some i, |Q;] > dg(v) —
%A — 72. Let u; be the big vertex that is adjacent to all the inner vertices of Q);
(in both G and G"). (See Figure 1).

Fig. 1. The configuration of lemma 8

For an inner vertex of ();, say ¢; 2, we have:

dg2(qi2) < dg(ui) +dg(v) +2 - (|Q:i] — 3)
A(G) +da(v) — Qi +5

<
< 2ZA(G)+TT.

5
3
If ¢; » is adjacent to ¢; 1 or ¢; 3 in G then it is contradicting Lemma 1. Otherwise

it 1s only adjacent to v and u; in (G, therefore has degree 2, and so along with v
or u; contradicts Lemma 1. O

Therefore, if lemma 8 fails for some @;, then there must be a type 1 reducible
edge with an end point in @);.

Lemma 9. Consider G and suppose that u; and u;41 are the big vertices adja-
cent to all the inner vertices of Qi and Qiy1, respectively. Furthermore assume
that t is a vertex adjacent to both u; and u;y1 but not adjacent to v (see Figure
2) and there is a verter w € Ng(t) such that dg(t)+dg(w) < A(G)+2. Let X (¥)
be the set of vertices at distance at most 2 of t that are not in Ng[w;]UNg[t;41].
If | X(t)| <4 then:

1
Qi + |Qix1| < gA(G) —69.

Proof. Again we use contradiction. Assume that |Q;| + |Qi41] > +A(G) — 68.
Using the argument of the proof of Lemma 1, by contracting (¢, w), we can color
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Fig. 2. The configuration of lemma 9

every vertex of (¢ other than ¢. Note that dg2(t) < dg(w;) +dg(uis1) + | X (#)] <
2A(G) + 4. Tf all the colors of the inner vertices of @; have appeared on the
vertices of Ngfui+1] U X () — Qi1 and all the colors of inner vertices of @41
have appeared on the vertices of Ng[u;] U X(¥) — @; then there are at least
|Q:] — 2 + |Qit1] — 2 repeated colors at Ngz2(t). So the number of colors at
Nez(t) is at most 2A(G) + 4 — |Qi| — |Qi41] + 4, which is at most 2A(G) + 76

and so there is still one color available for ¢, which is a contradiction.

Therefore, without loss of generality, there exists an inner vertex of Q;41, say
¢i+1,2, Whose color is not in Ng[u;]UX () —@Q;. If there are less than gA(G) +77
colors at Ngz(git1,2) then we could assign a new color to ¢;4+1,2 and assign the
old color of it to ¢ and get a coloring for G. So there must be gA(G) + 77
different colors at Ngz(git1,2). iFrom the definition of a sparse segment, we
have: Ng(¢i41,2) C {v, wiy1, ¢i41,1, ¢i41,3}. There are at most dg(uip1)+5 colors,
called the smaller colors, at Ngluir1] U X (t) U Nalgiv11] U Nalgitr 3] — {v} —
{git+1,2} (note that ¢ is not colored). So there must be at least 2A(G)+72 different
colors, called the larger colors, at Ng[v] — Qi41. Since |[Ng[v]| — |Qi| — |@s41] <
A(G)+1—= 1A(G) 4+ 68 < 2A(G) + 69, one of these larger colors must be on
an inner vertex of (J;, which without loss of generality, we can assume is ¢; ».
Because t is not colored, we must have all the gA(G) + 78 colors at Ng=2(t).
Otherwise we could assign a color to ¢. As there are at most A(G) + 4 colors,
all from the smaller colors, at Ng[u;41]U X (¢), all the larger colors must be in
N¢lu;] too. Therefore the larger colors are in both N¢[v] and Ng[u;]. Note that
|NG2(gi,2)| < |Ng[v]|+|Na[ui]] < 2A(G). So there are at most 2A(G)—2A(G) —
72 = %A(G) — 72 different colors at Ng=(g;2) and so we can assign a new color
to ¢;,» and assign the old color of ¢; 2, which is one of the larger colors and is
not in Ng=(t) — {¢; 2}, to t and extend the coloring to (4, a contradiction. O

Another way of looking at the proof of Lemma 9 i1s that we showed the
following is a reducible edge:
Type 2 reducible edge: (¢, w), under the assumptions of Lemma 9.
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4 Discharging Rules

We give an initial charge of dg»(v) — 6 units to each vertex v. Using the Euler
formula, |V| — |E|+ |F| = 2, and noting that 3|F(G")| = 2|E(G")|:

D (dan(v) = 6) = 2[E(G”)| = 6]V |+ 4| B(G")| - 6| F(G")| = =12 (1)

By these initial charges, the only vertices that have negative charges are 4- and
b-vertices, which have charges —2 and —1, respectively. The goal 1s to show that,
based on the assumption that G is a minimum counter-example, we can send
charges from other vertices to <5-vertices such that all the vertices have non-
negative charge, which is of course a contradiction since the total charge must
be negative by equation (1).

We call a vertex v pseudo-big (in G”) if v is big (in G) and dg»(v) > dg(v) —
11. Note that a pseudo-big vertex is also a big vertex, but a big vertex might
or might not be a pseudo-big vertex. Before explaining the discharging rules, we
need a few more notations.

Suppose that v, z1,xs, ..., zg, u 18 a sequence of vertices such that v is adja-
cent to x1, x; 1s adjacent to x;41, 1 <17 < k, and zj is adjacent to w.

Definition: By “v sends ¢ units of charge through x1, ...,z to u” we mean
v sends ¢ units of charge to #1, it passes the charge to xs... etc, and finally z
passes the charge to u. In this case, we also say “v sends ¢ units of charge through
x1” and “u gets ¢ units of charge through x;”.

Note that in order to simplify the calculations of the total charges on vertex
z;, 1 <1 <k, we do not take into account the charges that only pass through
z;. We say v saves k units of charge on a set of size [ of its neighbors, if the
total charge sent from v to or through them minus the total charge sent from or
through them to v is at most [ — & units. So, for example, if v is sending nothing

3

to u and is getting % through u then v saves 5 on u.

In discharging phase, a big vertex v of G:

1) Sends 1 unit of charge to each 4-vertex u in Ng» (v).
2) Sends 1 unit of charge to each 5-vertex u in Ngn (v).

In addition, if v 1s a big vertex and wg, u1, us, us, usa are consecutive neighbors
of v in clockwise or counter-clockwise order, where dgn(ug) = 4, then:

3) If dg(u1) = b, ug is big, dgn(us) = 4, dgr(uq) > 5, and the neighbors of
uy 1n clockwise or counter-clockwise order are v, ug, 1, €2, us then v sends
% to #1 through wus, uy.

) If dgr(uy) = 5,5 < dgr(uz) < 6, dgr(usz) > 7, and the neighbors of u; in
clockwise or counter-clockwise order are v, ug, 1, s, us then v sends % to x1
through wus, us, uy.

5) If dgi(u1) = 5, us is big, dgn(uz) > 5, and the neighbors of u; in clockwise
or counter-clockwise order are v, ug, x1, ¥2, us then v sends % to #1 through
Uo, Uq.



Frequency Channel Assignment on Planar Networks 9

6) If dg(u1) = 6, dgv(uz) < 5, dgv(us) > 7, and the neighbors of uy in
clockwise or counter-clockwise order are v, up, €1, Z2, 23, us then v sends %
to ¢1 through u;.

7)if dgn(u1) = 6, dgr(us2) > 6, and the neighbors of u; in clockwise or counter-
clockwise order are v, ug, x1, 29, 3, us then v sends % to #1 through wu;.

if 7< dGu(U) < 12 then:

8) If u is a big vertex and wug, uy, ug, v, ug, 4, us are consecutive neighbors of
where all ug, uy, us, us, ug, us are 4-vertices then v sends % to u.

9) if ug, u1, us, uz are consecutive neighbors of v, such that dg» (uy) = dgr (us2) =
5, up and ug are big, and ¢ is the other common neighbor of w3 and usy (other
than v), then v sends % to t.

Every >12-vertex v of G' that was not big in G:
10) Sends % to each of its neighbors.
A <b-vertex v sends charges as follows:

11) if dgv(v) = 4 and its neighbors in clockwise order are ug, u1, ua, us, such
that wg, u1, us are big in G and ug 1s small, then v sends % to each of ug and
uy through u;.

12) If dg» (v) = 5 and its neighbors in clockwise order are ug, uy, ug, us, uq, such
that dG//(UO) S 11, dGu(ul) Z 12, dG//(Uz) Z 12, dGu(U3) S 11, and Uag 1s
big, then v sends % to uy.

It can be proved that after applying the discharging rules:
Lemma 10. Every vertex v that is not big in G will have non-negative charge.

Lemma 11. Fvery big vertexr v that ts not pseudo-big will have non-negative
charge.

Lemma 12. Fvery pseudo-big verter v has non-negative charge.

We omit the proofs of Lemmas 10, 11, and 12 because of a lack of space.

Proof of Theorem 2: By Lemmas 10, 11, and 12 every vertex of G" will
have non-negative charge, after applying the discharging rules. Therefore the to-
tal charge over all the vertices of G” will be non-negative, but this is contradicting
equation (1). This disproves the existence of G, a minimum counter-example to
the theorem.

5 Generalization to Bound )\g

The general steps of the proof of Theorem 1 are very similar to those of Theorem
2. The case ¢ = 0 reduces to the Four Color Theorem. So let’s assume that ¢ > 1.
Let G be a planar graph which 1s a minimum counter-example to Theorem 1.
Recall that a vertex is big, if dg(v) > 47. The proof of the following lemmas and
observations are very similar to the corresponding ones for Theorem 2.
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Lemma 13. Suppose that v s a <b-vertex in G. If there exists a vertex u €

N(v), such that dg(v) + dg(u) < A+ 2 then dg2(v) > da(v) + gA + 73.
Since the bound 2(2¢ — 1)A + 10p + 38¢ — 24 is already proved in [13]:

Observation 4. We can assume that A > 160.
Lemma 14. FEvery <b-vertex must be adjacent to at least 2 big vertices.

Now construct graph G’ from G and then G from G’ in the same way we did
in the proof of Theorem 2. Also, we define the sparse segments in the same way.
Consider vertex v and let’s call the maximal sparse segments of it Q1,Qs2, ..., @m
in clockwise order, where Q; = ¢; 1,¢i2, i3, - -

Lemma 15. |Q;| < dg(v) — 2A — 70.

Lemma 16. Suppose thalt u; and u;y1 are the big vertices adjacent to all the
vertices of Q; and @Q;41, respectively. Furthermore assume that t is a <6-vertex
adjacent to both uw; and w;11 but not adjacent to v (see Figure 2) and there is
a vertexr w € N(t) such that dg(t) + dg(w) < A(G)+ 2. Let X(t) be the set of
vertices at distance at most 2 of t that are not in N[uw;)U N[u;1]. If | X ()] <4
then:

Qi +1Qis] < 3AG) - 69. @

The rest of the proof is almost identical to that of Theorem 2. We apply
the same initial charges and discharging rules, and use Lemmas 14, 15, and 16,
instead of Lemmas 2, 8, and 9, respectively.

6 The Algorithm and the Asymptotic Tightness of the
Result

Now we describe an algorithm that can be used for each of Theorems 1 or 2 to
find such colorings. Consider a planar graph G. One iteration of the algorithm
is to reduce the size of the problem by finding a reducible edge in GG, contracting
it, coloring the new smaller graph recursively, and then extending the coloring
to . At each 1iteration, first we check to see if every <b-vertex is adjacent to at
least 2 big vertices or not. If not, then that vertex along with one of its small
neighbors will be a type 1 reducible edge by Lemma 2. Otherwise, we construct
the triangulated graph G” and apply the initial charges and the discharging
rules. As the total charge i1s negative, we can find a big vertex with negative
charge. This vertex must have at least one of the configurations of Lemmas 8
and 9 or 15 and 16 for the cases of Theorem 2 or 1, respectively. If it has the
configuration of Lemma 8 then one of the inner vertices of the sparse segment
along with one of its two big neighbors will be a type 1 reducible edge. Otherwise,
if it has the configuration of Lemma 9 then (¢, w) will be a type 2 reducible edge
(recall t and w from Lemma 9). In either of these cases we reduce the size of the
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graph by one. Thus, we can iterate until the size of the graph is small enough,
i.e constant. In that case we can find the required coloring in constant time.

To see if there is a <b-vertex with less than 2 big neighbors we spend at
most O(n) time, where n is the number of vertices in G. Also, applying the
initial charges and discharging rules takes O(n) time. After finding a vertex
with negative charge, finding the suitable edge and then contracting it can be
done in O(n). Since there are O(n) iterations of the main procedure, the total
running time of the algorithm would be O(n?).

Now we show that these theorems are asymptotically tight, if we use this
proof technique. The results of [1] and [3] are essentially based on showing that
in a planar graph G, there exists a vertex v such that dg=(v) < L%A(G)J +1. This
also leads to a greedy algorithm for coloring GZ. However, as pointed out in [1],
this is the best possible bound. That is, there are planar graphs in which every
vertex v satisfies dgz2(v) > [%A(G)]. See [1] for an example. For the moment,
let’s just focus on the asymptotic order of the bounds and denote the additive
constants by C'. The reducible configuration in Lemma 8, after modifying the
coefficient from g to %, is the only configuration needed in obtaining the bound
(G < %A(G) + (. The extremal graph of [1] is actually an extremal graph for
this lemma, and this 1s the reason that we need another reducible structure, like
the one in Lemma 9, to improve previously known results asymptotically. But
there are graphs that are extremal for both of these lemmas. For an odd value of
k, one of these graphs is shown in Figure 3. In this graph G, which is obtained
based on a tetrahedron, we have to join the three copies of vg and remove the
multiple edges (we draw the graph in this way for clarity). The dashed lines
represent sequences of consecutive 4-vertices. Around each of vy, ..., vy there are
3k —5 of such vertices. It is easy to see that G does not have the configuration of
Lemma 9. So the minimum degree of the vertices in G2 is of order of gA(G) and
G does not have the configuration of Lemma9. One can easily check that if we are
going to use only %A(G) + C' colors, we can get a variation of Lemma 9 in which
the coefficient of A 1s %, instead of g But even that configuration does not appear
in the graph of Figure 3. Therefore, using these two reducible configurations the
best asymptotic bound that we can achieve is gA(G), and we probably need

another reducible configuration to improve this result asymptotically.
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