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Abstra
t. In the edge-disjoint 
y
le pa
king problem we are given a

graph G and we have to �nd a largest set of edge-disjoint 
y
les in G. The

problem of pa
king vertex-disjoint 
y
les in G is de�ned similarly. The

best approximation algorithms for edge-disjoint 
y
le pa
king are due

to Krivelevi
h et al. [16℄, where they give an O(

p

log n)-approximation

for undire
ted graphs and an O(

p

n)-approximation for dire
ted graphs.

They also 
onje
ture that the problem in dire
ted 
ase has an integrality

gap of 
(

p

n). No non-trivial lower bound is known for the integrality

gap of this problem. Here we show that both problems of pa
king edge-

disjoint and pa
king vertex-disjoint 
y
les in a dire
ted graph have an

integrality gap of 
(

log n

log log n

). This is the �rst super 
onstant lower bound

for the integrality gap of these problems. We also prove that both prob-

lems are quasi-NP-hard to approximate within a fa
tor of 
(log

1��

n),

for any � > 0. For the problem of pa
king vertex-disjoint 
y
les, we give

the �rst approximation algorithms with ratios O(log n) (for undire
ted

graphs) and O(

p

n) (for dire
ted graphs). Our algorithms work for the

more general 
ase where we have a 
apa
ity 


v

on every vertex v and

we are seeking a largest set C of 
y
les su
h that at most 


v


y
les of C


ontain v.

1 Introdu
tion

We study approximation algorithms, lower and upper bounds for the integrality

gaps, and hardness results for the problems of pa
king disjoint 
y
les in a graph

(dire
ted or undire
ted). In the problem of pa
king edge-disjoint 
y
les (EDC ),

we are given a graph G (whi
h 
an be dire
ted or undire
ted) and we have to �nd

a largest set of edge-disjoint 
y
les in G. The problem of pa
king vertex-disjoint

?
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y
les (VDC ) is de�ned similarly: �nd the maximum number of vertex-disjoint


y
les in G. The EDC problem has been studied extensively both in undire
ted

and dire
ted graphs (see [16, 4, 6, 21℄). Both EDC and VDC are fundamental

problems in graph theory with appli
ations in several areas (see the dis
ussion

in [4℄ for an appli
ation in 
omputational biology and re
onstru
tion of evolu-

tionary trees). Let's denote by �

e

(G) and �

v

(G) the sizes of largest 
olle
tions

of edge-disjoint and vertex-disjoint 
y
les in G, respe
tively. It is well known

that 
omputing �

e

(G) and �

v

(G) are NP-hard even for undire
ted graphs. This

motivates the study of approximation algorithms for these problems. An algo-

rithm is 
alled an �-approximation for a maximization problem if the solution

returned by the algorithm is at least a fa
tor 1=� of the optimal solution, and �

is 
alled the approximation (or performan
e) ratio of the algorithm. A natural

generalization of EDC is the problem of S-
y
le pa
king (denote by s-EDC ).

In this problem, along with G we are given a subset S of verti
es of G and the

goal is to �nd maximum number of edge-disjoint S-
y
les in G, i.e. 
y
les ea
h

of whi
h 
ontains a vertex of S. The analogous problem of s-VDC is de�ned as

�nding maximum number of 
y
les in G ea
h of whi
h 
ontains a vertex of S

and are disjoint on the verti
es in V � S.

Known results: Carpara et al. [6℄ showed that a simple greedy algorithm

yields an O(log n)-approximation for 
omputing �

e

(G) and that the problem is

APX-hard even for planar graphs (i.e. for an absolute 
onstant �

0

> 0, no (1+�

0

)-

approximation exists unless P=NP). Very re
ently, Krivelevi
h et al. [16℄ showed

that the greedy algorithm of [6℄ a
tually yields an O(

p

logn)-approximation

for EDC and gave examples to show that this is tight. In fa
t they proved an

upper bound of O(

p

logn) for the integrality gap of EDC . For dire
ted graphs,

they gave an O(

p

n)-approximation for EDC and an O(n

2

3

)-approximation for

s-EDC . Their algorithm for dire
ted EDC shows that the integrality gap of

EDC in dire
ted graphs is at most O(

p

n). No non-trivial lower bounds for

the integrality gap of EDC in dire
ted setting is known. The authors in [16℄


onje
tured that there is a lower bound of 
(

p

n) for this integrality gap.

Related results: The dual problems of pa
king 
y
les (known as feedba
k

sets problems) are also very well studied problems in both dire
ted and undi-

re
ted settings. The dual problem of VDC , known as Feedba
k Vertex Set

(FVS), is the problem of �nding minimum number of verti
es in a graph whose

removal makes the graph a
y
li
. This problem and its generalization (in whi
h

every vertex has a weight and we seek to minimize the total weight of sele
ted

verti
es) has 2-approximation algorithms in undire
ted graphs (see [3, 5, 10℄).

The problem of �nding minimum number of edges in a graph that meet every


y
le (FES) is trivial for undire
ted graphs (
omplement of a spanning tree).

For dire
ted graphs, there is an easy redu
tion from FES to FVS. Seymour [21℄

showed that, if the optimal fra
tional FVS in a dire
ted graph G has value '

�

then the optimal integral FVS in G has value at most O('

�

log'

�

log log'

�

).

This yields an O(log'

�

log log'

�

)-approximation algorithm for FVS in dire
ted

graphs [13℄. Alon and Seymour (see [21℄) showed that the integrality gap of FVS

is 
(log'

�

).
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As far as we know, the only hardness result for the problems of pa
king

disjoint 
y
les is the the APX-hardness result proved in [6℄ for undire
ted EDC ,

and no better hardness or even a super 
onstant lower bound for the integrality

gap of EDC in dire
ted graphs is known. As mentioned earlier, Krivelevi
h et al.

[16℄ have 
onje
tured that this gap is 
(

p

n). This 
onje
ture seems 
on
eivable,

given the fa
t that the well known similar problem of edge-disjoint paths (EDP)

has su
h an integrality gap (even in undire
ted 
ase). Here we take the �rst step

toward tightening this gap. Our main result is that EDC in dire
ted setting has

an integrality gap of 
(

logn

log logn

). More importantly, we prove that it is quasi-

NP-hard to approximate �

e

(G) within a fa
tor of 
(log

1��

n) for any � > 0.

Under stronger 
omplexity assumptions we 
an prove a slightly better hardness

of 
(

log n

log logn

). As we will see, there are quite easy redu
tions between EDC and

VDC in dire
ted graphs. Therefore, our hardness result for EDC 
arries over to

VDC , i.e. VDC in dire
ted graphs is hard to approximate within a fa
tor of


(log

1��

n).

We also 
onsider the 
ap
itated version of 
y
le pa
king problems. In the


apa
itated version of VDC , we are given a graph G(V;E) with a positive


apa
ity 


v

on every vertex v 2 V and the goal is to �nd a largest 
olle
tion C of


y
les in G su
h that ea
h vertex v belongs to at most 


v


y
les of C. We abuse

the notation slightly by 
alling this 
apa
itated version VDC




, although the


y
les are not required to be vertex-disjoint anymore. For undire
ted VDC




, we

give an O(log n)-approximation. This also shows an upper bound of O(log n) on

the integrality gap of VDC




in undire
ted graphs. We are not aware of any earlier

approximation algorithm for this problem. For dire
ted VDC




, we show that a

simple randomized rounding algorithm (similar to the ones we presented in [9℄)

yields an O(

p

n)-approximation. The same algorithm works for the even more

general 
ase of 
apa
itated (dire
ted) s-VDC , where every vertex v 2 V � S

has a 
apa
ity 


v

and we have to �nd a largest 
olle
tion C of S-
y
les (i.e.


y
les that interse
t S) su
h that ea
h vertex v 2 V � S belongs to at most 


v


y
les. We denote this problem by s-VDC




. Note that for the s-EDC [16℄ gave

an O(n

2

3

) greedy approximation algorithm. It 
an be shown (as we will see) that

this upper bound is tight for their greedy algorithm.

Remark: For the 
apa
ited version of EDC (denoted by EDC




), as noted by

the authors in [16℄, their results for EDC 
an be easily extended to an O(

p

logn)-

approximation algorithm for undire
ted EDC




and an O(

p

n)-approximation for

dire
ted EDC




.

Throughout the paper, we use n to denote the number of verti
es of the input

graph.

2 Approximation Algorithms

Let G(V;E) be the given graph with a 
apa
ity 


v

for every vertex v 2 V , and

let C(G) denote the set of all 
y
les of G. The following is the standard integer

program (IP) formulation of VDC




:
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maximize

P

C2C

x

C

subje
t to 8v 2 V :

P

C:v2C

x

C

� 


v

8C 2 C : x

C

2 f0; 1g

(1)

Trivially, for VDC all 


v

values are equal to 1. The fra
tional VDC




prob-

lem is the linear program relaxation of this IP. The integer program formula-

tion for EDC




is de�ned similarly. Here, we will have a 
onstraint of the form

P

C:e2C

x

C

� 


e

, for every edge e 2 E. For the EDC problem, all the 
apa
ities

are 1. Clearly, the solutions to the fra
tional problems (LP's) are upper bounds

to the solutions for the 
orresponding integral problems (IP's). Let �

�

v

(G) and

�

�

e

(G) denote the values of optimal fra
tional solutions for VDC and EDC ,

respe
tively.

Theorem 1. There is an O(log n)-approximation for (undire
ted) VDC




.

Proof. We are going to in
orporate a te
hnique from [18℄ with the simple greedy

algorithm, similar to the one for the EDC in [6, 16℄. The idea of this greedy

algorithm was impli
it in [11℄.

Consider the problem of fra
tional VDC




, i.e. the LP 
orresponding to the

IP given in (1). Note that the separation ora
le for the dual of this LP is the

problem of �nding a shortest 
y
le in a weighted graph. Sin
e this problem 
an

be solved in polynomial time, using the same method as in Theorem 4.1 of [15℄

(or [7℄) we 
an solve the primal LP in polynomial time. Let '(G) and '

�

(G)

denote the values of optimal solution to the IP and the 
orresponding LP for

VDC




. Let Y = fx

1

; : : : ; x

p

g be the set of primal variables that have value > 0

in the optimal fra
tional solution. One of the features of the algorithm of [15℄

is that p (the number of fra
tional 
y
les) is polynomial in n, even-though the

LP has an exponential number of variables. If

P

p

i=1

bx

i


 �

1

logn

P

p

i=1

x

i

then

Y

0

= fbx

1


; : : : ; bx

p


g is an integral solution with value at least

'

�

(G)

logn

, whi
h is

at least

'(G)

logn

. In this 
ase the algorithm returns the 
y
les 
orresponding to the

variables in Y

0

and stops. Otherwise, if

P

p

i=1

bx

i


 <

1

logn

P

p

i=1

x

i

then

'

�

(G) =

p

X

i=1

x

i

=

p

X

i=1

bx

i


+

p

X

i=1

(x

i

� bx

i


) <

'

�

(G)

logn

+ p:

Therefore, with Q = p � (

logn

log n�1

): '

�

(G) < Q. This implies that for every vertex

v 2 G, at most a value of minf


v

; Qg of 
apa
ity of v is used in any optimal

(fra
tional or integral) solution. So we 
an de
rease the 
apa
ity 


v

of every

vertex v to minf


v

; Qg.

We are also going to assign 
apa
ities to the edges of G. Initially, every edge

has in�nite 
apa
ity. Throughout the algorithm, we will repla
e a vertex v of

degree 2 with neighbors u and w with an edge between u and w with 
apa
ity 


v

.

We perform the following algorithm on G as long as G has a 
y
le. The algorithm

is based on the greedy algorithm proposed in [6℄ for the EDC . Initially C = ;.
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1. While G 
ontains a vertex v of degree � 1 or with 
apa
ity 0 delete v (and

all the edges in
ident with it).

2. While G 
ontains a vertex v of degree 2 with neighbors u and w delete v

and add an edge uw with 
apa
ity 


v

to G.

3. Find a shortest 
y
le C in G and add it to C, de
rease the 
apa
ity of every

vertex in C and every edge with �nite 
apa
ity in C by 1. Go to step 1.

It is easy to see that steps 1 and 2 don't 
hange the value of an optimal

solution. Also, sin
e the 
apa
ity of every vertex is polynomial in n, the size

of the graph is always a polynomial fa
tor of the initial size of G. Let S

i

be

the i'th iteration in whi
h we perform step 3 and let G

i

be the graph at the

beginning of iteration S

i

, and n

i

= jG

i

j. It is well known that every graph

with minimum degree at least 3 on n verti
es has girth (size of the shortest


y
le) at most O(log n) [11℄. Sin
e graph G

i

has minimum degree 3, the girth

of G

i

is at most O(log n

i

). Therefore, the 
y
le found in step S

i

interse
ts at

most O(log n

i

) (whi
h is O(log n)) 
y
les of the optimal fra
tional solution. This

is true for every step S

i

. Thus, '

�

(G) � O(log n)jCj, i.e. the algorithm is an

O(log n) approximation. �

Our next theorem gives an O(

p

n)-approximation algorithm for dire
ted s-

VDC




. First we show that the greedy algorithm of [16℄ for s-EDC (and its

adapted version for s-VDC ) will have a ratio of at least 
(n

2

3

). We give the


onstru
tion of a graph G whi
h is a simple modi�
ation of a 
onstru
tion given

by Chekuri and Khanna [8℄ for the problem of edge-disjoint paths (EDP) in

dire
ted graphs. G 
onsists of two layered graphs G

1

and G

2

, where G

1


ontains

layers X

1

; : : : ; X

q

and G

2


ontains layers Y

1

; : : : ; Y

q

of verti
es, with q = n

2

3

.

Ea
h X

i

and Y

i

has n

1

3

verti
es and every vertex in X

i

(in Y

i

), 1 � i < q, is


onne
ted by an edge to every vertex in X

i+1

(in Y

i+1

). For every odd value

of i � q � 2 pi
k a representative vertex x

r

i

from X

i

and one y

r

i+1

from Y

i+1

.

Conne
t x

r

i

to y

r

i+1

and 
onne
t y

r

i+1

to x

r

i+2

. Finlay put an edge between every

vertex in Y

q

to every vertex in X

1

. Let S = X

1

. It is easy to verify that G has


(n

2

3

) edge-disjoint S-
y
les (and they are in fa
t vertex disjoint on V � S). If

the greedy algorithm pi
ks in its �rst S-
y
le all the edges between G

1

and G

2

then it �nds only one 
y
le (sin
e the edges from G

1

to G

2

form a 
ut of size

O(q) from G

1

to G

2

). Therefore, the ratio of greedy algorithm proposed in [16℄

for s-EDC (and its analogous for s-VDC ) is at least 
(n

2

3

).

Theorem 2. There is an O(

p

n)-approximation algorithm for dire
ted s-VDC




.

Proof. The proof of this theorem follows the same steps as the approximation

algorithms of [9℄ for disjoint Steiner trees in dire
ted graphs. Let G(V;E), set

S � V , and 
apa
ity 


v

for every vertex v 2 V � S be the given instan
e of

s-VDC




. Consider the IP/LP formulation of the s-VDC




problem, whi
h is the

same as (1) given for VDC




ex
ept that C(G) will be the set of all S-
y
les of

G. Consider the optimal fra
tional solution whi
h is again 
omputed using the

te
hnique of [15℄ or [7℄. We 
an 
ompute this fra
tional solution in polynomial

time sin
e the separation ora
le for the dual LP is the problem of �nding a
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shortest S-
y
le in a weighted graph, and this 
an be 
omputed in polynomial

time. Consider a solution to the LP of s-VDC




and let X

�

= fx

�

1

; x

�

2

; : : : x

�

p(n)

g

be the set of fra
tional 
y
les in this optimal fra
tional solution, where p(n) is

some polynomial in n. For every S-
y
le C with fra
tional value x

�

C

� 1 we

\take out" bx

�

C


 
opies of that 
y
le from the graph and put them in the �nal

integral solution that we are 
omputing. This way we will �nd a set C

1

of size at

least '

�

1

=

P

p(n)

i=1

bx

�

i


 integral S-
y
les. We also de
rease the 
apa
ity of every

vertex in 
y
le C by bx

�

C


, and repla
e x

�

C

with x

�

C

� bx

�

C


 in the fra
tional

solution. Now let '

�

2

=

P

p(n)

i=1

x

�

i

. Note that the value of the solution to the LP

of s-VDC




is '

�

1

+ '

�

2

. We show how to �nd a set C

2

of size at least O(

'

�

2

p

n

)

integral 
y
les. The �nal solution will be C

1

[ C

2

whi
h 
learly has size at least

O('

�

1

+

'

�

2

p

n

), and sin
e the value of the solution to the original LP is '

�

1

+ '

�

2

,

we get an O(

p

n)-approximation.

If '

�

2

� 30

p

n then it is enough to �nd just one S-
y
le in G and pla
e it in

C

2

. So let's assume that '

�

2

> 30

p

n. For every 
y
le C 2 C(G), pi
k that 
y
le

with probability x

�




=� for a � > 0 to be de�ned soon. De�ne Y

C

to be random

variable that is 1 if and only if 
y
le C is sele
ted. So for Y =

P

C2C(G)

Y

C

(i.e.

total number of 
y
les pla
ed in C

2

), we have:

E[Y ℄ =

X

C2C(G)

Pr[Y

C

= 1℄ =

X

C2C(G)

x

�

C

�

=

'

�

2

�

:

De�ne the bad event A

v

to be the event that more than 


v


y
les 
ontaining

vertex v 2 V � S are sele
ted. We 
an show that with positive probability none

of these events happens (so no vertex 
apa
ity is violated) and that the number

of 
y
les sele
ted is at least O('

�

2

=�). We borrow the following lemma from [9℄:

Lemma 1. [9℄ Assume that A = fa

1

; : : : ; a

n

g is a set of n non-negative re-

als and let A

k

be the set of all subsets of size k of A. If

P

n

i=1

a

i

� Q , then

P

fa

i

1

;:::;a

i

k

g2A

k

a

i

1

a

i

2

: : : a

i

k

�

�

n

k

�

(Q=n)

k

.

For every vertex v 2 V �S, denote the number of fra
tional 
y
les C with x

�

C

> 0

that 
ontain v by  

v

. By this de�nition:

Pr[A

v

℄ �

X




v

+1

Y

i=1

x

�

C

a

i

=�;

where the summation is over all subsets fC

a

1

; : : : ; C

a




v

+1

g of size 


v

+1 of 
y
les

with x

�

C

a

i

> 0 that 
ontain vertex v. Therefore, using Lemma 1:

Pr[A

v

℄ �

�

 

v




v

+ 1

��




v

� 

v

�




v

+1

�

�

v 

v




v

+ 1

�




v

+1

�




v

� 

v

�




v

+1

�

e

2

�

2

;

where we have used the fa
t

�

n

k

�

� (

en

k

)

k

for the se
ond inequality. It is intuitively


lear that if A

v

holds then it does not in
rease the probability of any other A

v

0

. In
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other words, events A

v

are \positively 
orrelated". Therefore: Pr[

V

v2V�S

A

v

℄ �

Q

v2V�S

Pr[A

v

℄ � (1 �

e

2

�

2

)

n

. Also, by Cherno� bound, for 0 � Æ < 1: Pr[Y <

(1� Æ)E[Y ℄℄ � e

�Æ

2

'

�

2

=2�

. Thus:

Pr[(Y < (1� Æ)E[Y ℄) _ (9v 2 V � S : A

v

)℄ � e

�Æ

2

'

�

2

=2�

+ 1� (1� e

2

=�

2

)

n

:

If we show that for suitable Æ and �: (1 � e

2

=�

2

)

n

> e

�Æ

2

'

�

2

=2�

then using the

method of 
onditional probability, we 
an eÆ
iently �nd a sele
tion C

2

of S-
y
les

su
h that jC

2

j � (1�Æ)'

�

2

=� and that no vertex 
apa
ity 
onstraint is violated. If

'

�

2

� n then with Æ =

1

2

and � = e

p

n we �nd a 
olle
tion C

2

of S-
y
les that obey

the 
apa
ity 
onstraints of verti
es with jC

2

j � '

�

2

=2e

p

n. If '

�

2

> n then there

is a 
onstant � > 0 su
h that with Æ =

1

2

and � = �: (1� e

2

=�

2

)

n

> e

�Æ

2

'

�

2

=2�

.

Again, we 
an �nd a 
olle
tion C

2

of S-
y
les that satisfy the 
apa
ity 
onstraints

of verti
es and jC

2

j �

'

�

2

2�

. In any 
ase, we �nd a set C

2

of size at least 
(

'

�

2

p

n

).

Therefore, the algorithm is an O(

p

n)-approximation for s-VDC




. �

3 Integrality Gap and Hardness of Dire
ted EDC and

VDC

In this se
tion, we prove that ea
h of EDC and VDC has an integrality gap of


(

logn

log logn

). Furthermore, ea
h of �

v

(G) and �

e

(G) is quasi-NP-hard to approxi-

mate within a fa
tor of O(log

1��

n), for any � > 0. First, we provide approximate

preserving redu
tions between EDC and VDC .

Theorem 3. Given a dire
ted graph G(V;E) as an instan
e of VDC (of EDC )

there is an instan
e G

0

(V

0

; E

0

) of EDC (of VDC ) with jG

0

j = poly(jGj), su
h

that G has k vertex-disjoint 
y
les (edge-disjoint 
y
les) if and only if G

0

has k

edge-disjoint 
y
les (vertex-disjoint 
y
les).

Proof. 1st dire
tion: For ea
h node v 2 V , G

0


ontains two nodes v

1

; v

2

. We

add v

1

v

2

to E

0

. Furthermore, for every edge uv 2 E we 
reate an edge u

2

v

1

in E

0

and for every edge vw 2 E we 
reate an edge v

2

w

1

in E

0

. It is easy to

see that if C is a 
olle
tion of integral (or fra
tional) vertex-disjoint 
y
les in

G with size k then there is a 
olle
tion C

0

of k integral (or fra
tional) edge-

disjoint 
y
les in G

0

. Conversely, suppose that C

0

is a 
olle
tion of k integral (or

fra
tional) edge-disjoint 
y
les in G

0

. Then for every edge v

1

v

2

(
orresponding to

a vertex v 2 V (G)) there is at most a total of one integral (or fra
tional) 
y
le(s)


ontaining that edge. Therefore, by 
ontra
ting the edges of the form v

1

v

2

on

ea
h 
y
le of C

0

we obtain a 
olle
tion of k integral (or fra
tional) vertex-disjoint


y
les in G.

2nd dire
tion: Suppose G is an instan
e of EDC . For every edge xy in G 
re-

ate a vertex v

xy

inG

0

. For every vertex x 2 G with ingoing edges y

1

x; y

2

x; : : : ; y

p

x

and outgoing edges xz

1

; xz

2

; : : : ; xz

q

add the following edges to G

0

: v

y

i

x

v

xz

j

for

every 1 � i � p and 1 � j � q. It 
an be seen that G has k edge-disjoint in-

tegral (or fra
tional) 
y
les if and only if if G

0

has k vertex-disjoint integral (or

fra
tional) 
y
les. �
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1
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u

ij

h

2

ij

h

1

ij

Fig. 1. Constru
tion of D

r

: ea
h gray 
ir
le 
orresponds to an interse
tion module

So it is enough to prove our lower bound for integrality gap and the hardness

result for EDC . Then we use Theorem 3 to dedu
e a similar result for VDC .

Theorem 4. The dire
ted EDC problem has an integrality gap of 
(

logn

log logn

).

We give the 
onstru
tion of a graph G on n verti
es, su
h that

�

�

e

(G)

�

e

(G)

2


(

logn

log logn

). Our starting point is a grid-like graph whi
h gives the 
(

p

n) in-

tegrality gap for the well-known problems of disjoint paths. An instan
e of the

edge-disjoint paths (EDP) problem 
onsists of a (dire
ted) graph G with pairs

of verti
es s

i

; t

i

, for 1 � i � k, and the goal is to 
onne
t maximum number of

pairs s

i

; t

i

using edge-disjoint paths. The vertex-disjoint paths (VDP) problem

is de�ned similarly.

Let r be a positive integer and de�ne a dire
ted graph whi
h 
onsists of

verti
es s

i

; t

i

(1 � i � r) together with verti
es h

ij

; u

ij

; v

ij

, 1 � j � i � r.

There is an edge from h

ij

to u

ij

and an edge from h

ij

to v

ij

(1 � j � i � r).

There are also edges u

ij

h

i(j+1)

and v

ij

h

(i+1)j

for 1 � j < i < r. Furthermore,

for every 1 � i < r it has edges u

ii

h

(i+1)(i+1)

, s

i

h

i1

, and v

ri

t

i

. Finally u

r(r�1)

is


onne
ted to t

r

. Sin
e this graph has a drawing on the plane, there 
annot be

two vertex-disjoint paths P

i

and P

j

(1 � i 6= j � r) where P

i

starts from s

i

and

ends in t

i

and P

j

starts from s

j

and ends in t

j

. Be
ause we want to have edge-

disjoint property, we \split" every vertex h

ij

into two 
opies h

1

ij

and h

2

ij

, where

the ingoing edges of h

ij

are now going into h

1

ij

and the outgoing edges of h

ij

are

going out of h

2

ij

and put the edge h

1

ij

h

2

ij

in (see Figure 1). Let's 
all this graph

D

r

and the subgraph indu
ed by four verti
es h

1

ij

; h

2

ij

; u

ij

; v

ij

an interse
tion

module of D

r

. Again, it is easy to see that there 
annot be two edge-disjoint

paths from s

i

's to t

i

's (be
ause we 
an route at most one path through every

interse
tion module). Note that:

Fa
t 1: The half-integral fra
tional solution for EDP in D

r

has value �

r

2

.

This 
reates a gap of 
(r), whi
h is 
(

p

n), with n being the number of

verti
es in the graph. We will use this fa
t again, later on. A natural attempt to

extend this result to the 
y
le pa
king problem would be to add dire
ted edges

t

i

s

i

, for 1 � i � r. Unfortunately, this new graph will have an integral solution of
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s

2

s

j

s

r

s

1

t

1

r

t

2

r

s

i

t

2

j

t

1

j

t

2

i

t

1

i

t

2

2

t

1

2

t

2

1

t

1

1

Fig. 2. Constru
tion of H

r

from two 
opies of D

r

value 
(r) (for e.g. 
onsider the dire
ted 
y
le that goes from s

1

to t

r

along the

diagonal path, then to s

r

and to t

1

and ba
k to s

1

. We 
an pi
k

r

4

su
h 
y
les).

So this doesn't 
reate the desired gap. The problem here is 
aused be
ause the


y
les are not bond to follow a path dire
tly from s

i

to t

i

(they may go through

other s

j

's and t

j

's before rea
hing t

i

). Our idea to resolve this problem is to

make it \too 
ostly" for the 
y
les to do so. In other words, we are going to


ombine many 
opies of D

r

in a spe
ial manner so that if a 
y
le 
onsist of a

\non-trivial" path from s

i

to t

i

then it has a very long length; so long that we


annot have many of them. This will 
reate the desired gap.

Using two 
opies of graph D

r

we 
onstru
t another graph H

r

in the follow-

ing way. Consider graph D

r

with input verti
es s

1

; : : : ; s

r

and output verti
es

t

1

; : : : ; t

r

. Take two 
opies of this graph, D

1

r

and D

2

r

, and identify (only) the

input verti
es of them. Let s

1

; : : : ; s

r

be the new set of (uni�ed) input verti
es

and t

1

1

; : : : ; t

1

r

and t

2

1

; : : : ; t

2

r

be the set of output verti
es. Let's 
all this graph

H

r

(see Figure 2). An important observation to make here is that H

r

is a
y
li
.

This is 
ru
ial to our main 
onstru
tion. We 
all the triple s

i

; t

1

i

; t

2

i

\blo
k" i

with start point s

i

and end points t

1

i

; t

2

i

, 1 � i � k. Consider H

r

and the 2r pairs

s

i

; t

1

i

and s

i

; t

2

i

(two pairs for ea
h blo
k) as an instan
e of the EDP problem. We

say blo
k i is fully routed in a solution to this instan
e if there are edge-disjoint

paths 
onne
ting both pairs s

i

; t

1

i

and s

i

; t

2

i

in the solution. If only one of these

paths exists in the solution then we say blo
k i is partially routed. It is easy to

see:

Fa
t 2: Any optimal (integral) solution for EDP on H

k

with 2k pairs, either


ontains only one routed blo
k or two partially routed blo
ks. Furthermore, there

is a half-integral solution in whi
h every blo
k is fully routed (with value

1

2

on

ea
h path).

We will use the following te
hni
al lemma in our 
onstru
tion.

Lemma 2. For given positive integers r, k, and g with r < k, there is an expli
it


onstru
tion for a k-uniform r-regular hypergraph of girth at least g where the

size of the 
onstru
tion (number of verti
es) is O(

k

2g

r

).
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Proof. We start with an expli
it k-regular graphG(V;E) of size at mostO(k

2g�1

)

and girth at least 2g. These graphs exist (see, for instan
e, [17℄ and the refer-

en
es there). Constru
t a bipartite graph G

0

(A [ B;E

0

) from G where A and

B are 
opies of V with a

i

and b

i

being the verti
es of A and B (respe
tively)


orresponding to vertex v

i

2 V , and a

i

b

j

2 E

0

if and only if v

i

v

j

2 E. It is

easy to see that G

0

is k-regular with girth at least 2g and has size O(k

2g�1

). To

simplify our 
al
ulations, let's assume that k is a power of 2 (this only a�e
ts

the impli
it multipli
ative 
onstant in the lemma).

Constru
t a new bipartite graph G

00

(A

0

[ B;E

00

) from G

0

in this way: for

ea
h vertex a

i

2 A 
reate two verti
es a

1

i

and a

2

i

in A

0

. Then join a

1

i

to half

of the neighbors of a

i

and join a

2

i

to the other half. Repeating this pro
edure

log(k=r) times, we get the bipartite graph G

00

in whi
h every vertex in A

0

has

degree

k

2

log(k=r)

= r and every vertex in B has degree k, jA

0

j =

k

2g

r

, jBj = k

2g�1

,

and the girth is 2g. Now we de�ne hypergraph H with vertex set A

0

whose edge-

set is the set of neighborhoods of verti
es of B. This hypergraph is k-uniform,

r-regular, with girth g and has size O(

k

2g

r

). �

Proof of Theorem 4: Let r, k, and g be some positive integers to be spe
-

i�ed later and let r

0

=

�

r

2

�

. Consider a k-uniform r

0

-regular girth g hypergraph

H. Su
h graphs exist by Lemma 2. The underlying stru
ture of the main graph

for the integrality gap is hypergraph H. Let p and q be the number of verti
es

and hyperedges of H, respe
tively. Take a set P

r

= fD

1

r

; : : : ; D

p

r

g 
ontaining p


opies of graph D

r

(
onstru
ted earlier), one 
orresponding to ea
h vertex in

hypergraph H. Also take a set Q

k

= fR

1

k

; : : : ; R

q

k

g 
ontaining q 
opies of H

k

,

one 
orresponding to ea
h hyperedge of H. For every graph in P

r

we �x an arbi-

trary ordering of its interse
tion modules (note that the number of interse
tion

modules of D

r

is

�

r

2

�

= r

0

; the same as degree of a vertex in H). Similarly, for

ea
h graph in Q

k

we �x an arbitrary ordering of its blo
ks (note that the number

of blo
ks of ea
h graph in Q

k

is k; the same as the size of a hyperedge in H).

Initially, we assign a green 
ag to every interse
tion module of every graph in P

r

and to every blo
k of every graph in Q

k

. Soon we will start modifying the blo
ks

and modules and 
hange their 
ags to \red". For ea
h pair s

j

i

; t

j

i

in ea
h 
opy

D

j

r

2 P

r

add the dire
ted edge t

j

i

s

j

i

to D

j

r

. We 
all these edges feedba
k edges.

Consider an arbitrary hyperedge e

i

2 H and let R

i

k

2 Q

k

be the 
opy ofH

k

in

Q

k

whi
h 
orresponds to hyperedge e

i

. Note that R

i

k

has k blo
ks; let's denote

these blo
ks by b

i

1

; : : : ; b

i

k

, where b

i

�


onsist of triple s

i

�

; t

1;i

�

; t

2;i

�

. Furthermore,

look at the verti
es of hyperedge e

i

and �nd the 
orresponding 
opies of D

r

in

P

r

. More pre
isely, let

S

i

= fD

a

j

r

2 P

r

j the vertex of H 
orresponding to D

a

j

r

belongs to e

i

, 1 � j � kg:

Pi
k the �rst green blo
k of R

i

k

, say s

i

�

; t

i;1

�

; t

i;2

�

(for some 1 � � � k) a

ording to

the �xed ordering of the blo
ks ofR

i

k

and 
hange its 
ag to red. Also, pi
k the �rst

green interse
tion module of D

a

�

r

(from its �xed ordering), say h

1

ab

; h

2

ab

; u

ab

; v

ab

(for some 1 � a; b � r) and 
hange its 
ag to red. Remove vertex h

2

ab

and its

in
ident edges (i.e. edges h

1

ab

h

2

ab

, h

2

ab

u

ab

, and h

2

ab

v

ab

) from D

a

�

r

and add the
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following edges: h

1

ab

s

i

�

, t

1;i

�

u

ab

, and t

2;i

�

v

ab

. We will 
onsider these new three

edges (instead of the three edges that were removed from D

a

�

r

) as part of D

a

�

r

.

Do this for all the blo
ks of R

i

k

. This pro
ess is going to modify (and 
hange

the 
ag from green to red for) one interse
tion module from ea
h graph in S

i

(i.e. D

a

1

r

; : : : ; D

a

K

r

); one for every blo
k of R

i

k

. Repeat the same pro
edure for

all the hyperedges of H (i.e. for all graphs in Q

k

). We obtain a huge dire
ted

graph G

r;k;g

, whi
h has 
onstant degree and O(r

2

p + k

2

q) verti
es. Note that,

sin
e ea
h graph R

i

k

2 Q

k

is a
y
li
, every 
y
le in G

r;k;g

must 
ontain one of

the feedba
k edges.

The basi
 idea behind the 
onstru
tion is that interse
tion modules in 
opies

of D

r

(graphs in P

r

) are now repla
ed with \blo
ks" of 
opies of H

k

(graphs in

Q

k

) and in order to go from h

1

ab

to u

ab

in the interse
tion module of D

a

�

r

, we

have to go from s

i

�

to t

1;i

�

in a \blo
k" of R

i

k

. For the moment, assume that:

(i) all the blo
ks where 
ompletely independent of ea
h other i.e. they were not

part of the same graph and therefore there was no way to start at the start

point of a blo
k b

i

(of a 
opy of H

k

) and end at an end point of another

blo
k b

j

.

(ii) among all the blo
ks, only an �-fra
tion 
ould be (partially or fully) routed,

and for the other (1� �)-fra
tion no routing existed at all.

This would imply that G

r;k;g

has no more than �rp 
y
les. The reason is that

ea
h 
y
le must 
ontain a feedba
k edge, and so goes from some s

�

in a 
opy

of D

r

in P

r

to t

�

in the same 
opy. Therefore, it goes through at least r blo
ks

(previously interse
tion modules), sin
e ea
h 
y
le in a 
opy of D

r

uses at least

r interse
tion modules. This would give us the required gap. Fortunately, the

assumption (i) above is easy to prove (by Fa
t 2), i.e. a large fra
tion of all of

the blo
ks of graphs in Q

k

do not have any routing (neither partial nor full). But

the trouble is that the se
ond assumption is not 
orre
t. That is, the blo
ks are

not 
ompletely independent as we assumed, and they appear in groups of size

k in one graph (a 
opy of H

k

in Q

k

). For this reason, 
y
les in G

r;k;g

may have


ompli
ated stru
tures and go through several 
opies D

i

r

's in P

r

. For instan
e,

a 
y
le C may start (as a path) at some vertex s

�

in a 
opy D

i

r

in P

r

(D

i

r


orresponds to vertex v

i

2 H) and then at some vertex h

1

ab

2 D

i

r

the path enters

the start point of a blo
k b

x

in a graph R

j

k

(whi
h is a 
opy of H

k

in Q

k

). But

instead of going out from an end point of the same blo
k b

x

(of R

j

k

) it goes

(within R

j

k

) to an end point of another blo
k b

y

of R

j

k

. We 
all this situation

a jump between blo
ks of R

j

k

. This way, the path may end-up in another 
opy

D

i

0

r

(before going ba
k to s

�

). Looking from a higher level at the underlying

hypergraph stru
ture (whi
h has a stru
ture like H), we 
an think of this path

as going from vertex v

i

(graph D

i

r

2 P

r

) to v

i

0

(graph D

i

0

r

2 P

r

) in H through

hyperedge e

j

(through graph R

j

k

2 Q

k

by starting at the start point of one blo
k

and going down to an end point of another blo
k of R

j

k

). But if this happens,

sin
e the start point (s

�

) is in D

i

r

, this path must eventually 
ome ba
k to t

�

in D

i

r

(be
ause t

�

2 D

i

r

is the only vertex that has an edge to s

�

). However,

be
ause H has girth g, the path has to go through at least g other graphs in P

r
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before getting ba
k into D

i

r

. Therefore, the 
y
le 
ontains at least 
(g) edges

from the graphs in P

r

. We 
all these 
y
les (that go through several graphs in

P

r

) long 
y
les (be
ause g is going to be large) and those that are within one

graph of P

r

(and so do not jump between blo
ks of graphs in Q

k

), short 
y
les.

This implies that the total number of long 
y
les 
an be at most a fra
tion

1

g

of the total number of edges in the graphs in P

r

. If g is large and r is small the

total number of short and long 
y
les will be small.

Lemma 3. �

�

e

(G

r;k;g

) 2 
(rp), that is, G

r;k;g

has a fra
tional 
y
le pa
king

solution of value 
(rp).

Proof. Re
all that by Fa
t 1, there is a half-integral solution (for EDP problem)

in any instan
e D

r

, whi
h 
ontains one half-integral path for ea
h pair s

i

; t

i

. If

we add edges t

i

s

i

(for 1 � i � r) to D

r

then there are at least r half-integral


y
les in D

r

. In this fra
tional solution, we route exa
tly two (half-integral)


y
les through ea
h interse
tion module.

We do have the feedba
k edges in G

r;k;g

(in every graph D

j

r

2 P

r

). Also,

by Fa
t 2, for every graph R

i

k

2 Q

k

there is a half-integral fra
tional solution

in whi
h all the blo
ks in R

i

k

are fully routed (with value

1

2

). Therefore, all the

blo
ks in all graphs in Q

k

(whi
h have repla
ed all the interse
tion modules

in graphs in P

r

) are fully routed (with value

1

2

). These two imply that ea
h

(modi�ed) graph D

j

r

2 P

r

has r half-integral (short) 
y
les (where parts of the

fra
tional 
y
les go through blo
ks of the graphs in Q

k

). Sin
e there are p graphs

in P

r

we get 
(rp) half-integral 
y
les. �

Lemma 4. �

e

(G

r;k;g

) 2 O(

q

r

+

r

2

p

g

).

Proof sket
h: By Fa
t 2, for every graph R

i

k

2 Q

k

, there is at most two blo
ks

that 
an be (partially or fully) routed. So over all graphs in Q

k

, there are at most

2q blo
ks that 
an be (partially or fully) routed. Sin
e blo
ks have repla
ed the

interse
tion modules of the graphs in P

r

and every short 
y
le in a graph in

P

r

goes through at least r blo
ks, plus the fa
t that at most two 
y
les 
an go

through any routed blo
k, there 
an be at most 4q=r dire
ted short 
y
les in the

graphs of P

r

in G

r;k;g

.

Now we upper bound the number of long 
y
les. Be
ause every graph in

P

r

has 
onstant degree and O(r

2

) verti
es, the total number of edges of G

r;k;g

that are parts of the graphs in P

r

is O(r

2

p). Therefore, by the arguments before

Lemma 3, there are at most O(

r

2

p

g

) long 
y
les in G

r;k;g

. Thus the total number

of short and long 
y
les is O(

q

r

+

r

2

p

g

).

Re
all that for hypergraph H, the number of verti
es p and hyperedges q are

in O(

k

2g

r

) and O(k

2g�1

), respe
tively. Let r be some (not too small) 
onstant

and k = g. This implies that p 2 O(k

2k

) and q 2 O(k

2k�1

). The total number

of verti
es n in graph G

r;k;g

is O(r

2

p + k

2

q) whi
h is O(k

2k+1

). By Lemmas 3

and 4, the integrality gap is at least 
((rp)=(

q

r

+

r

2

p

g

)) whi
h is 
(k). This is


(

logn

log logn

), whi
h 
ompletes the proof of Theorem 4 �
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Combining Theorems 3 and 4 and noting that the 
onstru
tions in Theorem

3 have size polynomial, we obtain:

Corollary 1. Dire
ted VDC has an integrality gap of 
(

logn

log logn

).

The 
onstru
tion for the hardness result has similar stru
ture and uses the

hardness of dire
ted EDP by Ma and Wang [19℄ whi
h is based on PCP theorem

[1, 2℄ together with Raz [20℄ parallel repetition theorem.

Theorem 5. [19℄ For any � > 0, dire
ted EDP 
annot be approximated within

ratio 2

� log

1��

n

unless NP � DTIME(2

polylog(n)

).

A 
areful analysis of proof of Theorem 5 reveals that in fa
t their proof

implies the following stronger version:

Theorem 6. Given an instan
e I of dire
ted EDP, whi
h 
onsists of an a
y
li


digraph G (on n verti
es) and k sour
e-sink pairs (s

1

; t

1

); : : : ; (s

k

; t

k

) in G, where

k 2 
(n

Æ

) for some absolute Æ > 0, it is quasi-NP-hard to de
ide between the

following two 
ases:

1. (Yes-instan
e) All pairs (s

i

; t

i

) 
an be routed by disjoint paths, or

2. (No-instan
e) At most a fra
tion 2

� log

1��

n

of the pairs 
an be routed.

Theorem 7. For any � > 0, there is no O(log

1��

n)-approximation for EDC un-

less NP � DTIME(2

polylog(n)

).

Proof. Let I

EDP

be an instan
e of (dire
ted) EDP as in Theorem 6 whi
h 
on-

sists of a dire
ted a
y
li
 graph G and k pairs (s

i

; t

i

), 1 � i � k. Take two 
opies

of I

EDP

, named I

1

P

and I

2

P

and identify the sour
e s

1

i

2 I

1

P

with s

2

i

2 I

2

P

and 
all

this new vertex s

i

(1 � i � k). Denote this new graph by H

k

, with 2k sour
e-sink

pairs s

i

; t

1

i

and s

i

; t

2

i

, 1 � i � k. As in the 
onstru
tion of the integrality gap, we

name the triple s

i

; t

1

i

; t

2

i

blo
k i of H

k

with start point s

i

and end points t

1

i

and

t

2

i

. In a solution to EDP problem with instan
e H

k

and the 2k pairs s

i

; t

1

i

and

s

i

; t

2

i

(1 � i � k) we say blo
k i is fully routed if there are two paths, one from s

i

to t

1

i

and one from s

i

to t

2

i

, in the solution. If only one of these paths exists then

we say blo
k i is partially routed. If none of them exists blo
k i is not routed

at all. Again, the fa
t that H

k

is a
y
li
 will be 
ru
ial in the analysis of our


onstru
tion. Let r and g be some positive integers (to be spe
i�ed later) and

take a

�

r

2

�

-regular k-uniform hypergraph H with girth g. As before, let p and q

be the number of verti
es and hyperedges of H, respe
tively. We 
onstru
t graph

G

r;k;g

whose underlying stru
ture is hypergraphH in the same manner we did in

Theorem 4 ex
ept that now we use 
opies of H

k

(de�ned above) to pla
e in Q

k

.

The rest of the 
onstru
tion remains the same. That is, we take p 
opies of D

r

and put them in the set P

r

and then repla
e the interse
tion modules of them

with blo
ks of 
opies of H

k

in Q

k

in the same manner. Let P

r

= fD

1

r

; : : : ; D

p

r

g

and Q

k

= fR

1

k

; : : : ; R

q

k

g. We de�ne short and long 
y
les in G

r;k;g

in the same

way as we did in Theorem 4.
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If I

EDP

is a Yes instan
e then all the k blo
ks in H

k


an be fully routed.

This means that every blo
k of every R

i

k

2 Q

k


an be fully routed. So for every

graph D

j

r

2 P

r

there are r disjoint paths from s

i

to t

i

, one for ea
h 1 � i � r,

and be
ause of the existen
e of feedba
k edges (
onne
ting t

i

to s

i

) we have r

edge-disjoint 
y
les in ea
h D

j

r

2 P

r

. This gives a total of 
(rp) edge-disjoint


y
les.

If I

EDP

is a No instan
e then at most a fra
tion 2

� log

1��

n

of the k pairs


an be routed. Sin
e k 2 
(jI

EDP

j

Æ

), this fra
tion is at most 2

�

(

log k

Æ

)

1��

, whi
h

we name it �. So, at most 2�k blo
ks in ea
h graph in Q

k

, and therefore, at

most 2�kq blo
ks over all the graphs in Q

k


an be (fully or partially) routed.

Be
ause ea
h short 
y
le in a graph D

i

r

2 P

r

goes through r blo
ks (previously

interse
tion modules), the number of short 
y
les over all graphs in P

r

is at most

2�kq=r. The same argument we had in Theorem 4 for long 
y
les implies that

the number of long 
y
les here is at most a

1

g

fra
tion of the total number of

edges in all graphs in P

r

. This is at most O(

r

2

p

g

). All together, the number of

short and long 
y
les is O(

2�kq

r

+

r

2

p

g

), whi
h is O(rp(2�+

r

g

)), be
ause q =

r

2

p

k

.

The above arguments, together with Theorem 6 imply that de
iding between


(rp) 
y
les and O(rp(2�+

r

g

)) 
y
les in G

r;k;g

is quasi-NP-hard. Equivalently, it

is quasi-NP-hard to have an approximation algorithm with fa
tor
(1=F (r; k; g))

where F (r; k; g) = 2�+

r

g

. Let r be a (not too small) 
onstant and g = O(log




k)

for an arbitrary large 
onstant 
 > 0. This implies that the hardness fa
tor (i.e.

1=F (r; k; g)) is 
(log




k). With this setting of parameters, hypergraph H has

p = O(k

log




k

) verti
es and q =

rp

k

= O(k

log




k�1

) edges. So, if N denotes the

number of verti
es of G

r;k;g

(i.e. the size of 
onstru
tion), then it will be at most

O(k

log




k

) (for the verti
es in graphs in P

r

) plus O(k

2

Æ

+log




k

) (for the verti
es in

graphs in Q

k

). So overall, N 2 O(k

2

Æ

+log




k

), whi
h is quasi-polynomial in the

size of input (instan
e I

EDP

). Rewriting the hardness fa
tor 
(log




k) in terms

of N gives a hardness of 
(log





+1

N). �

Under a stronger 
omplexity assumption that for some suÆ
iently small Æ >

0, NP 6� DTIME(2

n

Æ

), we 
an improve the hardness result to 
(

logn

log logn

).
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