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Abstract. In the edge-disjoint cycle packing problem we are given a
graph G and we have to find a largest set of edge-disjoint cycles in G. The
problem of packing vertex-disjoint cycles in G is defined similarly. The
best approximation algorithms for edge-disjoint cycle packing are due
to Krivelevich et al. [16], where they give an O(v/logn)-approximation
for undirected graphs and an O(y/n)-approximation for directed graphs.
They also conjecture that the problem in directed case has an integrality
gap of 2(y/n). No non-trivial lower bound is known for the integrality
gap of this problem. Here we show that both problems of packing edge-
disjoint and packing vertex-disjoint cycles in a directed graph have an
integrality gap of .Q(lolﬁog—n). This is the first super constant lower bound
for the integrality gap of these problems. We also prove that both prob-
lems are quasi-NP-hard to approximate within a factor of 2(log' ™ n),
for any € > 0. For the problem of packing vertex-disjoint cycles, we give
the first approximation algorithms with ratios O(logn) (for undirected
graphs) and O(y/n) (for directed graphs). Our algorithms work for the
more general case where we have a capacity ¢, on every vertex v and
we are seeking a largest set C of cycles such that at most ¢, cycles of C
contain v.

1 Introduction

We study approximation algorithms, lower and upper bounds for the integrality
gaps, and hardness results for the problems of packing disjoint cycles in a graph
(directed or undirected). In the problem of packing edge-disjoint cycles (EDC ),
we are given a graph G (which can be directed or undirected) and we have to find
a largest set of edge-disjoint cycles in G. The problem of packing vertex-disjoint

* Supported by a faculty startup grant, Department of Computing Science, University
of Alberta.
** Supported by NSERC



cycles (VDC ) is defined similarly: find the maximum number of vertex-disjoint
cycles in GG. The EDC problem has been studied extensively both in undirected
and directed graphs (see [16,4,6,21]). Both EDC and VDC are fundamental
problems in graph theory with applications in several areas (see the discussion
in [4] for an application in computational biology and reconstruction of evolu-
tionary trees). Let’s denote by v.(G) and v,(G) the sizes of largest collections
of edge-disjoint and vertex-disjoint cycles in G, respectively. It is well known
that computing v, (G) and v,(G) are NP-hard even for undirected graphs. This
motivates the study of approximation algorithms for these problems. An algo-
rithm is called an a-approximation for a maximization problem if the solution
returned by the algorithm is at least a factor 1/« of the optimal solution, and «
is called the approximation (or performance) ratio of the algorithm. A natural
generalization of EDC is the problem of S-cycle packing (denote by s-EDC ).
In this problem, along with G we are given a subset S of vertices of G and the
goal is to find maximum number of edge-disjoint S-cycles in G, i.e. cycles each
of which contains a vertex of S. The analogous problem of s-VDC is defined as
finding maximum number of cycles in G each of which contains a vertex of S
and are disjoint on the vertices in V' — §.

Known results: Carpara et al. [6] showed that a simple greedy algorithm
yields an O(logn)-approximation for computing v.(G) and that the problem is
APX-hard even for planar graphs (i.e. for an absolute constant ey > 0, no (1+€p)-
approximation exists unless P=NP). Very recently, Krivelevich et al. [16] showed
that the greedy algorithm of [6] actually yields an O(y/logn)-approximation
for EDC and gave examples to show that this is tight. In fact they proved an
upper bound of O(y/logn) for the integrality gap of EDC . For directed graphs,
they gave an O(y/n)-approximation for EDC and an O(n?#)-approximation for
s-EDC . Their algorithm for directed EDC shows that the integrality gap of
EDC in directed graphs is at most O(y/n). No non-trivial lower bounds for
the integrality gap of EDC in directed setting is known. The authors in [16]
conjectured that there is a lower bound of 2(y/n) for this integrality gap.

Related results: The dual problems of packing cycles (known as feedback
sets problems) are also very well studied problems in both directed and undi-
rected settings. The dual problem of VDC , known as Feedback Vertex Set
(FVS), is the problem of finding minimum number of vertices in a graph whose
removal makes the graph acyclic. This problem and its generalization (in which
every vertex has a weight and we seek to minimize the total weight of selected
vertices) has 2-approximation algorithms in undirected graphs (see [3,5,10]).
The problem of finding minimum number of edges in a graph that meet every
cycle (FES) is trivial for undirected graphs (complement of a spanning tree).
For directed graphs, there is an easy reduction from FES to FVS. Seymour [21]
showed that, if the optimal fractional FVS in a directed graph G has value p*
then the optimal integral FVS in G has value at most O(p* log¢* loglog ™).
This yields an O(log ¢* loglog ¢*)-approximation algorithm for FVS in directed
graphs [13]. Alon and Seymour (see [21]) showed that the integrality gap of FVS
is 2(log ¢*).



As far as we know, the only hardness result for the problems of packing
disjoint cycles is the the APX-hardness result proved in [6] for undirected EDC ,
and no better hardness or even a super constant lower bound for the integrality
gap of EDC in directed graphs is known. As mentioned earlier, Krivelevich et al.
[16] have conjectured that this gap is £2(y/n). This conjecture seems conceivable,
given the fact that the well known similar problem of edge-disjoint paths (EDP)
has such an integrality gap (even in undirected case). Here we take the first step
toward tightening this gap. Our main result is that EDC in directed setting has

an integrality gap of Q(Tlgolg(f;—n). More importantly, we prove that it is quasi-

NP-hard to approximate v,(G) within a factor of 2(log* “n) for any € > 0.
Under stronger complexity assumptions we can prove a slightly better hardness
of Q(%gog—n). As we will see, there are quite easy reductions between EDC and
VDC in directed graphs. Therefore, our hardness result for EDC carries over to
VDC , i.e. VDC in directed graphs is hard to approximate within a factor of
2(log' “n).

We also consider the capcitated version of cycle packing problems. In the
capacitated version of VDC , we are given a graph G(V,E) with a positive
capacity ¢, on every vertex v € V and the goal is to find a largest collection C of
cycles in G such that each vertex v belongs to at most ¢, cycles of C. We abuse
the notation slightly by calling this capacitated version VDC, , although the
cycles are not required to be vertex-disjoint anymore. For undirected VDC, , we
give an O(logn)-approximation. This also shows an upper bound of O(logn) on
the integrality gap of VDC. in undirected graphs. We are not aware of any earlier
approximation algorithm for this problem. For directed VDC, , we show that a
simple randomized rounding algorithm (similar to the ones we presented in [9])
yields an O(y/n)-approximation. The same algorithm works for the even more
general case of capacitated (directed) s-VDC , where every vertex v € V — S
has a capacity ¢, and we have to find a largest collection C of S-cycles (i.e.
cycles that intersect S) such that each vertex v € V — S belongs to at most ¢,
cycles. We denote this problem by s-VDC, . Note that for the s-EDC [16] gave
an O(n3) greedy approximation algorithm. It can be shown (as we will see) that
this upper bound is tight for their greedy algorithm.

Remark: For the capacited version of EDC (denoted by EDC, ), as noted by
the authors in [16], their results for EDC can be easily extended to an O(y/log n)-
approximation algorithm for undirected EDC, and an O(y/n)-approximation for
directed EDC.. .

Throughout the paper, we use n to denote the number of vertices of the input
graph.

2 Approximation Algorithms

Let G(V, E) be the given graph with a capacity ¢, for every vertex v € V', and
let C(G) denote the set of all cycles of G. The following is the standard integer
program (IP) formulation of VDC, :



maximize ) ..o To
subject to Yo €V : ) o coro < ey (1)
vCeC: wzce€{0,1}

Trivially, for VDC all ¢, values are equal to 1. The fractional VDC,. prob-
lem is the linear program relaxation of this IP. The integer program formula-
tion for EDC, is defined similarly. Here, we will have a constraint of the form
Y creco To < ce, for every edge e € E. For the EDC problem, all the capacities
are 1. Clearly, the solutions to the fractional problems (LP’s) are upper bounds
to the solutions for the corresponding integral problems (IP’s). Let v} (G) and
v*(G) denote the values of optimal fractional solutions for VDC and EDC |,
respectively.

Theorem 1. There is an O(logn)-approzimation for (undirected) VDC. .

Proof. We are going to incorporate a technique from [18] with the simple greedy
algorithm, similar to the one for the EDC in [6,16]. The idea of this greedy
algorithm was implicit in [11].

Consider the problem of fractional VDC., , i.e. the LP corresponding to the
IP given in (1). Note that the separation oracle for the dual of this LP is the
problem of finding a shortest cycle in a weighted graph. Since this problem can
be solved in polynomial time, using the same method as in Theorem 4.1 of [15]
(or [7]) we can solve the primal LP in polynomial time. Let ¢(G) and ¢*(G)
denote the values of optimal solution to the IP and the corresponding LP for
VDC. . Let Y = {1, ...,2,} be the set of primal variables that have value > 0
in the optimal fractional solution. One of the features of the algorithm of [15]
is that p (the number of fractional cycles) is polynomial in 7, even-though the

LP has an exponential number of variables. If >*  |z;] > @ P, a; then

Y'={|#1],..., xp]} is an integral solution with value at least f;éi), which is
%)
1

at least %. In this case the algorithm returns the cycles corresponding to the

variables in Y and stops. Otherwise, if Y7 | ;] < $ P, ; then

() =Y = Yol + Yo L) < £ g,

logn

Therefore, with QQ = p- (%gnr_‘—l): ©*(G@) < Q. This implies that for every vertex
v € G, at most a value of min{c,,Q} of capacity of v is used in any optimal
(fractional or integral) solution. So we can decrease the capacity ¢, of every
vertex v to min{c,, @}.

We are also going to assign capacities to the edges of G. Initially, every edge
has infinite capacity. Throughout the algorithm, we will replace a vertex v of
degree 2 with neighbors v and w with an edge between v and w with capacity c,.
We perform the following algorithm on G as long as G has a cycle. The algorithm
is based on the greedy algorithm proposed in [6] for the EDC . Initially C = §).



1. While G contains a vertex v of degree < 1 or with capacity 0 delete v (and
all the edges incident with it).

2. While G contains a vertex v of degree 2 with neighbors v and w delete v
and add an edge uw with capacity ¢, to G.

3. Find a shortest cycle C' in G and add it to C, decrease the capacity of every
vertex in C' and every edge with finite capacity in C' by 1. Go to step 1.

It is easy to see that steps 1 and 2 don’t change the value of an optimal
solution. Also, since the capacity of every vertex is polynomial in n, the size
of the graph is always a polynomial factor of the initial size of G. Let S; be
the ¢’th iteration in which we perform step 3 and let G; be the graph at the
beginning of iteration S;, and n; = |G4|. It is well known that every graph
with minimum degree at least 3 on n vertices has girth (size of the shortest
cycle) at most O(logn) [11]. Since graph G; has minimum degree 3, the girth
of G; is at most O(logn;). Therefore, the cycle found in step S; intersects at
most O(logn;) (which is O(logn)) cycles of the optimal fractional solution. This
is true for every step S;. Thus, ¢*(G) < O(logn)|C|, i.e. the algorithm is an
O(logn) approximation. O

Our next theorem gives an O(y/n)-approximation algorithm for directed s-
VDC, . First we show that the greedy algorithm of [16] for s-EDC (and its
adapted version for s-VDC ) will have a ratio of at least 2(n3). We give the
construction of a graph G which is a simple modification of a construction given
by Chekuri and Khanna [8] for the problem of edge-disjoint paths (EDP) in
directed graphs. G consists of two layered graphs G; and G2, where G; contains
layers Xi,...,X, and G contains layers Y1,...,Y, of vertices, with ¢ = ni.
Each X; and Y; has n3 vertices and every vertex in X; (in V), 1 < i < g, is
connected by an edge to every vertex in X;y1 (in Yj41). For every odd value
of i < q — 2 pick a representative vertex z} from X; and one y;, , from Yiy,.
Connect z} to yi,, and connect y;,, to z{,,. Finlay put an edge between every
vertex in Y, to every vertex in X;. Let S = Xj. It is easy to verify that G has
2(n?) edge-disjoint S-cycles (and they are in fact vertex disjoint on V — S). If
the greedy algorithm picks in its first S-cycle all the edges between G; and G»
then it finds only one cycle (since the edges from Gy to G2 form a cut of size
O(q) from G, to G2). Therefore, the ratio of greedy algorithm proposed in [16]
for s-EDC (and its analogous for s-VDC ) is at least £2(n3).

Theorem 2. There is an O(y/n)-approzimation algorithm for directed s-VDC, .

Proof. The proof of this theorem follows the same steps as the approximation
algorithms of [9] for disjoint Steiner trees in directed graphs. Let G(V, E), set
S C V, and capacity ¢, for every vertex v € V — S be the given instance of
s-VDC, . Consider the IP/LP formulation of the s-VDC, problem, which is the
same as (1) given for VDC, except that C(G) will be the set of all S-cycles of
G. Consider the optimal fractional solution which is again computed using the
technique of [15] or [7]. We can compute this fractional solution in polynomial
time since the separation oracle for the dual LP is the problem of finding a



shortest S-cycle in a weighted graph, and this can be computed in polynomial
time. Consider a solution to the LP of s-VDC, and let X* = {z,23,... z;,}
be the set of fractional cycles in this optimal fractional solution, where p(n) is
some polynomial in n. For every S-cycle C' with fractional value z7, > 1 we
“take out” |xf,| copies of that cycle from the graph and put them in the final
integral solution that we are computing. This way we will find a set C; of size at
least ¢ = fg) lz7| integral S-cycles. We also decrease the capacity of every
vertex in cycle C' by |zf ], and replace zf, with zf — [} ] in the fractional
solution. Now let 3 = 22" 2% Note that the value of the solution to the LP
of s-VDC, is ¢} + 3. We show how to find a set Cy of size at least O(fj—%)
integral cycles. The final solution will be C; U Cy which clearly has size at least
O(pt + 3—%), and since the value of the solution to the original LP is ¢} + ¢},
we get an O(y/n)-approximation.

If % < 304/ then it is enough to find just one S-cycle in G and place it in
Ca. So let’s assume that 5 > 304/n. For every cycle C' € C(G), pick that cycle
with probability «% /A for a A > 0 to be defined soon. Define Y to be random
variable that is 1 if and only if cycle C' is selected. So for Y =3 ccc(q) Yo (Le.
total number of cycles placed in Cs), we have:

Ty 5
EY]= Y PrlYe=1= ) =%
Cec(G) cec(@)

Define the bad event A, to be the event that more than ¢, cycles containing
vertex v € V — S are selected. We can show that with positive probability none
of these events happens (so no vertex capacity is violated) and that the number
of cycles selected is at least O(p3/\). We borrow the following lemma from [9]:

Lemma 1. [9] Assume that A = {a1,...,an} is a set of n non-negative re-
als and let Ay, be the set of all subsets of size k of A. If 1" a; < Q , then

Z{ail,...,aik}eAk iy Ay -+ - Gy, < (Z) (Q/n)k

For every vertex v € V' —S5, denote the number of fractional cycles C' with zf, > 0
that contain v by 1),. By this definition:

cyot1
Prd,] <[] =&., /™
i=1
where the summation is over all subsets {Cy,,...,Cq, ., } of size ¢, +1 of cycles

with 7, > 0 that contain vertex v. Therefore, using Lemma 1:

cy+1 cyt+1 cy+1 2
PrA,] < ty Cy < vy Cy <&
cy +1 Ay, cy +1 Ay A2

where we have used the fact () < (42)* for the second inequality. It is intuitively
clear that if A, holds then it does not increase the probability of any other A, . In




other words, events A, are “positively correlated”. Therefore: Pr[A oy _g Ay] >

[Toev_sPrlA,] > 2(1 - i—z)” Also, by Chernoff bound, for 0 < § < 1: Pr[Y <
(1—0)E[Y]] < e % #2/2X, Thus:

Pr[(Y <(1—§E[Y])V (@ eV —S: 4,)] <e ¥9/2 41— (1—e2/A%)"

If we show that for suitable & and A: (1 — e2/A2)" > ¢=9°92/2X then using the
method of conditional probability, we can efficiently find a selection C» of S-cycles
such that |C2| > (1—9)p3 /X and that no vertex capacity constraint is violated. If
©5 < nthen with § = £ and A = ey/n we find a collection C; of S-cycles that obey
the capacity constraints of vertices with |Co| > ¢5/2ey/n. If 3 > n then there
is a constant ¢ > 0 such that with § = 3 and A = o= (1 — €2/X%)" > e~ 0°¢3/2\,
Again, we can find a collection Cs of S-cycles that satisfy the capacity constraints
of vertices and |Ca| > f—fr In any case, we find a set Cy of size at least Q(i‘;—%).

Therefore, the algorithm is an O(y/n)-approximation for s-VDC.,. . O

3 Integrality Gap and Hardness of Directed EDC and
VDC

In this section, we prove that each of EDC and VDC has an integrality gap of

Q(%golg(g—n). Furthermore, each of v, (G) and v.(G) is quasi-NP-hard to approxi-

mate within a factor of O(log' ¢ n), for any € > 0. First, we provide approximate
preserving reductions between EDC and VDC .

Theorem 3. Given a directed graph G(V, E) as an instance of VDC (of EDC')
there is an instance G'(V',E") of EDC (of VDC ) with |G'| = poly(|G]), such
that G has k vertez-disjoint cycles (edge-disjoint cycles) if and only if G' has k
edge-disjoint cycles (vertez-disjoint cycles).

Proof. 1st direction: For each node v € V, G’ contains two nodes vy, vs. We
add vivy to E'. Furthermore, for every edge uv € E we create an edge usv;
in E' and for every edge vw € E we create an edge vow; in E'. It is easy to
see that if C is a collection of integral (or fractional) vertex-disjoint cycles in
G with size k then there is a collection C' of k integral (or fractional) edge-
disjoint cycles in G'. Conversely, suppose that C’ is a collection of k integral (or
fractional) edge-disjoint cycles in G’. Then for every edge vivs (corresponding to
a vertex v € V(G)) there is at most a total of one integral (or fractional) cycle(s)
containing that edge. Therefore, by contracting the edges of the form v;v, on
each cycle of C' we obtain a collection of k integral (or fractional) vertex-disjoint
cycles in G.

2nd direction: Suppose G is an instance of EDC . For every edge zy in G cre-
ate a vertex vy, in G'. For every vertex x € G with ingoing edges y1 @, Y2, . . ., ype
and outgoing edges xz1, 22y, ...,7z, add the following edges to G': vy, ,v,; for
every 1 < i <pand1l < j<gq.Itcan be seen that G has k edge-disjoint in-
tegral (or fractional) cycles if and only if if G’ has k vertex-disjoint integral (or
fractional) cycles. 0
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Fig. 1. Construction of D,: each gray circle corresponds to an intersection module

So it is enough to prove our lower bound for integrality gap and the hardness
result for EDC . Then we use Theorem 3 to deduce a similar result for VDC .

Theorem 4. The directed EDC problem has an integrality gap of Q(log’ign).

We give the construction of a graph G' on n vertices, such that % €

Q(logfogn). Our starting point is a grid-like graph which gives the 2(y/n) in-
tegrality gap for the well-known problems of disjoint paths. An instance of the
edge-disjoint paths (EDP) problem consists of a (directed) graph G with pairs
of vertices s;,t;, for 1 < i < k, and the goal is to connect maximum number of
pairs s;,; using edge-disjoint paths. The vertex-disjoint paths (VDP) problem
is defined similarly.

Let r be a positive integer and define a directed graph which consists of
vertices s;,t; (1 < i < ) together with vertices hij, ui;,vij, 1 < j < i < r.
There is an edge from h;; to u;; and an edge from h;; to v (1 < j <@ <r).
There are also edges u;jh;j1) and vijh(y1); for 1 < j <4 < r. Furthermore,
for every 1 <4 < it has edges uiih(iy1)(i+1), Sihi1, and vpit;. Finally w,.._1) is
connected to t,.. Since this graph has a drawing on the plane, there cannot be
two vertex-disjoint paths P; and P; (1 <14 # j <r) where P; starts from s; and
ends in ¢; and P; starts from s; and ends in ¢;. Because we want to have edge-
disjoint property, we “split” every vertex h;; into two copies h}j and hfj, where
the ingoing edges of h;; are now going into hzlj and the outgoing edges of h;; are
going out of h%j and put the edge h%jhfj in (see Figure 1). Let’s call this graph
D, and the subgraph induced by four vertices h}j,hgj,uij,vij an intersection
module of D,. Again, it is easy to see that there cannot be two edge-disjoint
paths from s;’s to t;’s (because we can route at most one path through every
intersection module). Note that:

Fact 1: The half-integral fractional solution for EDP in D, has value > 3.

This creates a gap of 2(r), which is 2(y/n), with n being the number of
vertices in the graph. We will use this fact again, later on. A natural attempt to
extend this result to the cycle packing problem would be to add directed edges
tis;, for 1 <14 < r. Unfortunately, this new graph will have an integral solution of




Fig. 2. Construction of H, from two copies of D,

value 2(r) (for e.g. consider the directed cycle that goes from sy to ¢, along the
diagonal path, then to s, and to ¢; and back to s;. We can pick § such cycles).
So this doesn’t create the desired gap. The problem here is caused because the
cycles are not bond to follow a path directly from s; to ¢; (they may go through
other s;’s and t;’s before reaching t;). Our idea to resolve this problem is to
make it “too costly” for the cycles to do so. In other words, we are going to
combine many copies of D, in a special manner so that if a cycle consist of a
“non-trivial” path from s; to ¢; then it has a very long length; so long that we
cannot have many of them. This will create the desired gap.

Using two copies of graph D, we construct another graph H, in the follow-
ing way. Consider graph D, with input vertices s1,...,s, and output vertices
t1,...,t.. Take two copies of this graph, D! and D?, and identify (only) the
input vertices of them. Let si,...,s, be the new set of (unified) input vertices
and t1,...,tL and t7,...,t2 be the set of output vertices. Let’s call this graph
H, (see Figure 2). An important observation to make here is that H, is acyclic.
This is crucial to our main construction. We call the triple s;,t},¢? “block” i
with start point s; and end points t},t7, 1 < i < k. Consider H, and the 2r pairs
s;,tF and s;,t? (two pairs for each block) as an instance of the EDP problem. We
say block i is fully routed in a solution to this instance if there are edge-disjoint
paths connecting both pairs s;, ¢} and s;,t? in the solution. If only one of these
paths exists in the solution then we say block i is partially routed. It is easy to
see:

Fact 2: Any optimal (integral) solution for EDP on Hj, with 2k pairs, either
contains only one routed block or two partially routed blocks. Furthermore, there
is a half-integral solution in which every block is fully routed (with value % on
each path).

We will use the following technical lemma in our construction.

Lemma 2. For given positive integers r, k, and g with r < k, there is an explicit

construction for a k-uniform r-reqular hypergraph of girth at least g where the
2

size of the construction (number of vertices) is O(%)
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Proof. We start with an explicit k-regular graph G(V, E) of size at most O(k?9~1)
and girth at least 2¢g. These graphs exist (see, for instance, [17] and the refer-
ences there). Construct a bipartite graph G'(A U B, E') from G where A and
B are copies of V' with a; and b; being the vertices of A and B (respectively)
corresponding to vertex v; € V, and a;b; € E' if and only if v;u; € E. It is
easy to see that G’ is k-regular with girth at least 2g and has size O(k?9~!). To
simplify our calculations, let’s assume that k is a power of 2 (this only affects
the implicit multiplicative constant in the lemma).

Construct a new bipartite graph G" (A’ U B, E") from G' in this way: for
each vertex a; € A create two vertices a} and a? in A'. Then join a} to half
of the neighbors of a; and join a? to the other half. Repeating this procedure
log(k/r) times, we get the bipartite graph G’ in which every vertex in A’ has
degree 5z =r and every vertex in B has degree k, |A'| = %, |B| = k*971
and the girth is 2g. Now we define hypergraph H with vertex set A’ whose edge-
set is the set of neighborhoods of vertices of B. This hypergraph is k-uniform,

r-regular, with girth ¢ and has size O(@) O

Proof of Theorem 4: Let r, k, and g be some positive integers to be spec-
ified later and let r' = (;) Consider a k-uniform r'-regular girth g hypergraph
H. Such graphs exist by Lemma 2. The underlying structure of the main graph
for the integrality gap is hypergraph . Let p and ¢ be the number of vertices
and hyperedges of H, respectively. Take a set P, = {D},..., DF} containing p
copies of graph D, (constructed earlier), one corresponding to each vertex in
hypergraph H. Also take a set Qr = {R},...,R}} containing g copies of Hy,
one corresponding to each hyperedge of H. For every graph in P, we fix an arbi-
trary ordering of its intersection modules (note that the number of intersection
modules of D, is (}) = r'; the same as degree of a vertex in #). Similarly, for
each graph in () we fix an arbitrary ordering of its blocks (note that the number
of blocks of each graph in @) is k; the same as the size of a hyperedge in H).
Initially, we assign a green flag to every intersection module of every graph in P,
and to every block of every graph in Q). Soon we will start modifying the blocks
and modules and change their flags to “red”. For each pair s7,t! in each copy
Di € P, add the directed edge /57 to DJ. We call these edges feedback edges.

Consider an arbitrary hyperedge e; € H and let R} € @y, be the copy of Hy, in
Q1 which corresponds to hyperedge e;. Note that Rfc has k blocks; let’s denote
these blocks by bi,...,bt, where by consist of triple sg\,ti’i,ti’i. Furthermore,
look at the vertices of hyperedge e; and find the corresponding copies of D, in
P,.. More precisely, let

S; = {D% € P,| the vertex of H corresponding to D;’ belongs to e;, 1 < j < k}.

Pick the first green block of R, say s4, 5", 4> (for some 1 < \ < k) according to
the fixed ordering of the blocks of R}, and change its flag to red. Also, pick the first
green intersection module of D (from its fixed ordering), say hl, h?, wqp, Vb
(for some 1 < a,b < r) and change its flag to red. Remove vertex hZ, and its
incident edges (i.e. edges hl,h2,, h2,uqp, and h2,ve) from D% and add the
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following edges: hl,sk, ty uap, and 3 vep. We will consider these new three

edges (instead of the three edges that were removed from D) as part of D>.
Do this for all the blocks of Ri. This process is going to modify (and change
the flag from green to red for) one intersection module from each graph in S
(ie. D&, ..., Dax); one for every block of Ri. Repeat the same procedure for
all the hyperedges of H (i.e. for all graphs in Q). We obtain a huge directed
graph G, 4, which has constant degree and O(r’p + k?q) vertices. Note that,
since each graph R: € Q, is acyclic, every cycle in G,y , must contain one of
the feedback edges.

The basic idea behind the construction is that intersection modules in copies
of D, (graphs in P,) are now replaced with “blocks” of copies of Hy, (graphs in
Q1) and in order to go from h;b to ugp in the intersection module of D&, we

have to go from s} to ty* in a “block” of Ri. For the moment, assume that:

(1) all the blocks where completely independent of each other i.e. they were not
part of the same graph and therefore there was no way to start at the start
point of a block b; (of a copy of Hi) and end at an end point of another
block b;.

(ii) among all the blocks, only an e-fraction could be (partially or fully) routed,
and for the other (1 — e)-fraction no routing existed at all.

This would imply that G i, has no more than erp cycles. The reason is that
each cycle must contain a feedback edge, and so goes from some s, in a copy
of D, in P, to ty in the same copy. Therefore, it goes through at least r blocks
(previously intersection modules), since each cycle in a copy of D, uses at least
r intersection modules. This would give us the required gap. Fortunately, the
assumption (i) above is easy to prove (by Fact 2), i.e. a large fraction of all of
the blocks of graphs in ) do not have any routing (neither partial nor full). But
the trouble is that the second assumption is not correct. That is, the blocks are
not completely independent as we assumed, and they appear in groups of size
k in one graph (a copy of Hy in Q). For this reason, cycles in G, 4, may have
complicated structures and go through several copies D’s in P,. For instance,
a cycle C' may start (as a path) at some vertex s, in a copy D! in P, (D&
corresponds to vertex v; € H) and then at some vertex hl, € D! the path enters
the start point of a block b, in a graph Ri (which is a copy of Hy in Q). But
instead of going out from an end point of the same block b, (of Rfc) it goes
(within R}) to an end point of another block b, of R.. We call this situation
a jump between blocks of Ri. This way, the path may end-up in another copy
Di’ (before going back to s,). Looking from a higher level at the underlying
hypergraph structure (which has a structure like ), we can think of this path
as going from vertex v; (graph D! € P,) to vy (graph D! € P,) in H through
hyperedge e; (through graph R}, € Qi by starting at the start point of one block
and going down to an end point of another block of Rfc) But if this happens,
since the start point (s,) is in D}, this path must eventually come back to t,
in D! (because t, € D! is the only vertex that has an edge to s,). However,
because H has girth g, the path has to go through at least g other graphs in P,
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before getting back into D%. Therefore, the cycle contains at least 2(g) edges
from the graphs in P,.. We call these cycles (that go through several graphs in
P,) long cycles (because g is going to be large) and those that are within one
graph of P, (and so do not jump between blocks of graphs in Q)i ), short cycles.
This implies that the total number of long cycles can be at most a fraction *
of the total number of edges in the graphs in P.. If g is large and r is small the
total number of short and long cycles will be small.

Lemma 3. v} (G, 4) € 2(rp), that is, G4 has a fractional cycle packing
solution of value £2(rp).

Proof. Recall that by Fact 1, there is a half-integral solution (for EDP problem)
in any instance D,., which contains one half-integral path for each pair s;, ;. If
we add edges t;s; (for 1 <7 < r) to D, then there are at least r half-integral
cycles in D,. In this fractional solution, we route exactly two (half-integral)
cycles through each intersection module.

We do have the feedback edges in G, 4 (in every graph DI € P,). Also,
by Fact 2, for every graph R} € @y there is a half-integral fractional solution
in which all the blocks in R} are fully routed (with value %). Therefore, all the
blocks in all graphs in @ (which have replaced all the intersection modules
in graphs in P,) are fully routed (with value %) These two imply that each
(modified) graph DI € P, has r half-integral (short) cycles (where parts of the
fractional cycles go through blocks of the graphs in @)y). Since there are p graphs
in P. we get 2(rp) half-integral cycles. O

Lemma 4. I/e(Gr,k,g) € O(% + T;Tp)'

Proof sketch: By Fact 2, for every graph R: € Qy, there is at most two blocks
that can be (partially or fully) routed. So over all graphs in @, there are at most
2¢ blocks that can be (partially or fully) routed. Since blocks have replaced the
intersection modules of the graphs in P, and every short cycle in a graph in
P, goes through at least r blocks, plus the fact that at most two cycles can go
through any routed block, there can be at most 4¢/r directed short cycles in the
graphs of P, in Gy 1 g-

Now we upper bound the number of long cycles. Because every graph in
P, has constant degree and O(r?) vertices, the total number of edges of G, .,
that are parts of the graphs in P, is O(r?p). Therefore, by the arguments before

Lemma 3, there are at most O(T%") long cycles in G 4. Thus the total number
of short and long cycles is O(% + ”2—”). [

Recall that for hypergraph 7, the number of vertices p and hyperedges ¢ are
in O(@) and O(k?971), respectively. Let r be some (not too small) constant
and k = g. This implies that p € O(k**) and ¢ € O(k**~!). The total number
of vertices n in graph G, , is O(r’p + k?¢) which is O(k***1). By Lemmas 3
and 4, the integrality gap is at least 2((rp)/(% + i—p)) which is £2(k). This is

Q(log’lgogn), which completes the proof of Theorem 4 O [ |
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Combining Theorems 3 and 4 and noting that the constructions in Theorem
3 have size polynomial, we obtain:

Corollary 1. Directed VDC has an integrality gap of Q(Fggcg—n).

The construction for the hardness result has similar structure and uses the
hardness of directed EDP by Ma and Wang [19] which is based on PCP theorem
[1,2] together with Raz [20] parallel repetition theorem.

Theorem 5. [19] For any € > 0, directed EDP cannot be approzimated within
ratio 276" " ypless NP C DTIM E(2p°lles(n)).

A careful analysis of proof of Theorem 5 reveals that in fact their proof
implies the following stronger version:

Theorem 6. Given an instance I of directed EDP, which consists of an acyclic
digraph G (on n vertices) and k source-sink pairs (s1,t1), ..., (sk,tr) in G, where
k € 2(n?) for some absolute § > 0, it is quasi-NP-hard to decide between the
following two cases:

1. (Yes-instance) All pairs (s;,t;) can be routed by disjoint paths, or

2. (No-instance) At most a fraction 2-log' “n of the pairs can be routed.

€

Theorem 7. For anye > 0, there is no O(logl_
less NP C DTIME(2POZ?!l09(n)),

n)-approzimation for EDC un-

Proof. Let Igpp be an instance of (directed) EDP as in Theorem 6 which con-
sists of a directed acyclic graph G and k pairs (s;,¢;), 1 < i < k. Take two copies
of Igpp, named I}, and I% and identify the source s} € I}, with s? € I3 and call
this new vertex s; (1 < i < k). Denote this new graph by Hy,, with 2k source-sink
pairs s;, ¢} and s;,t?, 1 <4 < k. As in the construction of the integrality gap, we
name the triple s;,t},t? block i of Hy, with start point s; and end points ¢} and
t?. In a solution to EDP problem with instance Hj, and the 2k pairs s;, ¢} and
si,t2 (1 <i < k) we say block i is fully routed if there are two paths, one from s;
to t! and one from s; to t2, in the solution. If only one of these paths exists then
we say block ¢ is partially routed. If none of them exists block ¢ is not routed
at all. Again, the fact that Hj is acyclic will be crucial in the analysis of our
construction. Let r and g be some positive integers (to be specified later) and
take a (;) -regular k-uniform hypergraph # with girth g. As before, let p and ¢
be the number of vertices and hyperedges of H, respectively. We construct graph
G i,y whose underlying structure is hypergraph H in the same manner we did in
Theorem 4 except that now we use copies of Hy (defined above) to place in Q.
The rest of the construction remains the same. That is, we take p copies of D,
and put them in the set P, and then replace the intersection modules of them
with blocks of copies of Hy in Qj in the same manner. Let P, = {D%,..., D?}
and Qr = {R;,...,R}}. We define short and long cycles in G, 4 in the same
way as we did in Theorem 4.
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If Igpp is a Yes instance then all the k£ blocks in Hj, can be fully routed.
This means that every block of every R: € Qj, can be fully routed. So for every
graph DJ € P, there are r disjoint paths from s; to t;, one for each 1 <i < r,
and because of the existence of feedback edges (connecting ¢; to s;) we have r
edge-disjoint cycles in each DJ € P.. This gives a total of 2(rp) edge-disjoint
cycles.

If Igpp is a No instance then at most a fraction 218" "“n of the k pairs

can be routed. Since k € Q(|IEDP|‘5), this fraction is at most 2_(%)1 e, which
we name it a. So, at most 2ak blocks in each graph in @y, and therefore, at
most 2akq blocks over all the graphs in @y can be (fully or partially) routed.
Because each short cycle in a graph D% € P, goes through r blocks (previously
intersection modules), the number of short cycles over all graphs in P, is at most
2akq/r. The same argument we had in Theorem 4 for long cycles implies that
the number of long cycles here is at most a % fraction of the total number of

edges in all graphs in P,.. This is at most O(’%”). All together, the number of

short and long cycles is O(% + r;—p), which is O(rp(2a + 7)), because g = 7’27”.

The above arguments, together with Theorem 6 imply that deciding between
2(rp) cycles and O(rp(2a+ %)) cycles in G, x4 is quasi-NP-hard. Equivalently, it
is quasi-NP-hard to have an approximation algorithm with factor 2(1/F(r, k, g))
where F(r, k, g) = 2a+ . Let 7 be a (not too small) constant and g = O(log® k)
for an arbitrary large constant ¢ > 0. This implies that the hardness factor (i.e.
1/F(r,k,g)) is 2(log® k). With this setting of parameters, hypergraph H has
p = O(K'8" ) vertices and ¢ = 2 = O(k'°8" #~1) edges. So, if N denotes the
number of vertices of G, 4 (i.e. the size of construction), then it will be at most
O(K' 8" ¥ (for the vertices in graphs in P,) plus O(ks T1°8° %) (for the vertices in
graphs in Q). So overall, N € O(k7 118" %) which is quasi-polynomial in the
size of input (instance Ipp). Rewriting the hardness factor 2(log® k) in terms
of N gives a hardness of 2(log=T N). O

Under a stronger complexity assumption that for some sufficiently small § >

0, NP ¢ DTIME(2""), we can improve the hardness result to Q(lolgoﬁ)gn).
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