Disjoint Cycles: Integrality Gap, Hardness, and Approximation

Mohammad R. Salavatipour¹ * and Jacques Verstraete^{2**}

Department of Computing Science,
 University of Alberta,
 Edmonton, AB, Canada T6G 2E8
 mreza@cs.ualberta.ca
Department of Combinatorics and Optimization,
 University of Waterloo,
 Waterloo, ON, Canada N2L 3G1
 jverstra@math.uwaterloo.ca

Abstract. In the edge-disjoint cycle packing problem we are given a graph G and we have to find a largest set of edge-disjoint cycles in G. The problem of packing vertex-disjoint cycles in G is defined similarly. The best approximation algorithms for edge-disjoint cycle packing are due to Krivelevich et al. [16], where they give an $O(\sqrt{\log n})$ -approximation for undirected graphs and an $O(\sqrt{n})$ -approximation for directed graphs. They also conjecture that the problem in directed case has an integrality gap of $\Omega(\sqrt{n})$. No non-trivial lower bound is known for the integrality gap of this problem. Here we show that both problems of packing edgedisjoint and packing vertex-disjoint cycles in a directed graph have an integrality gap of $\Omega(\frac{\log n}{\log \log n})$. This is the first super constant lower bound for the integrality gap of these problems. We also prove that both problems are quasi-NP-hard to approximate within a factor of $\Omega(\log^{1-\epsilon} n)$, for any $\epsilon > 0$. For the problem of packing vertex-disjoint cycles, we give the first approximation algorithms with ratios $O(\log n)$ (for undirected graphs) and $O(\sqrt{n})$ (for directed graphs). Our algorithms work for the more general case where we have a capacity c_v on every vertex v and we are seeking a largest set \mathcal{C} of cycles such that at most c_v cycles of \mathcal{C} contain v.

1 Introduction

We study approximation algorithms, lower and upper bounds for the integrality gaps, and hardness results for the problems of packing disjoint cycles in a graph (directed or undirected). In the problem of packing edge-disjoint cycles (EDC), we are given a graph G (which can be directed or undirected) and we have to find a largest set of edge-disjoint cycles in G. The problem of packing vertex-disjoint

 $^{^\}star$ Supported by a faculty startup grant, Department of Computing Science, University of Alberta.

^{**} Supported by NSERC

cycles (VDC) is defined similarly: find the maximum number of vertex-disjoint cycles in G. The EDC problem has been studied extensively both in undirected and directed graphs (see [16, 4, 6, 21]). Both EDC and VDC are fundamental problems in graph theory with applications in several areas (see the discussion in [4] for an application in computational biology and reconstruction of evolutionary trees). Let's denote by $\nu_e(G)$ and $\nu_v(G)$ the sizes of largest collections of edge-disjoint and vertex-disjoint cycles in G, respectively. It is well known that computing $\nu_e(G)$ and $\nu_v(G)$ are NP-hard even for undirected graphs. This motivates the study of approximation algorithms for these problems. An algorithm is called an α -approximation for a maximization problem if the solution returned by the algorithm is at least a factor $1/\alpha$ of the optimal solution, and α is called the approximation (or performance) ratio of the algorithm. A natural generalization of EDC is the problem of S-cycle packing (denote by s-EDC). In this problem, along with G we are given a subset S of vertices of G and the goal is to find maximum number of edge-disjoint S-cycles in G, i.e. cycles each of which contains a vertex of S. The analogous problem of s-VDC is defined as finding maximum number of cycles in G each of which contains a vertex of Sand are disjoint on the vertices in V-S.

Known results: Carpara et al. [6] showed that a simple greedy algorithm yields an $O(\log n)$ -approximation for computing $\nu_e(G)$ and that the problem is APX-hard even for planar graphs (i.e. for an absolute constant $\epsilon_0 > 0$, no $(1+\epsilon_0)$ -approximation exists unless P=NP). Very recently, Krivelevich et al. [16] showed that the greedy algorithm of [6] actually yields an $O(\sqrt{\log n})$ -approximation for EDC and gave examples to show that this is tight. In fact they proved an upper bound of $O(\sqrt{\log n})$ for the integrality gap of EDC. For directed graphs, they gave an $O(\sqrt{n})$ -approximation for EDC and an $O(n^{\frac{2}{3}})$ -approximation for s-EDC. Their algorithm for directed EDC shows that the integrality gap of EDC in directed graphs is at most $O(\sqrt{n})$. No non-trivial lower bounds for the integrality gap of EDC in directed setting is known. The authors in [16] conjectured that there is a lower bound of $O(\sqrt{n})$ for this integrality gap.

Related results: The dual problems of packing cycles (known as feedback sets problems) are also very well studied problems in both directed and undirected settings. The dual problem of VDC , known as Feedback Vertex Set (FVS), is the problem of finding minimum number of vertices in a graph whose removal makes the graph acyclic. This problem and its generalization (in which every vertex has a weight and we seek to minimize the total weight of selected vertices) has 2-approximation algorithms in undirected graphs (see [3, 5, 10]). The problem of finding minimum number of edges in a graph that meet every cycle (FES) is trivial for undirected graphs (complement of a spanning tree). For directed graphs, there is an easy reduction from FES to FVS. Seymour [21] showed that, if the optimal fractional FVS in a directed graph G has value φ^* then the optimal integral FVS in G has value at most $O(\varphi^* \log \varphi^* \log \log \varphi^*)$. This yields an $O(\log \varphi^* \log \log \varphi^*)$ -approximation algorithm for FVS in directed graphs [13]. Alon and Seymour (see [21]) showed that the integrality gap of FVS is $\Omega(\log \varphi^*)$.

As far as we know, the only hardness result for the problems of packing disjoint cycles is the the APX-hardness result proved in [6] for undirected EDC , and no better hardness or even a super constant lower bound for the integrality gap of EDC in directed graphs is known. As mentioned earlier, Krivelevich et al. [16] have conjectured that this gap is $\Omega(\sqrt{n})$. This conjecture seems conceivable, given the fact that the well known similar problem of edge-disjoint paths (EDP) has such an integrality gap (even in undirected case). Here we take the first step toward tightening this gap. Our main result is that EDC in directed setting has an integrality gap of $\Omega(\frac{\log n}{\log \log n})$. More importantly, we prove that it is quasi-NP-hard to approximate $\nu_e(G)$ within a factor of $\Omega(\log^{1-\epsilon} n)$ for any $\epsilon>0$. Under stronger complexity assumptions we can prove a slightly better hardness of $\Omega(\frac{\log n}{\log \log n})$. As we will see, there are quite easy reductions between EDC and VDC in directed graphs. Therefore, our hardness result for EDC carries over to VDC , i.e. VDC in directed graphs is hard to approximate within a factor of $\Omega(\log^{1-\epsilon} n)$.

We also consider the capcitated version of cycle packing problems. In the capacitated version of VDC, we are given a graph G(V, E) with a positive capacity c_v on every vertex $v \in V$ and the goal is to find a largest collection \mathcal{C} of cycles in G such that each vertex v belongs to at most c_v cycles of C. We abuse the notation slightly by calling this capacitated version VDC_c , although the cycles are not required to be vertex-disjoint anymore. For undirected VDC_c , we give an $O(\log n)$ -approximation. This also shows an upper bound of $O(\log n)$ on the integrality gap of VDC_c in undirected graphs. We are not aware of any earlier approximation algorithm for this problem. For directed VDC_c , we show that a simple randomized rounding algorithm (similar to the ones we presented in [9]) yields an $O(\sqrt{n})$ -approximation. The same algorithm works for the even more general case of capacitated (directed) s-VDC, where every vertex $v \in V - S$ has a capacity c_v and we have to find a largest collection \mathcal{C} of S-cycles (i.e. cycles that intersect S such that each vertex $v \in V - S$ belongs to at most c_v cycles. We denote this problem by $s\text{-VDC}_c$. Note that for the s-EDC [16] gave an $O(n^{\frac{2}{3}})$ greedy approximation algorithm. It can be shown (as we will see) that this upper bound is tight for their greedy algorithm.

Remark: For the capacited version of EDC (denoted by EDC_c), as noted by the authors in [16], their results for EDC can be easily extended to an $O(\sqrt{\log n})$ -approximation algorithm for undirected EDC_c and an $O(\sqrt{n})$ -approximation for directed EDC_c.

Throughout the paper, we use n to denote the number of vertices of the input graph.

2 Approximation Algorithms

Let G(V, E) be the given graph with a capacity c_v for every vertex $v \in V$, and let $\mathcal{C}(G)$ denote the set of all cycles of G. The following is the standard integer program (IP) formulation of VDC_c :

maximize
$$\sum_{C \in \mathcal{C}} x_C$$
subject to
$$\forall v \in V : \sum_{C:v \in C} x_C \leq c_v$$
$$\forall C \in \mathcal{C} : x_C \in \{0,1\}$$
 (1)

Trivially, for VDC all c_v values are equal to 1. The fractional VDC_c problem is the linear program relaxation of this IP. The integer program formulation for EDC_c is defined similarly. Here, we will have a constraint of the form $\sum_{C:e \in C} x_C \leq c_e$, for every edge $e \in E$. For the EDC problem, all the capacities are 1. Clearly, the solutions to the fractional problems (LP's) are upper bounds to the solutions for the corresponding integral problems (IP's). Let $\nu_v^*(G)$ and $\nu_e^*(G)$ denote the values of optimal fractional solutions for VDC and EDC, respectively.

Theorem 1. There is an $O(\log n)$ -approximation for (undirected) VDC_c .

Proof. We are going to incorporate a technique from [18] with the simple greedy algorithm, similar to the one for the EDC in [6,16]. The idea of this greedy algorithm was implicit in [11].

Consider the problem of fractional VDC_c , i.e. the LP corresponding to the IP given in (1). Note that the separation oracle for the dual of this LP is the problem of finding a shortest cycle in a weighted graph. Since this problem can be solved in polynomial time, using the same method as in Theorem 4.1 of [15] (or [7]) we can solve the primal LP in polynomial time. Let $\varphi(G)$ and $\varphi^*(G)$ denote the values of optimal solution to the IP and the corresponding LP for VDC_c. Let $Y = \{x_1, \ldots, x_p\}$ be the set of primal variables that have value > 0 in the optimal fractional solution. One of the features of the algorithm of [15] is that p (the number of fractional cycles) is polynomial in n, even-though the LP has an exponential number of variables. If $\sum_{i=1}^p \lfloor x_i \rfloor \geq \frac{1}{\log n} \sum_{i=1}^p x_i$ then $Y' = \{\lfloor x_1 \rfloor, \ldots, \lfloor x_p \rfloor\}$ is an integral solution with value at least $\frac{\varphi^*(G)}{\log n}$, which is at least $\frac{\varphi(G)}{\log n}$. In this case the algorithm returns the cycles corresponding to the variables in Y' and stops. Otherwise, if $\sum_{i=1}^p \lfloor x_i \rfloor < \frac{1}{\log n} \sum_{i=1}^p x_i$ then

$$\varphi^*(G) = \sum_{i=1}^p x_i = \sum_{i=1}^p \lfloor x_i \rfloor + \sum_{i=1}^p (x_i - \lfloor x_i \rfloor) < \frac{\varphi^*(G)}{\log n} + p.$$

Therefore, with $Q = p \cdot (\frac{\log n}{\log n - 1})$: $\varphi^*(G) < Q$. This implies that for every vertex $v \in G$, at most a value of $\min\{c_v,Q\}$ of capacity of v is used in any optimal (fractional or integral) solution. So we can decrease the capacity c_v of every vertex v to $\min\{c_v,Q\}$.

We are also going to assign capacities to the edges of G. Initially, every edge has infinite capacity. Throughout the algorithm, we will replace a vertex v of degree 2 with neighbors u and w with an edge between u and w with capacity c_v . We perform the following algorithm on G as long as G has a cycle. The algorithm is based on the greedy algorithm proposed in [6] for the EDC. Initially $\mathcal{C} = \emptyset$.

- 1. While G contains a vertex v of degree ≤ 1 or with capacity 0 delete v (and all the edges incident with it).
- 2. While G contains a vertex v of degree 2 with neighbors u and w delete v and add an edge uw with capacity c_v to G.
- 3. Find a shortest cycle C in G and add it to C, decrease the capacity of every vertex in C and every edge with finite capacity in C by 1. Go to step 1.

It is easy to see that steps 1 and 2 don't change the value of an optimal solution. Also, since the capacity of every vertex is polynomial in n, the size of the graph is always a polynomial factor of the initial size of G. Let S_i be the i'th iteration in which we perform step 3 and let G_i be the graph at the beginning of iteration S_i , and $n_i = |G_i|$. It is well known that every graph with minimum degree at least 3 on n vertices has girth (size of the shortest cycle) at most $O(\log n)$ [11]. Since graph G_i has minimum degree 3, the girth of G_i is at most $O(\log n)$ Therefore, the cycle found in step S_i intersects at most $O(\log n_i)$ (which is $O(\log n)$) cycles of the optimal fractional solution. This is true for every step S_i . Thus, $\varphi^*(G) \leq O(\log n)|\mathcal{C}|$, i.e. the algorithm is an $O(\log n)$ approximation.

Our next theorem gives an $O(\sqrt{n})$ -approximation algorithm for directed s- VDC_c . First we show that the greedy algorithm of [16] for s-EDC (and its adapted version for s-VDC) will have a ratio of at least $\Omega(n^{\frac{2}{3}})$. We give the construction of a graph G which is a simple modification of a construction given by Chekuri and Khanna [8] for the problem of edge-disjoint paths (EDP) in directed graphs. G consists of two layered graphs G_1 and G_2 , where G_1 contains layers X_1, \ldots, X_q and G_2 contains layers Y_1, \ldots, Y_q of vertices, with $q = n^{\frac{2}{3}}$. Each X_i and Y_i has $n^{\frac{1}{3}}$ vertices and every vertex in X_i (in Y_i), $1 \leq i < q$, is connected by an edge to every vertex in X_{i+1} (in Y_{i+1}). For every odd value of $i \leq q-2$ pick a representative vertex x_i^r from X_i and one y_{i+1}^r from Y_{i+1} . Connect x_i^r to y_{i+1}^r and connect y_{i+1}^r to x_{i+2}^r . Finlay put an edge between every vertex in Y_q to every vertex in X_1 . Let $S = X_1$. It is easy to verify that G has $\Omega(n^{\frac{2}{3}})$ edge-disjoint S-cycles (and they are in fact vertex disjoint on V-S). If the greedy algorithm picks in its first S-cycle all the edges between G_1 and G_2 then it finds only one cycle (since the edges from G_1 to G_2 form a cut of size O(q) from G_1 to G_2). Therefore, the ratio of greedy algorithm proposed in [16] for s-EDC (and its analogous for s-VDC) is at least $\Omega(n^{\frac{2}{3}})$.

Theorem 2. There is an $O(\sqrt{n})$ -approximation algorithm for directed s-VDC_c.

Proof. The proof of this theorem follows the same steps as the approximation algorithms of [9] for disjoint Steiner trees in directed graphs. Let G(V, E), set $S \subseteq V$, and capacity c_v for every vertex $v \in V - S$ be the given instance of $s\text{-VDC}_c$. Consider the IP/LP formulation of the $s\text{-VDC}_c$ problem, which is the same as (1) given for VDC_c except that $\mathcal{C}(G)$ will be the set of all S-cycles of G. Consider the optimal fractional solution which is again computed using the technique of [15] or [7]. We can compute this fractional solution in polynomial time since the separation oracle for the dual LP is the problem of finding a

shortest S-cycle in a weighted graph, and this can be computed in polynomial time. Consider a solution to the LP of s-VDC_c and let $X^* = \{x_1^*, x_2^*, \dots x_{p(n)}^*\}$ be the set of fractional cycles in this optimal fractional solution, where p(n) is some polynomial in n. For every S-cycle C with fractional value $x_C^* \geq 1$ we "take out" $\lfloor x_C^* \rfloor$ copies of that cycle from the graph and put them in the final integral solution that we are computing. This way we will find a set \mathcal{C}_1 of size at least $\varphi_1^* = \sum_{i=1}^{p(n)} \lfloor x_i^* \rfloor$ integral S-cycles. We also decrease the capacity of every vertex in cycle C by $\lfloor x_C^* \rfloor$, and replace x_C^* with $x_C^* - \lfloor x_C^* \rfloor$ in the fractional solution. Now let $\varphi_2^* = \sum_{i=1}^{p(n)} x_i^*$. Note that the value of the solution to the LP of s-VDC_c is $\varphi_1^* + \varphi_2^*$. We show how to find a set \mathcal{C}_2 of size at least $O(\frac{\varphi_2^*}{\sqrt{n}})$ integral cycles. The final solution will be $\mathcal{C}_1 \cup \mathcal{C}_2$ which clearly has size at least $O(\varphi_1^* + \frac{\varphi_2^*}{\sqrt{n}})$, and since the value of the solution to the original LP is $\varphi_1^* + \varphi_2^*$, we get an $O(\sqrt{n})$ -approximation.

If $\varphi_2^* \leq 30\sqrt{n}$ then it is enough to find just one S-cycle in G and place it in C_2 . So let's assume that $\varphi_2^* > 30\sqrt{n}$. For every cycle $C \in \mathcal{C}(G)$, pick that cycle with probability x_c^*/λ for a $\lambda > 0$ to be defined soon. Define Y_C to be random variable that is 1 if and only if cycle C is selected. So for $Y = \sum_{C \in \mathcal{C}(G)} Y_C$ (i.e. total number of cycles placed in C_2), we have:

$$E[Y] = \sum_{C \in \mathcal{C}(G)} Pr[Y_C = 1] = \sum_{C \in \mathcal{C}(G)} \frac{x_C^*}{\lambda} = \frac{\varphi_2^*}{\lambda}.$$

Define the bad event A_v to be the event that more than c_v cycles containing vertex $v \in V - S$ are selected. We can show that with positive probability none of these events happens (so no vertex capacity is violated) and that the number of cycles selected is at least $O(\varphi_2^*/\lambda)$. We borrow the following lemma from [9]:

Lemma 1. [9] Assume that $A = \{a_1, \ldots, a_n\}$ is a set of n non-negative reals and let A_k be the set of all subsets of size k of A. If $\sum_{i=1}^n a_i \leq Q$, then $\sum_{\{a_{i_1}, \ldots, a_{i_k}\} \in A_k} a_{i_1} a_{i_2} \ldots a_{i_k} \leq \binom{n}{k} (Q/n)^k$.

For every vertex $v \in V - S$, denote the number of fractional cycles C with $x_C^* > 0$ that contain v by ψ_v . By this definition:

$$\Pr[A_v] \le \sum \prod_{i=1}^{c_v+1} x_{C_{a_i}}^* / \lambda,$$

where the summation is over all subsets $\{C_{a_1}, \ldots, C_{a_{c_v+1}}\}$ of size c_v+1 of cycles with $x_{C_{a_i}}^* > 0$ that contain vertex v. Therefore, using Lemma 1:

$$\Pr[A_v] \le \binom{\psi_v}{c_v + 1} \left(\frac{c_v}{\lambda \psi_v}\right)^{c_v + 1} \le \left(\frac{v\psi_v}{c_v + 1}\right)^{c_v + 1} \left(\frac{c_v}{\lambda \psi_v}\right)^{c_v + 1} \le \frac{e^2}{\lambda^2},$$

where we have used the fact $\binom{n}{k} \leq (\frac{en}{k})^k$ for the second inequality. It is intuitively clear that if $\overline{A_v}$ holds then it does not increase the probability of any other $A_{v'}$. In

other words, events $\overline{A_v}$ are "positively correlated". Therefore: $\Pr[\bigwedge_{v \in V-S} \overline{A_v}] \ge \prod_{v \in V-S} \Pr[\overline{A_v}] \ge (1 - \frac{e^2}{\lambda^2})^n$. Also, by Chernoff bound, for $0 \le \delta < 1$: $\Pr[Y < (1 - \delta) \mathbb{E}[Y]] \le e^{-\delta^2 \varphi_2^*/2\lambda}$. Thus:

$$\Pr[(Y < (1 - \delta)E[Y]) \lor (\exists v \in V - S : A_v)] \le e^{-\delta^2 \varphi_2^* / 2\lambda} + 1 - (1 - e^2 / \lambda^2)^n.$$

If we show that for suitable δ and λ : $(1-e^2/\lambda^2)^n > e^{-\delta^2 \varphi_2^*/2\lambda}$ then using the method of conditional probability, we can efficiently find a selection \mathcal{C}_2 of S-cycles such that $|\mathcal{C}_2| \geq (1-\delta)\varphi_2^*/\lambda$ and that no vertex capacity constraint is violated. If $\varphi_2^* \leq n$ then with $\delta = \frac{1}{2}$ and $\lambda = e\sqrt{n}$ we find a collection \mathcal{C}_2 of S-cycles that obey the capacity constraints of vertices with $|\mathcal{C}_2| \geq \varphi_2^*/2e\sqrt{n}$. If $\varphi_2^* > n$ then there is a constant $\sigma > 0$ such that with $\delta = \frac{1}{2}$ and $\lambda = \sigma$: $(1-e^2/\lambda^2)^n > e^{-\delta^2 \varphi_2^*/2\lambda}$. Again, we can find a collection \mathcal{C}_2 of S-cycles that satisfy the capacity constraints of vertices and $|\mathcal{C}_2| \geq \frac{\varphi_2^*}{2\sigma}$. In any case, we find a set \mathcal{C}_2 of size at least $\Omega(\frac{\varphi_2^*}{\sqrt{n}})$. Therefore, the algorithm is an $O(\sqrt{n})$ -approximation for s-VDC $_c$.

3 Integrality Gap and Hardness of Directed EDC and VDC

In this section, we prove that each of EDC and VDC has an integrality gap of $\Omega(\frac{\log n}{\log \log n})$. Furthermore, each of $\nu_v(G)$ and $\nu_e(G)$ is quasi-NP-hard to approximate within a factor of $O(\log^{1-\epsilon} n)$, for any $\epsilon > 0$. First, we provide approximate preserving reductions between EDC and VDC.

Theorem 3. Given a directed graph G(V, E) as an instance of VDC (of EDC) there is an instance G'(V', E') of EDC (of VDC) with |G'| = poly(|G|), such that G has k vertex-disjoint cycles (edge-disjoint cycles) if and only if G' has k edge-disjoint cycles (vertex-disjoint cycles).

Proof. 1st direction: For each node $v \in V$, G' contains two nodes v_1, v_2 . We add v_1v_2 to E'. Furthermore, for every edge $uv \in E$ we create an edge u_2v_1 in E' and for every edge $vw \in E$ we create an edge v_2w_1 in E'. It is easy to see that if \mathcal{C} is a collection of integral (or fractional) vertex-disjoint cycles in G with size k then there is a collection \mathcal{C}' of k integral (or fractional) edge-disjoint cycles in G'. Conversely, suppose that \mathcal{C}' is a collection of k integral (or fractional) edge-disjoint cycles in G'. Then for every edge v_1v_2 (corresponding to a vertex $v \in V(G)$) there is at most a total of one integral (or fractional) cycle(s) containing that edge. Therefore, by contracting the edges of the form v_1v_2 on each cycle of \mathcal{C}' we obtain a collection of k integral (or fractional) vertex-disjoint cycles in G.

2nd direction: Suppose G is an instance of EDC . For every edge xy in G create a vertex v_{xy} in G'. For every vertex $x \in G$ with ingoing edges y_1x, y_2x, \ldots, y_px and outgoing edges xz_1, xz_2, \ldots, xz_q add the following edges to G': $v_{y_ix}v_{xz_j}$ for every $1 \le i \le p$ and $1 \le j \le q$. It can be seen that G has k edge-disjoint integral (or fractional) cycles if and only if if G' has k vertex-disjoint integral (or fractional) cycles.

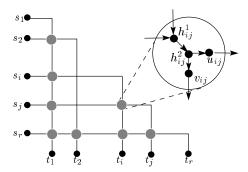


Fig. 1. Construction of D_r : each gray circle corresponds to an intersection module

So it is enough to prove our lower bound for integrality gap and the hardness result for EDC . Then we use Theorem 3 to deduce a similar result for VDC.

Theorem 4. The directed EDC problem has an integrality gap of $\Omega(\frac{\log n}{\log \log n})$.

We give the construction of a graph G on n vertices, such that $\frac{\nu_e^*(G)}{\nu_e(G)} \in \Omega(\frac{\log n}{\log \log n})$. Our starting point is a grid-like graph which gives the $\Omega(\sqrt{n})$ integrality gap for the well-known problems of disjoint paths. An instance of the edge-disjoint paths (EDP) problem consists of a (directed) graph G with pairs of vertices s_i, t_i , for $1 \leq i \leq k$, and the goal is to connect maximum number of pairs s_i, t_i using edge-disjoint paths. The vertex-disjoint paths (VDP) problem is defined similarly.

Let r be a positive integer and define a directed graph which consists of vertices s_i, t_i $(1 \le i \le r)$ together with vertices $h_{ij}, u_{ij}, v_{ij}, 1 \le j \le i \le r$. There is an edge from h_{ij} to u_{ij} and an edge from h_{ij} to v_{ij} $(1 \le j \le i \le r)$. There are also edges $u_{ij}h_{i(j+1)}$ and $v_{ij}h_{(i+1)j}$ for $1 \le j < i < r$. Furthermore, for every $1 \le i < r$ it has edges $u_{ii}h_{(i+1)(i+1)}$, s_ih_{i1} , and $v_{ri}t_i$. Finally $u_{r(r-1)}$ is connected to t_r . Since this graph has a drawing on the plane, there cannot be two vertex-disjoint paths P_i and P_j $(1 \le i \ne j \le r)$ where P_i starts from s_i and ends in t_i and P_j starts from s_j and ends in t_j . Because we want to have edge-disjoint property, we "split" every vertex h_{ij} into two copies h_{ij}^1 and h_{ij}^2 , where the ingoing edges of h_{ij} are now going into h_{ij}^1 and the outgoing edges of h_{ij} are going out of h_{ij}^2 and put the edge $h_{ij}^1h_{ij}^2$ in (see Figure 1). Let's call this graph D_r and the subgraph induced by four vertices $h_{ij}^1, h_{ij}^2, u_{ij}, v_{ij}$ an intersection module of D_r . Again, it is easy to see that there cannot be two edge-disjoint paths from s_i 's to t_i 's (because we can route at most one path through every intersection module). Note that:

Fact 1: The half-integral fractional solution for EDP in D_r has value $\geq \frac{r}{2}$. This creates a gap of $\Omega(r)$, which is $\Omega(\sqrt{n})$, with n being the number of vertices in the graph. We will use this fact again, later on. A natural attempt to extend this result to the cycle packing problem would be to add directed edges $t_i s_i$, for $1 \leq i \leq r$. Unfortunately, this new graph will have an integral solution of

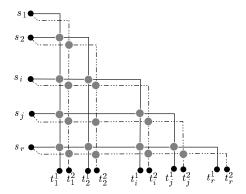


Fig. 2. Construction of H_r from two copies of D_r

value $\Omega(r)$ (for e.g. consider the directed cycle that goes from s_1 to t_r along the diagonal path, then to s_r and to t_1 and back to s_1 . We can pick $\frac{r}{4}$ such cycles). So this doesn't create the desired gap. The problem here is caused because the cycles are not bond to follow a path directly from s_i to t_i (they may go through other s_j 's and t_j 's before reaching t_i). Our idea to resolve this problem is to make it "too costly" for the cycles to do so. In other words, we are going to combine many copies of D_r in a special manner so that if a cycle consist of a "non-trivial" path from s_i to t_i then it has a very long length; so long that we cannot have many of them. This will create the desired gap.

Using two copies of graph D_r we construct another graph H_r in the following way. Consider graph D_r with input vertices s_1,\ldots,s_r and output vertices t_1,\ldots,t_r . Take two copies of this graph, D_r^1 and D_r^2 , and identify (only) the input vertices of them. Let s_1,\ldots,s_r be the new set of (unified) input vertices and t_1^1,\ldots,t_r^1 and t_1^2,\ldots,t_r^2 be the set of output vertices. Let's call this graph H_r (see Figure 2). An important observation to make here is that H_r is acyclic. This is crucial to our main construction. We call the triple s_i,t_i^1,t_i^2 "block" i with start point s_i and end points $t_i^1,t_i^2,1\leq i\leq k$. Consider H_r and the 2r pairs s_i,t_i^1 and s_i,t_i^2 (two pairs for each block) as an instance of the EDP problem. We say block i is fully routed in a solution to this instance if there are edge-disjoint paths connecting both pairs s_i,t_i^1 and s_i,t_i^2 in the solution. If only one of these paths exists in the solution then we say block i is partially routed. It is easy to see:

Fact 2: Any optimal (integral) solution for EDP on H_k with 2k pairs, either contains only one routed block or two partially routed blocks. Furthermore, there is a half-integral solution in which every block is fully routed (with value $\frac{1}{2}$ on each path).

We will use the following technical lemma in our construction.

Lemma 2. For given positive integers r, k, and g with r < k, there is an explicit construction for a k-uniform r-regular hypergraph of girth at least g where the size of the construction (number of vertices) is $O(\frac{k^{2g}}{r})$.

Proof. We start with an explicit k-regular graph G(V, E) of size at most $O(k^{2g-1})$ and girth at least 2g. These graphs exist (see, for instance, [17] and the references there). Construct a bipartite graph $G'(A \cup B, E')$ from G where A and B are copies of V with a_i and b_i being the vertices of A and B (respectively) corresponding to vertex $v_i \in V$, and $a_ib_j \in E'$ if and only if $v_iv_j \in E$. It is easy to see that G' is k-regular with girth at least 2g and has size $O(k^{2g-1})$. To simplify our calculations, let's assume that k is a power of 2 (this only affects the implicit multiplicative constant in the lemma).

Construct a new bipartite graph $G''(A' \cup B, E'')$ from G' in this way: for each vertex $a_i \in A$ create two vertices a_i^1 and a_i^2 in A'. Then join a_i^1 to half of the neighbors of a_i and join a_i^2 to the other half. Repeating this procedure $\log(k/r)$ times, we get the bipartite graph G'' in which every vertex in A' has degree $\frac{k}{2\log(k/r)} = r$ and every vertex in B has degree k, $|A'| = \frac{k^{2g}}{r}$, $|B| = k^{2g-1}$, and the girth is 2g. Now we define hypergraph \mathcal{H} with vertex set A' whose edgeset is the set of neighborhoods of vertices of B. This hypergraph is k-uniform, r-regular, with girth g and has size $O(\frac{k^{2g}}{r})$.

Proof of Theorem 4: Let r, k, and g be some positive integers to be specified later and let $r' = {r \choose 2}$. Consider a k-uniform r'-regular girth g hypergraph H. Such graphs exist by Lemma 2. The underlying structure of the main graph for the integrality gap is hypergraph \mathcal{H} . Let p and q be the number of vertices and hyperedges of \mathcal{H} , respectively. Take a set $P_r = \{D_r^1, \dots, D_r^p\}$ containing p copies of graph D_r (constructed earlier), one corresponding to each vertex in hypergraph \mathcal{H} . Also take a set $Q_k = \{R_k^1, \ldots, R_k^q\}$ containing q copies of H_k , one corresponding to each hyperedge of \mathcal{H} . For every graph in P_r we fix an arbitrary ordering of its intersection modules (note that the number of intersection modules of D_r is $\binom{r}{2} = r'$; the same as degree of a vertex in \mathcal{H}). Similarly, for each graph in Q_k we fix an arbitrary ordering of its blocks (note that the number of blocks of each graph in Q_k is k; the same as the size of a hyperedge in \mathcal{H}). Initially, we assign a green flag to every intersection module of every graph in P_r and to every block of every graph in Q_k . Soon we will start modifying the blocks and modules and change their flags to "red". For each pair s_i^j, t_i^j in each copy $D_r^j \in P_r$ add the directed edge $t_i^j s_i^j$ to D_r^j . We call these edges feedback edges.

Consider an arbitrary hyperedge $e_i \in \mathcal{H}$ and let $R_k^i \in Q_k$ be the copy of H_k in Q_k which corresponds to hyperedge e_i . Note that R_k^i has k blocks; let's denote these blocks by b_1^i, \ldots, b_k^i , where b_{λ}^i consist of triple $s_{\lambda}^i, t_{\lambda}^{1,i}, t_{\lambda}^{2,i}$. Furthermore, look at the vertices of hyperedge e_i and find the corresponding copies of D_r in P_r . More precisely, let

 $S_i = \{D_r^{a_j} \in P_r | \text{ the vertex of } \mathcal{H} \text{ corresponding to } D_r^{a_j} \text{ belongs to } e_i, 1 \leq j \leq k \}.$

Pick the first green block of R_k^i , say $s_\lambda^i, t_\lambda^{i,1}, t_\lambda^{i,2}$ (for some $1 \leq \lambda \leq k$) according to the fixed ordering of the blocks of R_k^i and change its flag to red. Also, pick the first green intersection module of $D_r^{a_\lambda}$ (from its fixed ordering), say $h_{ab}^1, h_{ab}^2, u_{ab}, v_{ab}$ (for some $1 \leq a,b \leq r$) and change its flag to red. Remove vertex h_{ab}^2 and its incident edges (i.e. edges $h_{ab}^1 h_{ab}^2, h_{ab}^2 u_{ab}$, and $h_{ab}^2 v_{ab}$) from $D_r^{a_\lambda}$ and add the

following edges: $h_{ab}^1 s_{\lambda}^i$, $t_{\lambda}^{1,i} u_{ab}$, and $t_{\lambda}^{2,i} v_{ab}$. We will consider these new three edges (instead of the three edges that were removed from $D_r^{a_{\lambda}}$) as part of $D_r^{a_{\lambda}}$. Do this for all the blocks of R_k^i . This process is going to modify (and change the flag from green to red for) one intersection module from each graph in S^i (i.e. $D_r^{a_1}, \ldots, D_r^{a_K}$); one for every block of R_k^i . Repeat the same procedure for all the hyperedges of \mathcal{H} (i.e. for all graphs in Q_k). We obtain a huge directed graph $G_{r,k,g}$, which has constant degree and $O(r^2p + k^2q)$ vertices. Note that, since each graph $R_k^i \in Q_k$ is acyclic, every cycle in $G_{r,k,g}$ must contain one of the feedback edges.

The basic idea behind the construction is that intersection modules in copies of D_r (graphs in P_r) are now replaced with "blocks" of copies of H_k (graphs in Q_k) and in order to go from h^1_{ab} to u_{ab} in the intersection module of $D^{a_{\lambda}}_r$, we have to go from s^i_{λ} to $t^{1,i}_{\lambda}$ in a "block" of R^i_k . For the moment, assume that:

- (i) all the blocks where completely independent of each other i.e. they were not part of the same graph and therefore there was no way to start at the start point of a block b_i (of a copy of H_k) and end at an end point of another block b_i .
- (ii) among all the blocks, only an ϵ -fraction could be (partially or fully) routed, and for the other (1ϵ) -fraction no routing existed at all.

This would imply that $G_{r,k,g}$ has no more than ϵrp cycles. The reason is that each cycle must contain a feedback edge, and so goes from some s_{α} in a copy of D_r in P_r to t_{α} in the same copy. Therefore, it goes through at least r blocks (previously intersection modules), since each cycle in a copy of D_r uses at least r intersection modules. This would give us the required gap. Fortunately, the assumption (i) above is easy to prove (by Fact 2), i.e. a large fraction of all of the blocks of graphs in Q_k do not have any routing (neither partial nor full). But the trouble is that the second assumption is not correct. That is, the blocks are not completely independent as we assumed, and they appear in groups of size k in one graph (a copy of H_k in Q_k). For this reason, cycles in $G_{r,k,g}$ may have complicated structures and go through several copies D_r^i 's in P_r . For instance, a cycle C may start (as a path) at some vertex s_{α} in a copy D_r^i in P_r (D_r^i corresponds to vertex $v_i \in \mathcal{H}$) and then at some vertex $h_{ab}^1 \in D_r^i$ the path enters the start point of a block b_x in a graph R_k^{\jmath} (which is a copy of H_k in Q_k). But instead of going out from an end point of the same block b_x (of R_k^j) it goes (within R_k^j) to an end point of another block b_y of R_k^j . We call this situation a jump between blocks of R_k^j . This way, the path may end-up in another copy $D_r^{i'}$ (before going back to s_{α}). Looking from a higher level at the underlying hypergraph structure (which has a structure like \mathcal{H}), we can think of this path as going from vertex v_i (graph $D_r^i \in P_r$) to $v_{i'}$ (graph $D_r^{i'} \in P_r$) in \mathcal{H} through hyperedge e_j (through graph $R_k^j \in Q_k$ by starting at the start point of one block and going down to an end point of another block of R_k^j). But if this happens, since the start point (s_{α}) is in D_r^i , this path must eventually come back to t_{α} in D_r^i (because $t_\alpha \in D_r^i$ is the only vertex that has an edge to s_α). However, because \mathcal{H} has girth g, the path has to go through at least g other graphs in P_r

before getting back into D_r^i . Therefore, the cycle contains at least $\Omega(g)$ edges from the graphs in P_r . We call these cycles (that go through several graphs in P_r) long cycles (because g is going to be large) and those that are within one graph of P_r (and so do not jump between blocks of graphs in Q_k), short cycles. This implies that the total number of long cycles can be at most a fraction $\frac{1}{g}$ of the total number of edges in the graphs in P_r . If g is large and r is small the total number of short and long cycles will be small.

Lemma 3. $\nu_e^*(G_{r,k,g}) \in \Omega(rp)$, that is, $G_{r,k,g}$ has a fractional cycle packing solution of value $\Omega(rp)$.

Proof. Recall that by Fact 1, there is a half-integral solution (for EDP problem) in any instance D_r , which contains one half-integral path for each pair s_i , t_i . If we add edges $t_i s_i$ (for $1 \le i \le r$) to D_r then there are at least r half-integral cycles in D_r . In this fractional solution, we route exactly two (half-integral) cycles through each intersection module.

We do have the feedback edges in $G_{r,k,g}$ (in every graph $D_r^j \in P_r$). Also, by Fact 2, for every graph $R_k^i \in Q_k$ there is a half-integral fractional solution in which all the blocks in R_k^i are fully routed (with value $\frac{1}{2}$). Therefore, all the blocks in all graphs in Q_k (which have replaced all the intersection modules in graphs in P_r) are fully routed (with value $\frac{1}{2}$). These two imply that each (modified) graph $D_r^j \in P_r$ has r half-integral (short) cycles (where parts of the fractional cycles go through blocks of the graphs in Q_k). Since there are p graphs in P_r we get $\Omega(rp)$ half-integral cycles.

Lemma 4. $\nu_e(G_{r,k,g}) \in O(\frac{q}{r} + \frac{r^2p}{q}).$

Proof sketch: By Fact 2, for every graph $R_k^i \in Q_k$, there is at most two blocks that can be (partially or fully) routed. So over all graphs in Q_k , there are at most 2q blocks that can be (partially or fully) routed. Since blocks have replaced the intersection modules of the graphs in P_r and every short cycle in a graph in P_r goes through at least r blocks, plus the fact that at most two cycles can go through any routed block, there can be at most 4q/r directed short cycles in the graphs of P_r in $G_{r,k,g}$.

Now we upper bound the number of long cycles. Because every graph in P_r has constant degree and $O(r^2)$ vertices, the total number of edges of $G_{r,k,g}$ that are parts of the graphs in P_r is $O(r^2p)$. Therefore, by the arguments before Lemma 3, there are at most $O(\frac{r^2p}{g})$ long cycles in $G_{r,k,g}$. Thus the total number of short and long cycles is $O(\frac{q}{r} + \frac{r^2p}{g})$.

Recall that for hypergraph \mathcal{H} , the number of vertices p and hyperedges q are in $O(\frac{k^2g}{r})$ and $O(k^2g^{-1})$, respectively. Let r be some (not too small) constant and k=g. This implies that $p\in O(k^{2k})$ and $q\in O(k^{2k-1})$. The total number of vertices n in graph $G_{r,k,g}$ is $O(r^2p+k^2q)$ which is $O(k^{2k+1})$. By Lemmas 3 and 4, the integrality gap is at least $O((rp)/(\frac{q}{r}+\frac{r^2p}{g}))$ which is O(k). This is $O(\frac{\log n}{\log\log n})$, which completes the proof of Theorem 4

Combining Theorems 3 and 4 and noting that the constructions in Theorem 3 have size polynomial, we obtain:

Corollary 1. Directed VDC has an integrality gap of $\Omega(\frac{\log n}{\log \log n})$.

The construction for the hardness result has similar structure and uses the hardness of directed EDP by Ma and Wang [19] which is based on PCP theorem [1,2] together with Raz [20] parallel repetition theorem.

Theorem 5. [19] For any $\epsilon > 0$, directed EDP cannot be approximated within ratio $2^{-\log^{1-\epsilon} n}$ unless $NP \subset DTIME(2^{polylog(n)})$.

A careful analysis of proof of Theorem 5 reveals that in fact their proof implies the following stronger version:

Theorem 6. Given an instance I of directed EDP, which consists of an acyclic digraph G (on n vertices) and k source-sink pairs $(s_1, t_1), \ldots, (s_k, t_k)$ in G, where $k \in \Omega(n^{\delta})$ for some absolute $\delta > 0$, it is quasi-NP-hard to decide between the following two cases:

- 1. (Yes-instance) All pairs (s_i, t_i) can be routed by disjoint paths, or
- 2. (No-instance) At most a fraction $2^{-\log^{1-\epsilon} n}$ of the pairs can be routed.

Theorem 7. For any $\epsilon > 0$, there is no $O(\log^{1-\epsilon} n)$ -approximation for EDC unless $NP \subseteq DTIME(2^{polylog(n)})$.

Proof. Let I_{EDP} be an instance of (directed) EDP as in Theorem 6 which consists of a directed acyclic graph G and k pairs $(s_i, t_i), 1 \leq i \leq k$. Take two copies of I_{EDP} , named I_P^1 and I_P^2 and identify the source $s_i^1 \in I_P^1$ with $s_i^2 \in I_P^2$ and call this new vertex s_i ($1 \le i \le k$). Denote this new graph by H_k , with 2k source-sink pairs s_i, t_i^1 and $s_i, t_i^2, 1 \le i \le k$. As in the construction of the integrality gap, we name the triple s_i, t_i^1, t_i^2 block i of H_k with start point s_i and end points t_i^1 and t_i^2 . In a solution to EDP problem with instance H_k and the 2k pairs s_i, t_i^1 and $s_i, t_i^2 \ (1 \leq i \leq k)$ we say block i is fully routed if there are two paths, one from s_i to t_i^1 and one from s_i to t_i^2 , in the solution. If only one of these paths exists then we say block i is partially routed. If none of them exists block i is not routed at all. Again, the fact that H_k is acyclic will be crucial in the analysis of our construction. Let r and g be some positive integers (to be specified later) and take a $\binom{r}{2}$ -regular k-uniform hypergraph \mathcal{H} with girth g. As before, let p and q be the number of vertices and hyperedges of \mathcal{H} , respectively. We construct graph $G_{r,k,g}$ whose underlying structure is hypergraph \mathcal{H} in the same manner we did in Theorem 4 except that now we use copies of H_k (defined above) to place in Q_k . The rest of the construction remains the same. That is, we take p copies of D_r and put them in the set P_r and then replace the intersection modules of them with blocks of copies of H_k in Q_k in the same manner. Let $P_r = \{D_r^1, \ldots, D_r^p\}$ and $Q_k = \{R_k^1, \dots, R_k^q\}$. We define short and long cycles in $G_{r,k,q}$ in the same way as we did in Theorem 4.

If I_{EDP} is a Yes instance then all the k blocks in H_k can be fully routed. This means that every block of every $R_k^i \in Q_k$ can be fully routed. So for every graph $D_r^j \in P_r$ there are r disjoint paths from s_i to t_i , one for each $1 \le i \le r$, and because of the existence of feedback edges (connecting t_i to s_i) we have r edge-disjoint cycles in each $D_r^j \in P_r$. This gives a total of $\Omega(rp)$ edge-disjoint cycles.

If I_{EDP} is a No instance then at most a fraction $2^{-\log^{1-\epsilon}n}$ of the k pairs can be routed. Since $k \in \Omega(|I_{EDP}|^{\delta})$, this fraction is at most $2^{-\left(\frac{\log k}{\delta}\right)^{1-\epsilon}}$, which we name it α . So, at most $2\alpha k$ blocks in each graph in Q_k , and therefore, at most $2\alpha kq$ blocks over all the graphs in Q_k can be (fully or partially) routed. Because each short cycle in a graph $D_r^i \in P_r$ goes through r blocks (previously intersection modules), the number of short cycles over all graphs in P_r is at most $2\alpha kq/r$. The same argument we had in Theorem 4 for long cycles implies that the number of long cycles here is at most a $\frac{1}{g}$ fraction of the total number of edges in all graphs in P_r . This is at most $O(\frac{r^2p}{g})$. All together, the number of short and long cycles is $O(\frac{2\alpha kq}{r} + \frac{r^2p}{r})$, which is $O(rp(2\alpha + \frac{r}{r}))$, because $q = \frac{r^2p}{r}$.

short and long cycles is $O(\frac{2\alpha kq}{r} + \frac{r^2p}{g})$, which is $O(rp(2\alpha + \frac{r}{g}))$, because $q = \frac{r^2p}{k}$. The above arguments, together with Theorem 6 imply that deciding between $\Omega(rp)$ cycles and $O(rp(2\alpha + \frac{r}{g}))$ cycles in $G_{r,k,g}$ is quasi-NP-hard. Equivalently, it is quasi-NP-hard to have an approximation algorithm with factor $\Omega(1/F(r,k,g))$ where $F(r,k,g) = 2\alpha + \frac{r}{g}$. Let r be a (not too small) constant and $g = O(\log^c k)$ for an arbitrary large constant c > 0. This implies that the hardness factor (i.e. 1/F(r,k,g)) is $\Omega(\log^c k)$. With this setting of parameters, hypergraph \mathcal{H} has $p = O(k^{\log^c k})$ vertices and $q = \frac{rp}{k} = O(k^{\log^c k-1})$ edges. So, if N denotes the number of vertices of $G_{r,k,g}$ (i.e. the size of construction), then it will be at most $O(k^{\log^c k})$ (for the vertices in graphs in P_r) plus $O(k^{\frac{2}{3} + \log^c k})$ (for the vertices in graphs in Q_k). So overall, $N \in O(k^{\frac{2}{3} + \log^c k})$, which is quasi-polynomial in the size of input (instance I_{EDP}). Rewriting the hardness factor $\Omega(\log^c k)$ in terms of N gives a hardness of $\Omega(\log^c \frac{c}{c+1}N)$.

Under a stronger complexity assumption that for some sufficiently small $\delta > 0$, $NP \not\subseteq DTIME(2^{n^{\delta}})$, we can improve the hardness result to $\Omega(\frac{\log n}{\log \log n})$.

References

- 1. S. Arora, C. Lund, R. Motwani, M. Sudan, M. Szegedy, *Proof verification and hardness of approximation problems*, J. of the ACM, 45(3):501-555, 1998.
- S. Arora and S. Safra, Probabilistic checking of proofs: A new characterization of NP, J. of the ACM, 45(1):70-122, 198.
- 3. V. Bafna, P. Berman, and T. Fujito, Constant ratio approximation of the weighted feedback vertex set problem for undirected graphs, In Proc. of ISAAC'95, Lecture Notes in Computer Science No. 1004, pages 142-151, Springer-Verlag, 1995.
- 4. P. Balister, *Packing digraphs with directed closed trials*, Combinatorics, Probability, and Computing, 12(1):1–15, 2003.
- 5. A. Becker and D. Geiger, Approximation algorithms for the loop cutset problem, In Proc. of 10th Conf. on Uncertainty in ARtificial Intelligence, pages 60-68, 1994.

- A. Carpara, A. Panconesi, and R. Rizzi, Packing cycles in undirected graphs, J. Algorithms 48(1): 239–256, 2003.
- 7. B. Carr and S. Vempala, Randomized meta-rounding, In Proc. of STOC 2000.
- 8. C. Chekuri and S. Khanna, Edge Disjoint Paths Revisited, Proc. of SODA 2003.
- 9. J. Cheriyan and M.R. Salavatipour, Hardness and Approximation Results for Packing Steiner Trees Problems, In Proc. of ESA'04.
- F. A. Chudak, M. X. Goemans, D. S Hochbaum, and D. P. Williamson, A primaldual interpretation of two 2-approximation algorithms for the feedback vertex set problem in undirected graphs, Operations Research Letters, 22, 111-118, 1998.
- 11. P. Erdös and L. Pósa, On the maximal number of disjoint circuits of a graph, Publ. Math. Debrecen 9:3–12, 1962.
- G. Even, J. Naor, B. Schieber, and L. Zosin, Approximating minimum subset feedback sets in undirected graphs with applications, SIAM J. Discrete Math. 13(2):255-267, 2000.
- 13. G. Even, J. Naor, B. Schieber, and M. Sudan, Approximating minimum feedback sets and multicuts in directed graphs, Algorithmica 20(2): 151-174, 1998.
- V. Guruswami, S. Khanna, R. Rajaraman, B. Shepherd, and M. Yannakakis, Near-Optimal Hardness Results and Approximation Algorithms for Edge-Disjoint Paths and Related Problems, J. of Computer and System Sciences 67(3):473-496, 2003. Earlier version in STOC'99.
- 15. K.Jain, M.Mahdian, M.R.Salavatipour, Packing Steiner trees, In Proc. SODA 2003.
- 16. M. Krivelevich, Z. Nutov, R. Yuster, Approximation algorithms for cycle packing problems, To appear in Proc. of SODA'05.
- 17. F. Lazebnik, V.A. Ustimenko and A.J. Woldar, New upper bounds on the order of cages, Electronic Journal of Combinatorics, Volume 14, R13: 1-11, 1997.
- 18. L.C.Lau, An approximate max-Steiner-tree-packing min-Steiner-cut theorem, In Proc. 45th IEEE FOCS 2004.
- 19. B. Ma and L. Wang, On the inapproximability of disjoint paths and minimum steiner forest with bandwidth constraints, J. of Computer and Systems Sciences, 60(1):1-12, 2000.
- 20. R. Raz, A parallel repetition theorem, SIAM J. of Computing, 27(3): 763-803, 1998.
- P. D. Seymour, Packing directed circuits fractionally, Combinatorica 15(2):281– 288, 1995.