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2 . Krivelevich et al.

The cycle packing number ve(G) of a graph G is the maximum number of pairwise edge-disjoint
cycles in G. Computing ve(G) is an NP-hard problem. We present approximation algorithms
for computing ve(G) in both undirected and directed graphs. In the undirected case we analyze
a variant of the modified greedy algorithm suggested by Caprara et al. [J. of Algorithms 48

(2003), 239-256] and show that it has approximation ratio ©(4/logn) where n = |V(G)|. This
improves upon the previous O(logn) upper bound for the approximation ratio of this algorithm.
In the directed case we present a /m-approximation algorithm. Finally we give an O(n2/3)—
approximation algorithm for the problem of finding a maximum number of edge-disjoint cycles
that intersect a specified subset S of vertices. We also study generalizations of these problems.
Our approximation ratios are the currently best known ones and, in addition, provide upper
bounds on the integrality gap of standard LP-relaxations of these problems. In addition, we give
lower bounds for the integrality gap and approximability of v¢(G) in directed graphs. Specifically,
we prove a lower bound of Q(%) for the integrality gap of edge-disjoint cycle packing. We
also show that it is quasi-NP-hard to approximate ve(G) within a factor of O(log!~¢n) for any
constant € > 0. This improves upon the previously known APX-hardness result for this problem.

Categories and Subject Descriptors: F.2.2 [Nonnumerical Algorithms and Problems]: Com-
putations on discrete structures; G.2.2 [Discrete Mathematics]: Graph Algorithms

General Terms: Approximation Algorithms, Hardness of Approximation

Additional Key Words and Phrases: cycle packing, edge-disjoint, integrality gap

1. INTRODUCTION

We study approximation algorithms, lower and upper bounds for the integrality
gaps, and hardness of approximation for the problems of packing disjoint cycles in
a graph (directed or undirected). In the problem of packing edge-disjoint cycles
(EDC), we are given a graph G (which can be directed or undirected) and we
have to find a largest set of edge-disjoint cycles in G. The EDC problem has
been studied extensively both in undirected and directed graphs (see, e.g., [Balister
2003; Caprara et al. 2003; Seymour 1995]). Packing disjoint cycles is a fundamental
problem in graph theory with applications in several areas (see the discussion in
[Balister 2003] for an application in computational biology and reconstruction of
evolutionary trees). We denote by v.(G) the size of a largest collection of edge-
disjoint cycles in G. It is well known that computing v.(G) is NP-hard even for
undirected graphs. Already the very special case of deciding whether a graph
(digraph) has a triangle decomposition is known to be NP-Complete (see, e.g.
[Dor and Tarsi 1992] for a more general theorem on the NP-Completeness of such
decomposition problems). This motivates the study of approximation algorithms
for this problem. An algorithm is called an a-approximation for a maximization
problem if the solution returned by the algorithm is at least a factor 1/« of the
optimal solution, and « is called the approximation (or performance) ratio of the
algorithm.

A natural generalization of EDC that we consider is the problem of S-cycle pack-
ing (denote by S-EDC). In S-EDC we are given a directed graph G and a subset .S of
its vertices and the goal is to find among the cycles that intersect S (henceforth, S-
cycles) a maximum number v, (G, S) of edge-disjoint ones. We note that on directed
simple graphs, S-EDC is a special case of the extensively studied edge-disjoint paths
problem. See [Chekuri and Khanna 2003] for an O(n*/®)-approximation algorithm

ACM Journal Name, Vol. V, No. N, Month 20YY.



Approximation Algorithms and Hardness Results for Cycle Packing Problems : 3

and [Varadarajan and Venkataraman 2004] for an O(n2/31og?? n)-approximation
algorithm for the edge-disjoint paths problem in directed graphs.

The approximation algorithms we present also provide upper bounds for the in-
tegrality gap of the corresponding problem. Given a graph G = (V, E), a fractional
edge-disjoint cycle packing in G is a function 1 from the subset C of all cycles in
G to [0,1] satisfying > ..o ¥(C) < 1 for each e € E. Letting || = >0 ¥(C),
the fractional edge-disjoint cycle packing number v} (G) of G is defined to be the
maximum of || taken over all fractional cycle packings ¢ in G. The edge cycle
cover number 7.(G) of G is the minimum number of edges whose deletion makes G
acyclic. Clearly, v.(G) < vX(G) < 7.(G) for any graph/digraph G.

Previously known results: A recent result of Caprara, Panconesi, and Rizzi
[Caprara et al. 2003] shows that by slightly modifying the greedy algorithm one
obtains an O(logn)-approximation algorithm for undirected EDC and that the
problem is APX-hard even for planar graphs (i.e. for an absolute constant ey > 0,
no (1 + ep)-approximation exists unless P=NP). Although the EDC and S-EDC
problems are closely related to the well-known problem of finding the maximum
number of edge-disjoint paths in a graph, none of the results for the edge-disjoint
paths problem implies any of the results presented in this paper. The dual problems
of packing cycles (known as feedback sets problems) are also very well studied
problems in both directed and undirected settings. The dual problem of packing
vertez-disjoint cycles (denoted by VDC), is known as Feedback Vertex Set (FVS)
problem. This is the problem of finding the minimum number of vertices in a
graph whose removal makes the graph acyclic. This problem and its generalization
(in which every vertex has a weight and we seek to minimize the total weight of
selected vertices) has 2-approximation algorithms in undirected graphs (see [Bafna
et al. 1995; Becker and Geiger 1994; Chudak et al. 1998]). The dual of EDC is the
problem of finding the minimum number of edges in a graph that meet every cycle
(FES). This problem is trivial for undirected graphs (complement of a spanning
tree in each component). For directed graphs, there is an easy reduction from FES
to FVS. Seymour [Seymour 1995] showed that, if the optimal fractional FVS in
a directed graph G has value ¢* then the optimal integral FVS in G has value
at most O(p* log ¢* loglog¢*). This yields an O(log ¢* loglog ¢*)-approximation
algorithm for FVS in directed graphs [Even et al. 1998]. Alon and Seymour (see
[Seymour 1995]) showed that the integrality gap of FVS is Q(log ¢*).

Our results: We present approximation algorithms and hardness results for
different versions of cycle packing problems. For undirected EDC we present an
O(+y/logn)-approximation algorithm by combining the modified greedy algorithm
of [Caprara et al. 2003] with an ordinary greedy algorithm. In particular, we obtain
the following result.

THEOREM 1.1. There exists an O(y/logn)-approximation algorithm for the undi-
rected maximum cycle packing problem.

We also prove that the approximation guarantee of the algorithm is Q(y/logn). For
directed EDC we prove the following result.

THEOREM 1.2. There exists a /n-approzimation algorithm for the problem of
directed EDC.
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4 . Krivelevich et al.

The algorithms in Theorems 1.1 and 1.2 are easily adjusted to the capacitated
version of the problems as well, where every edge has a given capacity and the goal
is to find the maximum number of cycles such that the number of cycles containing
each edge is at most its capacity. For simplicity of exposition, we prove our results
for the uncapacitated case, and then show how they extend to the capacitated case.
For the S-EDC problem on directed graphs we prove:

THEOREM 1.3. There exists an O(n2/ 3)-approzimation algorithm for the directed
S-EDC on simple digraphs.

The approximation ratios in Theorems 1.1, 1.2, and 1.3 provide bounds on the
integrality gap of the standard LP-relaxations to the problems. Specifically, each
of the algorithms computes a packing C so that: |C|/v}(G) = Q(1//logn) in The-
orem 1.1, |C|/v¥(G) > 1/y/n in Theorem 1.2, and |C|/7.(G,S) = Q(n~=%/3) in
Theorem 1.3, where 7.(G, S) is the minimum number of edges needed to cover all
the S-cycles in G.

We also study the integrality gap and hardness of approximation of these prob-
lems. Our main result is that EDC in directed graphs has an integrality gap of

Q(log’i Z;n> More importantly, we prove that it is quasi-NP-hard to approximate

(@) within a factor of Q(log' “n) for any € > 0. Note that the only known
hardness result prior to this work was APX-hardness [Caprara et al. 2003] (for
undirected EDC).

€

THEOREM 1.4. For any ¢ > 0, there is no O(logk
rected EDC unless NP C DTIME(2Poylos(n)),

n)-approzimation for di-

Under the stronger complexity assumption that NP ¢ DTIME(2"") for some

€ > 0, we can prove a slightly better hardness of Q ((10;"{%@2).

Very recently, [Friggstad and Salavatipour 2006] have proved that the undirected
EDC is Q(log%fé)-hard to approximate, for any e > 0, unless NP C DTIME (nPoloe(n)),
This shows that the ratio of the algorithm in Theorem 1.1 is (almost) tight.

The organization of the paper is as follows. In the next section we present
the upper bound results, namely we prove Theorems 1.1, 1.2, and 1.3. Section 3
contains the lower bound results. We prove lower bounds for the integrality gap of
EDC and a variation of this problem. Finally, we will prove Theorem 1.4.

2. APPROXIMATION ALGORITHMS
2.1 Cycle Packing in Undirected Graphs

Perhaps the most natural greedy algorithm that finds a large number of disjoint
cycles in a given graph G is to find the smallest cycle at each iteration and delete
it from the graph. As shown in [Caprara et al. 2003], the approximation ratio of
this algorithm is ©(y/n). They suggested the following Modified Greedy algorithm
for finding edge-disjoint cycles in G. The algorithm starts with C = () and performs
the following steps iteratively, until there are no edges left in G:

(1) While G contains a vertex v of degree < 1, delete v (and the edge incident to
v, if exists).
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(2) While G contains a vertex v of degree 2 with neighbors v" and v”, delete v and
edges vv’, vv” and replace them by a new edge v'v”.

(3) Find a shortest cycle C' in G, add C' to the constructed solution C and remove
its edges from G.

It is easy to see that Steps 1 and 2 do not change the value of an optimal solu-

tion. Also, it is well-known that for every graph with minimum degree at least 3
the girth is O(logn) (e.g. see [Bollobds 2004]). Therefore, every cycle found by the
algorithm has size O(logn) and therefore intersects cycles whose total weight is at
most O(logn) in an optimal fractional solution. Hence the solution is within a factor
of O(logn) of the optimal fractional solution. Here we show how a small change in
this algorithm, together with a careful analysis yields an O(y/logn)-approximation
for the EDC problem, hence proving Theorem 1.1.
Remark: It is also easily seen that a slight modification of Step 3 of the Modi-
fied Greedy algorithm yields an O(logn)-approximation for the problem of packing
vertex-disjoint cycles (VDC). In fact this proves an upper bound on the ratio of
the solution value of this algorithm to that of an optimal fractional vertex-disjoint
cycle packing solution.

Our algorithm is as follows. At Phase 1, while girth(G) < +/log|V(G)| we
apply the Modified Greedy Algorithm (where |V(G)| is the number of vertices in
the current graph); the condition girth(G) < \/log |V (G)| is checked after Step 2.

Phase 2 starts when girth(G) > /log |[V(G)| after Step 2 for the first time; then
we repeatedly apply Step 3 only, which is the (ordinary) Greedy Algorithm.

2.1.1 The approximation ratio. We prove the following theorem that clearly
implies Theorem 1.1.

THEOREM 2.1. The algorithm computes a cycle packing of size Q(v:(G)/+/logn).

In the proof we use the following lemma, that provides an improved analysis of
the performance of the greedy algorithm on graphs with large girth.

LEMMA 2.2. Let H be a graph with n nodes, m > n edges, and girth g, and let
Cy be the set of cycles found in H by the greedy algorithm. Then

(m —n)” g "
> . ‘v (H) .
Cal = dm(m+n) log(m —n) ve(H)
In particular, if m > (14 €)n for an € > 0 then
2
€ *
[ I urH) .

Z It 9@t loglen)

PRrROOF. Consider the steps of the Greedy Algorithm when |E(H)| > (m+n)/2 =
n + (m —n)/2. Bollobds and Thomason [Bollobds and Thomason 1997] proved
that if a graph H satisfies |[E(H)| > |[V(H)| + f for a f > 0, then girth(H) <
2(1+ |V(H)|/f)log(2f). Thus during all these steps

2(m+n)
m—n
ACM Journal Name, Vol. V, No. N, Month 20YY.
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6 . Krivelevich et al.

The number of edges deleted during these steps is at least (m—n)/2. Also, v*(H) <
m/g. Indeed, if ¢ is an optimal fractional edge-disjoint cycle packing, then m =

(Bl 22 eer 2205 Y(C) = 20 ¥(C) - [C] 2 g3 ¥(C) = gv¢(G). Thus

(m = ny? m-n? 4.
2 4(m + n)log(m —n) 2 4(m+n)log(m —n) m © (H) -

ICh|

The second statement follows from the first by observing that the function f(m) =
2

(m—mn)
4m(m+n)
Completing the proof of Theorem 2.1: Note that Steps 1 and 2 of the
Modified Greedy Algorithm do not change the value of an optimal solution. Let
Cy and Cy be the sets of cycles added to the packing during Phase 1 and Phase 2,
respectively. Recall that in Phase 1 we execute the Modified Greedy Algorithm,
and the length of every added cycle does not exceed \/log |V (G)|. Phase 2 starts
when a cycle added to an approximate packing has length more than +/log |V (G)]|,
and executes the Greedy Algorithm. Fix an optimal fractional packing *, so
[*| = vi(G). Let ¥F be the restriction of ¢)* to the cycles that intersect some
cycle from Cy, 5 = ¢* —1)j. Since every cycle from C; has length < y/logn, we

have:
[1] < |Ci|V/1logm .

is increasing for m > n. 0O

We claim that:

3] < 60[Calv/Tog

Thus

[ = [¥1] + [¥3] < Vlogn(|C1| + 60|Caf) < 60+/logn|C| .

We prove that |3 < 60|Cz]v/logn using Lemma 2.2. Let H be the graph the
second phase starts with. Then girth(H) > +/log|V(H)|, and H has at least
3|V(H)|/2 edges (since H has minimum degree at least 3). Thus, by substituting
e = 1/2 in the bound in Lemma 2.2 we get:

1 eith(d) . 1 Vieg[V(H) .
26 toe(vanz e 2 & ogqvimz) 2
L VRV . )

o0 levan <G log [V (H)|

Clearly, |[V(H)| < n. Also, |95 < v*(H), since 15 corresponds to a fractional
packing in H. This implies |[¢5| < v*(H) < 60|C2|\/log |V (H)| < 60|Cs|v/1ogn, as
claimed.

Remark: Our algorithm is easily adjusted to the capacitated version of the prob-
lem, where we are also given integral capacities {c. : e € E} on the edges; the
goal is to find a maximum weight family C of cycles so that for every edge e € F
the capacity constraints > {w(C) : e € C,C € C} < c(e) are satisfied. We can
imitate the capacitated case by the uncapacitated one if we replace every edge e
by c. parallel edges with the same ends as e, and “forbid” the arising cycles of the
length 2. However, this will give only a pseudo-polynomial time algorithm. To get

ACM Journal Name, Vol. V, No. N, Month 20YY.



Approximation Algorithms and Hardness Results for Cycle Packing Problems : 7

a polynomial algorithm, let us show how to adjust Steps 1, 2, and 3 in the modified
greedy algorithm to handle this case. Each time an edge of capacity zero arises, it is
deleted. So assume that GG has no zero capacity edges. Step 1 remains the same. In
Step 2, the new edge v'v"’ gets capacity min{cy,/, ¢y }. In Step 3, after a shortest
cycle C' is found, we also find the minimum capacity edge e in C, add C to the
constructed packing, and assign it weight w(C') = ¢.. Then, in G, we reduce by c.
the capacities of the edges of C, and remove the arising zero capacity edges. Each
one of the steps can be performed in polynomial time, and leads to a graph with
less edges. Thus the running time is polynomial. It is easy to see that our analysis
of the approximation ratio is valid for the capacitated case as well. The algorithm
in Section 2.2.1 for directed graphs (to follow) admits a similar adjustment.

2.1.2 A tight ezample
THEOREM 2.3. The approximation ratio of the Modified Greedy Algorithm is

Q(vlogn).

The proof borrows some ideas from a lower bound argument in [Caprara et al.
2003]. For the proof we will need the following technical lemma.

LEMMA 2.4. Let G be a graph on n vertices of maximum degree at most 7. Let
Vo CVI(G). If [Vo| > n/2 then there exists a subset U C Vy of size [U| = [logn],
such that all vertices of U are at distance more than %logn from each other.

PrOOF. Note that every vertex v € G is at distance at most k from at most
7681 < 7% vertices from G. Define an auxiliary edge set Ey on V{ so that
(u,v) € Ey if distg(u,v) < %logn. Let H = (Vy, Ep). Then H is a graph on at
least n/2 vertices of maximum degree A(H) < 731°8" < 1995 and has therefore
an independent set U of size at least |[V(H)|/(1 + A(H)) > logn. Each such
independent set gives a required set of vertices in G.

A k-sunflower S* is a cycle of length k (the core cycle) to each edge of which
we attach a cycle of length k£ + 1 (a petal), so that the petals are vertex-disjoint
outside the core cycle. The number of vertices of S* is k2. Observe that the core
is the shortest cycle in a k-sunflower, and removing its edges results in a cycle on
k? vertices. We choose k = +/(logn)/3 and denote t = k? (we ignore floors and
ceilings as they do not affect the asymptotic nature of our result).

Let now G be a 3-regular graph on n vertices of girth more than t = %log n.
Such graphs exist for infinitely many values of n as proved by Erdds and Sachs
[Erdds and Sachs 1963]. We start with G = Go, set W = (), ¢ = 1, and repeat
n/(2t) times the following procedure:

(1) Find a subset U; C V \ W such that |U;| = ¢ and all vertices of U; are at
distance more than % logn from each other in G;

(2) Insert a copy S; of the k-sunflower in U;, placing it arbitrarily within U;;
update W «— W UU;; i «— 1+ 1.

Since the sets U; are disjoint and the maximum degree of S* is 4, the graph G
has maximum degree at most 7 during the execution of the above procedure. Also,
|W| < 7 -t = %, and therefore finding a required U; at each step is possible due to
Lemma 2.4. Let us denote by G* the final graph of the above procedure.

ACM Journal Name, Vol. V, No. N, Month 20YY.



8 . Krivelevich et al.

CrLAaM 2.1. Let C be a cycle of length at most %logn in G*. Then C is a cycle
in one of the inserted k-sunflowers S;.

Proof: Since girth(Gy) > jlogn, C contains an edge e € E(G*) — E(Gp). Let
i* = max{i : E(C)N E(S;) # 0}. We claim that C is a cycle in S;-. Let G-
be the graph created during the above described procedure after having inserted
the sunflower S;+. Obviously, C C Gi«. If E(C) C E(S;+) we are done. Assume
otherwise. Since U« spans only the edges of S;« in G;«, at some point C' leaves U;«
and then returns back. Let uq,us € U+ be the vertices of U;« where C' leaves and
reenters U;«. By our choice of U;+, distq,. (u1,u2) > %log n, implying |C| > %log n,
a contradiction. [J

Completing the proof of Theorem 2.3: We analyze the performance of our al-
gorithm on G*. By Claim 2.1, the shortest cycles in G* are the n/(2t) = O(n/logn)
core cycles of the inserted sunflowers, which are vertex-disjoint. Hence the algo-
rithm starts by picking all of them. After all core cycles have been removed, none
of the sunflowers contain a cycle of length at most %log n, and applying Claim
2.1 again we infer that the modified greedy algorithm will be able to add at most
3|E(G*)|/logn = O(n/logn) cycles, altogether ending up with O(n/logn) cycles.
On the other hand, a feasible solution can be obtained by taking all petals of all
inserted sunflowers, whose total number is (n/(2t)) - k = O(n/\/logn). It follows
that the approximation ratio of our algorithm on G* is

n

Q Viogn = Q(+/logn) .

_n_
logn

2.2 Cycle Packing in Directed Graphs
In this section we present the algorithms for EDC and S-EDC in directed setting.

2.2.1  Proof of Theorem 1.2. This algorithm uses ideas similar to those in [Chekuri
and Khanna 2003] for edge-disjoint paths in directed acyclic graphs. It will be con-
venient to describe the algorithm with a certain parameter ¢, which will be even-
tually set to £ = y/n. The algorithm starts with C;,C2 = () and in the end outputs
C1UCs.

Phase 1:

As long as there is a directed cycle of length < ¢, find such a cycle, add it to Cq,
and delete its edges from the graph.

Phase 2:

For each v € V', compute a maximum size set Ca(v) of edge-disjoint directed cycles
that contain v. Among the packings computed, let Co be one of maximal size.

THEOREM 2.5. For £ = +/n the algorithm computes a packing C; U Csy of size at

least vE(G)/\/n.

PRrROOF. As in the proof of Theorem 2.1, let us fix an optimal fractional packing
¥*, let 7 be the restriction of ¥* to cycles that intersect some cycle from Cj,
i = * —pf. Since every cycle from C; has length < £ we have [¢f] < (|Cy].
We claim that [Ca| > £]i3|/n. Thus by combining the bounds for |C1],|C2| and

ACM Journal Name, Vol. V, No. N, Month 20YY.
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substituting £ = \/n we get:

Col +[Cal = [911/€+ Lyl /n
= (Wil + [W3)/vn = [|/v/n .

To see that |Ca| > £)y5|/n, let G2 be the graph at the beginning of Phase 2. For
each v € V let 93 (v) be the restriction of 95 to the cycles in G5 containing v. Note
that for every v € V we can compute Cz(v) using any max-flow algorithm and flow
decomposition. By the integrality of an optimal flow from the Max-Flow Min-Cut
Theorem, |Co| > |5 (v)| for every vertex v. Thus, since every cycle in G2 has length
> (, we have:

V

nlCal = ) [W5(v)] = €lu3] .

veV
(I

2.2.2  Proof of Theorem 1.3. In this section we consider simple digraphs only.
The greedy algorithm for the maximum S-cycle packing problem repeatedly chooses
a shortest S-cycle and removes its edges from the graph. Similar ideas have been
used earlier in [Hajiaghayi and Leighton 2006; Varadarajan and Venkataraman
2004].

THEOREM 2.6. Given a subset S of vertices of a simple digraph G, the greedy
algorithm finds a set of at least 7.(G, S)/(5n/) edge-disjoint directed S-cycles in
G.

Proof: Let f(n,¢) be the maximum of 7.(G) taken over all simple digraphs G
on n vertices with girth(G) > £. Tt is easy to see that if C is a cycle pack-
ing computed by the greedy algorithm on G, then 7.(G) < ¢|C| + f(n,{) for
any positive integer ¢. A similar statement holds for the analogous definition of
f(n,£) in the undirected case. In fact, a similar statement holds for the analo-
gous vertex-disjoint (directed or undirected) cycle packing and cycle cover prob-
lems. In the undirected vertex-disjoint case Komlds [Komlds 1997] showed that
f(n,0) = ©(%In(n/f)). In the directed vertex-disjoint case, Seymour [Seymour
1995] showed that f(n,f) < 4% 1In(4n/f)Inlog(4n/f). He also gave an example
showing that f(n,?) = Q(% In(n/f)). In the edge-disjoint case, answering an earlier

conjecture of Bollobds, Erdds, Simonovits, and Szemerédi [Bollobds et al. 1978],
2

Komlés [Komlés 1997] established the asymptotically tight bound f(n,?) = ©(%z)
in undirected graphs.

We generalize this by defining h(n,¢) to be the maximum of 7.(G, S) taken over
all simple digraphs G on n vertices and S C V(G) so that every S-cycle in G has
length > ¢. Let 7(G,S) denote the size of an S-cycle packing computed by some
run of the greedy algorithm.

LEMMA 2.7. For any positive integer ,
T (G, S) < Uv(G,S) + h(n, L) < (£ + h(n,))v(G,S).

PROOF. Fix an optimal cover F' with |F| = 7.(G, S), and partition it into two
sets F1 and Fy, where F; are the edges contained in S-cycles of length < ¢ of
the S-packing computed. Then |F| < (G, S), since every S-cycle of length < /¢
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10 . Krivelevich et al.

in the packing computed contains at least one edge from F;. On the other hand
|F5] < h(n,£), by the optimality of |F'| and by the definition of h(n,£). The result
follows. 0O

For digraphs, the bound h(n,f) = O((n?/£?)log*(n/f)) can be deduced from
[Varadarajan and Venkataraman 2004, Theorem 1.1] where a more general problem
was considered. We will show that h(n, ) = ©(n?/f?) using the following lemma
of Komlés [Komlss 1997].

LEMMA 2.8 [KoMLOS 1997, LEMMA 3. Let ag,aq, ..., a; be a sequence of non-

negative real numbers, and denote s, = Zf:o a;. Then there exists k € {0,...,t—1}
such that agai+1 < %skst.

COROLLARY 2.9. Let ag,a1,...,a; be a sequence of integers, and denote s =
Zle a; and p = [t/2]. Suppose that s, < s;/2. Then there exists k € {0,...,p—1}
such that:

4e

apap+1 < f)—;isksp < t_zskst'
LEMMA 2.10. Let S be a subset of vertices of a simple digraph G on n wvertices
so that every S-cycle in G has length > £. Then there exists an S-cycle edge-cover
F with |F| < 4e(n/t)*. Moreover, such F can be found in polynomial time.

PROOF. The proof is by induction on n. If G has no S-cycles, in particular if
it has ¢ vertices or less, the statement is obvious. We can also assume that G is
strongly connected; otherwise, validity of the result for every strongly connected
component of G implies the result for G.

Since every S-cycle in G has length > £, there are vertices u,v with v € S and
v € V(G) such that every (u, v)-dipath has length > ¢, and hence there is a partition
of V(G) into nonempty sets Xy, ..., X, where t > £, such that no edge of G has
tail in X; and head in X, for j > i+ 2. Let a; = |X;| for i = 0,...,¢, and let s
and p be as in Corollary 2.9. Notice that s; = n. We may assume that s, < n — s,
since otherwise we may consider the reversed sequence of ag,...,a;. By Corollary
2.9, there exists k € {0,...,p — 1} such that:

de
ARy < t—QSkn

Let F' be the edge cut consisting of the set of edges going from X to Xy (if we
consider the reversed sequence, then we take also the “reversed” cut). Then, since
G is simple,
|F'| <agapyr < %skn.

We delete F’ and apply the inductive hypothesis to the subgraphs Gy and G5 of G
induced by the corresponding parts Vi = Xy U---U X and Vo = X U--- U X
Clearly, any S-cycle in G — F' is entirely contained either in G7 or in Gs.

To summarize, we can find a cut F’ that divides G into two subgraphs G; and
G4, where G; has n; vertices, such that n; +no = n and n; < n/2 < ns, and such
that |F’| < 2¢nin. We need to prove that:

2 2 2
/ ny | ng n
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Indeed,
n?  n3 de
|F'| + 4e (6_21 + 6_22> < é—z(nln—i—n% +n3)
de n?
< £—2(2n1n2 +ni+n3) = 4e£—2.
O

The bound in Lemma 2.10 is tight up to a constant factor even for S = V, as
can be seen in the following example. Start with a directed cycle on y/n vertices
and then replace each vertex u with £ = [/n] copies u,...,us. Also replace each
original edge uv with ¢ edges u;v;, 1 <1i,j < £. Clearly in this graph every cycle
has length at least £ and every cut must contain at least ¢? = Q(n) edges.

By Lemmas 2.7 and 2.10 we deduce:

COROLLARY 2.11. Let S be a subset of vertices of a simple digraph G on n
vertices. Then for any integer ¢,

(G, S) < (0 4 4e(n/0)*)i(G, S).

In particular for £ = 2e'/3n2/3 we have 7.(G, S) < 3¢Y/3n?/35(G, S) < 5n?/*(G, S)
and this also completes the proofs of Theorems 2.6 and 1.3.

Remark: In [Chekuri and Khanna 2003] it was shown that the greedy algorithm
for the undirected Edge-Disjoint Paths problem has approximation ratio O(n2/ 3).
The method presented in this section can be used to provide a different proof for
the same result.

3. INTEGRALITY GAP AND HARDNESS OF DIRECTED DISJOINT CYCLE PACK-
ING

In this section, we study lower bounds for the integrality gap and hardness of
approximation for packing disjoint cycles. For directed graphs, an easy reduction
shows that the problems of packing edge-disjoint cycles (EDC) and vertex-disjoint
cycles (VDC) are equally hard. Hence, our lower bounds for integrality gap and
hardness of approximation carry over to the VDC problem as well. We present this
reduction here (Lemma 3.1) for the sake of completeness.

Recall that Theorem 1.2 proves a y/n upper bound for the integrality gap of
directed EDC. Although we are unable to prove that Q(y/n) is also a lower bound
for the integrality, we conjecture this is the case. This conjecture is supported
by a construction (Proposition 3.2) showing that ©(y/n) is a lower bound for the
integrality gap of the odd directed cycle packing problem (namely, the maximum
number of edge-disjoint directed cycles of odd length). Then we prove that the
(standard) directed EDC problem has an integrality gap of Q(lolg(’l%). This is
proved in Theorem 3.3 below. Then we show how to use the ideas of this proof to
prove Theorem 1.4, i.e. that v.(G) is quasi-NP-hard to approximate within a factor
of O(log'™“n), for any € > 0. The idea of starting with a grid-like graph in the
proofs of Proposition 3.2 and Theorem 3.3 was inspired by the work of Guruswami
et al. [Guruswami et al. 2003] to prove hardness of directed edge-disjoint path
problem.
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12 . Krivelevich et al.

LEMMA 3.1. Given a directed graph G = (V, E) as an instance of VDC' (of EDC)
there is an instance G' = (V', E") of EDC (of VDC) with |G'| = poly(|V (G)|), such
that G has k vertex-disjoint cycles (edge-disjoint cycles) if and only if G’ has k
edge-disjoint cycles (vertex-disjoint cycles).

PrROOF. Reduction from VDC to EDC: For each node v € V, G’ contains two
nodes vy, v2. We add vivy to E’. Furthermore, for every edge uv € E we create an
edge ugvy in E'. It is easy to see that G has a collection of integral (or fractional)
vertex-disjoint cycles in G with size k if and only if G’ has a collection of k integral
(or fractional) edge-disjoint cycles.

Reduction from EDC to VDC: Suppose G is an instance of EDC. For every edge
xy in G create a vertex v,y in G'. For every vertex € G with incoming edges
Y1T, Y2, . . ., YpT and outgoing edges xzi,x22,...,12, add the following edges to
G Vy,eVzz; for every 1 < i < pand 1 < j < ¢q. It can be seen that G has k
edge-disjoint integral (or fractional) cycles if and only if G’ has k vertex-disjoint
integral (or fractional) cycles. O

PROPOSITION 3.2. For infinitely many n, there exists a digraph G on n vertices,
in which every pair of odd cycles has a common edge, and yet v’,,(G) = Q(v/n),
where v2,,(G) is the fractional odd cycle packing number of G.

PROOF. Let N be an odd positive integer, and consider the digraph Dy whose
vertices are (i,7) for 4,7 = 1,..., N. We think of the first coordinates as rows and
the second ones as columns. The edges of Dy emanate from (7, ) to (i + 1,7) for
i=1,...,N—1land j=1,...,N and from (¢,5) to (i,7+ 1) fori=1,..., N and
j=1,...,N —1. There are also edges from (i, N) to (N +1—1i,1).

We first show that Dy does not have two wvertex-disjoint odd directed cycles.
Clearly, every cycle of Dy is composed of segments, where each segment starts in
the first column, passes through every column sequentially (and sometimes goes
down in the rows) until it reaches the last column. Segments are separated by the
edges connecting the vertices in the last column to the vertices in the first column.
Thus, each segment has a unique start vertex from the first column, and a unique
end vertex from the last column. The length of a segment is the number of vertices
it contains. Thus, the length of a cycle is the sum of the lengths of its segments.
We partition the vertices of Dy into two types, even and odd. Even vertices are
those whose coordinates have the same parity. An even (odd) segment of a cycle is
a segment of even (odd) length. Notice that since N is odd, the endpoints of even
segments belong to different types, while the endpoints of odd segments belong to
the same type. Also notice that the end vertex of a segment has the same type
as the start vertex of the following segment. It follows that odd cycles must have
an even number of even segments and, trivially, an odd number of odd segments.
Thus, odd cycles have an odd number of segments. Notice that every cycle (whether
even or odd) that does not contain a vertex from the middle row must have an even
number of segments (as the segments alternate below and above the middle row).
Thus, we have shown that every odd cycle must contain a vertex from the middle
row. In particular, every odd cycle has a segment starting in (i,1) and ending in
(j,N) where ¢ < (N +1)/2 and j > (N + 1)/2. Now, let C and C’ be two odd
cycles. We may assume that C has a segment S starting in (i,1) and ending in
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(J, N) where i < (N +1)/2 and j > (N +1)/2, and C’ has a segment S’ starting
in (k,1) and ending in (¢, N) where k < (N +1)/2 and ¢ > (N + 1)/2. Assume,
w.l.o.g., that i < k. If i = k or £ < j we are done since in this case segments S and
S’ intersect. Thus, we may assume ¢ < k and j < . But in this case we have, as
before, that if C’ does not contain any vertex of S then the segments of C’ must
alternate below and above the segment S, and hence C’ must have an even number
of segments, contradicting the fact that C’ is an odd cycle.

To estimate from below the fractional odd cycle packing number of G, for each
1<i<(N+ 1)/27 define the cycle C; as follows:

= ((4,1),(2,2),...,(2,9), (¢ + 1,4), (i + 2,4), ...,
(N+1—4,4),(N+1—i,i+1),
(N+1—-4,i+2),....,(N+1—4,N),(i,1))

(i.e. C; starts at (i,1), goes horizontally till (i,4), then drops vertically to (N 4+
1 —4,7) and then again goes horizontally till (V 4+ 1 — 4, N) and finally returns to
(7,1)). Tt is easy to see that each vertex of Dy belongs to at most two cycles C;,
and therefore, giving value ¥ (C;) = 0.5 to each cycle C;, we obtain a fractional
odd cycle packing of value (N + 1)/4. Now, by replacing each vertex v of Dy with
the path v, Vmid, Vout and replacing each edge (u,v) with the edge (uout, Vin) We
obtain a new graph Dy, with 3N? vertices. Any set of edge-disjoint directed cycles
in DY is also vertex-disjoint, and corresponds to a set of vertex-disjoint directed
cycles in Dy. Furthermore, any odd (even) cycle in Dy corresponds to an odd
(even) cycle in Dy. Thus, by letting n = 3N? the desired construction follows. [

THEOREM 3.3. The directed EDC problem has an integrality gap of Q(lolgoigogn).

We give a construction of a graph G on n vertices, such that Z EG; e Q log’]i gn)
Our starting point is a grid-like graph which gives the Q(y/n) mtegrahty gap for
the well-known problems of disjoint paths [Guruswami et al. 2003]. An instance of
the edge-disjoint paths (EDP) problem consists of a (directed) graph G with pairs
of vertices s;,t;, for 1 < i < k, and the goal is to connect maximum number of
pairs s;,t; using edge-disjoint paths. The vertex-disjoint paths (VDP) problem is
defined similarly.

Let r be a positive integer and define a directed graph which consists of vertices
si,t; (1 <4 < r) together with vertices h;j, u;j,vij, 1 < j < i < r. There is an
edge from h;; to u;; and an edge from h;; to v;; (1 < j <4 <r). There are also
edges uijhi(jy1) and vijh(i1); for 1 < j < i <r. Furthermore, for every 1 <i <r
it has edges uiih(iy1)(i+1), and for every 1 < ¢ < r it has s;h;1, and v,;t;. Finally
Up(r—1) is connected to t,. Since this graph has a drawing on the plane, there
cannot be two vertez-disjoint paths P; and P; (1 < # j < r) where P; starts from
s; and ends in ¢; and P; starts from s; and ends in ¢;. Because we want to have
the edge-disjoint property, we “split” every vertex h;; into two copies h}- and hfj,
where the incoming edges of h;; are now going into h}j and the outgoing edges of
h;; are going out of h and put the edge hllj hfj in (see Figure 1). Let’s call this
graph D, and the subgraph induced by four vertices hu? hfj, U5, V55 an intersection
module of D,.. Again, it is easy to see that there cannot be two edge-disjoint paths
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Fig. 1. Construction of D,: each gray circle corresponds to an intersection module

from s;’s to t;’s (because we can route at most one path through every intersection
module). Note that:

Fact 1: The half-integral fractional solution for EDP in D, has value at least 3.

This creates a gap of Q(r), which is Q(y/n), with n being the number of vertices
in the graph. We will use this fact again, later on. A natural attempt to extend
this result to the cycle packing problem would be to add directed edges t;s;, for
1 <4 < r. Unfortunately, this new graph will have an integral solution of value
Q(r) (for, e.g., consider the directed cycle that goes from s; to ¢, along the diagonal
path, then to s, and to ¢; and back to s;. We can pick 7 such cycles). So this does
not create the desired gap. The problem appears here because the cycles are not
bound to follow a path directly from s; to ¢; (they may go through other s;’s and
t;’s before reaching ¢;). Our idea to resolve this problem is to make it “too costly”
for the cycles to do so. In other words, we are going to combine many copies of
D, in a special manner so that if a cycle contains a “non-trivial” path from s; to
t; then it has a very long length; so long that we cannot have many of them. This
will create the desired gap.

Using two copies of D, we construct another graph H, in the following way.

Consider D, with input vertices si,...,s, and output vertices t1,...,t.. Take
two copies of this graph, D! and D2, and identify (only) the input vertices of
them. Let s1,...,s, be the new set of (unified) input vertices and ¢,...,t! and

t2,...,t2 be the set of output vertices. Let us call this graph H, (see Figure 2).
An important observation to make here is that H, is acyclic. This is crucial to our
main construction. We call the triple s;,t},t? “block” i with start point s; and end
points t}, 12,1 < i < k. Consider H, and the 2r pairs s;,t! and s;,t? (two pairs for
each block) as an instance of the EDP problem. We say block i is fully routed in a
solution to this instance if there are edge-disjoint paths connecting both pairs s;, t}
and s;,t? in the solution. If only one of these paths exists in the solution then we
say block i is partially routed. It is easy to see:

Fact 2: Any optimal (integral) solution for EDP on H, with 2r pairs, either
contains only one fully routed block or two partially routed blocks. Furthermore,

there is a half-integral solution in which every block is fully routed (with value %
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Fig. 2. Construction of H, from two copies of D,

on each path).
We will use the following technical lemma in our construction.

LEMMA 3.4. For given positive integers r, k, and g with r < k, there is an
explicit construction of a k-uniform r-regular hypergraph of girth at least g where
2
the size of the construction (number of vertices) is O(%)

PRrROOF. We start with an explicit k-regular graph G = (V, E) of size at most
O(k?971) and girth at least 2g. These graphs exist (see, for instance, [Lazebnik
et al. 1997] and the references there). Construct a bipartite graph G' = (AU B, E')
from G where A and B are copies of V with a; and b; being the vertices of A and B
(respectively) corresponding to vertex v; € V, and a;b; € E’ if and only if v;v; € E.
It is easy to see that G’ is k-regular with girth at least 2g and has size O(k?971).
To simplify our calculations, let us assume that k is a power of 2.

Construct a new bipartite graph G” = (A’ U B, E”) from G’ in this way: for
each vertex a; € A create two vertices a} and a? in A’. Then join a; to half
of the neighbors of a; and join a? to the other half. Repeating this procedure
log(k/r) times, we get the bipartite graph G” in which every vertex in A’ has
degree s = r and every vertex in B has degree k, |A'| = %29, |B| = k2971,
and the girth is at least 2g. Now we define a hypergraph H with vertex set A’
whose edge-set is the set of neighborhoods of vertices of B. This hypergraph is
k-uniform, r-regular, with girth at least g and has size O(#) O

Let r, k, and g be some positive integers to be specified later and let ' = (;)
Consider a k-uniform r’-regular girth g hypergraph H. Such hypergraphs exist by
Lemma 3.4. The underlying structure of the main graph for the integrality gap
is H. Let p and g be the numbers of vertices and hyperedges of H, respectively.
Take a set P, = {D},..., DP} containing p copies of D, (constructed earlier), one
corresponding to each vertex in H. Also take a set Q = {R},..., R}} containing
q copies of Hy, one corresponding to each hyperedge of H. For every graph in P,

we fix an arbitrary ordering of its intersection modules (note that the number of
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i
Graph D;* S\
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Fig. 3. Replacing intersection modules of Dfl ..., D& with blocks of RZ

intersection modules of D, is (g) = 71’; the same as the degree of a vertex in H).

Similarly, for each graph in Q) we fix an arbitrary ordering of its blocks (note that
the number of blocks of each graph in @y is k; the same as the size of a hyperedge
in H). Initially, we assign a green flag to every intersection module of every graph
in P, and to every block of every graph in (. Soon we will start modifying the
blocks and modules and change their flags to “red”. For each pair s/,t! in each
copy DJ € P, add the directed edge tf si to Di. We call these edges feedback edges.

Consider an arbitrary hyperedge e; € H and let R € Qj be the copy of Hy in
Qr that corresponds to hyperedge e;. Note that R} has k blocks; let us denote
these blocks by b, . .. ,b};, where bg consists of triple sg, ti’i, ti’i. Also, assume that
edge e; consist of vertices vq,, ..., vq,. Thus the copies of D, in P, corresponding
to these vertices are D%, ... D%:;: let’s denote this set by S;, i.e. S; = {D;’ €
P,| the vertex of H corresponding to D;? belongs to e;, 1 < j < k}. Pick the first
green block of Ri, say sf\,tg’l,tlA’Q (for some 1 < A < k) according to the fixed
ordering of the blocks of Ri and change its flag to red. Also, pick the first green
intersection module of D2 (from its fixed ordering), say hl,, h2,, wap, vap (for some
1 < a,b <r) and change its flag to red. Remove vertex hZ, and its incident edges
(i.e. edges hl h?,. hgbuab, and h2,ve) from D% and add the following edges:
hl, s, ti’zuab, and ti’lvab (see Figure 3). We will consider these new three edges
(instead of the three edges that were removed from D) as part of DZ*. Do this
for all the blocks of Ri. This process is going to modify (and change the flag from
green to red for) one intersection module from each graph in S; (i.e. D2, ..., D%);
one for every block of Ri. Repeat the same procedure for all the hyperedges of
H (i.e. for all graphs in Q). We obtain a huge directed graph G, j 4, which has
constant degree and O(r?p + k?q) vertices. Note that, since each graph Ri € Qy is
acyclic, every cycle in G 4 must contain one of the feedback edges.
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The basic idea behind the construction is that intersection modules in copies of
D, (graphs in P,) are now replaced with “blocks” of copies of Hj, (graphs in Q)
and in order to go from hl, to u,, in the intersection module of D%, we have to

r o

go from s} to ti’i in a “block” of Ri. For the moment, assume that:

. (i) among all the blocks, only an e-fraction could be (partially or fully) routed,
and for the other (1 — €)-fraction no routing existed at all.

. (ii) all the blocks where completely independent of each other i.e. they were
not part of the same graph and therefore there was no way to start at the start
point of a block b; (of a copy of Hy) and end at an end point of another block b,.

This would imply that G 4 has no more than erp cycles. The reason is that each
cycle must contain a feedback edge, and so goes from some s, in a copy of D, in
P, to ts in the same copy. Therefore, it goes through at least r blocks (previously
intersection modules), since each cycle in a copy of D, uses at least r intersection
modules. This would give us the required gap. Fortunately, the assumption (i)
above is easy to prove (by Fact 2), i.e. a large fraction of all of the blocks of
graphs in @ do not have any routing (neither partial nor full). But the trouble is
that the second assumption is not correct. That is, the blocks are not completely
independent as we assumed, and they appear in groups of size k in one graph (a
copy of Hy, in Q). For this reason, cycles in G, i, may have complicated structures
and go through several copies D’s in P,. For instance, a cycle C' may start (as
a path) at some vertex s, in a copy D! in P, (D! corresponds to vertex v; € H)
and then at some vertex hl, € D! the path enters the start point of a block b, in
a graph Ré (which is a copy of Hy in Q). But instead of going out from an end
point of the same block b, (of ng) it goes (within Ri) to an end point of another
block b, of Ri. We call this situation a jump between blocks of Ri. This way, the
path may end-up in another copy Di/ (before going back to s,). Looking from a
higher level at the underlying hypergraph structure (which has a structure like H),
we can think of this path as going from vertex v; (graph D! € P,) to vy (graph
DY e P,) in ‘H through hyperedge e; (through graph R} € Q) by starting at the
start point of one block and going down to an end point of another block of ng)
But if this happens, since the start point (s, ) is in D%, this path must eventually
come back to t, in D (because t, € D! is the only vertex that has an edge to
Sq). However, because H has girth at least g, the path has to go through at least
g other graphs in P, before getting back into D:. Therefore, the cycle contains
at least Q(g) edges from the graphs in P.. We call these cycles (that go through
several graphs in P,) long cycles (because g is going to be large) and those that are
within one graph of P, (and so do not jump between blocks of graphs in Qy), short
cycles. This implies that the total number of long cycles can be at most a fraction
L of the total number of edges in the graphs in P,. If g is large and r is small the
fotal number of short and long cycles will be small.

LEMMA 3.5. v (Grkg) = Qrp), that is, Gy g has a fractional cycle packing
solution of value Q(rp).

PROOF. Recall that by Fact 1, there is a half-integral solution (for EDP problem)
in any instance D,., which contains one half-integral path for each pair s;, ;. If we
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add edges t;s; (for 1 <i <7r) to D, then there are at least r half-integral cycles in
D,.. In this fractional solution, we route exactly two (half-integral) cycles through
each intersection module.

We do have the feedback edges in G, , (in every graph DJ € P,). Also, by
Fact 2, for every graph R} € Qj, there is a half-integral fractional solution in which
all the blocks in R} are fully routed (with value 3). Therefore, all the blocks in
all graphs in Qi (which have replaced all the intersection modules in graphs in
P,) are fully routed (with value 3). These two imply that each (modified) graph
DJ € P, has r half-integral (short) cycles (where parts of the fractional cycles go
through blocks of the graphs in Q). Since there are p graphs in P, we get Q(rp)
half-integral cycles. [

LEMMA 3.6. ve(Grpgq) = O(2 + ’“2—”).

r g9

PROOF. By Fact 2, for every graph R} € Qy, there are at most two blocks that
can be (partially or fully) routed. So over all graphs in @y, there are at most
2¢ blocks that can be (partially or fully) routed. Since blocks have replaced the
intersection modules of the graphs in P, and every short cycle in a graph in P, goes
through at least r blocks, plus the fact that at most two cycles can go through any
routed block, there can be at most 4¢q/r directed short cycles in the graphs of P,
in Gr,k,g'

Now we upper bound the number of long cycles. Because every graph in P, has
constant degree and O(r?) vertices, the total number of edges of G,y , that are
parts of the graphs in P, is O(r?p). Therefore, by the arguments before Lemma

3.5, there are at most O(Tsz) long cycles in G, j, 4. Thus the total number of short

and long cycles is O(£ + T%p). O

Proof of Theorem 3.3: Recall that the number of vertices p and the number
of hyperedges g of H are O(g) and O(k?971), respectively. Let r be some (not too
small) constant and k = g. This implies that p € O(k**) and ¢ € O(k**~1). The
total number of vertices n in G,k 4 is O(r?p+ k?q) which is O(k?**1). By Lemmas
3.5 and 3.6, the integrality gap is at least Q((rp)/(£ + T%p)) which is (k). This is

Q(lolgol%), which completes the proof of Theorem 3.3. ]

Combining Lemma 3.1 and Theorem 3.3 and noting that the constructions in
Lemma 3.1 have polynomial size, we obtain:

COROLLARY 3.7. Directed VDC has integrality gap of Q(log’ign).

The construction for the hardness result has similar structure and uses the hard-
ness of directed EDP by Ma and Wang [Ma and Wang 2000] which is based on the
hardness of the label cover problem.

THEOREM 3.8. [Ma and Wang 2000] For any € > 0, directed EDP cannot be
approzimated within ratio 2°8 "™ unless NP C DTIME(2Po¥los(n),

A careful analysis of proof of Theorem 3.8 reveals that in fact their proof implies
the following stronger version:
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THEOREM 3.9. Given an instance I of directed EDP, which consists of an acyclic
digraph G (on n vertices) and k source-sink pairs (s1,t1),...,(sg,tx) in G, where
k € Q(n®) for some absolute § > 0, then for any € > 0 it is quasi-NP-hard to decide
between the following two cases:

(1) All pairs (s;,t;) can be routed by disjoint paths, or
(2) At most a fraction 27108 " of the pairs can be routed.

We call the instance a Yes instance if all the pairs can be routed (case 1 above)
and a No instance if at most a fraction 27 1°8" "™ of the pairs can be routed (case
2 above).

Proof of Theorem 1.4: Let Igpp be an instance of (directed) EDP as in
Theorem 3.9 which consists of a directed acyclic graph G and k pairs (s;,t;), 1 <
i < k. Take two copies of Igpp, named I} and I3 and identify the source s; € Ip
with s? € I3 and call this new vertex s; (1 <i < k). Denote this new graph by H,
with 2k source-sink pairs s;,t} and s;,t%, 1 <i < k. As in the construction of the
integrality gap, we name the triple s;,t},t7 block i of Hjy with start point s; and
end points ¢} and ¢?. In a solution to the EDP problem with instance Hj and the
2k pairs s;,t} and s;,t2 (1 < i < k) we say block i is fully routed if there are two
paths, one from s; to t} and one from s; to ¢?, in the solution. If only one of these
paths exists then we say block ¢ is partially routed. If none of them exists block 7 is
not routed at all. Again, the fact that Hy, is acyclic will be crucial in the analysis of
our construction. Let r and g be some positive integers (to be specified later) and
take an (;)—regular k-uniform hypergraph H with girth g. As before, let p and ¢
be the number of vertices and hyperedges of H, respectively. We construct a graph
Gk, whose underlying structure is H in the same manner we did in Theorem 3.3
except that now we use copies of Hy, (defined above) to place in Q. The rest of the
construction remains the same. That is, we take p copies of D, and put them in
the set P, and then replace the intersection modules of them with blocks of copies
of Hy in Qj, in the same manner. Let P, = {D},...,D?} and Q = {R},..., R}'}.
We define short and long cycles in G, 1,4 in the same way as we did in Theorem
3.3.

If Igpp is a Yes instance then all the & blocks in Hj can be fully routed. This
means that every block of every Ri € Qj, can be fully routed. So for every graph
Di € P, there are r disjoint paths from s; to ¢;, one for each 1 < ¢ < r, and because
of the existence of feedback edges (connecting ¢; to s;) we have r edge-disjoint cycles
in each DI € P,. This gives a total of Q(rp) edge-disjoint cycles.

If Igpp is a No instance then at most a fraction 2~ log' "1 of the k pairs can be
logk\1—¢€
routed. Since k = Q(|Igpp|®), this fraction, denoted «, is at most o= (555) " So,

at most 2ak blocks in each graph in @y, and therefore, at most 2akq blocks over
all the graphs in @ can be (fully or partially) routed. Because each short cycle
in a graph D% € P, goes through r blocks (previously intersection modules), the
number of short cycles over all graphs in P, is at most 2akq/r. The same argument
we had in Theorem 3.3 for long cycles implies that the number of long cycles here
is at most a é fraction of the total number of edges in all graphs in P.. This is at

most O(iqp). All together, the number of short and long cycles is O(@ + TZTP),
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which is O(rp(2a + Z %)), because ¢ = %

The above arguments together with Theorem 3.9 imply that deciding between
Q(rp) cycles and O(rp(2a + q)) cycles in G, i 4 is quasi-NP-hard. Equivalently, it
is quasi-NP-hard to have an approximation algorithm with factor Q(1/F(r, k,g))
where F(r,k,g) = 2ac+ . Let 7 be a (not too small) constant and g = O(log® k)
for an arbitrary large constant ¢ > 0. This implies that the hardness factor (i.e.
1/F(r,k,g)) is Q(log®k). With this setting of parameters, H has p = O(k'%8" )
vertices and ¢ = 12 = O(k'°8"*~1) edges. So, if N denotes the number of vertices
of Gy g (ie. the size of the construction), then it will be at most O(k'°&"*) (for
the vertices in graphs in P,) plus O(ks 198" %) (for the vertices in graphs in Q). So
overall, N = O(k%ﬂogc *), which is quasi-polynomial in the size of input (instance
Igpp). Rewriting the hardness factor 2(log® k) in terms of N gives a hardness of
Q(log=T N). O

By Lemma 3.1 the same hardness result holds for VDC. Under a stronger com-
plexity assumption that for some sufficiently small o > 0, NP ¢ DTIME(2""), we

can improve the hardness result to ((loglﬁ%n)g). To do this we start with an
instance L of label cover of size n and use ¢ parallel repetitions to get a hardness of
factor 29 for the instance £¢ (using the PCP theorem [Arora et al. 1998; Arora
and Safra ], together with Raz’s [Raz 1998] parallel repetition theorem). Note that
the size of this instance is |£f] = n©®). Combining this with the construction
of [Ma and Wang 2000] we get a hardness of factor 2°) for the EDP problem.
Following the same construction as in the proof of Theorem 1.4 with constant r,
¢ = c-logn for sufficiently large constant ¢, and g = ©(n°) (for an € < o) we get
a hardness of factor n° and N (the size of G, ,) is in O(n™ 1°8™). Writing the

hardness factor in terms of IV, we get a gap of Q2 ((log"lf%)

4. CONCLUDING REMARKS

Although there is a large gap between the upper bound (approximation algorithm
of Theorem 1.2) and the lower bound (hardness result of Theorem 1.4), closing
this gap seems a challenging problem. In fact there are some similarities between
the problem of cycle-packing and the well-studied edge-disjoint paths problems (for
undirected graphs). For the latter problem, despite several attempts there is still a
similar gap between the best known approximation algorithm [Chekuri et al. 2006]
(with ratio O(y/n)) and the best known hardness result [Andrews et al. 2005] (with
ratio O(log%_e)).

For the problem of undirected EDC, very recently Friggstad and Salavatipour
[Friggstad and Salavatipour 2006] have proved a hardness of Q(log%_6 n), unless
NP C DTIME(nPo¥!°8(n) This shows that the approximation ratio of the greedy
algorithm of Theorem 1.1 is almost tight. It would be interesting to find the thresh-
old of approximability of this problem.
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