
Approximation Algorithms and Hardness Results

for Cycle Packing Problems

Michael Krivelevich

Tel Aviv University

and

Zeev Nutov

Open University of Israel

and

Mohammad R. Salavatipour

University of Alberta

and

Jacques Verstraete

University of Waterloo

and

Raphael Yuster

University of Haifa

A preliminary version of this paper appeared as two separate papers, titled: “Approximation

Algorithms for Cycle Packing Problems” in Proceedings of the 16th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, Vancouver, Canada, 2005, and “Disjoint Cycles: Integrality Gap,

Hardness, and Approximation” in Proceedings of 11th Conference on Integer Programming and
Combinatorial Optimization, Berlin, Germany, 2005.
Authors’ addresses: Michael Krivelevich, Department of Mathematics, Tel Aviv University, Tel
Aviv, Israel. E-mail: krivelev@post.tau.ac.il. Research supported in part by USA-Israel BSF
Grant 2002-133, and by grant 64/01 from the Israel Science Foundation.
Zeev Nutov, Department of Computer Science, The Open University of Israel, Tel Aviv, Israel.
E-mail: nutov@openu.ac.il.
Mohammad R. Salavatipour, Department of Computing Science, University of Alberta, Edmon-
ton, AB T6G2E8, Canada. E-mail: mreza@cs.ualberta.ca. Supported by NSERC and a faculty
startup grant from University of Alberta.
Jacques Verstraete, Department of Combinatorics and Optimization, University of Waterloo, Wa-

terloo, ON N2L3G1, Canada. E-mail: jverstra@math.uwaterloo.ca. Supported by NSERC Dis-
covery Grant 298149.
Raphael Yuster, Department of Mathematics, University of Haifa, Haifa 31905, Israel. E-mail:
raphy@research.haifa.ac.il.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–0??.

2 · Krivelevich et al.

The cycle packing number νe(G) of a graph G is the maximum number of pairwise edge-disjoint

cycles in G. Computing νe(G) is an NP-hard problem. We present approximation algorithms
for computing νe(G) in both undirected and directed graphs. In the undirected case we analyze
a variant of the modified greedy algorithm suggested by Caprara et al. [J. of Algorithms 48

(2003), 239–256] and show that it has approximation ratio Θ(
√

log n) where n = |V (G)|. This
improves upon the previous O(log n) upper bound for the approximation ratio of this algorithm.
In the directed case we present a

√
n-approximation algorithm. Finally we give an O(n2/3)-

approximation algorithm for the problem of finding a maximum number of edge-disjoint cycles
that intersect a specified subset S of vertices. We also study generalizations of these problems.
Our approximation ratios are the currently best known ones and, in addition, provide upper
bounds on the integrality gap of standard LP-relaxations of these problems. In addition, we give
lower bounds for the integrality gap and approximability of νe(G) in directed graphs. Specifically,
we prove a lower bound of Ω(log n

log log n
) for the integrality gap of edge-disjoint cycle packing. We

also show that it is quasi-NP-hard to approximate νe(G) within a factor of O(log1−ǫ n) for any
constant ǫ > 0. This improves upon the previously known APX-hardness result for this problem.

Categories and Subject Descriptors: F.2.2 [Nonnumerical Algorithms and Problems]: Com-
putations on discrete structures; G.2.2 [Discrete Mathematics]: Graph Algorithms

General Terms: Approximation Algorithms, Hardness of Approximation

Additional Key Words and Phrases: cycle packing, edge-disjoint, integrality gap

1. INTRODUCTION

We study approximation algorithms, lower and upper bounds for the integrality
gaps, and hardness of approximation for the problems of packing disjoint cycles in
a graph (directed or undirected). In the problem of packing edge-disjoint cycles
(EDC), we are given a graph G (which can be directed or undirected) and we
have to find a largest set of edge-disjoint cycles in G. The EDC problem has
been studied extensively both in undirected and directed graphs (see, e.g., [Balister
2003; Caprara et al. 2003; Seymour 1995]). Packing disjoint cycles is a fundamental
problem in graph theory with applications in several areas (see the discussion in
[Balister 2003] for an application in computational biology and reconstruction of
evolutionary trees). We denote by νe(G) the size of a largest collection of edge-
disjoint cycles in G. It is well known that computing νe(G) is NP-hard even for
undirected graphs. Already the very special case of deciding whether a graph
(digraph) has a triangle decomposition is known to be NP-Complete (see, e.g.
[Dor and Tarsi 1992] for a more general theorem on the NP-Completeness of such
decomposition problems). This motivates the study of approximation algorithms
for this problem. An algorithm is called an α-approximation for a maximization
problem if the solution returned by the algorithm is at least a factor 1/α of the
optimal solution, and α is called the approximation (or performance) ratio of the
algorithm.

A natural generalization of EDC that we consider is the problem of S-cycle pack-
ing (denote by S-EDC). In S-EDC we are given a directed graphG and a subset S of
its vertices and the goal is to find among the cycles that intersect S (henceforth, S-
cycles) a maximum number νe(G,S) of edge-disjoint ones. We note that on directed
simple graphs, S-EDC is a special case of the extensively studied edge-disjoint paths
problem. See [Chekuri and Khanna 2003] for an O(n4/5)-approximation algorithm

ACM Journal Name, Vol. V, No. N, Month 20YY.

Approximation Algorithms and Hardness Results for Cycle Packing Problems · 3

and [Varadarajan and Venkataraman 2004] for an O(n2/3 log2/3 n)-approximation
algorithm for the edge-disjoint paths problem in directed graphs.

The approximation algorithms we present also provide upper bounds for the in-
tegrality gap of the corresponding problem. Given a graph G = (V,E), a fractional
edge-disjoint cycle packing in G is a function ψ from the subset C of all cycles in
G to [0, 1] satisfying

∑

C:e∈C
ψ(C) ≤ 1 for each e ∈ E. Letting |ψ| = ∑

C∈C
ψ(C),

the fractional edge-disjoint cycle packing number ν∗e (G) of G is defined to be the
maximum of |ψ| taken over all fractional cycle packings ψ in G. The edge cycle
cover number τe(G) of G is the minimum number of edges whose deletion makes G
acyclic. Clearly, νe(G) ≤ ν∗e (G) ≤ τe(G) for any graph/digraph G.

Previously known results: A recent result of Caprara, Panconesi, and Rizzi
[Caprara et al. 2003] shows that by slightly modifying the greedy algorithm one
obtains an O(log n)-approximation algorithm for undirected EDC and that the
problem is APX-hard even for planar graphs (i.e. for an absolute constant ǫ0 > 0,
no (1 + ǫ0)-approximation exists unless P=NP). Although the EDC and S-EDC
problems are closely related to the well-known problem of finding the maximum
number of edge-disjoint paths in a graph, none of the results for the edge-disjoint
paths problem implies any of the results presented in this paper. The dual problems
of packing cycles (known as feedback sets problems) are also very well studied
problems in both directed and undirected settings. The dual problem of packing
vertex-disjoint cycles (denoted by VDC), is known as Feedback Vertex Set (FVS)
problem. This is the problem of finding the minimum number of vertices in a
graph whose removal makes the graph acyclic. This problem and its generalization
(in which every vertex has a weight and we seek to minimize the total weight of
selected vertices) has 2-approximation algorithms in undirected graphs (see [Bafna
et al. 1995; Becker and Geiger 1994; Chudak et al. 1998]). The dual of EDC is the
problem of finding the minimum number of edges in a graph that meet every cycle
(FES). This problem is trivial for undirected graphs (complement of a spanning
tree in each component). For directed graphs, there is an easy reduction from FES
to FVS. Seymour [Seymour 1995] showed that, if the optimal fractional FVS in
a directed graph G has value ϕ∗ then the optimal integral FVS in G has value
at most O(ϕ∗ logϕ∗ log logϕ∗). This yields an O(logϕ∗ log logϕ∗)-approximation
algorithm for FVS in directed graphs [Even et al. 1998]. Alon and Seymour (see
[Seymour 1995]) showed that the integrality gap of FVS is Ω(logϕ∗).

Our results: We present approximation algorithms and hardness results for
different versions of cycle packing problems. For undirected EDC we present an
O(
√

logn)-approximation algorithm by combining the modified greedy algorithm
of [Caprara et al. 2003] with an ordinary greedy algorithm. In particular, we obtain
the following result.

Theorem 1.1. There exists an O(
√

logn)-approximation algorithm for the undi-
rected maximum cycle packing problem.

We also prove that the approximation guarantee of the algorithm is Ω(
√

logn). For
directed EDC we prove the following result.

Theorem 1.2. There exists a
√
n-approximation algorithm for the problem of

directed EDC.

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 · Krivelevich et al.

The algorithms in Theorems 1.1 and 1.2 are easily adjusted to the capacitated
version of the problems as well, where every edge has a given capacity and the goal
is to find the maximum number of cycles such that the number of cycles containing
each edge is at most its capacity. For simplicity of exposition, we prove our results
for the uncapacitated case, and then show how they extend to the capacitated case.
For the S-EDC problem on directed graphs we prove:

Theorem 1.3. There exists an O(n2/3)-approximation algorithm for the directed
S-EDC on simple digraphs.

The approximation ratios in Theorems 1.1, 1.2, and 1.3 provide bounds on the
integrality gap of the standard LP-relaxations to the problems. Specifically, each
of the algorithms computes a packing C so that: |C|/ν∗e (G) = Ω(1/

√
logn) in The-

orem 1.1, |C|/ν∗e (G) ≥ 1/
√
n in Theorem 1.2, and |C|/τe(G,S) = Ω(n−2/3) in

Theorem 1.3, where τe(G,S) is the minimum number of edges needed to cover all
the S-cycles in G.

We also study the integrality gap and hardness of approximation of these prob-
lems. Our main result is that EDC in directed graphs has an integrality gap of
Ω(log n

log log n). More importantly, we prove that it is quasi-NP-hard to approximate

νe(G) within a factor of Ω(log1−ǫ n) for any ǫ > 0. Note that the only known
hardness result prior to this work was APX-hardness [Caprara et al. 2003] (for
undirected EDC).

Theorem 1.4. For any ǫ > 0, there is no O(log1−ǫ n)-approximation for di-
rected EDC unless NP ⊆ DTIME(2polylog(n)).

Under the stronger complexity assumption that NP 6⊆ DTIME(2nǫ

) for some

ǫ > 0, we can prove a slightly better hardness of Ω
(

log n
(log log n)2

)

.

Very recently, [Friggstad and Salavatipour 2006] have proved that the undirected

EDC is Ω(log
1
2−ǫ)-hard to approximate, for any ǫ > 0, unless NP ⊆ DTIME(npolylog(n)).

This shows that the ratio of the algorithm in Theorem 1.1 is (almost) tight.
The organization of the paper is as follows. In the next section we present

the upper bound results, namely we prove Theorems 1.1, 1.2, and 1.3. Section 3
contains the lower bound results. We prove lower bounds for the integrality gap of
EDC and a variation of this problem. Finally, we will prove Theorem 1.4.

2. APPROXIMATION ALGORITHMS

2.1 Cycle Packing in Undirected Graphs

Perhaps the most natural greedy algorithm that finds a large number of disjoint
cycles in a given graph G is to find the smallest cycle at each iteration and delete
it from the graph. As shown in [Caprara et al. 2003], the approximation ratio of
this algorithm is Θ(

√
n). They suggested the following Modified Greedy algorithm

for finding edge-disjoint cycles in G. The algorithm starts with C = ∅ and performs
the following steps iteratively, until there are no edges left in G:

(1) While G contains a vertex v of degree ≤ 1, delete v (and the edge incident to
v, if exists).

ACM Journal Name, Vol. V, No. N, Month 20YY.

Approximation Algorithms and Hardness Results for Cycle Packing Problems · 5

(2) While G contains a vertex v of degree 2 with neighbors v′ and v′′, delete v and
edges vv′, vv′′ and replace them by a new edge v′v′′.

(3) Find a shortest cycle C in G, add C to the constructed solution C and remove
its edges from G.

It is easy to see that Steps 1 and 2 do not change the value of an optimal solu-
tion. Also, it is well-known that for every graph with minimum degree at least 3
the girth is O(log n) (e.g. see [Bollobás 2004]). Therefore, every cycle found by the
algorithm has size O(log n) and therefore intersects cycles whose total weight is at
mostO(log n) in an optimal fractional solution. Hence the solution is within a factor
of O(log n) of the optimal fractional solution. Here we show how a small change in
this algorithm, together with a careful analysis yields an O(

√
logn)-approximation

for the EDC problem, hence proving Theorem 1.1.
Remark: It is also easily seen that a slight modification of Step 3 of the Modi-
fied Greedy algorithm yields an O(log n)-approximation for the problem of packing
vertex-disjoint cycles (VDC). In fact this proves an upper bound on the ratio of
the solution value of this algorithm to that of an optimal fractional vertex-disjoint
cycle packing solution.

Our algorithm is as follows. At Phase 1, while girth(G) ≤
√

log |V (G)| we
apply the Modified Greedy Algorithm (where |V (G)| is the number of vertices in
the current graph); the condition girth(G) ≤

√

log |V (G)| is checked after Step 2.

Phase 2 starts when girth(G) >
√

log |V (G)| after Step 2 for the first time; then
we repeatedly apply Step 3 only, which is the (ordinary) Greedy Algorithm.

2.1.1 The approximation ratio. We prove the following theorem that clearly
implies Theorem 1.1.

Theorem 2.1. The algorithm computes a cycle packing of size Ω(ν∗e (G)/
√

logn).

In the proof we use the following lemma, that provides an improved analysis of
the performance of the greedy algorithm on graphs with large girth.

Lemma 2.2. Let H be a graph with n nodes, m > n edges, and girth g, and let
CH be the set of cycles found in H by the greedy algorithm. Then

|CH | ≥
(m− n)

2

4m(m+ n)
· g

log(m− n)
· ν∗e (H) .

In particular, if m ≥ (1 + ǫ)n for an ǫ > 0 then

|CH | ≥
ǫ2

4(1 + ǫ)(2 + ǫ)
· g

log(ǫn)
· ν∗e (H) .

Proof. Consider the steps of the Greedy Algorithm when |E(H)| ≥ (m+n)/2 =
n + (m − n)/2. Bollobás and Thomason [Bollobás and Thomason 1997] proved
that if a graph H satisfies |E(H)| ≥ |V (H)| + f for a f > 0, then girth(H) ≤
2(1 + |V (H)|/f) log(2f). Thus during all these steps

girth(H) ≤ 2(m+ n)

m− n log(m− n) .

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 · Krivelevich et al.

The number of edges deleted during these steps is at least (m−n)/2. Also, ν∗e (H) ≤
m/g. Indeed, if ψ is an optimal fractional edge-disjoint cycle packing, then m =
|E| ≥∑

e∈E

∑

C∋e ψ(C) =
∑

C ψ(C) · |C| ≥ g∑

C ψ(C) = gν∗e (G). Thus

|CH | ≥
(m− n)

2

4(m+ n) log(m− n)
≥ (m− n)

2

4(m+ n) log(m− n)
· g
m
ν∗e (H) .

The second statement follows from the first by observing that the function f(m) =
(m−n)2

4m(m+n) is increasing for m ≥ n.

Completing the proof of Theorem 2.1: Note that Steps 1 and 2 of the
Modified Greedy Algorithm do not change the value of an optimal solution. Let
C1 and C2 be the sets of cycles added to the packing during Phase 1 and Phase 2,
respectively. Recall that in Phase 1 we execute the Modified Greedy Algorithm,
and the length of every added cycle does not exceed

√

log |V (G)|. Phase 2 starts

when a cycle added to an approximate packing has length more than
√

log |V (G)|,
and executes the Greedy Algorithm. Fix an optimal fractional packing ψ∗, so
|ψ∗| = ν∗e (G). Let ψ∗

1 be the restriction of ψ∗ to the cycles that intersect some
cycle from C1, ψ∗

2 = ψ∗ − ψ∗
1 . Since every cycle from C1 has length ≤ √logn, we

have:

|ψ∗
1 | ≤ |C1|

√

logn .

We claim that:

|ψ∗
2 | ≤ 60|C2|

√

logn .

Thus

|ψ∗| = |ψ∗
1 |+ |ψ∗

2 | ≤
√

logn(|C1|+ 60|C2|) ≤ 60
√

logn|C| .
We prove that |ψ∗

2 | ≤ 60|C2|
√

logn using Lemma 2.2. Let H be the graph the
second phase starts with. Then girth(H) ≥

√

log |V (H)|, and H has at least
3|V (H)|/2 edges (since H has minimum degree at least 3). Thus, by substituting
ǫ = 1/2 in the bound in Lemma 2.2 we get:

|C2| ≥
1

60
· girth(H)

log(|V (H)|/2)
· ν∗e (H) ≥ 1

60
·

√

log |V (H)|
log(|V (H)|/2)

· ν∗e (H) ≥

1

60
·
√

log |V (H)|
log |V (H)| · ν

∗
e (H) =

ν∗e (H)

60
√

log |V (H)|
.

Clearly, |V (H)| ≤ n. Also, |ψ∗
2 | ≤ ν∗e (H), since ψ∗

2 corresponds to a fractional
packing in H . This implies |ψ∗

2 | ≤ ν∗e (H) ≤ 60|C2|
√

log |V (H)| ≤ 60|C2|
√

logn, as
claimed.
Remark: Our algorithm is easily adjusted to the capacitated version of the prob-
lem, where we are also given integral capacities {ce : e ∈ E} on the edges; the
goal is to find a maximum weight family C of cycles so that for every edge e ∈ E
the capacity constraints

∑{w(C) : e ∈ C,C ∈ C} ≤ c(e) are satisfied. We can
imitate the capacitated case by the uncapacitated one if we replace every edge e
by ce parallel edges with the same ends as e, and “forbid” the arising cycles of the
length 2. However, this will give only a pseudo-polynomial time algorithm. To get

ACM Journal Name, Vol. V, No. N, Month 20YY.

Approximation Algorithms and Hardness Results for Cycle Packing Problems · 7

a polynomial algorithm, let us show how to adjust Steps 1, 2, and 3 in the modified
greedy algorithm to handle this case. Each time an edge of capacity zero arises, it is
deleted. So assume that G has no zero capacity edges. Step 1 remains the same. In
Step 2, the new edge v′v′′ gets capacity min{cvv′ , cvv′′}. In Step 3, after a shortest
cycle C is found, we also find the minimum capacity edge e in C, add C to the
constructed packing, and assign it weight w(C) = ce. Then, in G, we reduce by ce
the capacities of the edges of C, and remove the arising zero capacity edges. Each
one of the steps can be performed in polynomial time, and leads to a graph with
less edges. Thus the running time is polynomial. It is easy to see that our analysis
of the approximation ratio is valid for the capacitated case as well. The algorithm
in Section 2.2.1 for directed graphs (to follow) admits a similar adjustment.

2.1.2 A tight example

Theorem 2.3. The approximation ratio of the Modified Greedy Algorithm is
Ω(
√

log n).

The proof borrows some ideas from a lower bound argument in [Caprara et al.
2003]. For the proof we will need the following technical lemma.

Lemma 2.4. Let G be a graph on n vertices of maximum degree at most 7. Let
V0 ⊆ V (G). If |V0| ≥ n/2 then there exists a subset U ⊂ V0 of size |U | = ⌈logn⌉,
such that all vertices of U are at distance more than 1

3 log n from each other.

Proof. Note that every vertex v ∈ G is at distance at most k from at most
7 · 6k−1 < 7k vertices from G. Define an auxiliary edge set E0 on V0 so that
(u, v) ∈ E0 if distG(u, v) ≤ 1

3 logn. Let H = (V0, E0). Then H is a graph on at

least n/2 vertices of maximum degree ∆(H) < 7
1
3 log n < n0.95, and has therefore

an independent set U of size at least |V (H)|/(1 + ∆(H)) > logn. Each such
independent set gives a required set of vertices in G.

A k-sunflower Sk is a cycle of length k (the core cycle) to each edge of which
we attach a cycle of length k + 1 (a petal), so that the petals are vertex-disjoint
outside the core cycle. The number of vertices of Sk is k2. Observe that the core
is the shortest cycle in a k-sunflower, and removing its edges results in a cycle on
k2 vertices. We choose k =

√

(logn)/3 and denote t = k2 (we ignore floors and
ceilings as they do not affect the asymptotic nature of our result).

Let now G0 be a 3-regular graph on n vertices of girth more than t = 1
3 logn.

Such graphs exist for infinitely many values of n as proved by Erdős and Sachs
[Erdős and Sachs 1963]. We start with G = G0, set W = ∅, i = 1, and repeat
n/(2t) times the following procedure:

(1) Find a subset Ui ⊂ V \ W such that |Ui| = t and all vertices of Ui are at
distance more than 1

3 logn from each other in G;

(2) Insert a copy Si of the k-sunflower in Ui, placing it arbitrarily within Ui;
update W ←W ∪ Ui; i← i+ 1.

Since the sets Ui are disjoint and the maximum degree of Sk is 4, the graph G
has maximum degree at most 7 during the execution of the above procedure. Also,
|W | ≤ n

2t · t = n
2 , and therefore finding a required Ui at each step is possible due to

Lemma 2.4. Let us denote by G∗ the final graph of the above procedure.

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 · Krivelevich et al.

Claim 2.1. Let C be a cycle of length at most 1
3 logn in G∗. Then C is a cycle

in one of the inserted k-sunflowers Si.

Proof: Since girth(G0) >
1
3 logn, C contains an edge e ∈ E(G∗) − E(G0). Let

i∗ = max{i : E(C) ∩ E(Si) 6= ∅}. We claim that C is a cycle in Si∗ . Let Gi∗

be the graph created during the above described procedure after having inserted
the sunflower Si∗ . Obviously, C ⊂ Gi∗ . If E(C) ⊂ E(Si∗) we are done. Assume
otherwise. Since Ui∗ spans only the edges of Si∗ in Gi∗ , at some point C leaves Ui∗

and then returns back. Let u1, u2 ∈ Ui∗ be the vertices of Ui∗ where C leaves and
reenters Ui∗ . By our choice of Ui∗ , distGi∗

(u1, u2) >
1
3 logn, implying |C| > 1

3 logn,
a contradiction.

Completing the proof of Theorem 2.3: We analyze the performance of our al-
gorithm on G∗. By Claim 2.1, the shortest cycles in G∗ are the n/(2t) = O(n/ log n)
core cycles of the inserted sunflowers, which are vertex-disjoint. Hence the algo-
rithm starts by picking all of them. After all core cycles have been removed, none
of the sunflowers contain a cycle of length at most 1

3 logn, and applying Claim
2.1 again we infer that the modified greedy algorithm will be able to add at most
3|E(G∗)|/ logn = O(n/ logn) cycles, altogether ending up with O(n/ logn) cycles.
On the other hand, a feasible solution can be obtained by taking all petals of all
inserted sunflowers, whose total number is (n/(2t)) · k = Θ(n/

√
logn). It follows

that the approximation ratio of our algorithm on G∗ is

Ω





n√
log n

n
log n



 = Ω(
√

logn) .

2.2 Cycle Packing in Directed Graphs

In this section we present the algorithms for EDC and S-EDC in directed setting.

2.2.1 Proof of Theorem 1.2. This algorithm uses ideas similar to those in [Chekuri
and Khanna 2003] for edge-disjoint paths in directed acyclic graphs. It will be con-
venient to describe the algorithm with a certain parameter ℓ, which will be even-
tually set to ℓ =

√
n. The algorithm starts with C1, C2 = ∅ and in the end outputs

C1 ∪ C2.
Phase 1:

As long as there is a directed cycle of length ≤ ℓ, find such a cycle, add it to C1,
and delete its edges from the graph.
Phase 2:

For each v ∈ V , compute a maximum size set C2(v) of edge-disjoint directed cycles
that contain v. Among the packings computed, let C2 be one of maximal size.

Theorem 2.5. For ℓ =
√
n the algorithm computes a packing C1 ∪ C2 of size at

least ν∗e (G)/
√
n.

Proof. As in the proof of Theorem 2.1, let us fix an optimal fractional packing
ψ∗, let ψ∗

1 be the restriction of ψ∗ to cycles that intersect some cycle from C1,
ψ∗

2 = ψ∗ − ψ∗
1 . Since every cycle from C1 has length ≤ ℓ we have |ψ∗

1 | ≤ ℓ|C1|.
We claim that |C2| ≥ ℓ|ψ∗

2 |/n. Thus by combining the bounds for |C1|, |C2| and

ACM Journal Name, Vol. V, No. N, Month 20YY.

Approximation Algorithms and Hardness Results for Cycle Packing Problems · 9

substituting ℓ =
√
n we get:

|C1|+ |C2| ≥ |ψ∗
1 |/ℓ+ ℓ|ψ∗

2 |/n
= (|ψ∗

1 |+ |ψ∗
2 |)/
√
n = |ψ∗|/√n .

To see that |C2| ≥ ℓ|ψ∗
2 |/n, let G2 be the graph at the beginning of Phase 2. For

each v ∈ V let ψ∗
2(v) be the restriction of ψ∗

2 to the cycles in G2 containing v. Note
that for every v ∈ V we can compute C2(v) using any max-flow algorithm and flow
decomposition. By the integrality of an optimal flow from the Max-Flow Min-Cut
Theorem, |C2| ≥ |ψ∗

2(v)| for every vertex v. Thus, since every cycle in G2 has length
> ℓ, we have:

n|C2| ≥
∑

v∈V

|ψ∗
2(v)| ≥ ℓ|ψ∗

2 | .

2.2.2 Proof of Theorem 1.3. In this section we consider simple digraphs only.
The greedy algorithm for the maximum S-cycle packing problem repeatedly chooses
a shortest S-cycle and removes its edges from the graph. Similar ideas have been
used earlier in [Hajiaghayi and Leighton 2006; Varadarajan and Venkataraman
2004].

Theorem 2.6. Given a subset S of vertices of a simple digraph G, the greedy
algorithm finds a set of at least τe(G,S)/(5n2/3) edge-disjoint directed S-cycles in
G.

Proof: Let f(n, ℓ) be the maximum of τe(G) taken over all simple digraphs G
on n vertices with girth(G) > ℓ. It is easy to see that if C is a cycle pack-
ing computed by the greedy algorithm on G, then τe(G) ≤ ℓ|C| + f(n, ℓ) for
any positive integer ℓ. A similar statement holds for the analogous definition of
f(n, ℓ) in the undirected case. In fact, a similar statement holds for the analo-
gous vertex-disjoint (directed or undirected) cycle packing and cycle cover prob-
lems. In the undirected vertex-disjoint case Komlós [Komlós 1997] showed that
f(n, ℓ) = Θ(n

ℓ ln(n/ℓ)). In the directed vertex-disjoint case, Seymour [Seymour
1995] showed that f(n, ℓ) ≤ 4n

ℓ ln(4n/ℓ) ln log(4n/ℓ). He also gave an example
showing that f(n, ℓ) = Ω(n

ℓ ln(n/ℓ)). In the edge-disjoint case, answering an earlier
conjecture of Bollobás, Erdős, Simonovits, and Szemerédi [Bollobás et al. 1978],

Komlós [Komlós 1997] established the asymptotically tight bound f(n, ℓ) = Θ(n2

ℓ2)
in undirected graphs.

We generalize this by defining h(n, ℓ) to be the maximum of τe(G,S) taken over
all simple digraphs G on n vertices and S ⊆ V (G) so that every S-cycle in G has
length > ℓ. Let ν̃(G,S) denote the size of an S-cycle packing computed by some
run of the greedy algorithm.

Lemma 2.7. For any positive integer ℓ,

τe(G,S) ≤ ℓν̃(G,S) + h(n, ℓ) ≤ (ℓ + h(n, ℓ))ν̃(G,S).

Proof. Fix an optimal cover F with |F | = τe(G,S), and partition it into two
sets F1 and F2, where F1 are the edges contained in S-cycles of length ≤ ℓ of
the S-packing computed. Then |F1| ≤ ℓν̃(G,S), since every S-cycle of length ≤ ℓ

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 · Krivelevich et al.

in the packing computed contains at least one edge from F1. On the other hand
|F2| ≤ h(n, ℓ), by the optimality of |F | and by the definition of h(n, ℓ). The result
follows.

For digraphs, the bound h(n, ℓ) = O((n2/ℓ2) log2(n/ℓ)) can be deduced from
[Varadarajan and Venkataraman 2004, Theorem 1.1] where a more general problem
was considered. We will show that h(n, ℓ) = Θ(n2/ℓ2) using the following lemma
of Komlós [Komlós 1997].

Lemma 2.8 [Komlós 1997], Lemma 3. Let a0, a1, . . . , at be a sequence of non-

negative real numbers, and denote sk =
∑k

i=0 ai. Then there exists k ∈ {0, . . . , t−1}
such that akak+1 <

2e
t2 skst.

Corollary 2.9. Let a0, a1, . . . , at be a sequence of integers, and denote sk =
∑k

i=1 ai and p = ⌈t/2⌉. Suppose that sp ≤ st/2. Then there exists k ∈ {0, . . . , p−1}
such that:

akak+1 <
2e

p2
sksp ≤

4e

t2
skst.

Lemma 2.10. Let S be a subset of vertices of a simple digraph G on n vertices
so that every S-cycle in G has length > ℓ. Then there exists an S-cycle edge-cover
F with |F | ≤ 4e(n/ℓ)

2
. Moreover, such F can be found in polynomial time.

Proof. The proof is by induction on n. If G has no S-cycles, in particular if
it has ℓ vertices or less, the statement is obvious. We can also assume that G is
strongly connected; otherwise, validity of the result for every strongly connected
component of G implies the result for G.

Since every S-cycle in G has length > ℓ, there are vertices u, v with u ∈ S and
v ∈ V (G) such that every (u, v)-dipath has length≥ ℓ, and hence there is a partition
of V (G) into nonempty sets X0, . . . , Xt, where t ≥ ℓ, such that no edge of G has
tail in Xi and head in Xj , for j ≥ i+ 2. Let ai = |Xi| for i = 0, . . . , t, and let sk

and p be as in Corollary 2.9. Notice that st = n. We may assume that sp ≤ n− sp,
since otherwise we may consider the reversed sequence of a0, . . . , at. By Corollary
2.9, there exists k ∈ {0, . . . , p− 1} such that:

akak+1 <
4e

t2
skn.

Let F ′ be the edge cut consisting of the set of edges going from Xk to Xk+1 (if we
consider the reversed sequence, then we take also the “reversed” cut). Then, since
G is simple,

|F ′| ≤ akak+1 <
4e

t2
skn.

We delete F ′ and apply the inductive hypothesis to the subgraphs G1 and G2 of G
induced by the corresponding parts V1 = X1 ∪ · · · ∪Xk and V2 = Xk+1 ∪ · · · ∪Xt.
Clearly, any S-cycle in G− F ′ is entirely contained either in G1 or in G2.

To summarize, we can find a cut F ′ that divides G into two subgraphs G1 and
G2, where Gi has ni vertices, such that n1 + n2 = n and n1 ≤ n/2 ≤ n2, and such
that |F ′| ≤ 4e

ℓ2 n1n. We need to prove that:

|F ′|+ 4e

(

n2
1

ℓ2
+
n2

2

ℓ2

)

≤ 4e
n2

ℓ2
.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Approximation Algorithms and Hardness Results for Cycle Packing Problems · 11

Indeed,

|F ′|+ 4e

(

n2
1

ℓ2
+
n2

2

ℓ2

)

≤ 4e

ℓ2
(n1n+ n2

1 + n2
2)

<
4e

ℓ2
(2n1n2 + n2

1 + n2
2) = 4e

n2

ℓ2
.

The bound in Lemma 2.10 is tight up to a constant factor even for S = V , as
can be seen in the following example. Start with a directed cycle on

√
n vertices

and then replace each vertex u with ℓ = ⌈√n⌉ copies u1, . . . , uℓ. Also replace each
original edge uv with ℓ2 edges uivj , 1 ≤ i, j ≤ ℓ. Clearly in this graph every cycle
has length at least ℓ and every cut must contain at least ℓ2 = Ω(n) edges.

By Lemmas 2.7 and 2.10 we deduce:

Corollary 2.11. Let S be a subset of vertices of a simple digraph G on n
vertices. Then for any integer ℓ,

τe(G,S) ≤ (ℓ+ 4e(n/ℓ)
2
)ν̃(G,S).

In particular for ℓ = 2e1/3n2/3 we have τe(G,S) ≤ 3e1/3n2/3ν̃(G,S) < 5n2/3ν̃(G,S)
and this also completes the proofs of Theorems 2.6 and 1.3.
Remark: In [Chekuri and Khanna 2003] it was shown that the greedy algorithm
for the undirected Edge-Disjoint Paths problem has approximation ratio O(n2/3).
The method presented in this section can be used to provide a different proof for
the same result.

3. INTEGRALITY GAP AND HARDNESS OF DIRECTED DISJOINT CYCLE PACK-

ING

In this section, we study lower bounds for the integrality gap and hardness of
approximation for packing disjoint cycles. For directed graphs, an easy reduction
shows that the problems of packing edge-disjoint cycles (EDC) and vertex-disjoint
cycles (VDC) are equally hard. Hence, our lower bounds for integrality gap and
hardness of approximation carry over to the VDC problem as well. We present this
reduction here (Lemma 3.1) for the sake of completeness.

Recall that Theorem 1.2 proves a
√
n upper bound for the integrality gap of

directed EDC. Although we are unable to prove that Ω(
√
n) is also a lower bound

for the integrality, we conjecture this is the case. This conjecture is supported
by a construction (Proposition 3.2) showing that Θ(

√
n) is a lower bound for the

integrality gap of the odd directed cycle packing problem (namely, the maximum
number of edge-disjoint directed cycles of odd length). Then we prove that the
(standard) directed EDC problem has an integrality gap of Ω(log n

log log n). This is
proved in Theorem 3.3 below. Then we show how to use the ideas of this proof to
prove Theorem 1.4, i.e. that νe(G) is quasi-NP-hard to approximate within a factor
of O(log1−ǫ n), for any ǫ > 0. The idea of starting with a grid-like graph in the
proofs of Proposition 3.2 and Theorem 3.3 was inspired by the work of Guruswami
et al. [Guruswami et al. 2003] to prove hardness of directed edge-disjoint path
problem.

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 · Krivelevich et al.

Lemma 3.1. Given a directed graph G = (V,E) as an instance of VDC (of EDC)
there is an instance G′ = (V ′, E′) of EDC (of VDC) with |G′| = poly(|V (G)|), such
that G has k vertex-disjoint cycles (edge-disjoint cycles) if and only if G′ has k
edge-disjoint cycles (vertex-disjoint cycles).

Proof. Reduction from VDC to EDC: For each node v ∈ V , G′ contains two
nodes v1, v2. We add v1v2 to E′. Furthermore, for every edge uv ∈ E we create an
edge u2v1 in E′. It is easy to see that G has a collection of integral (or fractional)
vertex-disjoint cycles in G with size k if and only if G′ has a collection of k integral
(or fractional) edge-disjoint cycles.

Reduction from EDC to VDC: Suppose G is an instance of EDC. For every edge
xy in G create a vertex vxy in G′. For every vertex x ∈ G with incoming edges
y1x, y2x, . . . , ypx and outgoing edges xz1, xz2, . . . , xzq add the following edges to
G′: vyixvxzj for every 1 ≤ i ≤ p and 1 ≤ j ≤ q. It can be seen that G has k
edge-disjoint integral (or fractional) cycles if and only if G′ has k vertex-disjoint
integral (or fractional) cycles.

Proposition 3.2. For infinitely many n, there exists a digraph G on n vertices,
in which every pair of odd cycles has a common edge, and yet ν∗odd(G) = Ω(

√
n),

where ν∗odd(G) is the fractional odd cycle packing number of G.

Proof. Let N be an odd positive integer, and consider the digraph DN whose
vertices are (i, j) for i, j = 1, . . . , N . We think of the first coordinates as rows and
the second ones as columns. The edges of DN emanate from (i, j) to (i+ 1, j) for
i = 1, . . . , N − 1 and j = 1, . . . , N and from (i, j) to (i, j + 1) for i = 1, . . . , N and
j = 1, . . . , N − 1. There are also edges from (i, N) to (N + 1− i, 1).

We first show that DN does not have two vertex-disjoint odd directed cycles.
Clearly, every cycle of DN is composed of segments, where each segment starts in
the first column, passes through every column sequentially (and sometimes goes
down in the rows) until it reaches the last column. Segments are separated by the
edges connecting the vertices in the last column to the vertices in the first column.
Thus, each segment has a unique start vertex from the first column, and a unique
end vertex from the last column. The length of a segment is the number of vertices
it contains. Thus, the length of a cycle is the sum of the lengths of its segments.
We partition the vertices of DN into two types, even and odd. Even vertices are
those whose coordinates have the same parity. An even (odd) segment of a cycle is
a segment of even (odd) length. Notice that since N is odd, the endpoints of even
segments belong to different types, while the endpoints of odd segments belong to
the same type. Also notice that the end vertex of a segment has the same type
as the start vertex of the following segment. It follows that odd cycles must have
an even number of even segments and, trivially, an odd number of odd segments.
Thus, odd cycles have an odd number of segments. Notice that every cycle (whether
even or odd) that does not contain a vertex from the middle row must have an even
number of segments (as the segments alternate below and above the middle row).
Thus, we have shown that every odd cycle must contain a vertex from the middle
row. In particular, every odd cycle has a segment starting in (i, 1) and ending in
(j,N) where i ≤ (N + 1)/2 and j ≥ (N + 1)/2. Now, let C and C′ be two odd
cycles. We may assume that C has a segment S starting in (i, 1) and ending in

ACM Journal Name, Vol. V, No. N, Month 20YY.

Approximation Algorithms and Hardness Results for Cycle Packing Problems · 13

(j,N) where i ≤ (N + 1)/2 and j ≥ (N + 1)/2, and C′ has a segment S′ starting
in (k, 1) and ending in (ℓ,N) where k ≤ (N + 1)/2 and ℓ ≥ (N + 1)/2. Assume,
w.l.o.g., that i ≤ k. If i = k or ℓ ≤ j we are done since in this case segments S and
S′ intersect. Thus, we may assume i < k and j < ℓ. But in this case we have, as
before, that if C′ does not contain any vertex of S then the segments of C′ must
alternate below and above the segment S, and hence C′ must have an even number
of segments, contradicting the fact that C′ is an odd cycle.

To estimate from below the fractional odd cycle packing number of G, for each
1 ≤ i ≤ (N + 1)/2, define the cycle Ci as follows:

Ci = ((i, 1), (i, 2), . . . , (i, i), (i+ 1, i), (i+ 2, i), . . . ,

(N + 1− i, i), (N + 1− i, i+ 1),

(N + 1− i, i+ 2), . . . , (N + 1− i, N), (i, 1))

(i.e. Ci starts at (i, 1), goes horizontally till (i, i), then drops vertically to (N +
1 − i, i) and then again goes horizontally till (N + 1 − i, N) and finally returns to
(i, 1)). It is easy to see that each vertex of DN belongs to at most two cycles Ci,
and therefore, giving value ψ(Ci) = 0.5 to each cycle Ci, we obtain a fractional
odd cycle packing of value (N + 1)/4. Now, by replacing each vertex v of DN with
the path vin, vmid, vout and replacing each edge (u, v) with the edge (uout, vin) we
obtain a new graph D′

N with 3N2 vertices. Any set of edge-disjoint directed cycles
in D′

N is also vertex-disjoint, and corresponds to a set of vertex-disjoint directed
cycles in DN . Furthermore, any odd (even) cycle in DN corresponds to an odd
(even) cycle in D′

N . Thus, by letting n = 3N2 the desired construction follows.

Theorem 3.3. The directed EDC problem has an integrality gap of Ω(log n
log log n).

We give a construction of a graph G on n vertices, such that
ν∗

e (G)
νe(G) ∈ Ω(log n

log log n).

Our starting point is a grid-like graph which gives the Ω(
√
n) integrality gap for

the well-known problems of disjoint paths [Guruswami et al. 2003]. An instance of
the edge-disjoint paths (EDP) problem consists of a (directed) graph G with pairs
of vertices si, ti, for 1 ≤ i ≤ k, and the goal is to connect maximum number of
pairs si, ti using edge-disjoint paths. The vertex-disjoint paths (VDP) problem is
defined similarly.

Let r be a positive integer and define a directed graph which consists of vertices
si, ti (1 ≤ i ≤ r) together with vertices hij , uij, vij , 1 ≤ j ≤ i ≤ r. There is an
edge from hij to uij and an edge from hij to vij (1 ≤ j ≤ i ≤ r). There are also
edges uijhi(j+1) and vijh(i+1)j for 1 ≤ j < i < r. Furthermore, for every 1 ≤ i < r
it has edges uiih(i+1)(i+1), and for every 1 ≤ i ≤ r it has sihi1, and vriti. Finally
ur(r−1) is connected to tr. Since this graph has a drawing on the plane, there
cannot be two vertex-disjoint paths Pi and Pj (1 ≤ i 6= j ≤ r) where Pi starts from
si and ends in ti and Pj starts from sj and ends in tj . Because we want to have
the edge-disjoint property, we “split” every vertex hij into two copies h1

ij and h2
ij ,

where the incoming edges of hij are now going into h1
ij and the outgoing edges of

hij are going out of h2
ij and put the edge h1

ijh
2
ij in (see Figure 1). Let’s call this

graph Dr and the subgraph induced by four vertices h1
ij , h

2
ij , uij , vij an intersection

module of Dr. Again, it is easy to see that there cannot be two edge-disjoint paths

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 · Krivelevich et al.

�
�
�
�

�
�
�
�

��

�������� ����

��

��

��

��

��
��
��
��

��
��
��
��

��

�
�
�
�

s2

sj

sr

t1 t2 ti tj tr

s1

si vij

uijh2
ij

h1
ij

Fig. 1. Construction of Dr: each gray circle corresponds to an intersection module

from si’s to ti’s (because we can route at most one path through every intersection
module). Note that:

Fact 1: The half-integral fractional solution for EDP in Dr has value at least r
2 .

This creates a gap of Ω(r), which is Ω(
√
n), with n being the number of vertices

in the graph. We will use this fact again, later on. A natural attempt to extend
this result to the cycle packing problem would be to add directed edges tisi, for
1 ≤ i ≤ r. Unfortunately, this new graph will have an integral solution of value
Ω(r) (for, e.g., consider the directed cycle that goes from s1 to tr along the diagonal
path, then to sr and to t1 and back to s1. We can pick r

4 such cycles). So this does
not create the desired gap. The problem appears here because the cycles are not
bound to follow a path directly from si to ti (they may go through other sj’s and
tj ’s before reaching ti). Our idea to resolve this problem is to make it “too costly”
for the cycles to do so. In other words, we are going to combine many copies of
Dr in a special manner so that if a cycle contains a “non-trivial” path from si to
ti then it has a very long length; so long that we cannot have many of them. This
will create the desired gap.

Using two copies of Dr we construct another graph Hr in the following way.
Consider Dr with input vertices s1, . . . , sr and output vertices t1, . . . , tr. Take
two copies of this graph, D1

r and D2
r , and identify (only) the input vertices of

them. Let s1, . . . , sr be the new set of (unified) input vertices and t11, . . . , t
1
r and

t21, . . . , t
2
r be the set of output vertices. Let us call this graph Hr (see Figure 2).

An important observation to make here is that Hr is acyclic. This is crucial to our
main construction. We call the triple si, t

1
i , t

2
i “block” i with start point si and end

points t1i , t
2
i , 1 ≤ i ≤ k. Consider Hr and the 2r pairs si, t

1
i and si, t

2
i (two pairs for

each block) as an instance of the EDP problem. We say block i is fully routed in a
solution to this instance if there are edge-disjoint paths connecting both pairs si, t

1
i

and si, t
2
i in the solution. If only one of these paths exists in the solution then we

say block i is partially routed. It is easy to see:
Fact 2: Any optimal (integral) solution for EDP on Hr with 2r pairs, either

contains only one fully routed block or two partially routed blocks. Furthermore,
there is a half-integral solution in which every block is fully routed (with value 1

2

ACM Journal Name, Vol. V, No. N, Month 20YY.

Approximation Algorithms and Hardness Results for Cycle Packing Problems · 15

s2

sj

sr

s1

t1r t2r

si

t2jt1jt2it1it22t12t21t11

Fig. 2. Construction of Hr from two copies of Dr

on each path).
We will use the following technical lemma in our construction.

Lemma 3.4. For given positive integers r, k, and g with r < k, there is an
explicit construction of a k-uniform r-regular hypergraph of girth at least g where

the size of the construction (number of vertices) is O(k2g

r).

Proof. We start with an explicit k-regular graph G = (V,E) of size at most
O(k2g−1) and girth at least 2g. These graphs exist (see, for instance, [Lazebnik
et al. 1997] and the references there). Construct a bipartite graph G′ = (A∪B,E′)
from G where A and B are copies of V with ai and bi being the vertices of A and B
(respectively) corresponding to vertex vi ∈ V , and aibj ∈ E′ if and only if vivj ∈ E.
It is easy to see that G′ is k-regular with girth at least 2g and has size O(k2g−1).
To simplify our calculations, let us assume that k is a power of 2.

Construct a new bipartite graph G′′ = (A′ ∪ B,E′′) from G′ in this way: for
each vertex ai ∈ A create two vertices a1

i and a2
i in A′. Then join a1

i to half
of the neighbors of ai and join a2

i to the other half. Repeating this procedure
log(k/r) times, we get the bipartite graph G′′ in which every vertex in A′ has

degree k
2log(k/r) = r and every vertex in B has degree k, |A′| = k2g

r , |B| = k2g−1,
and the girth is at least 2g. Now we define a hypergraph H with vertex set A′

whose edge-set is the set of neighborhoods of vertices of B. This hypergraph is

k-uniform, r-regular, with girth at least g and has size O(k2g

r).

Let r, k, and g be some positive integers to be specified later and let r′ =
(

r
2

)

.
Consider a k-uniform r′-regular girth g hypergraph H. Such hypergraphs exist by
Lemma 3.4. The underlying structure of the main graph for the integrality gap
is H. Let p and q be the numbers of vertices and hyperedges of H, respectively.
Take a set Pr = {D1

r , . . . , D
p
r} containing p copies of Dr (constructed earlier), one

corresponding to each vertex in H. Also take a set Qk = {R1
k, . . . , R

q
k} containing

q copies of Hk, one corresponding to each hyperedge of H. For every graph in Pr

we fix an arbitrary ordering of its intersection modules (note that the number of

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 · Krivelevich et al.

����

�
�
�
�
�
�
�
�

��
��
��
��

����

�
�
�
�

����

��

��

�
�
�
�

��
��
��
��

��
��
��
��

����

t
i,2
k

si
k

si
1

t
i,1
kt

i,2
1t

i,1
1

h
1
ab

vab

uab

si
λ

s
aλ
1

s
aλ
r

t
aλ
rt

aλ
1

Graph D
aλ
r

Graph Ri
k

t
i,1
λ t

i,2
λ

Fig. 3. Replacing intersection modules of D
a1
1

, . . . , D
ak
r with blocks of Ri

k

intersection modules of Dr is
(

r
2

)

= r′; the same as the degree of a vertex in H).
Similarly, for each graph in Qk we fix an arbitrary ordering of its blocks (note that
the number of blocks of each graph in Qk is k; the same as the size of a hyperedge
in H). Initially, we assign a green flag to every intersection module of every graph
in Pr and to every block of every graph in Qk. Soon we will start modifying the
blocks and modules and change their flags to “red”. For each pair sj

i , t
j
i in each

copy Dj
r ∈ Pr add the directed edge tjis

j
i to Dj

r. We call these edges feedback edges.

Consider an arbitrary hyperedge ei ∈ H and let Ri
k ∈ Qk be the copy of Hk in

Qk that corresponds to hyperedge ei. Note that Ri
k has k blocks; let us denote

these blocks by bi1, . . . , b
i
k, where biλ consists of triple si

λ, t
1,i
λ , t2,i

λ . Also, assume that
edge ei consist of vertices va1 , . . . , vak

. Thus the copies of Dr in Pr corresponding
to these vertices are Da1

r , . . . , Dak
r ; let’s denote this set by Si, i.e. Si = {Daj

r ∈
Pr| the vertex of H corresponding to D

aj
r belongs to ei, 1 ≤ j ≤ k}. Pick the first

green block of Ri
k, say si

λ, t
i,1
λ , ti,2λ (for some 1 ≤ λ ≤ k) according to the fixed

ordering of the blocks of Ri
k and change its flag to red. Also, pick the first green

intersection module of Daλ
r (from its fixed ordering), say h1

ab, h
2
ab, uab, vab (for some

1 ≤ a, b ≤ r) and change its flag to red. Remove vertex h2
ab and its incident edges

(i.e. edges h1
abh

2
ab, h

2
abuab, and h2

abvab) from Daλ
r and add the following edges:

h1
abs

i
λ, t1,i

λ uab, and t2,i
λ vab (see Figure 3). We will consider these new three edges

(instead of the three edges that were removed from Daλ
r) as part of Daλ

r . Do this
for all the blocks of Ri

k. This process is going to modify (and change the flag from
green to red for) one intersection module from each graph in Si (i.e. Da1

r , . . . , Dak
r);

one for every block of Ri
k. Repeat the same procedure for all the hyperedges of

H (i.e. for all graphs in Qk). We obtain a huge directed graph Gr,k,g, which has
constant degree and O(r2p+ k2q) vertices. Note that, since each graph Ri

k ∈ Qk is
acyclic, every cycle in Gr,k,g must contain one of the feedback edges.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Approximation Algorithms and Hardness Results for Cycle Packing Problems · 17

The basic idea behind the construction is that intersection modules in copies of
Dr (graphs in Pr) are now replaced with “blocks” of copies of Hk (graphs in Qk)
and in order to go from h1

ab to uab in the intersection module of Daλ
r , we have to

go from si
λ to t1,i

λ in a “block” of Ri
k. For the moment, assume that:

. (i) among all the blocks, only an ǫ-fraction could be (partially or fully) routed,
and for the other (1− ǫ)-fraction no routing existed at all.

. (ii) all the blocks where completely independent of each other i.e. they were
not part of the same graph and therefore there was no way to start at the start
point of a block bi (of a copy of Hk) and end at an end point of another block bj.

This would imply that Gr,k,g has no more than ǫrp cycles. The reason is that each
cycle must contain a feedback edge, and so goes from some sα in a copy of Dr in
Pr to tα in the same copy. Therefore, it goes through at least r blocks (previously
intersection modules), since each cycle in a copy of Dr uses at least r intersection
modules. This would give us the required gap. Fortunately, the assumption (i)
above is easy to prove (by Fact 2), i.e. a large fraction of all of the blocks of
graphs in Qk do not have any routing (neither partial nor full). But the trouble is
that the second assumption is not correct. That is, the blocks are not completely
independent as we assumed, and they appear in groups of size k in one graph (a
copy ofHk in Qk). For this reason, cycles in Gr,k,g may have complicated structures
and go through several copies Di

r’s in Pr. For instance, a cycle C may start (as
a path) at some vertex sα in a copy Di

r in Pr (Di
r corresponds to vertex vi ∈ H)

and then at some vertex h1
ab ∈ Di

r the path enters the start point of a block bx in

a graph Rj
k (which is a copy of Hk in Qk). But instead of going out from an end

point of the same block bx (of Rj
k) it goes (within Rj

k) to an end point of another

block by of Rj
k. We call this situation a jump between blocks of Rj

k. This way, the

path may end-up in another copy Di′

r (before going back to sα). Looking from a
higher level at the underlying hypergraph structure (which has a structure like H),
we can think of this path as going from vertex vi (graph Di

r ∈ Pr) to vi′ (graph
Di′

r ∈ Pr) in H through hyperedge ej (through graph Rj
k ∈ Qk by starting at the

start point of one block and going down to an end point of another block of Rj
k).

But if this happens, since the start point (sα) is in Di
r, this path must eventually

come back to tα in Di
r (because tα ∈ Di

r is the only vertex that has an edge to
sα). However, because H has girth at least g, the path has to go through at least
g other graphs in Pr before getting back into Di

r. Therefore, the cycle contains
at least Ω(g) edges from the graphs in Pr. We call these cycles (that go through
several graphs in Pr) long cycles (because g is going to be large) and those that are
within one graph of Pr (and so do not jump between blocks of graphs in Qk), short
cycles. This implies that the total number of long cycles can be at most a fraction
1
g of the total number of edges in the graphs in Pr. If g is large and r is small the
total number of short and long cycles will be small.

Lemma 3.5. ν∗e (Gr,k,g) = Ω(rp), that is, Gr,k,g has a fractional cycle packing
solution of value Ω(rp).

Proof. Recall that by Fact 1, there is a half-integral solution (for EDP problem)
in any instance Dr, which contains one half-integral path for each pair si, ti. If we

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 · Krivelevich et al.

add edges tisi (for 1 ≤ i ≤ r) to Dr then there are at least r half-integral cycles in
Dr. In this fractional solution, we route exactly two (half-integral) cycles through
each intersection module.

We do have the feedback edges in Gr,k,g (in every graph Dj
r ∈ Pr). Also, by

Fact 2, for every graph Ri
k ∈ Qk there is a half-integral fractional solution in which

all the blocks in Ri
k are fully routed (with value 1

2). Therefore, all the blocks in
all graphs in Qk (which have replaced all the intersection modules in graphs in
Pr) are fully routed (with value 1

2). These two imply that each (modified) graph
Dj

r ∈ Pr has r half-integral (short) cycles (where parts of the fractional cycles go
through blocks of the graphs in Qk). Since there are p graphs in Pr we get Ω(rp)
half-integral cycles.

Lemma 3.6. νe(Gr,k,g) = O(q
r + r2p

g).

Proof. By Fact 2, for every graph Ri
k ∈ Qk, there are at most two blocks that

can be (partially or fully) routed. So over all graphs in Qk, there are at most
2q blocks that can be (partially or fully) routed. Since blocks have replaced the
intersection modules of the graphs in Pr and every short cycle in a graph in Pr goes
through at least r blocks, plus the fact that at most two cycles can go through any
routed block, there can be at most 4q/r directed short cycles in the graphs of Pr

in Gr,k,g.
Now we upper bound the number of long cycles. Because every graph in Pr has

constant degree and O(r2) vertices, the total number of edges of Gr,k,g that are
parts of the graphs in Pr is O(r2p). Therefore, by the arguments before Lemma

3.5, there are at most O(r2p
g) long cycles in Gr,k,g. Thus the total number of short

and long cycles is O(q
r + r2p

g).

Proof of Theorem 3.3: Recall that the number of vertices p and the number

of hyperedges q of H are O(k2g

r) and O(k2g−1), respectively. Let r be some (not too
small) constant and k = g. This implies that p ∈ O(k2k) and q ∈ O(k2k−1). The
total number of vertices n in Gr,k,g is O(r2p+k2q) which is O(k2k+1). By Lemmas

3.5 and 3.6, the integrality gap is at least Ω((rp)/(q
r + r2p

g)) which is Ω(k). This is

Ω(log n
log log n), which completes the proof of Theorem 3.3. ✷

Combining Lemma 3.1 and Theorem 3.3 and noting that the constructions in
Lemma 3.1 have polynomial size, we obtain:

Corollary 3.7. Directed VDC has integrality gap of Ω(log n
log log n).

The construction for the hardness result has similar structure and uses the hard-
ness of directed EDP by Ma and Wang [Ma and Wang 2000] which is based on the
hardness of the label cover problem.

Theorem 3.8. [Ma and Wang 2000] For any ǫ > 0, directed EDP cannot be

approximated within ratio 2log1−ǫ n unless NP ⊆ DTIME(2polylog(n)).

A careful analysis of proof of Theorem 3.8 reveals that in fact their proof implies
the following stronger version:

ACM Journal Name, Vol. V, No. N, Month 20YY.

Approximation Algorithms and Hardness Results for Cycle Packing Problems · 19

Theorem 3.9. Given an instance I of directed EDP, which consists of an acyclic
digraph G (on n vertices) and k source-sink pairs (s1, t1), . . . , (sk, tk) in G, where
k ∈ Ω(nδ) for some absolute δ > 0, then for any ǫ > 0 it is quasi-NP-hard to decide
between the following two cases:

(1) All pairs (si, ti) can be routed by disjoint paths, or

(2) At most a fraction 2− log1−ǫ n of the pairs can be routed.

We call the instance a Yes instance if all the pairs can be routed (case 1 above)

and a No instance if at most a fraction 2− log1−ǫ n of the pairs can be routed (case
2 above).

Proof of Theorem 1.4: Let IEDP be an instance of (directed) EDP as in
Theorem 3.9 which consists of a directed acyclic graph G and k pairs (si, ti), 1 ≤
i ≤ k. Take two copies of IEDP , named I1

P and I2
P and identify the source s1i ∈ I1

P

with s2i ∈ I2
P and call this new vertex si (1 ≤ i ≤ k). Denote this new graph by Hk,

with 2k source-sink pairs si, t
1
i and si, t

2
i , 1 ≤ i ≤ k. As in the construction of the

integrality gap, we name the triple si, t
1
i , t

2
i block i of Hk with start point si and

end points t1i and t2i . In a solution to the EDP problem with instance Hk and the
2k pairs si, t

1
i and si, t

2
i (1 ≤ i ≤ k) we say block i is fully routed if there are two

paths, one from si to t1i and one from si to t2i , in the solution. If only one of these
paths exists then we say block i is partially routed. If none of them exists block i is
not routed at all. Again, the fact that Hk is acyclic will be crucial in the analysis of
our construction. Let r and g be some positive integers (to be specified later) and
take an

(

r
2

)

-regular k-uniform hypergraph H with girth g. As before, let p and q
be the number of vertices and hyperedges of H, respectively. We construct a graph
Gr,k,g whose underlying structure is H in the same manner we did in Theorem 3.3
except that now we use copies of Hk (defined above) to place in Qk. The rest of the
construction remains the same. That is, we take p copies of Dr and put them in
the set Pr and then replace the intersection modules of them with blocks of copies
of Hk in Qk in the same manner. Let Pr = {D1

r , . . . , D
p
r} and Qk = {R1

k, . . . , R
q
k}.

We define short and long cycles in Gr,k,g in the same way as we did in Theorem
3.3.

If IEDP is a Yes instance then all the k blocks in Hk can be fully routed. This
means that every block of every Ri

k ∈ Qk can be fully routed. So for every graph
Dj

r ∈ Pr there are r disjoint paths from si to ti, one for each 1 ≤ i ≤ r, and because
of the existence of feedback edges (connecting ti to si) we have r edge-disjoint cycles
in each Dj

r ∈ Pr. This gives a total of Ω(rp) edge-disjoint cycles.

If IEDP is a No instance then at most a fraction 2− log1−ǫ n of the k pairs can be

routed. Since k = Ω(|IEDP |δ), this fraction, denoted α, is at most 2−(log k
δ)

1−ǫ

. So,
at most 2αk blocks in each graph in Qk, and therefore, at most 2αkq blocks over
all the graphs in Qk can be (fully or partially) routed. Because each short cycle
in a graph Di

r ∈ Pr goes through r blocks (previously intersection modules), the
number of short cycles over all graphs in Pr is at most 2αkq/r. The same argument
we had in Theorem 3.3 for long cycles implies that the number of long cycles here
is at most a 1

g fraction of the total number of edges in all graphs in Pr. This is at

most O(r2p
g). All together, the number of short and long cycles is O(2αkq

r + r2p
g),

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 · Krivelevich et al.

which is O(rp(2α + r
g)), because q = r2p

k .
The above arguments, together with Theorem 3.9 imply that deciding between

Ω(rp) cycles and O(rp(2α + r
g)) cycles in Gr,k,g is quasi-NP-hard. Equivalently, it

is quasi-NP-hard to have an approximation algorithm with factor Ω(1/F (r, k, g))
where F (r, k, g) = 2α + r

g . Let r be a (not too small) constant and g = O(logc k)

for an arbitrary large constant c > 0. This implies that the hardness factor (i.e.
1/F (r, k, g)) is Ω(logc k). With this setting of parameters, H has p = O(klogc k)
vertices and q = rp

k = O(klogc k−1) edges. So, if N denotes the number of vertices

of Gr,k,g (i.e. the size of the construction), then it will be at most O(klogc k) (for

the vertices in graphs in Pr) plus O(k
2
δ +logc k) (for the vertices in graphs in Qk). So

overall, N = O(k
2
δ +logc k), which is quasi-polynomial in the size of input (instance

IEDP). Rewriting the hardness factor Ω(logc k) in terms of N gives a hardness of
Ω(log

c
c+1 N). ✷

By Lemma 3.1 the same hardness result holds for VDC. Under a stronger com-
plexity assumption that for some sufficiently small σ > 0, NP 6⊆ DTIME(2nσ

), we

can improve the hardness result to Ω
(

log n
(log log n)2

)

. To do this we start with an

instance L of label cover of size n and use ℓ parallel repetitions to get a hardness of
factor 2O(ℓ) for the instance Lℓ (using the PCP theorem [Arora et al. 1998; Arora
and Safra], together with Raz’s [Raz 1998] parallel repetition theorem). Note that
the size of this instance is |Lℓ| = nO(ℓ). Combining this with the construction
of [Ma and Wang 2000] we get a hardness of factor 2O(ℓ) for the EDP problem.
Following the same construction as in the proof of Theorem 1.4 with constant r,
ℓ = c · logn for sufficiently large constant c, and g = Θ(nǫ) (for an ǫ < σ) we get
a hardness of factor nǫ and N (the size of Gr,k,g) is in O(nnǫ log n). Writing the

hardness factor in terms of N , we get a gap of Ω
(

log N
(log log N)2

)

.

4. CONCLUDING REMARKS

Although there is a large gap between the upper bound (approximation algorithm
of Theorem 1.2) and the lower bound (hardness result of Theorem 1.4), closing
this gap seems a challenging problem. In fact there are some similarities between
the problem of cycle-packing and the well-studied edge-disjoint paths problems (for
undirected graphs). For the latter problem, despite several attempts there is still a
similar gap between the best known approximation algorithm [Chekuri et al. 2006]
(with ratio O(

√
n)) and the best known hardness result [Andrews et al. 2005] (with

ratio O(log
1
2−ǫ)).

For the problem of undirected EDC, very recently Friggstad and Salavatipour

[Friggstad and Salavatipour 2006] have proved a hardness of Ω(log
1
2−ǫ n), unless

NP ⊆ DTIME(npolylog(n)). This shows that the approximation ratio of the greedy
algorithm of Theorem 1.1 is almost tight. It would be interesting to find the thresh-
old of approximability of this problem.

Acknowledgment

The authors thank Noga Alon and Guy Kortsarz for useful discussions. We also
thank the referee’s for their comments.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Approximation Algorithms and Hardness Results for Cycle Packing Problems · 21

REFERENCES

Andrews, M., Chuzhoy, J., and Zhang, L. 2005. Hardness of the undirected edge-disjoint paths
problem with congestion. In FOCS ’05: Proceedings of the 46th Annual IEEE Symposium on

Foundations of Computer Science. IEEE Computer Society, Washington, DC, USA, 226–244.

Arora, S., Lund, C., Motwani, R., Sudan, M., and Szegedy, M. 1998. Proof verification and
the hardness of approximation problems. J. ACM 45, 3, 501–555.

Arora, S. and Safra, S. Probabilistic checking of proofs: A new characterization of np. J.

ACM 45, 1, 70–122.

Bafna, V., Berman, P., and Fujito, T. 1995. Constant ratio approximation of the weighted
feedback vertex set problem for undirected graphs. In In Proc. of 6th International Symposium

Algorithms and Computation ISAAC. Lecture Notes in Computer Science. Springer-Verlag,
142–151.

Balister, P. 2003. Packing digraphs with directed closed trails. Comb. Probab. Comput. 12, 1,
1–15.

Becker, A. and Geiger, D. 1994. Approximation algorithms for the loop cutset problem. In
Proceedings of the Tenth Annual Conference on Uncertainty in Artificial Intelligence, July

29-31, 1994, Seattle, Washington. 60–68.

Bollobás, B. 2004. Extremal Graph Theory. Dover Publications, Incorporated.

Bollobás, B., Erdős, P., Simonovits, M., and Szemerédi, E. 1978. Extremal graphs without
large forbidden subgraphs. Ann. Discrete Math. 3, 29–41.

Bollobás, B. and Thomason, A. 1997. On the girth of hamiltonian weakly pancyclic graphs.
J. Graph Theory 26, 3, 165–173.

Caprara, A., Panconesi, A., and Rizzi, R. 2003. Packing cycles in undirected graphs. J.

Algorithms 48, 1, 239–256.

Chekuri, C. and Khanna, S. 2003. Edge disjoint paths revisited. In SODA ’03: Proceedings of

the fourteenth annual ACM-SIAM symposium on Discrete algorithms. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 628–637.

Chekuri, C., Khanna, S., and Shepherd, B. 2006. An o(
√

n) approximation and integrality gap
for disjoint paths and ufp. Theory of Computing 2, 137–146.

Chudak, F. A., Goemans, M. X., Hochbaum, D. S., and Williamson, D. P. 1998. A primal-
dual interpretation of two 2-approximation algorithms for the feedback vertex set problem in
undirected graphs. Oper. Res. Lett. 22, 4-5, 111–118.

Dor, D. and Tarsi, M. 1992. Graph decomposition is npc - a complete proof of holyer’s conjec-
ture. In STOC ’92: Proceedings of the twenty-fourth annual ACM symposium on Theory of

computing. ACM Press, New York, NY, USA, 252–263.

Erdős, P. and Sachs, H. 1963. Regulare graphen gegebener taillenweite mit minimaler knoten-
zahl. Wiss. Z. Martin-Luther Univ. Halle-Wittenberg Math.-Natur. Reihe 12.

Even, G., Naor, J., Schieber, B., and Sudan, M. 1998. Approximating minimum feedback sets
and multicuts in directed graphs. Algorithmica 20, 2, 151–174.

Friggstad, Z. and Salavatipour, M. 2006. unpublished manuscript.

Guruswami, V., Khanna, S., Rajaraman, R., Shepherd, B., and Yannakakis, M. 2003. Near-
optimal hardness results and approximation algorithms for edge-disjoint paths and related
problems. J. Comput. Syst. Sci. 67, 3, 473–496.

Hajiaghayi, M. T. and Leighton, T. 2006. On the max-flow min-cut ratio for directed multi-
commodity flows. Theor. Comput. Sci. 352, 1, 318–321.

Komlós, J. 1997. Covering odd cycles. Combinatorica 17, 3, 393–400.

Lazebnik, F., Ustimenko, V. A., and Woldar, A. J. 1997. New upper bounds on the order of
cages. Electr. J. Comb. 4, 2.

Ma, B. and Wang, L. 2000. On the inapproximability of disjoint paths and minimum steiner
forest with bandwidth constraints. J. Comput. Syst. Sci. 60, 1, 1–12.

Raz, R. 1998. A parallel repetition theorem. SIAM J. Comput. 27, 3, 763–803.

Seymour, P. D. 1995. Packing directed circuits fractionally. Combinatorica 15, 2, 281–288.

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 · Krivelevich et al.

Varadarajan, K. and Venkataraman, G. 2004. Graph decomposition and a greedy algorithm

for edge-disjoint paths. In Proceedings of the fifteenth annual ACM-SIAM symposium on

Discrete algorithms. 379–380.

ACM Journal Name, Vol. V, No. N, Month 20YY.

