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Abstra
t

We 
onsider random instan
es of 
onstraint satisfa
tion problems where ea
h variable has

domain size d, and ea
h 
onstraint 
ontains t restri
tions on k variables. For ea
h (d; k; t) we

determine whether the resolution 
omplexity is a.s. 
onstant, polynomial or exponential in

the number of variables. For a parti
ular range of (d; k; t), we determine a sharp threshold

for resolution 
omplexity where the resolution 
omplexity drops from a.s. exponential to a.s.

polynomial when the 
lause density passes a spe
i�
 value.

1 Introdu
tion

A 
onstraint satisfa
tion problem (CSP) is a generalized form of satis�ability whi
h is widely studied

in the Arti�
ial Intelligen
e 
ommunity. For example, the journal Constraints is devoted to these

problems. Roughly speaking, a CSP generalizes SAT in the sense that variables 
an draw their

values from a more general domain than simply fT; Fg, and ea
h 
lause (a.k.a. 
onstraint) forms

a set of restri
tions on the values that the variables in the 
lause may jointly take.

Random instan
es of k-SAT have been extremely well-studied over the past few de
ades (see [1℄

for many referen
es). More re
ently, the interest in this area has expanded into random instan
es

of various generalizations of k-SAT, su
h as NAE-SAT[3℄, XOR-SAT[14, 18, 19℄, (2 + p)-SAT [36,

38, 39, 4, 2℄ and many others. All of these 
an be expressed as CSP's. It was natural for this

interest to eventually spread to random instan
es of CSP's, rigorously in [5, 15, 34, 20, 32, 33, 41℄

and experimentally even earlier (see [24℄ for a good survey).

One of the most important results regarding random k-SAT is that of Chv�atal and Szemer�edi[13℄,

who showed that for any k � 3 and 
 > 0, a random instan
e of k-SAT with n variables and 
n


lauses will almost surely (a.s.)

1

have no resolution proof of unsatis�abilty of length less than 2

�(n)

.

It is easy to show that for large values of 
, su
h random instan
es are almost surely unsatis�able.

This immediately implied that for suÆ
iently large values of 
, any Davis-Putnam style algorithm

will take exponential time on su
h an input. Furthermore, it provided an astoundingly vast and

ri
h 
lass to the, beforehand rather sparse[26, 40℄, list of unsatis�able instan
es of k-SAT for whi
h

there is no polytime resolution proof of unsatis�ability. Su
h instan
es are of great interest sin
e

their existen
e 
an be viewed as a step toward proving that there are some unsatis�able instan
es

1

Formal de�nitions of these and other terms will appear in the next se
tion
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Figure 1: Resolution 
omplexities

with no polytime proof of unsatis�ability of any kind, i.e. that NP 6= 
o�NP . Chv�atal and Sze-

mer�edi's paper spawned numerous extensions and generalizations, eg. [7, 8, 2, 6℄, in
luding a general

framework for proving lower bounds on resolution 
omplexity by Ben-Sasson and Wigderson[9℄.

Mit
hell [32, 33℄ extended the framework of Ben-Sasson and Wigderson to the setting of CSP's.

He then used this framework to prove exponential lower bounds on the resolution 
omplexity of a

very natural 
lass of random CSP's - one where the number of restri
tions per 
onstraint is �xed.

Spe
i�
ally, he 
onsidered random CSP's with domain size d � 2, and every 
onstraint 
ontaining

pre
isely t restri
tions on k � 2 variables.

2

Note that these CSP's are trivial if either d or k is equal

to 1, and that they are the well-studied 2-SAT when d = k = 2 and t = 1. Mit
hell showed that for

t � (d� 1)=2; k = 2 and for t � d� 1; k � 3, and for any 
onstant 
 > 0, su
h a random instan
e

with 
n 
onstraints will almost surely have no subexponential proof of unsatis�ability.

3

Again, it is

easy to see that for suÆ
iently large 
, these instan
es are a.s. unsatis�able (for t > 0). In 
ontrast,

A
hlioptas et al[5℄ showed that for t � d

k�1

, and any 
 > 0, su
h a random instan
e will a.s.

have an unsatis�able subproblem of size O(1), and thus will have a O(1)-length resolution proof of

unsatis�ability. In this paper, we �ll in the gap between d � 1 and d

k�1

. Using F

d;k;t

n;M

to denote

su
h a random CSP with M 
onstraints, we prove the following theorems whi
h are summarized

in Figure 1.

Theorem 1 For any 
onstants d; k � 2 and

1 � t < (d� 1)d

k�2

, and for every 
onstant 
 > 0, F

d;k;t

n;M=
n

a.s. has resolution 
omplexity at least

2

�(n)

.

For d; k � 2 and t � (d� 1)d

k�2

, we de�ne




�

(d; k; t) =

1

dk(k�1)

 

d

k

t

!

=

 

d

k

� (d� 1)d

k�2

t� (d� 1)d

k�2

!

:

2

This natural model was, histori
ally, one of the �rst two random models of random CSP to be studied; the other

turned out to be problemati
 and a.s. has O(1) length resolution proofs of unsatis�ablity for any non-trivial number

of 
onstraints. See [34℄ or [24℄ for more details; the latter referen
e 
ontains more than 30 referen
es to the study of

the model 
onsidered here.

3

In [32℄, Mit
hell 
laims to prove that this holds for t � (d� 1)(k � 1) so long as d; k are not both 2. But there is

an unfortunate error in his Lemmas 8 and 10, and his proof only holds for t � (d� 1)=2; k = 2 and t � d� 1; k � 3.
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(An explanation of the derivation of this expression will have to wait until the end of the next

se
tion - see Lemma 9.)

Theorem 2 For any 
onstants d; k � 2 and

(d � 1)d

k�2

� t < d

k�1

, and for every 
 < 


�

(d; k; t), F

d;k;t

n;M=
n

a.s. has resolution 
omplexity at

least 2

�(n)

.

Theorem 3 For any 
onstants d; k � 2 and

(d � 1)d

k�2

� t < d

k�1

, and for every 
onstant 
 > 


�

(d; k; t), F

d;k;t

n;M=
n

a.s. has resolution


omplexity poly(n).

Trivially, the resolution 
omplexity of a satis�able CSP is in�nite, so Theorem 2 is of no interest

if for all 
 < 


�

(d; k; t), F

d;k;t

n;M

is a.s. satis�able. This is, in fa
t, well-known to be the 
ase for

d = 2; k = 2; t = 1 (i.e. 2-SAT), and we prove here that it is also the 
ase for d = 2; k = 3; t = 3

(see Theorem 5 below). We prove that it is not the 
ase for d = 2; k = 3; t = 2 and for all other

d; k (note that when d = 2; k = 3 and t is as in Theorem 2, then t 2 f2; 3g):

Theorem 4 (a) For any 
onstants d; k � 2 and for every 
 > lnd= ln[d

k

=(d

k

� t)℄, F

d;k;t

n;M=
n

is

a.s. unsatis�able.

(b) For any 
onstants d; k � 2; (d; k) =2 f(2; 2); (2; 3)g and (d� 1)d

k�2

� t < d

k�1

:

lnd

ln[d

k

=(d

k

� t)℄

< 


�

(d; k; t):

(
) For every 
 > 2:114, F

2;3;2

n;M=
n

is a.s. unsatis�able.

Parts (a,b) of Theorem 4 prove that F

d;k;t

n;M

is a.s. unsatis�able for some values of 
 < 


�

(d; k; t)

for d; k � 2; (d; k) =2 f(2; 2); (2; 3)g and (d � 1)d

k�2

� t < d

k�1

. Part (
) proves the same for the


ase d = 2; k = 3; t = 2 sin
e 


�

(2; 3; 2) = 7=3 > 2:114. The next theorem shows that this is not

the 
ase for d = 2; k = 3; t = 3, and that here, just as in 2-SAT, there are short resolution proofs

of unsatis�ability for every value of 
 above the threshold of satis�ability.

Theorem 5 For every 
 < 7=9 = 


�

(2; 3; 3), F

2;3;3

n;M=
n

is a.s. satis�able. Thus, 7=9 is the (sharp)

threshold of satis�ability for F

2;3;3

n;M=
n

.

As mentioned above, when t � d

k�1

, the resolution 
omplexity of F

d;k;t

n;M=
n

is a.s. O(1). So

these theorems 
ompletely 
hara
terize the resolution 
omplexity of F

d;k;t

n;M=
n

for every 
onstant

d; k; t; 
 ex
ept for (d � 1)d

k�2

� t < d

k�1

and 
 = 


�

(d; k; t). Here we have a sharp threshold for

resolution 
omplexity, similar to that found in [2℄, where the main te
hni
al result was:

Theorem 6 For any �; � > 0, 
onsider a random CNF-formula F on n variables with �n 3-


lauses and (1 � �)n 2-
lauses where every su
h formula is equally likely. F a.s. has resolution


omplexity at least 2

�(n)

.

(The other side of the \sharp threshold", i.e. that if the number of 2-
lauses is (1+�)n for some

� > 0 then a.s. the resolution 
omplexity of F is poly(n), was previously known to follow from the

work in [12℄.)
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Theorems 2 and 3 are at heart very similar to Theorem 6. For (d�1)d

k�2

� t < d

k�1

, a 
ertain

type of 
onstraint 
alled a for
er arises. For
ers play, essentially, the same role that 2-
lauses play

in random CNF-formulas. We show that if 
 > 


�

then the for
ers alone provide a unsatis�able

CSP with low resolution 
omplexity, while if 
 < 


�

then, even along with the additional non-for
er


onstraints, the CSP has high resolution 
omplexity.

Independently, Gao and Culberson [23℄ proved Theorem 3 for the spe
ial 
ase d = 2. Essentially,

they showed that in this 
ase the for
ers imply 2-
lauses and for 
 > 


�

these 2-
lauses form a random

instan
e of 2-SAT whi
h is above the satis�ability threshold. It is well-known that su
h an instan
e

will have low resolution 
omplexity. We remark more on this at the end of Subse
tion 2.3.

At �rst, we tried to adapt the lengthy proof of Theorem 6 to the setting of Theorem 2, but

we were unsu

essful. Fortunately, we found an alternate proof te
hnique, and to our pleasant

surprise, it produ
ed a proof of Theorem 2 whi
h was dramati
ally shorter than the proof from [2℄

of Theorem 6. In fa
t, our te
hnique yields a short proof of Theorem 6 whi
h we provide in an

appendix. This te
hnique looks like it will be of value to those who wish to prove future similar

theorems.

We 
lose this se
tion by mentioning that the 
lass of models of random CSP's 
onsidered here

is a subset of the more general 
lass introdu
ed in [15, 34℄. That 
lass 
ontains a mu
h wider range

of problems, in
luding XOR-SAT and d-
olourability. It would be very ni
e to 
hara
terize whi
h

models from that larger 
lass exhibit high resolution 
omplexity, but thus far we are unable to do

so.

2 Preliminaries

Here we give formal de�nitions of some of the 
on
epts dis
ussed in the introdu
tion, along with

other 
on
epts required for the remainder of the paper.

2.1 The random model

In our setting, the variables of our problem all have the same domain of permissible values, D =

f1; :::; dg, and all 
onstraints will be on k variables, for some �xed integers d; k � 2. Given a k-

tuple of variables, (x

1

; :::; x

k

), a restri
tion on (x

1

; :::; x

k

) is a k-tuple of values R = (Æ

1

; :::Æ

k

) where

ea
h Æ

i

2 D. A set of restri
tions on a k-tuple (x

1

; :::; x

k

) is 
alled a 
onstraint (or a 
lause). An

assignment of values to the variables of a 
onstraint C satis�es C if that assignment is not one of

the restri
tions in C. A 
onstraint satisfa
tion problem (CSP) 
onsists of a set of variables and a


olle
tion of 
onstraints on subsets of those variables. An assignment of values to all variables in a

CSP satis�es that CSP if every 
onstraint is simultaneously satis�ed. A CSP is satis�able if there

is at least one su
h satisfying assignment. The degree of a variable is the number of 
onstraints

that it lies in.

A subproblem of a CSP I is a CSP whi
h is obtained by removing some of the variables and

some of the 
onstraints from I, where of 
ourse, if a variable x is removed then every 
onstraint


ontaining x is also removed. When there is no possibility of 
onfusion we often use, for example,

I � fC

1

; C

2

g to denote the subproblem obtained by deleting the 
onstraints C

1

; C

2

from I and

I �fx

1

; x

2

g to denote the subproblem obtained by deleting the variables x

1

; x

2

from I, along with

any 
onstraints 
ontaining them.

Re
all that a k-uniform hypergraph is a generalization of a graph, where ea
h edge 
ontains k

verti
es. The 
onstraint hypergraph of a CSP is the k-uniform hypergraph whose verti
es 
orrespond

to the variables, and whose edges 
orrespond to the k-tuples of variables whi
h have (non-empty)

4




onstraints. Of 
ourse, when k = 2, the 
onstraint hypergraph is simply a graph, and so we often


all it the 
onstraint graph.

We de�ne 


d;k;t

to be the set of CSP's in whi
h every variable has domain f1; :::; dg, every


onstraint has k variables and t restri
tions, and no two 
onstraints use the same k-tuple of variables.

The Random Model: Spe
ify 
; n; d; k; t and let M = 
n. First 
hoose a random 
onstraint

hypergraph with n verti
es and M edges of size k, where ea
h su
h hypergraph is equally likely.

Next, for ea
h edge e, we 
hoose a random 
onstraint on the k variables of e, with domains

D = f1; :::; dg, uniformly from amongst all 
onstraints with exa
tly t restri
tions.

Note that every member of 


d;k;t

with n variables and M 
lauses is equally likely to be 
hosen.

We use F

d;k;t

n;M

to denote a random CSP drawn from this model. We say that a property holds

almost surely (a.s.) if the probability that it holds tends to 1 as n tends to in�nity.

Remark: Alternatively, we 
ould have 
hosen the 
onstraint hypergraph by making an in-

dependent 
hoi
e for ea
h potential edge, de
iding to put it in the hypergraph with probability

p =


�k!

n

k�1

. We denote the resulting random CSP by F

d;k;t

n;p

. This model is, in many senses, equiva-

lent to F

d;k;t

n;M

, as we des
ribe in Appendix B. In parti
ular, Lemma 23 implies that all the theorems

in this paper translate to F

d;k;t

n;p

. We will make use of the equivalen
e of these models in the proofs

of Lemmas 15 and 16.

2.2 Resolution 
omplexity

For a boolean CNF-formula F , a resolution refutation of F with length r is a sequen
e of 
lauses

C

1

; :::; C

r

= ; su
h that ea
h C

i

is either a 
lause of F , or is derived from two earlier 
lauses C

j

; C

j

0

for j; j

0

< i by the following rule: C

j

= (A_x); C

j

0

= (B_x) and C

i

= (A_B), for some variable x.

The resolution 
omplexity of F , denoted RES(F ), is the length of the shortest resolution refutation

of F . (If F is satis�able then RES(F ) = 1.)

Mit
hell[33℄ dis
usses two natural ways to extend the notion of resolution 
omplexity to the set-

ting of a CSP. These two measures of resolution 
omplexity are denoted C�RES and NG�RES.

The latter appears on the surfa
e to be the most natural extension in that it extends resolution

rules to the setting of a CSP and then 
arries them out. C�RES, on the other hand, 
onverts

a CSP to a boolean CNF-formula and then 
arries out CNF-resolution on that formula. Mit
hell

shows that for every CSP instan
e I, C�RES(I) � poly(NG�RES(I)) whereas there are many


hoi
es for I for whi
h the 
onverse it not true. Furthermore, all 
ommonly used resolution-type

CSP algorithms 
orrespond ni
ely to the C�RES 
omplexity of the input, but there are some

that do not 
orrespond to the NG�RES. For that reason, we fo
us in this paper on the C�RES


omplexity, as did Mit
hell in [32℄.

Given an instan
e I of a CSP in whi
h every variable has domain f1; :::; dg, we 
onstru
t

a boolean CNF-formula CNF(I) as follows. For ea
h variable x of I, there are d variables in

CNF(I), denoted x : 1; x : 2; :::; x : d, and there is a domain 
lause (x : 1 _ ::: _ x : d). For ea
h

restri
tion (Æ

1

; :::; Æ

k

) on variables (x

1

; :::; x

k

) in any 
onstraint of I, CNF(I) has a 
on
i
t 
lause

(x

1

: Æ

1

_ ::: _ x

k

: Æ

k

). It is easy to see that CNF(I) has a satisfying assignment i� I does - if I

has a satisfying assignment, then we produ
e one for CNF(I) by setting x : Æ to True i� x = Æ; if

CNF(I) has a satisfying assignment, then we produ
e one for I by setting x = Æ where Æ is any

one of the values for whi
h x : Æ is True.

Remark: It is natural to 
onsider adding an extra set of 
onstraints for ea
h variable x whi
h

spe
ify that x : Æ 
an be true for at most one value of Æ. But it is easily veri�ed that ea
h of the

results in this paper (in parti
ular, Lemma 7) holds regardless of whether we in
lude these 
lauses;

to be spe
i�
, we do not in
lude them.
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We de�ne the resolution 
omplexity of I, denoted C�RES(I) to be equal to RES(CNF(I)).

In most previous papers bounding the resolution 
omplexity of random instan
es of SAT or

CSP for k � 3, a key lemma has been to establish that the following two 
onditions hold almost

surely for some 
onstants �; � > 0:

(A) Every subproblem on at most �n variables is satis�able.

(B) Every subproblem on v variables where

1

2

�n � v � �n has at least �n variables of degree

1.

For SAT, these two fa
ts imply that a.s. the resolution 
omplexity is exponential in n using

prin
iples introdu
ed in [12℄ and re�ned to easily applied tools in [8℄ and [9℄. For more general

instan
es of CSP, one needs to establish an additional fa
t (whi
h is trivially true for SAT):

(C) If x is a variable of degree 1 in a CSP f then, letting f

0

be the subproblem obtained by

removing x and its 
onstraint, any satisfying assignment of f

0


an be extended to a satisfying

assignment of f by assigning some value to x.

In our setting, (C) holds if t < d, but for t � d, it is easy to see that it fails: Suppose that the


onstraint x lies in 
ontains the d restri
tions: (1; 1; 1; :::; 1; 1); (1; 1; 1; :::; 1; 2); :::; (1; 1; 1; :::; 1; d),

where x is the last variable in the 
onstraint. Then any satisfying assignment for f

0

in whi
h all

the other variables of the 
lause re
eive 1 
annot be extended to f . For k � 3 Mit
hell's proof[32℄

applies pre
isely to the range of t for whi
h (C) holds. For k = 2, Mit
hell modi�es the 
onditions,

repla
ing \degree 1" by \degree 2" in (B) and (C); this revised 
ondition (C) holds pre
isely when

t � (d� 1)=2.

For higher values of t, we need to repla
e \degree 1" in 
ondition (B) by a more 
ompli
ated

notion, and then prove that something similar to 
ondition (C) still holds. We des
ribe how to do

this in the next se
tion, after presenting several ne
essary de�nitions.

2.3 Some new boundaries

A 
onstraint C on variables x

1

; :::; x

k

forbids x

i

: Æ if ea
h of the d

k�1

possible k-tuples (Æ

1

; :::; Æ

k

)

with Æ

i

= Æ is a restri
tion of C. Su
h a C is 
alled a forbidder. As explained in [5℄ (and expanded

on in [34℄), it is the presen
e of forbidders that 
auses C�RES(F

d;k;t

n;M=
n

) = O(1) a.s. for all 


when t � d

k�1

. C permits (x

i

: Æ; x

j

: 
) if at least one of the d

k�2

possible k-tuples (Æ

1

; :::; Æ

k

) with

Æ

i

= Æ and Æ

j

= 
 is not a restri
tion of C. C is a (x

i

: Æ) ! (x

j

: 
) for
er if C does not permit

(x

i

: Æ; x

j

: 


0

) for any 


0

6= 
; i.e. if ea
h of the (d� 1)d

k�2

possible k-tuples (Æ

1

; :::; Æ

k

) with Æ

i

= Æ

and Æ

j

6= 
 is a restri
tion of C. Thus C implies \If x

i

= Æ then x

j

= 
." In this 
ase, we say that

the for
er C starts at x

i

(or, more spe
i�
ally, x

i

: Æ) and �nishes at x

j

(or x

j

: 
). As predi
ted by

Mit
hell[33℄, it is the presen
e of for
ers that 
auses C�RES(F

d;k;t

n;M=
n

) = poly(n) a.s. for large 


when (d� 1)d

k�2

� t < d

k�1

.

A path of length r in a k-uniform hypergraph H is a sequen
e of r edges e

1

; e

2

; :::; e

r

su
h that:

� for 1 � i � r � 1, e

i

\ e

i+1

= x

i

- this is 
alled a 
onne
ting vertex;

� for all 1 � i � r � 2 and j > i+ 1, e

i

\ e

j

= ;.

� there are spe
i�ed verti
es x

0

2 e

1

and x

r

2 e

r

, 
alled the endpoints of the path.

If e

1

; : : : ; e

r

is a path and there is an edge e

0

2 H whose interse
tion with the verti
es of

e

1

; : : : ; e

r

is only fx

0

; x

r

g then e

0

; : : : ; e

r

form a 
y
le in H.

A pendant path is a path in whi
h no verti
es other than the endpoints lie in any edges of H o�

the path. In other words, there is no restri
tion on the degrees of the endpoints, ea
h 
onne
ting

vertex has degree 2 in H, and every other vertex in the path has degree 1 in H.

6



A (pendant) path of length r in a CSP is a sequen
e of r 
onstraints whose underlying edges

form a (pendant) path of length r in the underlying hypergraph. If there are values Æ

0

; :::; Æ

r

su
h

that the 
onstraint on ea
h e

i

is a (x

i�1

: Æ

i�1

) ! (x

i

: Æ

i

) for
er, then we say that the (pendant)

path is a (x

0

: Æ

0

) ! (x

r

: Æ

r

) for
ing (pendant) path. It will be 
onvenient to 
onsider a single

variable x to be a for
ing path of length zero (note that we trivially have (x : Æ) ! (x : Æ) for every

Æ); in this 
ase, both endpoints of the for
ing path are 
onsidered to be x.

A 
onstraint on the edge e

i

of a path is a P-for
er if it is a (x

i�1

: Æ) ! (x

i

; 
) for
er or a

(x

i

: 
) ! (x

i�1

; Æ) for
er for some Æ; 
.

For any I 2 


d;k;t

:

� The �rst boundary of I, denoted by B

1

(I), is the set of non-forbidding 
onstraints of I whi
h


ontain at most one variable of degree greater than 1.

� The se
ond boundary of I, denoted by B

2

(I), is the set of pendant paths of length 4 in I

whi
h have no P-for
ers.

� The third boundary of I, denoted by B

3

(I), is the set of pendant paths of length 2 where

one of the two 
onstraints is a P-for
er that starts at the 
onne
ting vertex, and the other is

not a P-for
er that �nishes at the 
onne
ting vertex.

The boundary of I is B(I) = B

1

(I) [ B

2

(I) [ B

3

(I).

Our main lemma 
orresponds to 
onditions (A) and (B) from Se
tion 2.2:

Lemma 7 Consider any I 2 


d;k;t

on n variables, where t < d

k�1

. If for some �; � > 0, we have:

(a) every subproblem on at most �n variables is satis�able, and

(b) every subproblem I

0

on v variables where

1

2

�n � v � �n has jB(I

0

)j � �n,

then C�RES(I) � 2

�(n)

.

To prove Lemma 7, we require the following lemma, whi
h 
orresponds to 
ondition (C) from

Se
tion 2.2.

Lemma 8 Consider any I 2 


d;k;t

, where t < d

k�1

and any X 2 B(I). Any satisfying assignment

of I �X 
an be extended to a satisfying assignment of I.

Proof: Suppose X 2 B

1

(I). Then the lemma follows from the fa
t that sin
e t < d

k�1

, X


annot be a forbidding 
onstraint.

Suppose X 2 B

2

(I), and 
onsider any satisfying assignment of I �X where x

0

; x

4

are assigned

Æ

0

; Æ

4

. (I � X is the subproblem obtained by removing all 
lauses of X and all variables of X

other than the endpoints.) Sin
e e

1

is not an (x

0

; x

1

)-for
er, there are at least two 
hoi
es for Æ

1

su
h that e

1

permits (x

0

: Æ

0

; x

1

: Æ

1

). Similarly, there are at least two 
hoi
es for Æ

3

whi
h 
an

be assigned to x

3

so e

4

permits (x

3

: Æ

3

; x

4

: Æ

4

). We will show that for at least one of these four


hoi
es for the pair (Æ

1

; Æ

3

), there is a value Æ

2

su
h that e

2

permits (x

1

: Æ

1

; x

2

: Æ

2

) and e

3

permits

(x

2

: Æ

2

; x

1

: Æ

3

). If this were not the 
ase, then for every Æ

2

2 f1; :::; dg either (i) e

2

does not permit

(x

1

: Æ

1

; x

2

: Æ

2

) for either of the two 
hoi
es of Æ

1

(this requires 2d

k�2

restri
tions) or (ii) e

3

does

not permit (x

2

: Æ

2

; x

3

: Æ

3

) for either of the two 
hoi
es of Æ

3

(this also requires 2d

k�2

restri
tions).

Thus e

2

; e

3

would have a total of at least 2d

k�1

restri
tions whi
h is not possible by hypothesis.

Suppose X 2 B

3

(H). Let the endpoints of X be x

0

; x

2

, the 
onne
ting variable of X be x

1

and

the 
onstraints of X be C

1

; C

2

where C

1

is a for
er starting at x

1

and ending at x

0

and C

2

is not a

7



for
er that starts at x

2

and ends at x

1

. Consider any satisfying assignment of I �X where x

0

; x

2

are assigned Æ

0

; Æ

2

. There are at least d� 1 
hoi
es for Æ

1

su
h that C

1

permits (x

0

: Æ

0

; x

1

: Æ

1

) and

there are at least 2 
hoi
es for Æ

1

su
h that C

2

permits (x

1

: Æ

1

; x

2

: Æ

2

). At least one 
hoi
e for Æ

1

lies in the interse
tion of these sets and so the lemma follows.

With Lemma 8 in hand, the proof of Lemma 7 is straightforward, following Mit
hell's framework

[32℄.

Proof of Lemma 7: Consider any resolution refutation of CNF(I). Mit
hell ([32℄, Lemma 1)

proves that hypothesis (a) implies there must be a 
lause C in the refutation and a subproblem J

of I on between

1

2

�n and �n variables, su
h that J minimally implies C in the following sense: (i)

Every satisfying assignment of J satis�es C, and (ii) For subproblem J

0

of J , there is a satisfying

assignment of J

0

that does not satisfy C.

We will next prove that C must have at least �n=4 variables:

Consider any 
lause X 2 B

1

(J ); we will show that some variable of X appears in C. To see

this, 
onsider any assignment � whi
h satis�es J � X but does not satisfy C. By Lemma 8, it

is possible to extend � to a satisfying assignment �

0

of J , and sin
e J implies C, �

0

satis�es C.

Thus, there is some variable of C that is assigned a value in �

0

but not in �; that variable must be

in X.

Nearly identi
al arguments show that C must 
ontain a non-endpoint variable of every member

of B

2

(J ), and that C must 
ontain the 
onne
ting variable from every member of B

3

(J ). No

variable 
an be a non-endpoint variable of more than four members of B

2

(J ). So C 
ontains at

least jB

1

(J )j+jB

2

(J )j=4+jB

3

(J )j variables. Sin
e by hypothesis (b), jB(J )j � �n, C must 
ontain

at least �n=4 variables, as required.

This allows us to apply the now standard \width lemma" of Ben-Sasson and Wigderson ([9℄,

Corollary 3.6) to prove our lemma. In parti
ular, if we let w

1

= k be the maximum 
lause size in

CNF(I), and w

2

� �n=4 be the minimum over all resolution refutations of CNF(I) of the maximum


lause size in the refutation, then the width lemma states that:

C�RES(I) = e




(

(w

2

�w

1

)

2

=n

)

� 2

�(n)

:

We 
lose this se
tion with a lemma explaining the signi�
an
e of 


�

(d; k; t).

Lemma 9 For d; k � 2 and t � (d�1)d

k�2

, let 
 = 


�

(d; k; t) =

1

dk(k�1)

�

d

k

t

�

=

�

d

k

�(d�1)d

k�2

t�(d�1)d

k�2

�

. Spe
ify

any variable x and value Æ 2 f1; :::; dg. The expe
ted number of for
ers in F

d;k;t

n;M=
n

starting with

x : Æ is 1.

Proof: Let L = (d � 1)d

k�2

. The expe
ted number of 
onstraints 
ontaining x is 
k. For

ea
h of the d(k � 1) 
hoi
es of x

0

6= x; Æ

0

2 f1; :::; dg for a parti
ular 
onstraint 
ontaining x, the

probability that the 
onstraint forms a (x : Æ) ! (x

0

: Æ

0

) for
er is

�

d

k

�L

t�L

�

=

�

d

k

t

�

, as there are exa
tly

�

d

k

�L

t�L

�


hoi
es for su
h a for
er. Therefore, the expe
ted number of for
ers from x : Æ is


dk(k � 1) �

�

d

k

�L

t�L

�

�

d

k

t

�

=

�

d

k

t

�

dk(k � 1)

�

d

k

�L

t�L

�

� dk(k � 1) �

�

d

k

�L

t�L

�

�

d

k

t

�

= 1

It is instru
tive to 
onsider the 
ase k = d = 2 and t = (d � 1)d

k�2

= 1 whi
h is the more

familiar random 2-SAT. Here, every 2-
lause 
an be viewed as the union of two for
ers, eg. (x

1

_x

2

)

8



is equivalent to the 
onjun
tion of the two for
ers (x

1

: F ) ! (x

2

: T ) and (x

2

: F ) ! (x

1

: T ). (Of


ourse, we are 
onsidering the domain to be fT(rue),F(alse)g rather than f1; 2g. Note that 


�

= 1

whi
h is the satis�ability threshold for 2-SAT. The reader who is familiar with random 2-SAT, will

re
ognize that the property guaranteed by Lemma 9 
orresponds very 
losely to what happens to


ause the random 2-SAT to be unsatis�able. Thus, it is not surprising that for general d; k, at


 > 


�

the for
ers alone produ
e an unsatis�able formula and that it, like random 2-SAT, has small

resolution 
omplexity.

For d = 2 and general k, it is easy to see that an (x : F ) ! (y : T ) for
er is also an (y : F ) !

(x : T ) for
er. Thus, su
h a for
er implies the 2-
lause (x_y). Extending this reasoning shows that

for 
 > 


�

, the for
ers alone will 
ontain a random instan
e of 2-SAT where the number of 2-
lauses

is above the satis�ability threshold. As mentioned earlier, this was dis
overed independently by

Gao and Culberson [23℄.

3 Proof of Theorem 1

We begin with a lemma of a type that has be
ome standard in papers on the resolution 
omplexity

of random formulae. It says that a.s. every subproblem of F

d;k;t

n;M

with at most �n variables has

a very low 
lause-vertex ratio. Thus, to prove that the 
onditions of Lemma 7 hold, it suÆ
es to

prove that 
ertain types of subproblems must have high 
lause-vertex ratio.

Lemma 10 Let 
 > 0 and k � 2, and let H be the random k-uniform hypergraph with n verti
es

and m = 
n edges. Then for any Æ > 0, there exists � = �(
; k; Æ) > 0 su
h that a.s. H has no

subgraph with 0 < h � b�n
 verti
es and at least

�

1+Æ

k�1

�

h edges.

Proof: This proof follows a straightforward �rst moment 
al
ulation of a type that has been


arried out many times in similar settings, starting with  Lu
sak[31℄.

Let � =

1+Æ

k�1

, S

h

be the number of subgraphs of H with h verti
es and exa
tly d�he edges, and

set S =

P

b�n


h=1

S

h

. Note that if S

h

= 0 then there are no subgraphs of H with h verti
es and at

least �h edges. To 
ount E(S

h

), we multiply the number of 
hoi
es of h verti
es by the number of


hoi
es for d�he of the 
n random edges and the probability that ea
h of those random edges lies

entirely in that set of h verti
es:

E(S

h

) �

 

n

h

! 


n

d�he

!

�

h

n

�

kd�he

:

This yields:

E(S) =

b�n


X

h=1

E(S

h

)

�

b�n


X

h=1

 

n

h

! 


n

d�he

!

�

h

n

�

kd�he

�

b�n


X

h=1

�

en

h

�

h

�

e
n

d�he

�

d�he

�

h

n

�

kd�he

�

e


�

b�n


X

h=1

"

�

h

n

�

(k�1)��1

e

�+1

(
=�)

�

#

h

9



=

e


�

b�n


X

h=1

"

�

h

n

�

Æ




0

#

h

for 


0

= e

�+1

(
=�)

�

�

e


�

0

�

blog n


X

h=1

"

�

blog n


n

�

Æ




0

#

+

b�n


X

h=blog n
+1

"

�

b�n


n

�

Æ




0

#

blog n


1

A

� O

 

log

1+Æ

n

n

Æ

!

+

b�n


X

h=blog n
+1

O

�

1

n

2

�

for suÆ
iently small �

= o(1):

The next lemma will allow us to show that subproblems with small boundaries must have high


lause-variable ratio, and hen
e, by the previous lemma, must be large.

Lemma 11 Let r � 2 be a 
onstant, and H be a k-uniform hypergraph on n verti
es and m

edges that does not have any 
omponent whi
h is a 
y
le. Let B

1

be the set of edges whi
h have

at most one vertex of degree greater than 1, and B

2

be the set of pendant paths of length r. If

jB

1

j+ jB

2

j � n=(72r

2

k

3

), then for Æ =

1

3rk

2

: m � n

�

1+Æ

k�1

�

.

Intuitively, the lemma is 
lear: If jB

1

j = 0 and if no vertex has degree greater than 2, then it is

easy to see that we would have m = n=(k� 1). So in order for m to not be mu
h bigger, either B

1

must be large or there must be very few verti
es of degree greater than 2. If the latter is true and

B

1

is small, then H must 
ontain long pendant paths and so B

2

will be big. Our formal proof is a

bit lengthy and so we defer it to the end of the se
tion.

These two lemmas are enough to prove the �rst of our main theorems:

Proof of Theorem 1: It suÆ
es to prove that a.s. 
onditions (a) and (b) of Lemma 7 hold

for F

d;k;t

n;M=
n

, where � = �(
; k; Æ = 1=(12k

2

)) from Lemma 10 and � = min(1=(72 � 16k

3

); �=10k).

Sin
e t < (d � 1)d

k�2

, F

d;k;t

n;M

has no for
er 
onstraints. Using this fa
t, our proof would follow

immediately from Lemmas 10 and 11, if it were not for the fa
t that Lemma 11 only applies to

hypergraphs with no 
y
le 
omponents.

We begin with 
ondition (a). Suppose that J is a minimally unsatis�able subproblem of F

d;k;t

n;M

.

Thus, the underlying hypergraph of J is 
onne
ted. Furthermore, sin
e t < (d� 1)d

k�2

, it is easily

veri�ed that the underlying hypergraph of J 
annot be a single 
y
le. Finally, Lemma 8 implies

that jB

1

(J )j = jB

2

(J )j = 0. Therefore, sin
e J has no for
ers, Lemma 11 with r = 4 applies to

the underlying hypergraph of J and so J has 
lause-variable ratio at least (1 + Æ)=(k + 1). Thus

Lemma 10 implies that a.s. F

d;k;t

n;M

has no minimally unsatis�able subproblems of size at most �n.

Therefore a.s. F

d;k;t

n;M

has no unsatis�able subproblems of size at most �n.

Next, 
ondition (b). We will use the easy fa
t, provided as Lemma 22 in Appendix B, that a.s.

the underlying random hypergraph of F

d;k;t

n;M

has fewer than log n 
y
les of length at most 4. Suppose,

by 
ontradi
tion, that J is a subproblem of F

d;k;t

n;M

with v variables where

1

2

�n � v � �n, and with

jB

1

(J )j + jB

2

(J )j � �n. (Sin
e there are no for
ers, jB

3

(J )j = 0.) Let H

0

be the subhypergraph

obtained by removing all the 
y
le 
omponents from the underlying hypergraph of J . By Lemma

11 (with r = 4), H

0

has at least jH

0

j

1+Æ

k�1

edges, and note also that jH

0

j � jJ j � �n < �n. By

Lemma 10, a.s. every su
h H

0

is empty. Thus a.s. for every su
h subproblem J , every 
omponent

in the underlying hypergraph of J is a 
y
le. Every vertex in su
h 
y
le of length at least 5 must

lie in a member of B

2

(J ), and every member of B

2

(J ) 
ontains fewer than 4k verti
es; so there are

10



at most 4k�n verti
es in those 
y
les. As mentioned above, a.s. there are at most 4 log n verti
es

whi
h lie in 
y
les of length at most 4 in F

d;k;t

n;M

. Sin
e 4k�n + 4 log n <

1

2

�n � jJ j, we have a


ontradi
tion.

We now 
lose this se
tion with the proof of Lemma 11.

Proof of Lemma 11: We say that a pendant path p of length at least 1 is 
ontra
tible if (i)

both of it's endpoints have degree 2 and (ii) p is maximal in the sense that it is not part of a longer

pendant path whose endpoints both have degree 2. Let P be the set of 
ontra
tible pendant paths

in H.

We form a hypergraph H

0

with no long pendant paths as follows:

For ea
h p 2 P with endpoints x; y, we remove all edges and verti
es of p ex
ept for x; y and

do the following: If x; y do not both lie in some edge outside of p, then we 
ontra
t x; y into a

single vertex. Otherwise we 
reate a new edge 
ontaining x; y and k � 2 new degree 1 verti
es;

this edge is 
alled a redu
ed edge and x; y are its endpoints. Note that, sin
e H has no 
y
le


omponents, this operation does not 
reate any new 
ontra
tible paths, and it does not destroy any


ontra
tible paths. So there is no need to iterate this pro
ess, and we 
ontra
t every path from

P. For 
onvenien
e, we �rst 
ontra
t all paths of length at least r in Phase A, and then all the

remaining paths in Phase B.

The resulting hypergraph is H

0

. Every non-redu
ed edge in H

0

either (i) has a vertex of degree

at least 3, (ii) has at least 3 degree 2 verti
es or (iii) is in B

1

.

n

0

is the number of verti
es in H

0

; s is the number of verti
es of degree greater than 1; m

0

is

the number of edges in H

0

; m

2

is the number of redu
ed edges; m

�

is the number of edges with at

least one degree 3 vertex.

Sin
e H has no 
y
le 
omponents, the endpoints of any redu
ed edge must lie in a non-redu
ed

edge. Sin
e those endpoints have degree 2, ea
h edge 
an hold the endpoints of at most k=2 redu
ed

edges. Therefore, m

2

� m

0

�

k

2

=(

k

2

+ 1) = m

0

(k=(k + 2)).

The sum of the degrees of the verti
es is n

0

+ s plus the sum of all verti
es v with deg(v) � 3

of deg(v)� 2. Ea
h su
h vertex v lies in deg(v) edges, and so by 
ounting (deg(v)� 2)=deg(v) �

1

3

for ea
h of those edges, it follows that this latter sum is at least m

�

=3. Therefore, sin
e the sum of

the degrees of all verti
es is km

0

, we have:

km

0

� n

0

+ s+m

�

=3:

Furthermore, by 
ounting the number of degree 1 variables in ea
h edge, we have:

s � n

0

� (k � 3)m

0

� (m

�

+m

2

)� 2jB

1

j:

These two equations 
ombine to yield:

km

0

� 2n

0

� (k � 2)m

0

+ (m

0

� 2m

�

=3 �m

2

) � 2jB

1

j

� 2n

0

� (k � 2)m

0

+

1

3

(m

0

�m

2

) � 2jB

1

j

� 2n

0

�m

0

�

k � 2 �

2

3(k + 2)

�

� 2jB

1

j;

and som

0

� (2n

0

�2jB

1

j)=(2k�2�

2

3(k+2)

) � n

0

�

1+2Æ

k�1

�

�2jB

1

j, sin
e Æ <

1

3k(k+2)

and 2k�2�

2

3(k+2)

>

1.

Now we observe that very few verti
es were removed during Phase A. Any pendant path of

length l � r 
ontains at least l� r+ 1 pendant paths of length r. So the total of the lengths of all

11



su
h paths in H is at most rjB

2

j. Therefore, the number of verti
es in the hypergraph at the end

of Phase A is at least n� rkjB

2

j.

Now we 
onsider what happened during Phase B. Every time we 
ontra
ted a 
ontra
tible path

p of length l < r to a vertex, the net loss in edges was l and the net loss of verti
es was (k� 1)l� 1,

and ea
h time we 
ontra
ted one to an edge, those net losses were l�1 and (k�1)(l�1)�1. Thus,

for some v, we lost v verti
es and at least v(r�1)=((r�1)(k�1)�1) > v(1+

1

rk

)=(k�1) � v

�

1+2Æ

k�1

�

edges during Phase B, sin
e Æ �

1

2rk

.

Therefore, the hypergraph remaining at the end of Phase A has at least

(n� rkjB

2

j)

�

1 + 2Æ

k � 1

�

� 2jB

1

j � n

�

1 + Æ

k � 1

�

+

nÆ

k � 1

� 3rjB

2

j � 2jB

1

j > n

�

1 + Æ

k � 1

�

edges. Sin
e Phase A does not in
rease the number of edges, this proves our Lemma.

4 Proof of Theorem 2

A Z

q


on�guration is a 
olle
tion of q vertex-disjoint for
ing paths in I, ea
h with possibly length

zero (i.e. a single vertex), plus q

�

1+


k�1

�

other edges, ea
h 
ontaining k endpoints of the paths, where


 = 1=(300k

2

).

For I 2 


d;k;t

and t � (d� 1)k

d�2

, let P = p

1

; : : : ; p

q

be a 
olle
tion of for
ing paths of I su
h

that: (i) every vertex lies in exa
tly one of these paths, (ii) it is not possible to transform P into

a 
olle
tion of q � 1 paths meeting 
ondition (i) by adding another for
er from I. Obviously a


olle
tion of paths of length 0, one for ea
h variable of I, satis�es (i), and so some 
olle
tion exists

whi
h satis�es (i) and (ii).

Lemma 12 For any I;P as des
ribed above: If jB(I)j < q=(72000k

3

) and if the underlying hyper-

graph of I has no 
y
le 
omponents then I 
ontains a Z

q


on�guration.

Proof: Suppose that among the paths in P, exa
tly p

1

; : : : ; p

r

(r � q) have at least one edge ea
h;

the others have length 0. Consider a path p

i

, (1 � i � r), and suppose it has l � 1 edges. Let x

0

and x

l

be the start and end points of this path; so p

i

is a (x

0

:Æ

0

) ! (x

l

:Æ

l

) for
er, for some values

Æ

0

; Æ

l

. Remove from I all of the 
lauses and variables of p

i

other than x

0

; x

l

. Then add k � 2 new

variables and a (x

0

:Æ

0

) ! (x

l

:Æ

l

) for
er. The new for
er is 
alled a redu
ed for
er. We do this for

every p

i

; 1 � i � r. The new CSP obtained after these operations is denoted by I

0

. Note that n

0

,

the number of variables in I

0

, is q + r(k � 1). Note also that sin
e p

1

; :::; p

q

are vertex-disjoint, no

two redu
ed for
ers in I

0

share a vertex.

Claim 13 There is no for
er path of length at least 4 in I

0

.

Proof: By 
ontradi
tion, assume that p = e

1

e

2

e

3

e

4

is a for
er path in I

0

, with u

i�1

; u

i

being the

start and end points of e

i

. If e

2

is not a redu
ed for
er, then adding the for
er e

2

to P would


on
atenate the path in P 
ontaining u

1

with the one 
ontaining u

2

without violating 
ondition (i).

This 
ontradi
ts 
ondition (ii). If e

2

is a redu
ed for
er, then e

3


annot be (sin
e no two redu
ed

for
ers share a variable). Thus a similar 
ontradi
tion arises when we 
onsider adding the for
er e

3

to P.

Claim 14 Every pendant path of length 10 in I

0

has a subpath whi
h is in B

2

(I) [ B

3

(I).

12



Proof: Let P

0

be a pendant path in I

0

. By repla
ing ea
h redu
ed edge of P

0

by its 
orresponding

path from P, we obtain a path P in I. Every non-for
er in P

0

is a non-for
er in P . Assume

P = e

1

; : : : ; e

l

where x

i

= e

i

\ e

i+1

, and that e

a

and e

b

, b > a, are two non-for
ers in P

0

, and hen
e

in P , su
h that there is no other non-for
er between them. If b� a > 1 then e

a+1

is a for
er, and

it must start at x

a+1

for otherwise fe

a

; e

a+1

g 2 B

3

(I) and we are done. Similarly, e

b�1

must be

a for
er starting at x

b�2

, otherwise fe

b�1

; e

b

g 2 B

3

(I). But these two imply that along the path

e

a+1

; : : : ; e

b�1

there is a member of B

3

(I). Thus, we 
an assume that b � a = 1, i.e. that the

non-for
ers in P

0

are 
onse
utive. Also, if i is the largest index for whi
h e

i

is a non-for
er in P ,

then e

l

e

l�1

: : : e

i+1

must be a for
ing path going into x

i

, for otherwise there is a member of B

3

(I)

along this path. Therefore the portions of P

0

on the sides of these non-for
ers form for
ing paths.

Similar arguments show that if P

0

has no non-for
ers, then it 
ontains at most two for
ing paths

starting at the end points of P

0

, or else P

0


ontains a member of B

3

(I).

By Claim 13, the length of ea
h for
ing path is at most 3. Therefore, if P

0

has length 10, then

P

0

has at least 4 
onse
utive non-for
ers and so that subpath of P

0

is in B

2

(I).

Let B

1

be the set of 
lauses whi
h have at most 1 variable of degree greater than 1 in I

0

and

B

2

be the set of pendant paths of length 10 in I

0

. Note that jB

1

(I)j � jB

1

j. Sin
e no subpath 
an

lie in more than 10 members of B

2

, Claim 14, implies that jB

2

j � 10(jB

2

(I) + B

3

(I)j). Therefore,

jB

1

j + jB

2

j � 10jB(I)j � q=(7200k

3

) < n

0

=(7200k

3

), as n

0

, the number of variables in I

0

, is

q + r(k � 1). So applying Lemma 11 with r = 10 to the underlying hypergraph of I

0

, the number

of 
lauses in I

0

is at least n

0

�

1+


k�1

�

, and at least n

0

�

1+


k�1

�

� r � q

�

1+


k�1

�

are not redu
ed for
ers.

Those 
lauses and the paths in P will form a Z

q


on�guration in I.

Lemma 15 For any 
onstants d; k � 2 and (d � 1)d

k�2

� t < d

k�1

, and for every 
 < 


�

(d; k; t),

there exists � > 0, su
h that a.s. F

d;k;t

n;M=
n

has no Z

q


on�guration with q � �n.

Proof: For this proof, it will be 
onvenient to work in the F

d;k;t

n;p

model des
ribed in Se
tion

2.1 where ea
h of the

�

n

k

�

potential edges is 
hosen for the 
onstraint hypergraph with probability


k!=n

k�1

. Lemma 23 in Appendix B shows that proving this model a.s. has no Z

q


on�guration

with q � �n will imply that a.s. neither does F

d;k;t

n;M=
n

.

We 
ompute the expe
ted number of Z

q


on�gurations. To do so, we suppose that the q for
ing

paths are ordered p

1

; :::; p

q

, when we 
ount the number of ways to 
hoose them. Sin
e the for
ing

paths of a Z

q


on�guration are a
tually unordered, this produ
es an over
ount whi
h we 
orre
t

by dividing by q!.

We start with the 
omputations related to the for
ing paths: For ea
h i, let a

i

� 0 be the

number of for
ers in p

i

, and set A =

P

q

i=1

a

i

. The number of ways to 
hoose the end-points of

the paths is at most n

2q

(fewer if some of the path lengths are 0). For ea
h p

i

, there are at most

n

a

i

�1


hoi
es for the 
onne
ting variables, and d

a

i

+1


hoi
es of values to use on the variables to

form a for
ing path. Also, for ea
h edge of ea
h p

i

, there are there are

�

n

k�2

�


hoi
es for the set

of degree 1 variables. The probability that all the spe
i�ed hyperedges exist is (
k!=n

k�1

)

A

. The

probability that the 
onstraints all form the spe
i�ed for
ers is, as we argued in the proof of Lemma

9,

�

�

d

k

�(d�1)d

k�2

t�(d�1)d

k�2

�

=

�

d

k

t

�

�

A

.

Now we turn our attention to the additional edges: There are at most

�

2q

k

�

potential edges


ontaining only endpoints of the paths, and we must 
hoose B = q

�

1+


k�1

�

of them; there are

�

(

2q

k

)

B

�

ways to do so. The probability that the B 
hosen edges are all present in H is (
k!=n

k�1

)

B

.

Letting 
 = (1 � �)


�

, this yields:

13



E(jZ

q

j) �

n

2q

q!

�

X

a

1

;:::;a

q

�0

n

A�q

d

A+q

 

n

k � 2

!

A

�

(1 � �)


�

k!

n

k�1

�

A

2

6

4

�

d

k

�(d�1)d

k�2

t�(d�1)d

k�2

�

�

d

k

t

�

3

7

5

A

�

 

�

2q

k

�

B

!

�


k!

n

k�1

�

B

�

n

2q

q!

 

�

2q

k

�

B

!

�


k!

n

k�1

�

B

�

X

a

1

;:::;a

q

�0

 

n

k � 2

!

A

n

A�q

d

A+q

�

(1 � �)(k � 2)!

dn

k�1

�

A

�

n

2q

q!

 

(2q)

k

e

k!B


k!

n

k�1

!

B

�

X

a

1

;:::;a

q

�0

n

(k�2)A+A�q

d

A+q

(k � 2)!

A

�

(1 � �)(k � 2)!

dn

k�1

�

A

�

n

2q

q!

 

(2q)

k

e


n

k�1

(q=k � 1)

!

q(1+
)=(k�1)

�

d

q

n

q

X

a

1

;:::;a

q

�0

(1 � �)

A

�

�

 q

n

�


q

2

4

X

i�0

(1 � �)

i

3

5

q

�

�

 

0

q

n

�


q

;

where  ; 

0

> 0 are fun
tions of 
; d; k; �; 
, and hen
e of 
; d; k; t sin
e �; 
 
an be derived from


; d; k; t. Therefore,

�n

X

q=1

E(jZ

q

j) �

blog n


X

q=1

�

 

0

q

n

�


q

+

�n

X

q=blog n
+1

�

 

0

q

n

�


q

� O

 

log

2

n

n

!

+

�n

X

q=blog n
+1

O(n

�2

) = o(1);

for � > 0 suÆ
iently small that ( 

0

�)




< e

�3

. Thus � is a fun
tion of 
; d; k; t; 
 and hen
e of


; d; k; t.

Lemma 16 For 
 < 


�

(d; k; t), and for every 
onstant integer � > 0, a.s. the number of variables

of F

d;k;t

n;M=
n

that are part of a maximal for
ing path of length greater than � is at most 3�d(
=


�

)

�

.

Proof: Assume that 
 = (1��)


�

. We will again work in the H

n;p

model where p = 
�k!=n

k�1

.

Lemma 23 from Appendix B permits us to do so.

For any value of �, let X

�

be the number of for
ing paths of length � and let Y

�

be the number

of maximal for
ing paths of length at least �. Obviously, X

�

is an upper bound for Y

�

(sin
e for

every for
ing path of length � there is a unique maximal for
ing path of length at least �). Our goal

is to upper bound Y

�

for 
onstant values of � and for that we upper bound X

�

. We �rst 
ompute

the expe
ted value of X

�

. We have to 
hoose � + 1 variables for the 
onne
ting points and the

end-points of the path; there are

�

n

�+1

�

ways to do so; We order them; there are (� + 1)! ways to

do so. Then we 
hoose one of d values for ea
h; there are d

�+1

ways to do so. Then we 
hoose

the remaining k � 2 verti
es for ea
h of the � 
onstraints; there are

�

n���1

(k�2)�

�

[(k�2)�℄!

(k�2)!

�

ways to do so.

14



Finally, we multiply by the probability that the edge for ea
h 
onstraint is 
hosen in the underlying

hypergraph, and that the random 
onstraints 
hosen for those edges are the spe
i�ed for
ers; the

�rst of these probabilities is p

�

and the se
ond is (dk(k � 1)=


�

)

�

(the latter 
omputation uses the

same arguments found in the proof of Lemma 9). This yields:

E(X

�

) =

 

n

� + 1

!

(� + 1)!d

�+1

 

n� � � 1

(k � 2)�

!

[(k � 2)�℄!

(k � 2)!

�

�

(1 � �)(k � 2)!

dn

k�1

�

�

=

n!

[n� � � 1 � (k � 2)�℄!

�

(1 � �)

�

d

n

(k�1)�

= (1 + o(1))nd(1 � �)

�

for 
onstant values of �

Now we bound the probability of X

�

> 2E(X

�

) using the se
ond moment method. By Cheby
hev's

Inequality, this probability is at most (E(X

2

�

)�E(X

�

)

2

)=E(X

�

)

2

. So to prove that this probability

is o(1), it will suÆ
e to prove that E(X

2

�

) � E(X

�

)

2

(1 + o(1)).

Consider a �xed for
ing path A of length �. For ea
h i; j � 1 we bound the number of potential

for
ing paths B of length � whi
h have exa
tly i 
onstraints in 
ommon with A and for whi
h these

i 
onstraints form j segments in A. To 
ompute this, we �rst 
hoose the j segments by 
hoosing

the verti
es of their end-points from A and the positions of those endpoints in B; there are

�

�

2j

�

2

ways to make this sele
tion. Then we mat
h the j segments of A to the j segments of B; there

are j! 
hoi
es for this. Then we sele
t � + 1 � i � j points (the rest of the 
onne
ting variables of

path B) and a value for ea
h; there are at most (nd)

�+1�i�j

ways to do this. Then for ea
h of the

�� i 
onstraints in B �A we sele
t the remaining k � 2 variables; there are

�

n

(k�2)(��i)

�

[(k�2)(��i)!℄

(k�2)!

(��i)

possible 
hoi
es. Finally we multiply by the probability that the � � i 
onstraints in B � A are

sele
ted and are for
ers; as in the previous 
al
ulation, this probability is (

(1��)(k�2)!

dn

k�1

)

��i

. For any

potential for
ing path A of length � let Q

A

be its indi
ator variable.

E(X

2

�

) =

X

A;B

Pr(Q

A

= 1 \Q

B

= 1)

=

X

A

X

B:A\B=;

Pr(Q

A

= 1)Pr(Q

B

= 1) +

X

A

X

B:A\B 6=;

Pr(Q

A

= 1 \Q

B

= 1)

� E(X

�

)

2

+

X

A

Pr(Q

A

= 1) �

�

X

i=1

i

X

j=1

 

�

2j

!

2

j!n

�+1�i�j

d

�+1�i�j

�

 

n

(k � 2)(� � i)

!

[(k � 2)(� � i)!℄

(k � 2)!

(��i)

�

(1 � �)(k � 2)!

dn

k�1

�

��i

� E(X

�

)

2

+E(X

�

)

�

X

i=1

i

X

j=1

 

e

2

�

2

4j

2

!

2j

j

j

n

1�j

d

1�j

(1 � �)

��i

� E(X

�

)

2

+E(X

�

) � nd(1 � �)

�

�

X

i=1

i

X

j=1

 

��

4

j

3

nd

!

j

(1 � �)

�i

(for a 
onstant � > 0)

� E(X

�

)

2

+E(X

�

)

2

� (1 + o(1)) � O

�

1

n

�

:

Therefore, a.s. X

�

� 2(1+o(1))nd(1��)

�

. Thus the number of variables whi
h lie on a maximal

for
ing path of length at least � is a.s. at most 2(1 + o(1))�nd(1 � �)

�

< 3�d(
=


�

)

�

.
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Proof of Theorem 2: The proof is nearly identi
al to that of Theorem 1, this time using

Lemmas 12 and 15 rather than Lemmas 11 and 10. We will prove that 
onditions (a,b) of Lemma 7

hold with � =

1

2

� and � = �=(4��72000k

3

) where � is a positive integer su
h that 3�d(
=


�

)

�

� �=8.

We start with 
ondition (a). Let J be a minimally unsatis�able subproblem of F

d;k;t

n;M

and H

be the underlying hypergraph of J . Clearly H is 
onne
ted. Next we show that H 
annot be a

single 
y
le. By way of 
ontradi
tion suppose that H is a 
y
le with 
onstraints C

1

; : : : ; C

`

. Sin
e

t < d

k�1

we have: for any 
onstraint C

i

and any pair of variable/value (x : Æ) with x 2 C

i

there is

a satisfying assignment of values to the variables of C

i

in whi
h x gets value Æ. Let x

1

= C

1

\ C

2

,

x

`

= C

1

\C

`

, and 
onsider J �C

1

. Consider any value Æ 2 D. There is a satisfying assignment for

C

1

in whi
h x gets Æ - let Æ

2

be the value assigned to x

2

in that assignment. There is a satisfying

assignment for C

2

in whi
h x

2

gets Æ

2

- let Æ

3

be the value assigned to x

3

in that assignment.

Repeating this argument yields a satisfying assignment for J �C

1

in whi
h x

1

gets Æ. Sin
e this is

true of every value Æ, there are at least d pairs (Æ; Æ

0

) in whi
h there is a satisfying assignment for

J � C

1

in whi
h x

1

gets Æ and x

`

gets Æ

0

. Sin
e C

1


ontains fewer than d � d

k�2

restri
tions, at

least one of these pairs (Æ; Æ

0

) is su
h that there is a satisfying assignment to C

1

in whi
h x

1

gets

Æ and x

`

gets Æ

0

. Therefore, J is satis�able, whi
h is a 
ontradi
tion. Thus H is 
onne
ted and is

not a 
y
le. Sin
e J is minimally unsatis�able, Lemma 8 implies that jB(J )j = 0. So by Lemma

12, J has a Z

q


on�guration and by Lemma 15, that 
on�guration has q � �n. Sin
e the paths of

the Z

q


on�guration are vertex-disjoint, we have jJ j � �n > �n as required.

Now we prove that 
ondition (b) of Lemma 7 holds. Consider a subproblem J on

1

2

�n � v � �n

variables and let H

0

be the hypergraph remaining after removing all 
y
le 
omponents from the

underlying hypergraph of J .

Case 1: jH

0

j �

1

4

�n. Sin
e jJ j �

1

2

�n, the total size of the 
y
le 
omponents is at least

1

4

�n.

By Lemma 22 in Appendix B, a.s. at most logn verti
es lie on 
y
les of size at most 4. Every vertex

on any other 
y
le 
omponent lies on a member of B

2

(J ), and ea
h member of B

2

(J ) 
ontains

fewer than 4k verti
es. So jB

2

(J )j >

1

4k

(

1

4

�n� logn) >

1

20k

�n > �n.

Case 2: jH

0

j >

1

4

�n. Sin
e 3�d(
=


�

)

�

� �=8, Lemma 16 yields that at least �n=4 � �n=8 >

�n=8 of the variables in H

0

do not lie on any for
er paths of length at least �. Thus, any 
olle
tion

of for
er paths whi
h 
overs all the variables of H

0

must 
ontain at least

�

8�

n paths. So we 
an

apply Lemma 12 where I is the CSP on H

0

formed by removing all 
y
le 
omponents from J and

where

�

4�

n � q � jIj � �n. Sin
e q � �n < �n, Lemma 15 implies that a.s. the entire random

CSP has no Z

q


on�guration and so neither does H

0

. Sin
e H

0

has no 
y
le 
omponents, Lemma 12

implies that B(I) � q=(72000k

3

) � �n. Every boundary element of I is also a boundary element

of J , and so this establishes 
ondition (b).

5 Proof of Theorem 3

We will show that a.s. F

d;k;t

n;M


ontains a small unsatis�able subproblem with a stru
ture that is

inspired by the snakes of [12℄. Our proof is similar to the 
orresponding proof in [12℄.

A forbidding 
y
le is a x : Æ ! x

0

: Æ

0

for
ing path along with a x

0

: Æ

0

! x : Æ

00

for
er where

Æ 6= Æ

00

. Thus, there is no satisfying assignment where x = Æ. We say that the 
y
le forbids

x : Æ. Conse
utive 
lauses in the 
y
le interse
t in exa
tly one variable; su
h variables are 
alled


onne
ting variables.

An r-
ower is the union of d for
ing 
y
les C

1

; : : : ; C

d

su
h that: (i) ea
h has exa
tly r for
ers;

(ii) ea
h 
y
le 
ontains a parti
ular variable x; (iii) no other variable lies in more than one of
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the 
y
les; (iv) ea
h 
y
le C

i

forbids x : i. We 
all x the 
enter variable. Thus, any r-
ower is

unsatis�able.

Lemma 17 For any 
onstants d; k � 2; d + k > 4 and (d � 1)d

k�2

� t < d

k�1

, and for every


onstant 
 > 


�

(d; k; t), F

d;k;t

n;M=
n

a.s. 
ontains all 
onstraints of an r-
ower, where r = � log n, for

some suÆ
iently large 
onstant �.

Theorem 3 follows immediately sin
e if F

d;k;t

n;M


ontains an r-
ower with r = � log n, then we


an use exhaustive sear
h to prove that the r-
ower, and hen
e F

d;k;t

n;M

, is unsatis�able in exp(r) =

poly(n) steps. Su
h a proof 
an be simulated by a resolution proof with only a polynomial in
rease

in length, so a.s. RES(F

d;k;t

n;M

) = poly(n). (The 
ase k = d = 2, i.e. 2-SAT, is already known[12℄.)

Proof: For any potential 
ower A, we let X

A

be the indi
ator variable for the event that

the 
lauses of A all appear in the random CSP. With X =

P

A

X

A

, it is enough to show that

E(X

2

) � E(X)

2

(1 + o(1)). Then the theorem follows easily from the Chebyshev inequality.

First, we 
ompute E(X). We must 
hoose s = dr � d + 1 
onne
ting variables (in
luding the


enter variable) and the (k � 2)dr other variables. There are s! ways to arrange the 
onne
ting

variables and then [(k � 2)dr℄!=(k � 2)!

dr

ways to arrange the other variables into the 
ower. For

ea
h C

i

, we need to 
hoose some value other than i for the 
enter variable and an arbitrary value for

ea
h of the other 
onne
ting variables. Then we multiply by the probability of all our for
ers being

present. We have 
 = (1 + �)


�

for some � > 0. For �xed variables x; y and values u; v 2 D, the

probability that there exists a (x :u) �! (y :v) for
er is p = (1 + �)

(k�2)!

dn

k�1

, by the same 
al
ulations

as in Lemma 9.

E(X) =

 

n

s

!

s!

 

n� s

(k � 2)dr

!

[(k � 2)dr℄!

(k � 2)!

dr

� (d� 1)

d

d

(r�1)d

p

dr

= (1 + o(1))(1 + �)

dr

�

d� 1

d

�

r

n

1�d

= 
(n

2

)

for suÆ
iently large �. Next we 
ompute an upper bound for E(X

2

). Consider a �xed r-
ower

A and its underlying hypergraph H

A

. For ea
h i; j � 1 we will upper bound the number of

potential r-
owers B that have exa
tly i 
onstraints in 
ommon with A where these 
onstraints

form j 
onne
ted 
omponents in H

A

. (A very loose upper bound will suÆ
e.) First, we 
onsider


hoosing the j 
omponents. At most one 
omponent 
ontains the 
enter variable - for ea
h C

i

,

su
h a 
omponent 
ontains either all of C

i

, none of C

i

, or the portion of C

i

between 2 variables.

So there are at most (2 + r

2

)

d


hoi
es for su
h a 
omponent. Ea
h of the other 
omponents is

spe
i�ed by 2 variables on the same 
y
le. Thus, the number of 
hoi
es for the 
omponents of H

A

is at most (2 + r

2

)

d

(dr

2

)

j�1

. To obtain a very loose upper bound on the number of ways that these


omponents 
an �t into B, we simply multiply by the number of ways to 
hoose j 
omponents

from B and then multiply by j! for the number of ways to pair them up with the 
omponents

of A. Note that, sin
e t < d

k�1

and d; k are not both 2, no 
onstraint 
an be a a : Æ ! b : 


for
er for more than one 
hoi
e of a; b; Æ; 
. Therefore, if an edge lies in the underlying hypergraph

of both A and B, then its for
er in B must be identi
al to its for
er in A. Therefore, to 
hoose

the rest of B, we 
hoose the remaining at most s � i � j variables, a value for ea
h of them

(d values if one of them is the 
enter variable) and then 
hoose k � 2 non-
onne
ting variables

for ea
h of the remaining 
lauses. Thus, the total number of potential su
h r-
owers is at most

�

(2 + r

2

)

d

(dr

2

)

j�1

�

2

j!n

s�i�j

d

s�i�j+d�1

�

n

k�2

�

dr�i

. Therefore, E(X

2

) is:
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X

A;B

Pr(X

A

= 1 ^X

B

= 1)

=

X

A

X

B:A\B=;

Pr(X

A

= 1)Pr(X

B

= 1) +

X

A

X

B:H

A

\H

B

6=;

Pr(X

A

= 1 ^X

B

= 1)

< E(X)

2

+

X

A

Pr(X

A

= 1) �

s

X

i=1

i

X

j=1

2

4

�

(2 + r

2

)

d

(dr

2

)

j�1

�

2

� j!n

s�i�j

d

s�i�j+d�1

 

n

k � 2

!

dr�i

p

dr�i

3

5

= E(X)

2

+E(X)

s

X

i=1

2

4

(2 + r

2

)

2d

r

�4

n

s�i

d

s�i+d�3

�

 

n

k � 2

!

dr�i

p

dr�i

i

X

j=1

 

dr

4

j

n

!

j

3

5

� E(X)

2

+E(X) �E(X) �O(r

4d�4

) �

s

X

i=1

(1 + �)

�i

O

 

r

4

n

!

� E(X)

2

 

1 +O

 

r

4d

n

!!

;

whi
h 
ompletes the proof sin
e r = O(log n).

6 Proofs of Theorems 4 and 5

We 
lose the paper with the proofs of Theorems 4 and 5. Part (a) of Theorem 4 uses a very

standard te
hnique whereby we 
ompute the expe
ted number of satisfying assignments. There

are other standard te
hniques around whi
h will improve this theorem (eg. the te
hniques from

[30℄); we made no attempt to do so in part (a) as our only goal was to show that F

d;k;t

n;M=
n

is a.s.

unsatis�able for some 
 < 


�

(d; k; t). However, we need to work a bit harder for part (
) and so we

use the simplest of the te
hniques from [30℄.

Proof of Theorem 4:

Part (a): Consider any instan
e I 
hosen from F

d;k;t

n;M=
n

. There are d

n

assignments to the

variables of I. For ea
h su
h assignment, the probability that all 
onstraints are satis�ed is easily

seen to be

�

(d

k

� t)=d

k

�


n

. Therefore, the expe
ted number of assignments that satisfy I is

d

n

 

d

k

� t

d

k

!


n

= e

(ln d�
 ln(d

k

=d

k

�t))n

;

whi
h is o(1), if 
 >

ln d

ln(d

k

=d

k

�t)

. This implies that for su
h 
, a.s. I is unsatis�able.

Part (b): It is straightforward to verify that the statement holds for d = 2 and k 2 f4; 5g. Also,




�

(d; k; t) >

1

dk(k�1)

�

�

d

k

t

�

(d�1)d

k�2

>

d

(d�1)d

k�2

dk(k�1)

. So it is enough to show that for d � 2, k � 6, and

for d � 3, 3 � k � 5:

lnd

ln[d

k

=(d

k

� t)℄

<

d

(d�1)d

k�2

dk(k � 1)

(1)

A simple indu
tive argument shows that for k � 6: k(k � 1) < 2

k

and k < 2

k�2

� 4, whi
h

implies 2k(k � 1) < 2

2

k�2

�3

� d

(d�1)d

k�2

�3

. Similarly, for d � 3 and k � 3: 2k(k � 1) < 3

k

and

k � 2 � 3

k�2

� 3, whi
h implies 2k(k � 1) < 3

2�3

k�2

�3

� d

(d�1)d

k�2

�3

. Therefore, in both 
ases:
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2dk(k � 1) ln d < d

(d�1)d

k�2

�2

lnd

2dk(k � 1) ln d

d

(d�1)d

k�2

<

lnd

d

2

<

(d� 1)d

k�2

d

k

� (d� 1)d

k�2

(2)

Using (2) and the fa
t that for 0 < x < 1, e

x

< 1 + 2x:

exp

�

dk(k � 1) ln d

d

(d�1)d

k�2

�

� 1 +

(d� 1)d

k�2

d

k

� (d� 1)d

k�2

�

d

k

d

k

� t

dk(k � 1) lnd

d

(d�1)d

k�2

< ln

 

d

k

d

k

� t

!

lnd

ln[d

k

=(d

k

� t)℄

<

d

(d�1)d

k�2

dk(k � 1)

;

thus establishing (1) as required.

Part (
): For the 
ase d = 2; k = 3; t = 2, we strengthen the bound from part (a) by applying

the so-
alled \1-
ips" te
hnique from [30℄. We say that a satisfying assignment is 1-maximal if for

every variable x with value 1, 
hanging the value of x to 2 will result in a non-satisfying assignment.

It is easy to see that if an instan
e I 
hosen from F

d;k;t

n;M=
n

is satis�able, then it has a 1-maximal

satisfying assignment; indeed, 
onsider an assignment whi
h, amongst all satisfying assignments,

has the greatest number of variables with value 2.

Consider any instan
e I 
hosen from F

d;k;t

n;M=
n

. For ea
h 0 � a � n, 
onsider one of the

�

n

a

�

value

assignments � to the variables of I in whi
h exa
tly a variables have value 1. As des
ribed in the

proof of part (a), the probability that this is a satisfying assignment is (6=8)


n

. We 
ondition on

the fa
t that it is a satisfying assignment; the e�e
t of this 
onditioning is that the M 
onstraints

are 
hosen uniformly at random from amongst the

�

7

2

��

n

3

�


onstraints that are not violated by �.

For � to be 1-maximal, it must be the 
ase that for ea
h variable x with value �(x) = 1, there

is a 
onstraint on x and two other variables, say y; z that 
ontains x = 2; y = �(y); z = �(z) as

a restri
tion; we say that su
h a 
onstraint blo
ks x. There are 6

�

n�1

2

�

possible 
onstraints of this

form, 6 for ea
h 
hoi
e of y; z. Conditional on � being satisfying, the probability that no 
onstraint

blo
ks x is

 

�

7

2

��

n

3

�

� 6

�

n�1

2

�

M

!

=

 

�

7

2

��

n

3

�

M

!

= e

�6
=7

+ o(1):

Given two variables, x

1

; x

2

with �(x

1

) = �(x

2

) = 1, the events that at least one 
onstraint

blo
ks x

1

and at least one 
onstraint blo
ks x

2

are not independent - given that one blo
ks x

1

, it is

less likely that that 
onstraint blo
ks x

2

and so the probability that x

2

is blo
ked is a bit smaller.

However, it is easy to see that this dependen
e goes in the right dire
tion for our purposes, and so the

probability that all a variables that are assigned 1 by � are blo
ked is less than (1� e

�6
=7

+o(1))

a

.

Therefore, the expe
ted number of 1-maximal satisfying assignments is

n

X

a=0

 

n

a

!

�

6

8

�


n

(1 � e

�6
=7

)

a

=

�

6

8

�


n

(2 � e

�6
=7

)

n

=

��

3

4

�




(2 � e

�6
=7

)

�

n

:

For 
 > 2:114 we have

�

3

4

�




(2 � e

�6
=7

) < 1 and so this expe
ted number is o(1). Thus a.s. I has

no 1-maximal satisfying assignments and so I is unsatis�able.
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(Clearly, this te
hnique will easily give an improvement to the bound in part (a) for any d; k; t.

It is not hard to see that further te
hniques from [30℄ will obtain even better bounds.)

Our �nal proof follows the, now rather standard, te
hnique of using a di�erential equation

analysis to show that a parti
ular algorithm will a.s. �nd a satisfying assignment. See [1℄ for a

good presentation of this method and survey of some of its most important appli
ations.

Proof of Theorem 5 Re
all that our assumption is that 
 < 


�

(2; 3; 3) = 7=9 and that we

wish to show that F

2;3;3

n;M=
n

is a.s. satis�able.

We will make use of the fa
t that F

2;3;3

n;M=
n

has a sharp threshold in the sense of Friedgut's

Theorem[22℄. This fa
t was �rst proven independently by Creignou and Daud�e[16℄ and by Istrate[27℄.

These papers ea
h proved spe
ial 
ases of a more general 
onje
ture from [15℄ whi
h was proved in

[17℄ where Creignou and Daud�e 
lassi�ed whi
h members of a large family of random CSP's with

domain size two exhibit a sharp threshold.

More formally, this fa
t says that there is a fun
tion 


�

(n) su
h that for every � > 0, F

2;3;3

n;M=(


�

(n)��)n

is a.s. satis�able and F

2;3;3

n;M=(


�

+�)n

is a.s. unsatis�able. This implies that if for some 
onstant 
,

F

2;3;3

n;M=
n

is satis�able with probability at least 
 for some 
 > 0, then F

2;3;3

n;M=


0

n

is a.s. satis�able for

every 
onstant 


0

< 
: The only alternative is that F

2;3;3

n;M=
n

and F

2;3;3

n;M=


0

n

are neither a.s satis�able

nor a.s. unsatis�able. But this 
ontradi
ts the existen
e of 


�

(n) sin
e for � = (
 � 


0

)=3, either




0

< 


�

(n)� � or 
 > 


�

(n) + �.

Thus, it will suÆ
e to prove that for every 
 < 7=9, F

2;3;3

n;M=
n

is satis�able with probability at

least 
 for some 
 = 
(
) > 0, whi
h we do now.

We 
onsider the following algorithm, whi
h we denote Unit Constraint (UC).

The initial CSP is the input CSP, whi
h is drawn from F

2;3;3

n;M=
n

. Repeatedly, we sele
t a

variable, x, and assign it a value i. We then modify ea
h 
onstraint C 
ontaining x as follows. If

C 
ontains any restri
tions involving x : i then we form a new 
onstraint C

0

on the variables of C

other than x, by taking ea
h restri
tion of C that 
ontains x : i, removing x : i from that restri
tion,

and pla
ing the shortened restri
tion in C

0

. Thus, C

0


an be thought of as the 
onstraint that is

implied by C and setting x = i. Note that this might result in a 
onstraint on exa
tly one variable

in whi
h ea
h restri
tion simply di
tates a value whi
h that variable is not allowed to re
eive. We

remove C and, if C 
ontained any restri
tions involving x : i, we repla
e it with C

0

, unless:

� If C

0

is on two variables, say a; b, and if there is some value, j for whi
h C

0

forbids both

(a = 1; b = j) and (a = 2; b = j) then we simplify by repla
ing C with the 
onstraint whose

only variable is b and whose only restri
tion is (j), i.e. a 1-variable 
onstraint that forbids b

from taking the value j. If C

0

also forbids both (a = j

0

; b = 1) and (a = j

0

; b = 2) then we

repla
e C by two 1-variable 
onstraints whi
h forbid a = j

0

and b = j, respe
tively. Note that

this latter 
ase o

urs i� C

0


ontains 3 restri
tions (sin
e C

0


annot 
ontain more than t = 3

restri
tions).

� If C has exa
tly one variable, and if it forbids x = i then C

0

will 
ontain no variables and so

we remove C but do not add C

0

, and we say that we formed a null-
onstraint. This indi
ates

that our assignment violated one of the original 
onstraints. However, we will 
ontinue to

run the algorithm, as this will be 
onvenient for its analysis.

Sin
e no 
onstraint has more than t = 3 restri
tions, it is easy to see that we will never generate

a 1-variable 
onstraint with two restri
tions.

We 
hoose x and i as follows:

20



� If there are any 
lauses on 1 variable, 
hoose one of them uniformly at random, and set it's

variable so as to satisfy that 
lause. (As des
ribed above, no su
h 
lause will ever 
ontain 2

restri
tions and so there is always a unique su
h setting for that variable.)

� Otherwise, pi
k x uniformly at random from all unset variables and pi
k i uniformly at random

from the domain f1; 2g.

After r variables have been set, we de�ne the following:

� C

3

(r) - the number of 
onstraints on 3 variables

� H

1

(r) - the number of 
onstraints on 2 variables with 1 restri
tion

� H

2

(r) - the number of 
onstraints on 2 variables with 2 restri
tions

� C

1

(r) - the number of 
onstraints on 1 variable

Note that the total number of remaining 
onstraints is the sum of these values sin
e every


onstraint formed has at least one restri
tion, and no 
onstraint on 2 variables with 3 restri
tions

is ever added (sin
e instead of adding su
h a 
onstraint, we would add the equivalent pair of


onstraints ea
h on 1 variable).

Claim 1: For ea
h r, the CSP remaining after r steps of UC is uniformly random from amongst

all CSP's with C

3

(r) 
onstraints with 3 variables and 3 restri
tions, H

1

(r) 
onstraints with 2 vari-

ables and 1 restri
tion, H

2

(r) 
onstraints with 2 variables and 2 restri
tions, and C

1

(r) 
onstraints

with 1 variable and 1 restri
tion.

Proof: Consider two CSP's H

1

;H

2

ea
h with C

3

(r) 
onstraints with 3 variables and 3 restri
-

tions, H

1

(r) 
onstraints with 2 variables and 1 restri
tion, H

2

(r) 
onstraints with 2 variables and

2 restri
tions, and C

1

(r) 
onstraints with 1 variable and 1 restri
tion. Consider any input CSP

F

1

with n variables and with 
n 
onstraints ea
h having 3 variables and 3 restri
tions, and any

sequen
e of random 
hoi
es of variables, su
h that running UC with input F

1

for r steps with that

sequen
e of random 
hoi
es will result in H

1

. It is trivial to see how to modify F

1

into F

2

, also with

n variables and with 
n 
onstraints ea
h having 3 variables and 3 restri
tions, su
h that running UC

with input F

2

for r steps with that same sequen
e of random 
hoi
es will result in H

2

. (Essentially,

you simply repla
e all original 
onstraints in F

1

that be
ame 
onstraints in H

1

with 
onstraints

that will instead be
ome 
onstraints of H

2

.) This implies that the probability of ending up with

H

1

is the same as the probability of ending up with H

2

. This, in turn, implies the 
laim. 2

Next, we 
onsider the expe
ted 
hanges in the �rst 3 variables after step r + 1. By examining

all

�

8

3

�

possible 
onstraints on 3 variables, it is straightforward (but tedious) to verify that we have

the following, regardless of whether step r+ 1 sets the variable of a 1-
lause or a uniformly random

unset variable.

� Exp(C

3

(r + 1) � C

3

(r)) = �

3C

3

(r)

n�r

� Exp(H

1

(r + 1) �H

1

(r)) =

9

7

�

C

3

(r)

n�r

�

2H

1

(r)

n�r

� Exp(H

2

(r + 1)) �H

2

(r)) =

3

7

�

C

3

(r)

n�r

�

2H

2

(r)

n�r

Furthermore, the expe
ted number of new 1-variable 
onstraints that are formed during step

r + 1 is:

F (r) =

9

7

�

C

3

(r)

n� r

+

H

1

(r)

n� r

+

2H

2

(r)

n� r

:
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As is standard with this sort of analysis, our goal is to prove that a.s. F (r) is always less than

1 � � for some � > 0, as this will imply that with suÆ
iently high probability, no null-
onstraints

are formed; i.e., that a.s. our assignment does not violate any of the original 
onstraints.

Consider the following fun
tions:

� 


3

(x) = 
(1 � x)

3

,

� h

1

(x) =

9


7

x(1 � x)

2

,

� h

2

(x) =

3


7

x(1 � x)

2

.

Note that their derivatives satisfy

� 


0

3

(x) = �

3


3

1�x

,

� h

0

1

(x) =

9

7

�




3

(x)

1�x

�

2h

1

(x)

1�x

,

� h

0

2

(x) =

3

7

�




3

(x)

1�x

�

2h

2

(x)

1�x

.

and that C

3

(0) = 


1

(0)n = n;H

1

(0) = h

1

(0)n = 0;H

2

(0) = h

2

(0)n = 0.

We also need to note that with very high probability, none of these parameters 
hange mu
h

during any one iteration. In parti
ular, it is straightforward to show that the probability of either

C

3

;H

1

or H

2


hanging by more than log n during any one iteration is less than n

�10

.

Noting the 
orresponden
e between these derivatives and the expe
ted values 
omputed above,

Wormald's Theorem [37℄ implies that for any � > 0, a.s. for every r � (1 � �)n we have the

following:

� C

3

(r) = 


3

(r=n)n+ o(n),

� H

1

(r) = h

1

(r=n)n+ o(n),

� H

2

(r) = h

2

(r=n)n+ o(n).

(See [1℄ for a statement of Wormald's Theorem and a good dis
ussion of how to apply it in settings

like this one.)

Thus, a.s. for every r � (1 � �)n, setting x = r=n we have

F (r) =

9

7

�




3

(x)

1� x

+

h

1

(x)

1 � x

+

2h

2

(x)

1 � x

+ o(1) =

9


7

(1 � x)(1 +

2

3

x) + o(1) �

9


7

+ o(1);

over the relevant range of 0 � x � 1. Thus, a.s. F (r) < 1 � � for some small 
onstant � > 0, so

long as 
 < 7=9.

We will run UC until a point where at least �n variables remain unset, for some parti
ular small


onstant � to be named later. First, we bound the probability of 
reating a null-
onstraint. The

sequen
e C

1

(r) follows the pattern of a random walk on the positive integers, with a barrier at 0, and

with drift always bounded above by ��. Standard arguments imply that a.s.

P

(1��)n

r=1

C

1

(r) �Wn

for some 
onstant W . Note that, during step r, the probability that no null-
onstraint is formed

is (if C

1

(r) > 0) equal to (1 �

1

2(n�r)

)

C

1

(r)�1

> (1 �

1

2�n

)

C

1

(r)

. Therefore, the probability that no

null-
onstraints are formed at all is at least (1 �

1

2�n

)

Wn

= e

�W=2�

+ o(1).

Again, using the fa
t that C

1

(r) has negative drift, it is straightforward to show that a.s. there

is some (1 � �)n � log

2

n < r � (1 � �)n su
h that C

1

(r) = 0. It will be 
onvenient to halt UC

there. With high probability, we are left with 


3

(1 � �)n + o(n) < �

3

n 
onstraints on 3 variables
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and (h

1

(1 � �) + h

2

(1 � �))n + o(n) < 2�

2

n 
onstraints on 2 variables. Let G be the hypergraph

whose verti
es are the unset variables, and where a group of verti
es form a hyperedge i� they are

the set of variables 
overed by a 
onstraint.

It is straightforward to show that this random hypergraph G a.s. does not have a giant 
om-

ponent. Perhaps the easiest way to see this is to add a third random vertex to ea
h hyperedge of

size 2, and 
all the resulting 3-uniform hypergraph G

0

. This leaves us with a random 3-uniform

hypergraph on n

0

= �n verti
es and with fewer than 3�n

0

< n

0

=12 hyperedges for � < 1=36. It is

well-known that the threshold for su
h a random hypergraph to have a giant 
omponent is when

the number of hyperedges is n

0

=6, and in parti
ular, that with probability at least 


0

for some




0

> 0, every 
omponent of G

0

will be a tree. This would imply that every 
omponent of G is a

tree. It is easy to see that if every 
omponent of G is a tree, then the formula is satis�able.

Thus, the probability that the original formula is satis�able is at least 


0

� e

�W=2�

+ o(1) > 0,

as required.
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Appendix A: a short proof of Theorem 6

Ea
h variable v has two literals: v and v, and we say that they are 
omplements of ea
h other. A

literal of a variable in a CNF-formula F , is pure if does not appear in any 
lause of F . As explained

in [2℄, it suÆ
es to prove:

Lemma 18 For any �; � > 0, 
onsider a random CNF-formula F on n variables with �n 3-
lauses

and (1 � �)n 2-
lauses where every su
h formula is equally likely. A.s.:

(a) every subformula on at most �n variables is satis�able, and

(b) every subformula on v variables where

1

2

�n � v � �n has at least �n pure literals.

Consider any CNF-formula F 
ontaining only 2-
lauses and 3-
lauses. Let H

2

be the graph

de�ned as follows: the verti
es of H

2

are the variables of F , and two verti
es are joined i� their

variables form at least one 2-
lause.

An isolated 
y
le of F is a 2-SAT subformula F

0

su
h that (i) F

0

forms a 
omponent of H

2

that

is a 
y
le, (ii) no variable of F

0

lies in a 3-
lause and (iii) no variable of F

0

has a pure literal.

A pendant path of F is a path of H

2

whose internal verti
es ea
h have degree 2 in H

2

and do not

lie in any 3-
lauses. Consider su
h a path whose variables are, in order: x

0

; x

1

; :::; x

l

, and suppose

that C

1

; :::; C

l

is the 
orresponding set of 2-
lauses in F . If, for ea
h x

i

, the literal of x

i

appearing

in C

i

is the 
omplement of the literal appearing in C

i+1

, then we say that it is a for
ing path.

Note that su
h a path is bidire
tional in the sense that there are two literals a; b su
h that in any

satisfying assignment, if x

0

= a then x

l

= b, and if x

l

= b then x

0

= a. Trivially, a single vertex is

a for
ing path of length 0.

For any r � 1, a Y

r

-
on�guration 
onsists of:

� r for
ing paths; and

� a 
olle
tion of t

2

additional 2-
lauses and t

3

3-
lauses whose variables are all endpoints of the

r for
ing paths, for some t

2

; t

3

with

3

2

t

2

+ 3t

3

�

5

3

r.

Consider a 
olle
tion of for
ing paths P = P

1

; :::; P

r

of F su
h that (i) every variable of F

appears on exa
tly one path and (ii) P is minimal in the sense that it is impossible to form a


olle
tion P

1

; :::; P

r�1

satisfying (i) by adding a 2-
lause from F to P. Obviously a 
olle
tion of

paths of length 0, one for ea
h variable of F satis�es (i), and so some 
olle
tion exists whi
h satis�es

(i) and (ii).

Lemma 19 If F has at most r=3 pure literals and no isolated 
y
les, then F has a Y

r

-
on�guration.

Proof: We 
all the 
lauses of P path 
lauses and the other 
lauses in F non-path 
lauses. Note

that every non-path 
lause only 
ontains variables that are endpoints of the paths in P. We de�ne

a set X of literals as follows: For ea
h P

i

of length 0, we pla
e both literals of the variable of P

i

into X. For ea
h P

i

of length at least one, and for ea
h endpoint v of P

i

, we pla
e the literal of v

that does not appear on a 
lause of P

i

into X. Thus, jXj = 2r, and any literal of X that does not

appear in a non-path 
lause is pure.

We form a graph G with vertex set X as follows: Every non-path 2-
lause (a_ b) forms an edge

of G: x(a) is de�ned to be a if a 2 X and the 
omplement of a otherwise; x(b) is de�ned in the

same way; the edge of G is between x(a) and x(b).
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Let s be the number of pure literals in F , t

2

= jE(G)j be the number of 2-
lauses and t

3

be the

number of 3-
lauses.

Claim: Every 
omponent of G with either 1 or 2 literals 
ontains a literal whi
h is either pure

or in a 3-
lause.

Proof: If the 
omponent has 1 literal, then it is either pure or in a 3-
lause. So suppose the


omponent has 2 literals and the edge joining them 
orresponds to the 
lause (a_ b). If at least one

of a; b is not in X, then the 
omplement of that literal is either pure or in a 3-
lause. If a and b are

both in X and if their variables are the endpoints of the same path in P, then one of them must

be in a 3-
lause, or else that path plus (a _ b) would form an isolated 
y
le. If a and b are both

in X and their variables are the endpoints of di�erent paths of P, then it is easy to see that those

two paths plus (a_ b) form a for
ing path. This 
ontradi
ts the minimality of P, i.e. 
ondition (ii)

in the de�nition of P.

Let `

1

be the number of 
omponents with exa
tly one literal, and `

2

be the number with exa
tly

2 literals. The remaining 
omponents have 2r� `

1

� 2`

2

literals and at least

2

3

(2r� `

1

� 2`

2

) edges

(sin
e the 
omponents on those literals ea
h have size at least 3). Therefore, t

2

� `

2

+

2

3

(2r�`

1

�2`

2

);

i.e.

3

2

t

2

� 2r � `

1

�

1

2

`

2

. By Claim 1, 3t

3

+ s � `

1

+ `

2

. These 
ombine to yield:

3

2

t

2

+ 3t

3

+ s � 2r:

Sin
e s � r=3, F has a Y

r


on�guration.

Lemma 20 For any �; � > 0, 
onsider a random CNF-formula F on n variables with �n 3-
lauses

and (1 � �)n 2-
lauses where every su
h formula is equally likely. There is some 
onstant � > 0

su
h that a.s. F has no Y

r


on�guration for any r � �n.

Proof: Given r; t

2

we spe
ify t

3

= d

5

9

r�

1

2

t

2

e to be the smallest integer t

3

su
h that

3

2

t

2

+3t

3

�

5

3

r. Clearly, it suÆ
es to show that a.s. there are no Y

r


on�gurations with su
h a pair t

2

; t

3

. First,

we 
ompute the expe
ted number of Y

r


on�gurations for any 
hoi
e of t

2

; t

3

that are both at least

r=100.

Consider any list of 2-
lauses C

1

; :::; C

s

. The probability that they all appear in F is

�

4

(

n

2

)

�s

(1��)n�s

�

�

4

(

n

2

)

(1��)n

�

<

�

1 � �

2(n� 1)

�

s

<

�

1� �

0

2n

�

s

for some 0 < �

0

< �.

We have at most

�

n

r

�

n

r


hoi
es for the r pairs of endpoints. Suppose that the numbers of 2-


lauses in the paths are l

1

; :::; l

r

, and set L = l

1

+ ::: + l

r

. Then there are n

L�r


hoi
es for the

interior variables on the paths, and 2

L+r


hoi
es for the literals. We multiply by the probability

that all L of these 
lauses appear and that there are t

2

other 2-
lauses and t

3

3-
lauses on the

endpoints. This gives us an upper bound of

X

l

1

;:::;l

r

�0

 

n

r

!

n

L

2

L+r

�

1 � �

0

2n

�

L

 

(1 � �)n

t

2

! 

�n

t

3

!

�

2r

n

�

2t

2

+3t

3

�

�

2en

r

�

r

�

en

t

2

�

t

2

�

e�n

t

3

�

t

3

�

2r

n

�

2t

2

+3t

3

X

l

1

;:::;l

r

�0

(1 � �

0

)

L
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�

�


r

n

�

t

2

+2t

3

�r

0

�

X

l�0

(1 � �

0

)

l

1

A

r

for some 
 > 0, sin
e t

2

; t

3

� r=100

�

�




0

r

n

�

r=9

For some 
onstant 


0

> 0 sin
e t

2

+ 2t

3

� r =

2

3

(

3

2

t

2

+ 3t

3

)� r �

2

3

�

5

3

r � r =

r

9

.

If t

2

� r=100 then t

3

� (

5

9

�

1

200

)r. For su
h t

2

, we 
ompute the expe
ted number of 
olle
tions

of r vertex disjoint for
ing paths along with t

3

3-
lauses on their endpoints. Clearly, if there are no

su
h 
olle
tions then there is no Y

r


on�guration with those values of t

2

; t

3

. As above, we upper

bound this expe
ted number with:

�

2en

r

�

r

�

e�n

t

3

�

t

3

�

2r

n

�

3t

3

0

�

X

l�0

(1 � �

0

)

l

1

A

r

<

�




0

r

n

�

r=10

;

with possibly an in
rease in 


0

. If t

3

� r=100 then we 
ompute the expe
ted number of 
olle
tions

of r vertex disjoint for
ing paths along with t

2

additional 2-
lauses on their endpoints. Clearly, if

there are no su
h 
olle
tions then there is no Y

r


on�guration with those values of t

2

; t

3

. Again,

this expe
ted number is at most

�




0

r

n

�

r=10

. Thus, 
onsidering that there are O(r) 
hoi
es for t

2

; t

3

,

it suÆ
es to show that:

�n

X

r=1

r

�




0

r

n

�

r=10

= o(1):

The �rst log n terms of this sum add up to at most O(log n=n

1=10

) and if � <

1

2


0

then the rest add

up to at most

P

i�log n

(1=2)

i

= o(1).

Lemma 21 A.s. our random F has at most logn variables lying on isolated 
y
les.

Proof: Consider the subformula F

2

formed by the 2-
lauses of F . For any variable v lying

in an isolated 
y
le of F , there must be a sequen
e of 2-
lauses in F

2

of the form: (v _ x

1

); (x

1

_

x

2

); :::; (x

i

_ v). A well-known property of random 2-SAT (see eg [11℄) says that a.s. there are at

most logn su
h variables.

Proof of Lemma 18: If F

0

is a minimally unsatis�able subformula of F , then F

0

must be


onne
ted and F

0


annot be an isolated 
y
le. Therefore F

0


an have no isolated 
y
les. Furthermore

F

0


an have no pure literals. Therefore, by Lemma 19, F

0

must have a Y

r


on�guration for some

r � 1. Therefore, by Lemma 20, F a.s. has no minimally unsatis�able subformula on at most �n

variables and hen
e a.s. has no unsatis�able subformula on at most �n variables. This establishes

part (a).

Consider any subformula on v variables where

1

2

�n � v � �n. By Lemma 21, F is a.s. su
h

that after removing all isolated 
y
les from su
h a subformula, we are left with a subformula F

0

on

v

0

variables where

1

2

�n � logn � v

0

� �n. It will suÆ
e to show that a.s. every su
h F

0

has at

least �n pure literals. By Lemma 20, F is a.s. su
h that every subformula on at most �n variables

does not have a Y

r


on�guration for any r � 1. Therefore, by Lemma 19, there is some r � 1 su
h

that F

0

has at least r=3 pure literals and F

0

has a 
olle
tion P of r for
er paths whi
h 
ontain all

of its variables.

Well-known properties of random 2-SAT (see eg [11℄) imply that there is some � > 0 su
h that

for every � > 0, a.s. F has fewer than e

���

variables that lie on for
ing paths of length at least �. In

fa
t, the same would be true if we removed from the de�nition of for
ing path the stipulation that
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no internal variables lie in any 3-
lauses, thus redu
ing for
ing paths to be de�ned only in terms

of the (1 � �)n random 2-
lauses of F . Pi
k � so that e

���

< �=4. Thus, at least (�=4)n � logn

variables of F

0

lie on paths in P of length less than �. Therefore, r > �n=(5�) and so F

0

has at

least �n pure literals for � = �=(15�). This establishes part (b).

Appendix B: two simple lemmas

Here, we translate two standard fa
ts from random graph theory into the setting of this paper.

Lemma 22 A.s. the underlying random hypergraph of F

d;k;t

n;M

has fewer than logn 
y
les of length

at most 4.

Remark: This statement remains true when \4" is repla
ed by any 
onstant. It is well known

for random graphs, but we 
an't �nd the statement for random hypergraphs re
orded in the liter-

ature. So we in
lude the simple proof here.

Proof: For ea
h 
onstant integer r � 2, we 
ompute the expe
ted number of 
y
les of length

r, by pretending that the verti
es of degree 2 in the 
y
le are labelled v

1

:::; v

r

, in order around the


y
le; this 
reates an over
ount whi
h we 
orre
t by dividing by 2r, the number of ways to label

ea
h 
y
le. (For k = 2, we take r � 3 sin
e a simple graph 
ontains no 2-
y
les; for r = 2 we must

divide by r instead of 2r sin
e there are only 2 ways to label ea
h 
y
le.)

There are at most n

r


hoi
es for v

1

; :::; v

r

, and at most

�

n�r

k�2

�

r


hoi
es for the other verti
es.

This spe
i�es the r edges. There are M

r

= (
n)

r


hoi
es for whi
h random edges 
orrespond to

the edges of the 
y
le. The probability that ea
h su
h random edge is the desired one is

�

n

k

�

�r

. So

the expe
ted number of 
y
les of length r is:

1

2r

n

r

 

n� r

k � 2

!

r

(
n)

r

 

n

k

!

�r

= O(1):

(For r = 2 we repla
e

1

2r

by

1

r

.) Thus, the expe
ted number of 
y
les of length 2 � r � 4 is O(1).

So by Markov's Inequality, the probability that this number is at least logn is O(1= log n) = o(1)

as required.

Remark: With more work, one 
an show that the probability is mu
h lower than O(1= log n);

but that is not needed here.

Our se
ond lemma shows how the F

d;k;t

n;M

and F

d;k;t

n;p

models are, in many senses, equivalent and

in parti
ular, allows us to use the F

d;k;t

n;p

model in the proofs of Lemmas 15 and 16.

We say that a property A of CSP's in 


d;k;t

is monotone in
reasing if for every F

1

; F

2

2 


d;k;t

with every 
onstraint of F

1

also in F

2

, if F

1

has A then so does F

2

. A is monotone de
reasing if

the same holds whenever every 
onstraint of F

2

is also in F

1

. A is monotone if it is either montone

in
reasing or monotone de
reasing.

For example, it is easy to see that the properties 
onsidered in the statements of Lemmas 15

and 16 are both monotone de
reasing.

Lemma 23 Let A be any monotone property of CSP's in 


d;k;t

, and let 
 > 0 be any positive


onstant. A holds a.s. for F

d;k;t

n;p

with p = 
� k!=n

k�1

i� for every real 
onstant x, A holds a.s. for

F

d;k;t

n;M

with M = d
n+ x

p

ne.
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In parti
ular, taking x = 0 allows us to show that A holds a.s. in F

d;k;t

n;M

by proving that it holds

a.s. in F

d;k;t

n;p

, as we do in the proofs of Lemmas 15 and 16. The proof is very straightforward, and

follows similar proofs in, eg. [10, 29℄.

Proof: We assume that A is monotone in
reasing (the monotone de
reasing 
ase is nearly

identi
al).

Suppose that F

d;k;t

n;p

a.s. has A. Fix any real x and set M = d
n + x

p

ne. Let 
(n) =

Pr(F

d;k;t

n;M

does not have A). The probability that the number of edges in F

d;k;t

n;p

is at most M

is well known to be at least a positive 
onstant g(x), sin
e this number is a binomial variable

with mean 
n. By the monotoni
ity of A, the probability that F

d;k;t

n;p

does not have A is at least

g(x) � 
(n). Therefore, lim

n!1


(n) = 0, as required.

For the other dire
tion, suppose that for every real 
onstant x, A holds a.s. for F

d;k;t

n;M

with

M = d
n + x

p

ne. For any � > 0, there exists x

1

< 0 < x

2

su
h that the probability that the

number of edges in F

d;k;t

n;p

is in (d
n + x

1

p

ne; :::; d
n + x

2

p

ne is at least 1 � �. Therefore, the

probability that F

d;k;t

n;p

does not have A is at most �+ o(1). Sin
e this is true for every � > 0, F

d;k;t

n;p

a.s. has A. (Note that this part did not require A to be monotoni
.)
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