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Abstract10

We study the classic (Uncapacitated) Facility Location problem on Unit Disk Graphs (UDGs). For11

a given point set P in the plane, the unit disk graph UDG(P) on P has vertex set P and an edge between12

two distinct points p, q ∈ P if and only if their Euclidean distance |pq| is at most 1. The weight of the13

edge pq is equal to their distance |pq|. An instance of Facility Location on UDG(P) consists of a set14

C ⊆ P of clients and a set F ⊆ P of facilities, each having an opening cost fi. The goal is to pick a15

subset F ′ ⊆ F to open while minimizing
∑

i∈F ′ fi +
∑

v∈C d(v, F ′), where d(v, F ′) is the distance of v to16

nearest facility in F ′ through UDG(P).17

In this paper, we present the first Quasi-Polynomial Time Approximation Schemes (QPTAS) for18

the problem. While approximation schemes are well-established for facility location problems on sparse19

geometric graphs (such as planar graphs), there is a lack of such results for dense graphs. Specifically,20

prior to this study, to the best of our knowledge, there was no approximation scheme for any facility21

location problem on UDGs in the general setting.22
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1 Introduction29

Unit-disk graphs (UDGs) are a well-studied class of graphs due to their extensive applications30

in modeling ad-hoc communication and wireless sensor networks; see for example [18, 4, 22, 10,31

15, 26, 25]. UDGs are defined as intersection graphs of a collection of unit-diamater disks in the32

two-dimensional plane. Specifically, each UDG represents a set of n unit disks as vertices, with33

each vertex corresponding to one unit disk. An edge exists between two vertices/points p, q if and34

only if their Euclidean distance is at most 1 (equivalently, the unit-diameter balls around p and q35

intersect) and the weight or length of each such edge is given by their by the Euclidean distance36

between the corresponding vertices.37

Formally, for a given point set P in the plane, the unit disk graph representation of these38

points, denoted as UDG(P), is a graph G = (V,E) with the vertex set V , where each vertex39

corresponds to a point in P . The edge set E consists of edges between points p and q if and40

only if their Euclidean distance, denoted as |pq|, is at most 1. The weight of the edge pq ∈ E is41

equal to their distance |pq|. For a given subset S ⊆ V , we define the (weak) diameter of S as42

diam(S) = maxx,y dG(x, y), where dG(x, y) represents the minimum weight of a path between43
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31:2 A QPTAS for Facility Location on Unit Disk Graphs

vertices x and y in G (we assume G is connected as we may solve facility location for each44

connected component).45

For many optimization problems, approximation schemes are known when the input graph is46

a UDG (e.g. maximum independent set, minimum dominating set, minimum clique-partition47

[23, 14, 5, 24]). Some of the techniques for designing PTAS’s for optimization problems on UDGs48

(e.g. maximum independent set) involves partitioning the input into regions of bounded size (at a49

small loss, e.g. ignoring points that touch the boundary of the partitions) and then solving the50

problem on such instances using exhaustive search and/or dynamic programming which leverage51

Euclidean distance properties. This shifting strategy was introduced by [13].52

We study the Facility Location problem on UDGs. An instance I = (G,C, F ) of Facility53

Location consists of an edge-weighted graph G, where the edges satisfy the metric property, a54

set C ⊆ V of clients, and a set F ⊆ V of facilities, each having an opening cost fi ∈ R+. The55

goal is to pick a subset F ′ ⊆ F to open to minimize
∑
i∈F ′ fi +

∑
v∈C d(v, F ′), where d(v, F ′)56

is the distance of v to nearest facility in F ′. Facility Location has been studied extensively57

and the best known upper and lower bounds for it are 1.488 [21] and 1.46 [11], respectively.58

Approximation schemes are known for Facility Location when the metric is Euclidean [2] or59

when G is a planar graph [8]. Additionally, Cohen et al. [7] developed approximation schemes for60

the “uniform” (that is all facilities cost 1 to open) facility location problem in minor-free graphs.61

To the best of our knowledge, no approximation scheme was known for any facility location type62

problem on UDGs. Our main result of this paper is the following:63

I Theorem 1. There is an algorithm that, given an instance of Facility Location in UDG64

and ε > 0, finds a (1 + ε)-approximate solution in time nOε(logn), where the constant in Oε(.) is65

ε−O(ε−2).66

In order to prove Theorem 1 we combine ideas from [8] with a low-diameter decomposition67

for UDGs that follows from [19, 20]. We also introduce a new dissection procedure obtained68

by finding a proper balanced separator for UDGs. This allows us (at a small loss) to break the69

problem into independent instances and use dynamic programming to combine the solutions to70

obtain the solution for the original instance. There are many details on how to put these pieces71

together carefully so as to bound the overall error.72

2 Preliminaries73

For planar graphs and, more generally, graphs that exclude Kr,r as a minor for some fixed r,74

Klein-Plotkin-Rao [16] showed a decomposition of the input graph into low diameter parts by75

removing a small fraction of edges. More specifically, given a graph G with n nodes and m edges76

that excludes Kr,r as a minor, one can remove O(mr/δ) edges so that the (weak) diameter of each77

remaining component is at most O(r2δ). The general idea was based on chopping breadth-first78

search (BFS) trees (i.e. shortest-path trees in the unweighted version of the graph): suppose79

one constructs a BFS tree from some root node and then cut the edges at level i · δ + r for i ≥ 180

where r ≤ δ is a random offset. Then repeat this procedure on each of the connected components,81

for O(r) iterations. Then the resulting components have O(r2δ) weak diameter. This result was82

further improved in [9, 1], to show for each graph without Kr as a minor there is a probabilistic83

decomposition into O(rδ) (weak) diameter components by removing O(mr/δ) edges. Lee [19, 20]84

generalized this by introducing region intersection graphs, which includes UDGs as a special case,85

and showed that one can obtain similar decomposition results for such graphs. Theorem 4.2 in86

[19] implies that a similar BFS chopping procedure applied to UDGs for a constant number of87

iterations results in graphs of bounded (weak) diameter. We describe this chopping procedure a88

bit more formally.89
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I Definition 2 (δ-chopping operation). For any connected graph G and any number δ ≥ 1,90

we define the δ-chopping operation on G as follows. Choose any node x0 from V (G), select a91

random integer 0 ≤ r0 ≤ δ, and then compute a BFS tree from x0. Partition V (G) into annuli92

A0, A1, A2, . . ., where A0 = {v ∈ V (G) : d′(x0, v) < r0} and annulus Aj for j ≥ 1 is defined as:93

Aj = {v ∈ V (G) : r0 + (j − 1)δ ≤ d′(x0, v) < r0 + δj}, where d′(x0, v) is the number of edges on94

the BFS tree path from x0 to v.95

So there is an offset r0 that cuts only a 1/δ-fraction of edges. Earlier works on minor free96

graphs [17] imply that if G is Kr-minor free if we perform this chopping procedure on each97

component of G recursively up to depth O(r) yields components with (weak) diameter at most98

O(poly(r)δ). Corollary 4.3 in [19] immediately implies the following, Appendix A contains the99

brief argument.100

I Theorem 3 ([19]). O(1) iterations of the δ-chopping iteration applied to a UDG results in a101

graph of weak diameter O(δ).102

To prove Theorem 1 we also rely on the following result (which we prove) for the special case103

when the instance is in a bounded size region.104

I Theorem 4. There is a PTAS for Facility Location in UDGs when the point set P is105

contained within a bounding box of constant size L = O(1) in the plane.106

Theorem 4 uses different techniques than discussed above. It follows from a simple reduction to107

prize-collecting Uncapacitated Facility Location in R2 for which a PTAS is known [6] after108

guessing an “ε-net” of centers in the optimum solution which is possible in polynomial time since109

L is bounded. The proof is deferred to Appendix B.110

Our algorithm for Theorem 1 starts with some preliminary steps of algorithm of [8] that111

presented a PTAS for Facility Location on planar metrics. Those preliminary steps in fact are112

valid for general metrics (they do not use planarity in those initial steps) and reduce the problem113

to instances with certain structures that serve as our starting point. For this reason, we briefly114

outline the main steps of their algorithm. These initial steps reduce the problem to instances115

with certain structural properties and their proof works for general metrics (not just planar ones).116

Hence, the same initial reductions work in our setting as well.117

2.1 Starting point: the PTAS for Facility Location on planar graphs [8]118

Here, we summarize relevant results from [8] needed to prove Theorem 1.119

A Well-Structured Instance120

The goal of this section is to reduce Uncapacitated Facility Location in UDGs to more121

well-structured instances that, intuitively speaking, has the clients partitioned into annuli about122

facilities from some D̃ ⊆ F with bounded aspect ratio and that these facilities are near some123

facilities opened in an optimal solution. Definition 7 below contains the precise notion of what it124

means for an instance to be well structured. Corollary 9 is the main result from this section.125

Given an instance I = (G,C, F, fi) of Facility Location, which consists of an edge-weighted126

graph G, a set of clients C, and a set of facilities F with opening costs fi (for each i ∈ F ), the127

first step of the algorithm in [8] involves partitioning the instance into separate (independent)128

sub-instances with specific structural properties. For any solution D ⊆ F , we denote by conn(D)129

the connection cost of D (
∑
c∈C dist(c,D)) and by open(D) the opening cost of facilities in D130

(
∑
i∈D fi), and cost(D) = conn(D) + open(D). We sometimes use costI(D) to denote we refer131

to the cost of D for instance I. To achieve this, they compute an α-approximation solution D̃132

(where α = O(1)) to a modified instance Ĩ = (G,C, F, εfi) where each opening cost is scaled down133

by a factor of ε. In other words, D̃ is an O(1)-approximation for Ĩ. It is not hard to see that134

WADS 2025
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D̃ is also an O(1/ε)-approximation for I. For any i ∈ D̃, let cluster(i) denote the set of clients135

connected to i in this solution and define avgcost(i) =
fi+
∑

j∈cluster(i)
dG(j,i)

|cluster(i)| be the average cost136

of the cluster by facility i. Suppose D∗ is the set of facilities in an optimum solution to I. So the137

cost of (D̃) is at most 1
ε times cost of D∗. They show:138

I Lemma 5 (Corollary 5 [8]). ∀f ∈ D̃,∃g ∈ D∗ : dist(f, g) ≤ 2 · avgcost(f).139

Then they build a modified instance I ′ = (G,C ′, F, fi) where clients of each cluster(f) are not140

too close or too far away from f compared to avgcost(f). Let opt′ be the cost of an optimum141

solution to I ′ and opt be the cost of an optimum solution to I. They show that:142

I Lemma 6 (Corollary 7 [8]). For any R ⊆ F if costI′(R) ≤ (1 + γ)opt′ + δ (for some γ, δ > 0)143

then costI(R) ≤ (1 + 2γ + 8αε)opt + δ144

Therefore, a near optimum solution to I ′ yields a near optimum solution to I. In order to be145

able to obtain a PTAS they further partition the instance (starting from I) into several instances146

Ij each of which has certain structural properties.147

I Definition 7 (Structured Instance with Bounded Aspect Ratio). Consider an instance of Facility148

Location consisting of an edge-weighted graph G = (V,E), a set of clients C ⊆ V , and a set of149

facilities F ⊆ V with opening costs fi (for each i ∈ F ). Suppose we are provided a set D̃ ⊆ F150

that partitions C into nonempty clusters {cluster(i)}i∈D̃. We say that the instance has bounded151

aspect ratio of the average costs and being structured if the following properties hold:152

i) ε2 · avgcost(i) ≤ dG(j, i) ≤ ε−2 · avgcost(i), for each i ∈ D̃ and each j ∈ cluster(i),153

ii) for each i ∈ D̃, there exists i∗ ∈ D∗ such that dG(i, i∗) ≤ 2 · avgcost(i),154

iii) the aspect ratio of the average costs (i.e. maxi,j∈D̃
avgcost(i)
avgcost(j)) is bounded by r = ε−O(ε−2).155

They show that one can partition I into instances Ij = (G,Cj , Fj , f ji ) such that each instance156

satisfies the structural properties of Definition 7 and also how to combine solutions for the various157

Ij to get a good solution for I ′:158

I Lemma 8 (Lemmas 10 and 11 [8]). Given Dj ⊆ F for Ij, we can build D ⊆ F in polynomial159

time s.t. costI′(D) ≤
∑
j costIj (Dj) + 10αεopt. Furthermore

∑
j opt(Ij) ≤ (1 + 9αε)opt.160

Recall that all these results only use the metric property of instance I. The preceding lemmas show161

that to prove Theorem 1 it is sufficient to present a QPTAS for instances satisfying conditions of162

Definition 7 and this is what we will do. We state this formally.163

I Corollary 9. Suppose for any constant ε > 0 there is a PTAS (resp. QPTAS) for Uncapa-164

citated Facility Location instances in UDGs when we are additionally given D̃ ⊆ F and165

clusters {cluster(i)}i∈D̃ satisfying the properties in Definition 7. Then there is a PTAS (resp.166

QPTAS) for any Uncapacitated Facility Location instance in UDGs.167

2.2 Overview: A recursive decomposition of UDGs168

Adapting the approach from [8]169

In order to get a PTAS for well-structured instances in the planar case, [8] uses a Baker-type type170

layering technique [3] in conjunction with the properties of the instance, and further decompose171

the instance into instances of constant radius at a small loss. By utilizing balanced separators for172

planar graphs, they obtain a hierarchical decomposition of the plane embedding of the graph into173

separate regions (similar to the decomposition of Euclidean instances by Arora [2]). By placing174

O(logn) “portals” along each separator they use dynamic programming over this decomposition,175

while the portals control the interface of different regions.176

In our setting, instead of using Baker layering to obtain low diameter instances, we use177

Theorem 3 to break the instance that satisfies conditions of Definition 7 (at a small loss) into178
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low diameter instances. We will use a variant of a balanced separator theorem developed by [12]179

(which improved over a more complex separator by [27]) for UDGs. Roughly speaking, they show180

that given a UDG, one can find two paths originating from a vertex s to two other vertices x, y181

that are shortest paths, Ps∼x and Ps∼y, such that the removal of these two paths and all the182

vertices that are within distance 1 of them leaves connected components of size at most 2
3 |V (G)|183

(see Theorem 10). We adapt this theorem to get an (almost) balanced separator to obtain a184

hierarchical decomposition of a low diameter instance into smaller instances. We also place185

O(logn) portals at these separators and use Dynamic Programming to combine the solutions.186

After a logarithmic depth of hierarchical decomposition, we arrive at instances that are easy to187

solve using other methods (e.g. another PTAS that is described in Theorem 4).188

Balanced (partly) Separators for UDGs189

To obtain our dynamic program scheme, we would like to be able to break a UDG into (almost)190

balanced parts by picking a separator. This will act as a “cut” in the disection schema developed by191

Arora [2] that has been used in designing PTAS’s for various optimization problems on Euclidean192

plane. For this, we utilize the balanced separator theorem for UDGs as presented by Yan et193

al. [12]. Let N i
G[v] = {u ∈ V (G) : dG(v, u) ≤ i} and N i

G[S] = ∪v∈SN i
G[v]. A hop-shortest path194

between two nodes x, y is a path with the minimum number of edges.195

I Theorem 10 (Theorem 13 in [12]). For a UDG G, X ⊂ V (G) and a root s ∈ V (G), there exist196

two nodes x, y of V (G) and hop-shortest paths Ps∼x = (s, . . . , x) and Ps∼y = (s, . . . , y) for which197

the removal of N1
G[Ps∼x]∪N1

G[Ps∼y] from G yields components each having at most 2
3 |X| vertices198

from X.199

Theorem 13 in [12] actually only proves it for the case X = V . See Appendix A for discussion200

about why it holds for general X ⊆ V . This theorem serves as a counterpart to the well-known201

balanced shortest paths separator theorem in planar graphs by Lipton and Tarjan. However,202

it poses a challenge due to the fact that the separator is formed by the 1-neighborhoods of the203

paths rather than just the paths themselves. This means that we must not only remove the204

shortest paths but also all nodes within a distance of one from the nodes on the shortest paths.205

To tackle this challenge, we narrow our focus to cases where the average distance between clients206

and facilities is relatively large. By doing so, we can assume that clients and facilities, which end207

up on two different sides of the shortest path, always get connected via nodes in V (Ps∼x ∪ Ps∼y).208

Note that, as stated in Theorem 11 (which is a slight modification of this theorem), the only209

exceptions to this assumption occur when the path between clients and facilities crosses the border210

using an edge whose endpoints are very close to nodes in V (Ps∼x ∪ Ps∼y). However, using the211

fact that we can assume the average distance between clients and facilities is relatively large, we212

can force those paths to visit nodes in V (Ps∼x ∪ Ps∼y) with a relatively tiny error.213

In the following, we demonstrate that a slight modification of this theorem yields a balanced,214

yet partial in some sense, separator for UDGs. More precisely:215

I Theorem 11. For a UDG G, X ⊂ V (G) and a source s ∈ V (G), there exists two nodes216

x, y of V (G) and hop-shortest paths Ps∼x = (s, . . . , x) and Ps∼y = (s, . . . , y) such that removing217

V (Ps∼x ∪ Ps∼y) partitions the vertices V (G\(Ps∼x ∪ Ps∼y)) into two sets G1, G2 each having at218

most 2
3 |X| vertices from X. Additionally, for any edge ab ∈ E(G) with a ∈ V (G1) and b ∈ V (G2),219

there exists c ∈ V (Ps∼x ∪ Ps∼y) such that dG(a, c), dG(b, c) ≤ 2.220

This follows easily from Theorem 10 but we provide a proof in Appendix A for the sake of221

completeness. Note that we say V (Ps∼x ∪ Ps∼y) is a separator between V (G1) and (G2) if there222

are no edges in G that connect a vertex from set V (G1) to a vertex from set V (G2). However, here,223

we relax this condition and allow for the presence of such edges, provided that their endpoints are224

in close vicinity to the separator.225
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3 Proof of Theorem 1226

We can now describe our QPTAS for Uncapacitated Facility Location in UDGs. Consider227

an instance of Facility Location, consisting of an edge-weighted UDG G = (V,E), a set of228

clients C ⊆ V , and a set of facilities F ⊆ V with opening costs fi (for each i ∈ F ). Let D∗ denote229

the set of facilities opened by the optimal solution, with opt representing the cost of this solution.230

Additionally, let D̃ denote the O(1/ε)-approximation solution as described in Section 2.1, and let231

cost(D̃) represent the cost of this solution. Note cost(D̃) =
∑
i∈D̃

(
fi +

∑
j∈cluster(i) dG(j, i)

)
=232

O(opt/ε). We assume that the instance satisfies the properties mentioned in Definition 7.233

Let r = ε−O(ε−2) and N > 0 denote the minimum distance between a client and its facility234

(cluster center) in D̃. It can be verified using the properties of Definition 7 that the inequalities235

N ≤ dG(j, f) ≤ rN and avgcost(i) ≤ rN hold for each i ∈ D̃ and each j ∈ cluster(i) (these are236

essentially the conditions in Lemma 9 of [8] except that we can’t do scaling in UDG instances,237

hence we have the factor N). Moreover, based on property (ii) (Definition 7) of the instance, it238

follows that dG(j,D∗) ≤ 3Nr holds for each client j ∈ C.239

Our next step is to decompose the instance into independent subinstances.240

I Lemma 12. At a loss of O(ε·opt) we can decompose the instance into a number m of independent241

instances H1, H2, . . . ,Hm where each has diameter at most O(rN/ε2).242

The full proof is deferred to Appendix A. Intuitively, it uses a BFS from a node s to define layers243

and partitions V by breaking the graph every O(rN/ε2) layers using a random offset for this244

partitioning. Facilities of D̃ in the first O(rN) layers of each part are opened, which has low cost245

on average over the random choice of offset. This chopping procedure is recursively applied O(1)246

times, after which each component has edge-hop diameter O(rN/ε2) by Theorem 3. In the proof,247

we note BFS distances approximate actual weighted UDG distances within a factor of 2 for pairs248

of non-adjacent nodes so the actual diameter under weighted UDG distances is also O(rN/ε2)249

for each component.250

It can also be seen that the sum of optimum solutions of all these instances costs at most opt251

since for each client in H` their optimum facility will also be in H`. The rest of our algorithm252

approximates solutions in each H` with the following guarantees.253

I Lemma 13. Given instance I for Facility Location on a UDG G let D̃ be an approximate254

solution as described above, consider the instances H1, . . . ,Hm as in Lemma 12. There is a255

quasi-polynomial algorithm that produces solutions for H`’s such that the total cost of the solutions256

is at most O(ε2 · cost(D̃)) + (1 +O(ε))
∑
` opt(H`).257

From this, we immediately get Theorem 1 since the total error is at most O(ε · opt) since the258

first term in the expression above is at most O(ε · opt) and
∑
` opt(H`) ≤ opt.259

We will treat each individual instance H` separately and will produce a solution for it of cost260

(1 +O(ε)opt(H`) + E` such that
∑
`E` ≤ O(ε2 · cost(D̃)). A key observation that we use to bound261

the sum of the additive error bound E` above is the following. Suppose that N is sufficiently262

large, i.e. N > 1/ε2 (we will handle the case of small N separately). Note that (as mentioned in263

the first paragraph of this Section) since N ≤ dG(j, f), therefore N · |C| ≤ cost(D̃) = O(opt/ε);264

so if N is large (N > 1/ε2) and each client c ∈ C is moved an extra O(1) distance, then it adds265

at most O(|C|) = O(ε · opt) to the cost of an optimum solution for the modified instance. Hence,266

this instance still has a solution of cost at most (1 +O(ε))opt. In our algorithm for each H` we267

might consider paying an extra O(1) for each client. Using this argument, it can be seen that the268

total additive error for each H` will be O(|C`|); summing over all the instances H` the additive269

error is at most O(ε · opt). So from now on we assume our instance is one of the H` and we prove270

Lemma 13.271
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3.1 Hierarchical decomposition with portalization272

In this section, we assume the instance is a low diameter instance as obtained by applying our273

chopping operation from the proof of Lemma 12, i.e. one of the H`. More specifically, at a loss274

of O(ε · opt) we assume: N ≤ dG(j, i) ≤ rN and avgcost(i) ≤ rN hold for each i ∈ D̃ and each275

j ∈ cluster(i), and dG(j,D∗) ≤ 3Nr for each client j ∈ C, and the diameter is is at most 3rN/ε2.276

We obtain a hierarchical decomposition of the instance and describe a Dynamic Programming277

(DP) algorithm based on this decomposition. This decomposition has a logarithmic depth, and278

each region within the hierarchy is obtained by applying two shortest paths separators to the279

parent region (for readers familiar with the standard decomposition obtained by a dissection of the280

plane used in designing PTASs for problems such as TSP and Facility Location on Euclidean281

planes: one can think of our shortest paths separators as the “line” that breaks the problem282

into two balanced instances; we will place “portal” at appropriate locations along the separator).283

One difference in our schema is that the region at each level might have a “boundary” that is284

composed of separators of all the ancestor of it; so it is bounded by O(logN) separators (whereas,285

for e.g., a region defined in the recursive decomposition for TSP is defined by 4 dissecting lines).286

This is the only reason our running time becomes quasi-polynomial.1287

Recall r = ε−O(ε−2). Observe that if we have a UDG with diameter at most ∆ then all the288

points must be in a bounding box of 2∆× 2∆. Using this, Theorem 4 provides a PTAS when the289

value of N is small (i.e. at most 1/ε2). Therefore, we can assume that N ≥ 1/ε2. We provide a290

solution that has multiplicative approximation factor (1+O(ε)) and additive factor E` that can be291

charged to the number of clients in the instance (eventually we will have
∑
`E` ≤ O(ε2cost(D̃)).)292

Indeed, assuming that N is sufficiently large is vital for our approach, as it enables us to utilize293

the balanced “partly” separator described in Theorem 11. This separator allows for a hierarchical294

decomposition of the graph with a logarithmic depth, but it does permit direct interactions295

between points (within a small distance from the separator path) in the separated regions. By296

forcing the interaction through the separator nodes, we incur an additive error. However, when the297

minimum distance between clients and facilities is sufficiently large, this error becomes negligible.298

Sparsifying H`299

Let Γ = 3rN/ε2 = Oε(N) denote the diameter of the graph. Our goal is to obtain a net of size300

poly(Γ) so that the number of points we deal with is in terms of N (instead of n), while we loose301

a small factor (compared to opt).302

I Lemma 14. We can obtain a graph G′(V ′, E′) where V ′ ⊆ V (H`) with |V ′| = O(Γ4), where:303

For any two u, v ∈ V ′, dG(u, v) > 1/8.304

If we move each client and facility in H` to its nearest point in V ′, the optimum solution305

increases by O(|C`|).306

Conversely, given a solution to this modified instance we can get a solution to H` with additional307

cost O(|C`|).308

We let B(v) for v ∈ V ′ denote all clients and facilities of H` that moved to v.309

We can think of B(v) as the set of nodes in a ball of radius 1/8 around v. The proof is by a fairly310

standard net construction and is found in Appendix A. Note that the error described above when311

summed over all H`’s, is at most O(|C|) = O(cost(D̃)/N) = O(ε · opt) (since N |C| ≤ cost(D̃)).312

Hierarchical decomposition of G′313

We obtain a hierarchical decomposition of G′ which will be associated with a rooted binary tree314

1 We conjecture a more careful analysis of our scheme and applying the separator could imply a “boundary”
that is defined by only a few separators. This would turn the whole algorithm into a PTAS.
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T where the root of T is V ′. We will have a Dynamic Programming to solve Facility Location315

using this decomposition. This will be similar to the hierarchical decompositions obtained for316

PTAS’s on the Euclidean instances (e.g. [2]) except that we use the separator in Theorem 11317

instead of dissecting lines and that the leaf nodes in our decomposition tree in our case do not318

correspond to trivial instances (typically a leaf node is a box with only one point in it). In319

our case, each leaf node is an instance with certain properties which enables us to solve it in320

quasi-polynomial time at a small loss.321

Let us describe the decomposition for G′. Our hierarchical decomposition tree T is associated322

with a labeling ψ : V (T ) → 2V (G′): we set the label of the root of T to be V (G′). Each323

t ∈ T represents a subgraph G′[ψ(t)] with the property that if t1, t2 are children of t, then324

ψ(t) = ψ(t1) ∪ ψ(t2). We use bd(t) to denote the boundary vertices of ψ(t) and the rest of the325

vertices, ψ(t)− bd(t), we call them the core vertices and are denoted by X(t). The “boundary” is326

obtained by finding a separator using Theorem 11 and is added to the boundary that is inherited327

from the parent (details to follow). The boundary of the root node is the empty set (and so all328

the vertices of G′ are core vertices for the root node of T ). The overall idea is whenever a current329

leaf node t ∈ T has |X(t)| > 1 we decompose G′[ψ(t)] into two smaller subgraphs and we obtain330

children t1, t2 for t. More specifically, starting from when T is a single node t corresponding331

to V (G′), iteratively, for each leaf t of T , if |X(t)| > 1, apply Theorem 11 over G′[ψ(t)] with332

X = X(t) to obtain two graphs G′1 and G′2, along with the two shortest paths Ps∼x and Ps∼y.333

We use the same vertex s to find the two shortest paths Ps∼x, Ps∼y for each node t ∈ T and we334

make sure this vertex s is passed down. Define ψ(ti) to be G[V (G′i) ∪ V (Ps∼x) ∪ V (Ps∼y)] and335

bd(ti) = bd(t) ∪ Ps∼x ∪ Ps∼y. This also defines X(ti) to be the subset of vertices of X(t) that336

fall into V (G′i) and not in the boundary of ti. Note that our separator Ps∼x ∪ Ps∼y separates the337

vertices ψ(t) of our sub-instance into parts each of which has at most 2
3 |X(t)| many core vertices.338

Every time we find a separator Ps∼x ∪ Ps∼y to break the graph ψ(t) (as described) we also339

designate m = Oε(logN) of the vertices of each of these two paths as portals. More specifically,340

let δ = O(εΓ/ logN) and designate some of the vertices of these paths as portal so that they are341

δ apart (note that as mentioned before, the hop-distance and UDG distances are within factor342

2 of each other). Since these paths have hop-distance length at most Γ, we will have Oε(logN)343

portals per path. Our intention is that if two points u ∈ X(t1) and v ∈ X(t2) are to be connected344

they have to go through portals of the boundary. This is illustrated in Figure 1.345

s

x

y

Figure 1 An depiction of two paths Ps∼x and Ps∼y from Theorem 11 in grey at the top level in the
hierarchical decomposition. The balls are radius-1/2 balls around points in G′, so two intersect if and only
if they are adjacent. The darker grey nodes with thicker borders are evenly-spaced portals. Intuitively, at
each portal we will keep track of the distance to the nearest facility we will open on either side of the
separator.

Observe that the depth of T is h = O(log Γ) = Oε(logN) (recall that |V (G′)| = O(Γ4)). By346

construction, for each node t ∈ T , the region defined by ψ(t) consists of core nodes in X(t) and347

the boundary bd(t) consists of (at most) h separators (which are shortest paths starting from s)348
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obtained using Theorem 11 each of length proportional to the diameter of the graph, namely Γ.349

For any t let Πt be the set of portals on the boundary of region t. Note that each region boundary350

is composed of at most h = Oε(logN) paths and each path has Oε(logN) portals, so each t has351

at most Oε(log2N) portals.352

By Theorem 11 and the way we put the portals (since they are δ apart), it follows that for any353

two points u′ ∈ ψ(t1) and v′ ∈ ψ(t2) (where t1, t2 are children of a node t ∈ T ), there exists a portal354

π in the separator that breaks t into t1, t2 for which dG′(u′, π)+dG′(v′, π) ≤ dG′(u′, v′)+δ+4. Now355

if u ∈ B(u′), v ∈ B(v′) are two vertices ofH` (recall that B(v′) is the ball of v′ that created net node356

v′ in G′), the distance between u, v to go via their ball centers and then via the portal is bounded357

as well: dG(u, u′) + dG′(u′, π) + dG′(v′, π) + dG(v, v′) ≤ dG′(u′, v′) + δ + 4.25 ≤ dG(u, v) + δ + 5.358

Suppose we require, for each node t ∈ T with children t1, t2, the connection between points in359

ψ(t1), ψ(t2) be via portals in the separator that broke t into t1, t2. As argued above, this detour360

adds at most δ + 5 to the cost for each connection. Since the depth of the recursion tree T is361

h = O(log Γ), the accumulated error incurred to each client/facility for communicating via portals362

and centers of their balls (among all the levels of the decomposition) is at most O((δ + 5) log Γ).363

Hence, there is a total error of at most O(|C`|δ log Γ) for all clients connections. By a suitable364

choice of ε′ depending on ε, and setting δ = ε′Γ
log Γ , we get m = log Γ

ε′ = logOε(N)
ε′ , the total error for365

re-routing connections of clients to be via portals (among all levels of decomposition) between366

regions is bounded by:367

4|C`|(ε′Γ + 5 log Γ) = 4|C`|(ε′Oε(N) +Oε(logN)). (1)368

This will be our additive error E`. Recall that we have N · |C| ≤ O(opt/ε), implying |C| ≤ O( opt
εN ).369

This, together with (1) and the fact that
∑
` |C`| ≤ |C|, imply that the total additive error for all370

H`’s is bounded by O(ε · opt) if ε′ is sufficiently small.371

Note: The observation above (that if we re-route clients connections to be via portals adds372

only O(ε · opt) to the total cost) will be crucially used in our DP. In other words, if for every373

client/facility connection distance, we have a rounding error of δ in every level of T , then the374

total error across all H`’s is bounded by O(ε · opt). In particular, imagine for each leaf node t ∈ T375

we have moved all the points (clients/facilities) in the ball of each node in ψ(t) to the nearest376

portal in Πt. This adds an extra cost of O(ε · opt) over all levels of decomposition for all H`’s.377

This simplifies our instance significantly and allows us to find a near optimum solution using378

Dynamic Programming. We present an overview of the DP procedure before going into details.379

Overview of Dynamic Program based on T :380

Consider an arbitrary node t ∈ T and portals π1, . . . , πm′ (where m′ = Oε(log2N)) on the paths381

that define bd(t). For each portal πi we will have two values in(πi), out(πi): in(πi) indicates382

(approximately) the distance to the nearest facility (to πi) that is supposed to be open in the383

instance defined by ψ(t), and out(πi) indicates (approximately) the distance to the nearest facility384

(to πi) that will be open outside the region defined by ψ(t) (and clients inside the balls of vertices385

of ψ(t) can be connected to them via πi by paying an additional distance cost of out(πi)). These386

distances are “approximate” since we only keep multiples of δ, since having a precision parameter387

of δ (as argued above) results in total error O(ε · opt).388

DP Table:389

For any t ∈ T and any two vectors ~in, ~out of dimensions m′ (for the portals of t) we will have390

a DP table entry A[t, ~in, ~out]. This entry is supposed to store the (approximate) cost of an391

optimum solution to the Facility Location instance defined by the balls B(ψ(t)) (where392

B(S) = ∪v∈SB(v)) subject to the following conditions:393

for each portal πi there is an open facility in the solution with distance to πi at most as394

specified by in(πi),395
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for each client either it is served by an open facility inside, or is paying connection cost to396

go to a portal πi and if n(πi) is the number of clients that go to portal πi then they pay397

n(πi)× out(πi) to get serviced by a facility outside of ψ(t) at distance out(πi). This will be398

part of the cost for the solution.399

We say vector ~in (and similarly ~out) is valid if it satisfies the following condition: for any two400

portals π, π′, if their distance (rounded to the nearest multiple of δ) is z then |in(π)−in(π′)| ≤ z+δ.401

This condition clearly must hold as if there is a facility with distance in(π) from π then the402

nearest facility to π′ cannot be further than ∈ (π) + z+ δ away from it. Our DP table is computed403

only for valid vectors for each node t ∈ T .404

Recurrence Overview:405

Suppose we have computed (approximate) solutions for each problem defined for each leaf node406

of T and each (valid) vectors ~in, ~out for the portals. Our DP will compute the solution for the407

instance of root of T (i.e. V (G′)) in a bottom up manner from the leaf nodes to the root. For408

each internal node t with children t1, t2 and vectors ~in, ~out (for t) and ~in1, ~out2, ~in2, ~out2 (for409

t1, t2, respectively) it will see if the three solutions are “consistent”. We will define this formally410

in the next section but at a high level this checks whether the solutions for t1, t2 (given the portal411

vectors) can be combined so that we get a solution for ψ(t1) ∪ ψ(t2) where it is consistent with412

the vectors of portals specified by t.413

If one keeps the distances (stored in portal vectors) as as multiples of δ, since distances414

are bounded by Γ = Oε(N), there will be Oε(logN) choices for each portal, which leads to a415

(logN)Oε(log2 N) table size.2 The base case will be solved using an exhaustive search by guessing416

a subset of portals and opening the cheapest facility on that portal followed by a check if the417

distance requirements for facilities are satisfied: the best consistent solution will be kept and we418

will store ∞ if there is no such solution.419

3.2 Dynamic Program420

In this section we describe the details of our dynamic program based on the decomposition T .421

As mentioned earlier, each node t ∈ T corresponds to a set of vertices ψ(t) ⊂ G′ with boundary422

nodes bd(t) compose of at most h separators, each of which is two paths initiating from s (using423

Theorem 11) and each containing m portals that are δ apart (for a total of m′ = Oε(log2N)424

portals). Note that the diameter of the instance was Γ, so if we round a distance to the nearest425

multiple of δ, we get an integer of value at most O(Γ/δ) = Oε(logN). As mentioned in the426

overview, for each pair of m′-dimension vectors ~in, ~out, where each entry in(πi), out(πi) (for portal427

πi) is an integer at most Oε(logN), we have an entry in our DP table A[t, ~in, ~out]. As mentioned428

before, we only consider valid vectors ~in, ~out.429

The goal of this subproblem is to identify a set of facilities to open in B(ψ(t)) and to assign430

each client in B(ψ(t)) to either an open facility or bring to a portal πi such that minimizes the431

total opening cost plus connection cost such that: (i) For each portal πi, there is an open facility in432

B(ψ(t)) of distance at most in(πi) (rounded to the nearest multiple of δ); and (ii) For any portal433

2 We can reduce this using a trick that is also used earlier (e.g. see [2]) to show how to reduce the size
of the portal vectors by storing only “smoothed” vectors. Informally, the observation that helps is that
if we keep distances of the nearest facility (inside or outside) for a portal πi as the multiple of δ then if
the value for portal πi is σ then the value for portal just before or after πi on the separator path that πi
belongs to is in {σ − 1, σ, σ + 1}. Thus, the total number of vectors we need to consider for a node t ∈ T is
Oε(log2 N × 3m

′
) = 2Oε(log2 N), where there are Oε(log2 N) choices for the first portal values and then for

the subsequent portals there are only 3 choices for each distance.
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πi suppose n(πi) is the number of clients in B(ψ(t)) that are connected to πi by the solution. The434

connection cost for these clients is the cost they pay to be connected to πi plus n(πi)× out(πi).435

A well-structured near-optimum solution436

We first show the existence of a near optimum solution with certain properties such that our DP437

actually finds such a near optimum solution. Starting from an optimum solution D∗` on H` we438

make some changes to it to satisfy the properties we want, while increasing the cost a little only.439

First for each node v ∈ V ′ with D∗` ∩B(v) 6= ∅ we consider keeping the cheapest open facility in440

B(v) and closing all the others and re-routing all the clients that were served by other facilities441

in B(v) to that single open facility via v. This adds at most 1/4 to the distance each client has442

to travel (via v) as nodes in B(v) have distance at most 1/8 to v. This increases the cost by at443

most O(|C`|) over all clients. We can assume the open facilities are on the centers of the balls444

now. Let’s call this new (near optimum) solution D′`. Next we modify the solution further by the445

following process. We say a solution is t-adapted for a node t ∈ T if (i) for each of its descendant446

t′ the solution is t′-adapted, and (ii) for each client c ∈ B(ψ(t)), if c is connected to a facility447

outside of B(ψ(t)) then it is connected via a portal π ∈ Π, where Π is the set of portals of t.448

We start with D′` and at leaf nodes of T and going up the tree, we make the solution t-adapted449

for each t ∈ T at small increase in cost. Let us consider a leaf node t ∈ T with X(t) = wt450

(the case when X(t) = ∅ is even easier) and boundary bd(t) corresponds to paths with a total451

of m′ portals Π = π1, . . . , πm′ . We consider wt as a portal as well and add it to Π. Suppose452

Π′ = πa1 , πa2 , . . . , πaσ is the subset of Π, where there is a facility in distance at most δ of πai in453

D′ ∩ ψ(t). For each such πai , we assume we have kept open the cheapest facility within δ of it.454

For any client c ∈ B(ψ(t)) if c was connected to a facility in B(ψ(t)) in D′ (note that all of those455

are within distance δ of some portal in Π′) we consider routing c to the nearest portal in Π′ (and456

then from there to the single cheap facility we kept open). Note that this increases the connection457

cost for each client by at most 2δ. If c was connected to a facility outside of B(ψ(t)) we re-route458

it first to a nearest portal π along its way and then from there to be connected to the facility it459

was connected to outside of B(ψ(t)) (i.e. we make the connection of c to go through a portal).460

This increases the connection cost for each c by at most δ + 5 as argued earlier in the overview461

and the solution becomes t-adapted.462

Now suppose t ∈ T is a non-leaf node with children t1, t2 and supposed D′` is t1-adapted and463

t2-adapted. We make it t-adapted with small increase in the cost. For any client c ∈ B(ψ(t)), if c464

is connected to a facility in ψ(t) we don’t need to make any further changes. Otherwise we make465

a detour for the connection of c to go through one of the portals Π. This detour increases the466

connection cost of a client by at most 2δ.467

One last change we do is in the calculation of the cost of the adapted solution to make it468

portal vector adapted: for each node t ∈ T , the t-adapted solution also induces vectors ĩn, ˜out469

for portals of t in the following way. The clients that are served by facilities outside ψ(t) are first470

going to a portal π (of t). The distance from that portal to the nearest open facility (outside471

ψ(t)) rounded up to the nearest multiple of δ is what induces a value for ˜out(π) at node t. We472

use this rounded (up) value instead of the actual distance in the calculation of the cost of the473

t-adapted solution. Similarly, for each portal π, the distance to the nearest open facility in ψ(t)474

rounded to the nearest multiple of δ induces a value ĩn(π) for node t. Let ĩn, ˜out correspond to475

the vectors induced by the t-adapted optimum solution. We assume the cost a client pays to go476

out of ψ(t) to be connected to a facility via a portal π (from π) is ˜out(π). Note that our estimate477

of the nearest to π open facility inside or outside ψ(t), described by ĩn(π), ˜out(π) has an additive478

error of at most δ. Thus, the connection costs for each client at each node t can be larger by δ479

again. We call this new cost, portal vector adapted.480

It is easy to see that if we make the solution t0-adapted, where t0 is the root of T , and consider481
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the portal adapted cost (as described), then the increase in the connection cost for each client482

over all the nodes of T is at most O(δ log Γ) (since the height of T is O(log Γ)); summed over483

all the clients this was shown to be O(ε′|C`|Γ). Thus, the best t0-adapted and portal adapted484

solution has cost opt(H`) + O(ε′|C`|Γ), and for a suitable choice of ε′ the additive error over all485

H`’s will be add to at most O(ε · opt).486

Recurrence details:487

Let ĩn, ˜out correspond to the vectors induced by the t0-adapted near optimum solution. By this488

argument it is enough to find compute the entries A[t0,~0,~0] to obtain a (1 +O(ε))-approximate489

solution.490

Base case: Let us consider a leaf node t ∈ T with X(t) = wt (the case when X(t) = ∅ is even491

easier) and boundary bd(t), which corresponds to paths with a total of m′ portals Π = π1, . . . , πm′ .492

We consider wt as a portal as well and add it to Π. For any subset Π′ = πa1 , πa2 , . . . , πaσ of Π,493

where there is a facility in B(πai), we consider opening the cheapest facility in B(πai); let’s call494

that facility f(ai). For any client c ∈ B(ψ(t)) we consider routing c to (i) nearest portal with an495

open facility, or (ii) to a portal πai to be connected outside at a total cost dG(c, πai) + out(πi) if496

this is less than the distance to the nearest portal with an open facility. This will be considered a497

feasible solution if: for each portal πi there is a portal πaj ∈ Π′ with an open facility such that498

dG(πi, πaj ) ≤ in(πi). The cost for A[t, ~in, ~out] will be the cost of the cheapest feasible solution499

over all choices of Π′ as described above. If there is no such solution (consistent with vectors500

~in, ~out, we set A[t, ~in, ~out] =∞. It is easy to see that we obtain the best t-adapted portal adapted501

solution.502

Filling in the rest of DP table: Now consider an arbitrary (non-leaf) node t ∈ T and vectors503

~in, ~out and suppose t has children t1, t2. Suppose all the entries of t1, t2 for all vectors of portals504

are computed. Let Π,Π1,Π2 be the set of portals of t, t1, t2, respectively. For vectors ~in1, ~out1 for505

portals of t1, and vectors ~in2, ~out2 for portals of t2 we say subproblems (t, ~in, ~out), (t1, ~in1, ~out1),506

(t2, ~in2, ~out2) are consistent if the following hold:507

For each portal π ∈ Π, either ~in1(π) = ~in(π) or ~in2(π) = ~in(π).508

For each portal π ∈ (Π1 ∩Π2)−Π, i.e. a portal that is on the separator of t that creates t1, t2:509

~in1(π) = ~out2(π) and ~in2(π) = ~out1(π).510

for each π ∈ (Π1 ∩Π2 ∩Π) we must have ~out1(π) = ~out2(π) = ~out(π).511

First observe that checking consistency for the three subproblems can be done in time poly(m).512

Then513

A[t, ~in, ~out] = min{A[t1, ~in1, ~out1] +A[t2, ~in2, ~out2]},514

where the min is over all vectors ~in1, ~out1, ~in2, ~out2 such that (t, ~in, ~out), (t1, ~in1, ~out1), (t2, ~in2, ~out2)515

are consistent. By induction, assuming that ~in, ~out, ~in1, ~out1, ~in2, ~out2 are induced portal vectors516

for a t-adapted near optimum solution D′ and that A[t1, ~in1, ~out1] and A[t2, ~in2, ~out2] are com-517

puted correctly, one can see that we get that the cost of a solution at A[t, ~in, ~out] that is no more518

than that of optimum t-adapted solution at induced on B(ψ(t)).519

520

Run time analysis: Note that diameter of a (connected) UDG is at most n (and we assume521

the graph is connected since we can run the algorithm on each connected component). Thus522

N = O(n) and hence the size of the DP is 2Oε(log2 N) = 2Oε(log2 n). To compute each base case it523

takes 2Oε(log2 n) time and for each non-leaf node of t which children t1, t2 and vectors ~in, ~out, the524

solution A[t, ~in, ~out] can be computed by comparing all triples of valid solutions for t, t1, t2; this525

also takes 2Oε(log2 n). Overall the runtime is therefore nOε(logn), where the constant in Oε(.) is526

ε−O(ε−2).527
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Proof of Theorem 11. Consider shortest paths Ps∼x = (r, . . . , x) and Ps∼y = (r, . . . , y) by625

Theorem 10, partition the components of G\(N1
G[Ps∼x] ∪N1

G[Ps∼y]) into two graphs G′1 and G′2626

each containing at most 2
3 |X| vertices from X.627

Partition (N1
G[Ps∼x]∪N1

G[Ps∼y])\(Ps∼x∪Ps∼y) into two sets S1, S2 such that each G′i∪Si (for628

i = 1, 2) has size at most 2
3 |X| vertices fromX: such a partition can be obtained greedily by starting629

with S1 = S2 = ∅ and then iteratively adding nodes from (N1
G[Ps∼x] ∪N1

G[Ps∼y])\(Ps∼x ∪ Ps∼y)630

to either S1 or S2 while maintaining |(V (G′i) ∪ S) ∩X| ≤ 2
3 · |X|. Observe this property is true631

initially when S1 = S2 = ∅ and it is trivial to maintain by adding each new node to part with the632

fewest nodes from X.633

We claim that Gi = G′i ∪ Si satisfies the required property. Let ab ∈ E(G) be such that634

a ∈ V (G1), b ∈ V (G2), then it cannot be that a ∈ G′1 and b ∈ G′2 by Theorem 10. Without loss of635

generality, say b /∈ G′2. Then there exists c ∈ V (Ps∼x ∪ Ps∼y) such that cb ∈ E(G). Then a, b, c is636

a path of length 2 from a to c. J637

Proof of Lemma 12. We begin with the following observation: If T is a BFS tree from a vertex638

s in a UDG G, then for any two vertices u, v at levels i, i+ 2 of the tree respectively (for any i) we639

have their (weighted) distance in G is strictly larger than 1 (or else they would be adjacent and640

hence cannot be at two levels i, i+ 2 of the BFS tree) and no more than 2 (as any two adjacent641

vertices have distance at most 1), i.e. 1 < dG(u, v) ≤ 2. Thus, the BFS will 2-approximate actual642

(weighted) shortest paths for any node that is not a neighbour of s.643

Now suppose we run a BFS from an arbitrary node s and group the vertices into layers where644

layer i consists of all the nodes of BFS at levels between (i− 1)14Nr, . . . , 14iNr − 1. Note that645

the “thickness” of a layer is 14Nr levels of BFS, so for any two vertices u, v in layers i, i + 2:646

dG(u, v) ≥ 7Nr. Since the distance of any client to their facilities in the optimum is at most647

3Nr, no path from a client to a facility (in the optimum) would cross an entire layer. Now we648

group consecutive layers into bundles of d 1
ε2 e layers, with a random off-set chosen from 0, . . . d 1

ε2 e.649

Suppose we call the first layer of each bundle a “red” layer and all the other layers of a bundle are650

blue; so between every two “red” layers we have d 1
ε2 e − 1 blue layers. We open all the facilities of651

D̃ in the red layers and serve the clients in their cluster. Based on the random shift and the fact652

that D̃ was a O(1/ε)-approximate solution, the total cost incurred to open these facilities and653

serve their clients is at most O(ε2 · cost(D̃)) = O(ε · opt). So we can assume all these facilities are654

open (i.e. have zero opening cost) and we delete the clients they have served. For any other client655

left in the red layer, they can be partitioned into two parts: those in the top 7Nr levels are called656

top red clients and those in the bottom 7Nr levels are called bottom clients. Since for each client657

j, dG(j,D∗) ≤ 3Nr, the top clients cannot cross over the bottom 7Nr levels to be served by a658

facility. Similarly, the bottom clients cannot be crossing the top 7Nr levels to be served by a659

facility. We show how this breaks the instance into independent instances.660

For the remaining (blue) layers in every bundle we consider the clients and facilities in those661

layers, together with the facilities and remaining clients in the nearest 7Nr levels of the two red662

layers above and below them. Note that these instances are now independent since for every663

client j, dG(j,D∗) ≤ 3Nr, so no client in a blue layer would need to pass beyond 7Nr levels into664

a red layer to reach its facility in optimum. Similarly, the remaining red clients will only need the665

facilities in the blue layers they are grouped with. This means we can solve the blue layers of666

each bundle (together with the facilities and clients in a strip of 7Nr layers above and below)667

independently. So we consider the blue layers of each bundle plus the 7Nr (red) layers above and668

below as one instance (recall the facilities in the red layers are open). This means we can assume669

we have deleted any connections (edges) between these independent instances. This is similar670

to one round of chopping in the proof of Theorem 3. We perform a sequence of O(1) chopping671

rounds as above on the graph and utilizing Theorem 3, we can assume that the weak diameter of672
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each independent instance generated is bounded by rN/ε2 and the total cost paid for the facilities673

in the layers chopped is O(ε · opt); those facilities now have opening cost zero.674

So from now on (at a loss of O(ε · opt)) we focus on each independent instance where the weak675

diameter is bounded by rN/ε2. Let’s call these instances H1, H2, . . .. For each such instance H`676

we use C` to denote the clients that belong to H`. It is easy to see that the C`’s are disjoint.677

Next, we modify H`’s so that they have bounded diameter (not just weak diameter): we add all678

the vertices of G that are within distance rN/ε2 of some vertex of H` to H`. Now for each H` we679

have that the diameter (not just weak diameter) of H` is bounded by 3rN/ε2. Note that the set680

of clients and facilities of H` is the same as before (we do not bring in the clients and facilities681

that were outside of H` when adding vertices to bound the diameter). J682

Proof of Lemma 14. We construct a new graph G′ by selecting a subset of vertices from V (H`),683

denoted as V ′ (V ′ will be a “net”): start by adding an arbitrary vertex of V (H`) to V ′ and then684

iteratively include nodes from V (H`) that have a minimum Euclidean distance of at least 1/8685

from nodes in V ′ (alternatively we can think of picking a node from V (H`) to be added to V ′ and686

then deleting all the nodes within distance 1/8 of it from V (H`) iteratively). Note that after this687

round is done, |V ′| is O(Γ2). Furthermore, for each pair of vertices u, v ∈ V ′, if there is a vertex688

u′ within distance 1/8 of u in V (H`)− V ′ and a vertex v′ within distance 1/8 of v in V (H`)− V ′689

where u′v′ ∈ E(G) then add both u′, v′ to V ′. Note that in this case, uu′, vv′, u′v′ all are edges690

in G′. This augmentation results in the graph G′ (over V ′) with a total number of vertices of691

O(Γ4). We arbitrarily order the nodes of G′ and for each node v′ ∈ G′, we define B(v′) as the set692

of nodes in H` that lie inside the Euclidean ball of radius 1/8 centered at v′ but outside the balls693

of previously processed nodes. We focus on the UDG induced by G′.694

To see why we can focus on the net G′ and how it helps: each client and facility in the instance695

H` is moved to its nearest point in V ′ (keeping only the cheapest facility moved to a point v ∈ V ′696

if multiple move there). This instance has a solution of cost O(|C`|) more than with H` since697

each client moves at most two extra steps of distance ≤ 1/8. Conversely, given any solution to698

this new instance G′ we obtain a solution in H` by opening the same set of facilities except at699

their original locations. Again, clients move an additional O(1) each when translating from the700

solution in G′ to the solution in H`.701

So the total error will be at most O(|C`|) (whereas the cost of optimum for H` was at least702

O(N |C`|)). Also, it is easy to see that the size of the graph G′, is in terms of N now (O(Γ4)). J703

B PTAS for Facility Location on UDG in Bounded Regions704

In this section we present a PTAS for Facility Location in UDG in the special case that the705

point set P is contained within a bounding box of size L×L in the plane where L can be regarded706

as a constant, i.e. prove Theorem 4.707

Consider an instance of Facility Location consisting of an edge-weighted graph G =708

UDG(P ), a set of clients C ⊆ P , and a set of facilities F ⊆ P with opening costs fi (for each709

i ∈ F ). Let D∗ ⊆ F be the facilities in an optimum solution and let i∗j ∈ D∗ denote the facility710

that serves the client j in D∗. Suppose we know D∗ (this assumption will be removed) and let711

ε > 0 be the error parameter. We greedily form an ε-net F ′ as follows:712

Sort the facilities in D∗ by their opening costs in non-decreasing order.713

In this order, while there is some i ∈ D∗ such that dG(i, F ′) > ε, add i to F ′.714

This procedure ensures that the resulting F ′ forms an ε-net, where no facility in D∗ is at a715

distance greater than ε from F ′.716

B Claim 15. |F ′| ≤ O(L/ε2).717
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Proof. The balls of radius ε/2 centered at each point in F ′ are interior-disjoint. These balls718

collectively occupy a total area of Ω(ε2 · |F ′|). The proof follows from the fact that the balls are719

entirely contained within a square of side length L+ ε. J720

Now we divide the instance into sub-instances using a random grid of size 1/2 that splits the721

bounding box into squares of size at most 1/2× 1/2. Note dG(i, j) ≤ 1 for any two points i and722

j lying in the same cell. As a result, the metric between points within a cell can be treated as723

Euclidean distance. For any client j ∈ P , we say j is cut if j and i∗j lie in different grid cells. Let724

c∗j = dG(j, i∗j ).725

B Claim 16. For any point j ∈ P , Pr[j is cut] ≤ 2c∗j .726

Proof. This is obvious if c∗j ≥ 1/2, so let’s assume c∗j < 1/2. The probability that a horizontal727

line in the grid separates points p, q is at most |pq|. Same when considering vertical lines in728

the random grid. Since c∗j < 1/2, then the centre serving j has a direct connection with j so729

c∗j = dG(j, i∗) as well. J730

For each grid cell c, let Xc be the restriction of the points in the input to cell c. Recall that,731

in the prize-collecting version of the facility location problem (Prize Collecting Facility732

Location), in addition to the input for facility location, each client j is associated with a penalty733

cost πj . This penalty cost can be paid instead of the connection cost. The goal is to find an734

optimal solution that minimizes the total cost, including opening costs and both connection costs735

and penalties. Define an Euclidean Prize Collecting Facility Location instance for each736

cell c. For j ∈ Xc, its penalty is πj := dG(j, F ′). Let D∗c := (D∗ − F ′) ∩ Xc be the optimum737

facilities in cell c that are not part of the net.738

B Claim 17. The optimum Prize Collecting Facility Location solution for this instance739

has cost at most740 ∑
i∈D∗c

fi +
∑
j∈Xc

c∗j +
∑

j∈Xc:j cut
ε.741

Proof. Consider the solution that opens D∗c . If a point j is not cut, we can directly connect it742

to its centre in D∗c paying a cost of c∗j (since the cell c has dimensions 1/2× 1/2 then the direct743

connection is possible).744

Otherwise, we can pay the penalty for j. Note this is upper bounded by moving j to its745

optimum centre in D∗ (paying c∗j ) and then from there to the nearest net point (paying an746

additional ε). J747

Proof of Theorem 4. Consider the following algorithm:748

1. For all possible choices of F ′ ⊂ F with |F ′| ≤ O(L/ε2) do749

Partition the instance into sub-instances using a random grid of size 1/2 . Let C be the750

corresponding cells.751

For each c ∈ C run a PTAS on the corresponding Euclidean Prize Collecting Facility752

Location instance [6].753

Obtain a solution for the facility location instance: open all facilities in set F ′, as well as754

the facilities opened by PTASs in each cell. For every j ∈ P that paid a penalty in its755

corresponding Prize Collecting Facility Location instance, assign j to its nearest756

(in the UDG metric) facility in F ′.757

2. Output a minimum cost solution, among the solutions obtained.758
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It is sufficient to show that ε-net F ′ satisfies the claim. Using the previous claims, we obtain759

the following. The cost of opening all facilities in ε-net F ′ plus expected total cost of all Facility760

Location solutions for all cells c is at most:761 ∑
i∈D∗

fi +
∑
j∈Xc

(1 + 2 · ε) · c∗j ≤ (1 +O(ε))
( ∑
i∈D∗

fi +
∑
j∈P

c∗j
)

762

using the fact that for each client j, we always pay c∗j and, perhaps, an additional ε if j is cut.763

But j is cut with probability at most 2 · c∗j . J764
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