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Abstra
t

We study approximation algorithms and hardness of approximation for several versions of the problem

of pa
king Steiner trees. For pa
king edge-disjoint Steiner trees of undire
ted graphs, we show APX-

hardness for 4 terminals. For pa
king Steiner-node-disjoint Steiner trees of undire
ted graphs, we show

a logarithmi
 hardness result, and give an approximation guarantee of O(

p

n logn), where n denotes the

number of nodes. For the dire
ted setting (pa
king edge-disjoint Steiner trees of dire
ted graphs), we

show a hardness result of 
(m

1

3

��

) and give an approximation guarantee of O(m

1

2

+�

), where m denotes

the number of edges. We have similar results for pa
king Steiner-node-disjoint priority Steiner trees of

undire
ted graphs.

1 Introdu
tion

We study approximation algorithms and hardness of approximation for several versions of the problem of

pa
king Steiner trees. Given an undire
ted graph G = (V;E) and a set of terminal nodes T � V , a Steiner

tree is a 
onne
ted, a
y
li
 subgraph that 
ontains all the terminal nodes (nonterminal nodes, whi
h are


alled Steiner nodes, are optional). The basi
 problem of pa
king edge-disjoint undire
ted Steiner trees is

to �nd as many edge-disjoint Steiner trees as possible. Besides this problem, we study some other versions;

see below for details. All of the Steiner tree pa
king problems dis
ussed in this paper are NP-hard, although

some spe
ial 
ases may have polynomial-time algorithms.

We will use three-letter abbreviations to denote di�erent versions of the problem of pa
king Steiner

trees. The �rst letter is either I or G, and denotes whether or not all Steiner trees have identi
al terminal

sets. The se
ond letter is either D or U, and denotes whether the graph is dire
ted or undire
ted. The third

�
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letter is either E or V, and denotes whether the 
onstraints are on the edges or verti
es (e.g. edge-disjoint

or vertex-disjoint). Now we de�ne di�erent variations of the problem of pa
king disjoint Steiner trees.

IUE: The input to this version 
onsist of an undire
ted graph G = (V;E) with 
apa
ity 


e

on every

edge e 2 E, and a terminal set T � V . The goal is to �nd the maximum number of Steiner trees (ea
h

of whi
h 
ontains T ) su
h that every edge e 2 E is in at most 


e

Steiner trees. Therefore the problem of

pa
king edge-disjoint Steiner trees mentioned earlier is the spe
ial 
ase of IUE where every edge has unit


apa
ity. For this reason we 
all it the IUE-unit
ap problem.

GUE: This is a generalization of IUE. Here together with the undire
ted graph G = (V;E) with


apa
ities on the edges, we have ` terminal sets T

1

; : : : ; T

`

(where ` is polynomial in n) and the goal is to

�nd the maximum number of Steiner trees, su
h that ea
h Steiner tree 
ontains one of the terminal sets

T

1

; : : : ; T

`

, and ea
h edge e is 
ontained in � 


e

trees.

IUV: The problem is similar to IUE ex
ept that we have 
apa
ity 


v

on every vertex v (instead of


apa
ities on the edges) and the goal is to �nd the maximum number of Steiner trees su
h that every vertex

v is in at most 


v

Steiner trees. We assume that there are no edges between terminal nodes (i.e., T is an

independent set of G); this assumption may be enfor
ed by subdividing ea
h edge between two terminals

by inserting a distin
t Steiner vertex with unit 
apa
ity.

GUV: This is the generalization of IUV where the instan
e has ` terminal sets T

1

; : : : ; T

`

(where `

is polynomial in n) of G and the goal is to �nd the maximum number of Steiner trees, su
h that ea
h

Steiner tree 
ontains one of the terminal sets T

1

; : : : ; T

`

, and that ea
h Steiner vertex v is 
ontained in � 


v

trees. For this and other problems on pa
king (dire
ted or undire
ted) vertex-
apa
itated Steiner trees

with multiple terminal sets T

1

; : : : ; T

`

, our assumption is that ea
h Steiner tree H has an asso
iated index

i 2 f1; : : : ; `g su
h that H 
ontains T

i

, and any vertex of V � T

i

may be present in H as a Steiner vertex;

thus a Steiner tree with terminal set T

i

may 
ontain verti
es from (T

1

[ : : : [ T

`

)� T

i

as Steiner verti
es.

The problems de�ned above 
an also be 
onsidered when the input graph is dire
ted. Suppose G(V;E)

is a dire
ted graph, T � V a set of terminals, and r 2 T is a spe
i�ed root. A dire
ted Steiner tree rooted

at r is a rooted subtree of G that 
ontains a dire
ted path from r to t, for ea
h terminal t 2 T .

IDE and GDE: The instan
e to IDE is the same as that of IUE ex
ept that the graph is dire
ted

and there is a root r 2 T . The goal is to �nd the maximum number of dire
ted Steiner trees rooted at r

su
h that ea
h edge e is 
ontained in � 


e

dire
ted trees. The problem GDE is the generalization where

the instan
e has ` terminal sets T

1

; : : : ; T

`

and ` roots r

1

; : : : ; r

`

(where ` is polynomial in n, and r

i

2 T

i

,

i = 1; : : : ; `), and the goal is to �nd the maximum number of dire
ted Steiner trees, ea
h rooted at an r

i

and 
ontaining all the nodes in T

i

(for an i = 1; : : : ; `), su
h that ea
h edge e is 
ontained in � 


e

dire
ted

trees.

IDV and GDV: These problems are dire
ted versions of IUV and GUV. That is, we have a dire
ted

graph G, a 
apa
ity 


v

on every Steiner vertex v, and the goal is to �nd the maximum number of dire
ted

Steiner trees su
h that ea
h Steiner vertex v is 
ontained in � 


v

dire
ted trees. In IDV (similar to IDE)

there is only one terminal set and in GDV (similar to GDE) there are ` terminal sets T

1

; : : : ; T

`

.

The problem of pa
king edge-disjoint undire
ted Steiner trees in its full generality (i.e. GUE) has

appli
ations in VLSI 
ir
uit design (e.g., see [14, 24℄). Other appli
ations in
lude multi
asting in wireless

networks (see [10℄) and broad
asting large data streams, su
h as videos, over the Internet (see [17℄). There

is signi�
ant motivation from the areas of graph theory and 
ombinatorial optimization. Menger's theorem
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on pa
king edge-disjoint s; t-paths [8℄ 
orresponds to the spe
ial 
ase of pa
king edge-disjoint Steiner trees

on two terminal nodes (i.e., T = fs; tg). Another spe
ial 
ase is when all the nodes are terminals (i.e.,

T = V ). Then the problem is to �nd a maximum set of edge-disjoint spanning trees. This topi
 was studied

in the 1960's by graph theorists, and a min-max theorem was developed by Tutte and independently by

Nash-Williams [8℄. Subsequently, Edmonds and Nash-Williams derived su
h results in the more general

setting of the matroid interse
tion theorem. One 
onsequen
e is that eÆ
ient algorithms are available

via the matroid interse
tion algorithm for the 
ase of T = V . A set of nodes S is said to be �-edge


onne
ted if there exist � edge-disjoint paths between every two nodes of S. An easy 
orollary of the

min-max theorem of Nash-Williams and Tutte is that if the node set V is 2k-edge 
onne
ted, then the

graph has k edge-disjoint spanning trees. Re
ently, Kriesell [22℄ 
onje
tured an ex
iting generalization: If

the set of terminals is 2k-edge 
onne
ted, then there exist k edge-disjoint Steiner trees. He proved this for

Eulerian graphs by an easy appli
ation of the splitting-o� theorem together with the min-max theorem of

Nash-Williams and Tutte. Note that a 
onstru
tive proof of this 
onje
ture may give a 2-approximation

algorithm for IUE-unit
ap. Jain, Mahdian, and Salavatipour [17℄ gave an approximation algorithm with

guarantee (roughly)

jT j

4

. Moreover, using a versatile and powerful proof te
hnique (that we will borrow and

apply in the design of our algorithms), they showed that the fra
tional version of IUE-unit
ap has an �-

approximation algorithm if and only if the minimum-weight Steiner tree problem has an �-approximation

algorithm (Theorem 4.1 in [17℄). The latter problem is well studied and is known to be APX-hard. It

follows that IUE-unit
ap is APX-hard (Corollary 4.3 in [17℄). Frank et al. [11℄ gave a 3-approximation

algorithm for the spe
ial 
ase of IUE-unit
ap where no two Steiner nodes are adja
ent. Very re
ently Lau

[23℄, based on the result of Frank et al. [11℄, has given an O(1)-approximation algorithm for IUE-unit
ap

(but Kriesell's 
onje
ture remains open).

Several of our proof te
hniques are inspired by results for disjoint-paths problems in the papers by

Guruswami et al. [12℄, Baveja and Srinivasan [2℄, and Kolliopoulos and Stein [21℄. In these problems, we

are given a graph and a set of sour
e-sink pairs, and the goal is to �nd a maximum set of edge/node

disjoint sour
e-sink paths. Although there is no dire
t relation between IUE-unit
ap (i.e. edge-disjoint

Steiner trees) and edge-disjoint paths problems (neither problem is a spe
ial 
ase of the other one) GUE

is a 
ommon generalization of both these problems. Also, see Carr and Vempala [3℄ and Vempala and

V�o
king [25℄ for results on multi
ast 
ongestion.

The underlying assumption for most of our hardness results is P6=NP. Throughout, we use � to denote

any small positive real number. The number of nodes and edges of a graph are denoted by n and m,

respe
tively. Note that we use \vertex disjoint Steiner trees" to mean trees that are disjoint on the Steiner

verti
es (and of 
ourse they 
ontain all the terminal verti
es). Most of our hardness (of approximation)

results are presented for the most spe
ialized version from the relevant family of problems (e.g., Theorem 2.4

pertains to the spe
ial 
ase of IDE-unit
ap, namely, pa
king dire
ted edge-disjoint Steiner trees), and thus

we immediately get the same hardness result for all of the problems in the relevant family (e.g., Theorem

2.4 implies the same hardness result for GDE); but better hardness results may be known for the most

general problem in the relevant family (e.g., GDE 
ontains the problem of pa
king edge-disjoint paths

in dire
ted graphs, for whi
h a hardness lower bound of 
(m

1

2

��

) is known [12℄, hen
e this lower bound

applies to GDE). Most of our results on approximation algorithms and guarantees pertain to the most

general version in the relevant family of problems, and thus we immediately get the same approximation

guarantees for all of the problems in the relevant family, though better approximation guarantees may be

known for some spe
ialized problems in the relevant family.
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Consider the problems IUV, GUV, GUV-priority (to be de�ned later), and their spe
ial 
ases. Using

the fa
t that IUE-unit
ap is APX-hard, Flor�een et al. [10℄ showed that IUV-unit
ap is APX-hard. They

raised the question whether this problem is in the 
lass APX. We prove an 
(logn)-hardness result (lower

bound) for IUV-unit
ap. This shows that IUV-unit
ap is signi�
antly harder than IUE-unit
ap, and

settles (in the negative) the open question of Flor�een et al. [10℄. We give an approximation guarantee

(upper bound) of O(

p

n log n) for GUV, by an LP-based rounding algorithm. We study another natural

generalization of IUV, namely Pa
king undire
ted vertex-
apa
itated priority Steiner trees (IUV-priority

for short), whi
h is motivated by the Quality of Servi
e in network design problems (see [5℄ for appli
ations).

For IUV-priority (de�ned in Subse
tion 3.3), we show a lower-bound of 
(n

1

3

��

) on the approximation

guarantee; moreover, our approximation algorithm for GUV extends to GUV-priority to give a guarantee

of O(n

1

2

+�

). We mention that a hardness lower bound of 
(n

1

2

��

) is given in [12, Theorem 2℄ for another

spe
ial 
ase of GUV-priority, namely, the problem of pa
king vertex-disjoint priority s

i

; t

i

paths.

We prove stronger hardness results when the underlying graph is dire
ted. As mentioned earlier, one

spe
ial 
ase of GDE is the problem of pa
king edge-disjoint paths in a dire
ted graph, and a hardness

lower bound of 
(m

1

2

��

) is given in [12℄. We prove an 
(m

1

3

��

)-hardness result for IDE-unit
ap (whi
h is

another spe
ial 
ase ofGDE). Moreover, we give an approximation algorithm with a guarantee of O(m

1

2

+�

)

for GDE. For dire
ted graphs, IDE and IDV (and also GDE and GDV) are similar, see Theorem 2.1.

We get a lower-bound of 
(n

1

3

��

) on the approximation guarantee for IDV-unit
ap. Moreover, we give an

approximation algorithm with a guarantee of O(n

1

2

+�

) for GDV.

We now fo
us on hardness (of approximation) results for several versions of the problem of pa
king

Steiner trees (with identi
al terminal sets) when some of the key parameters are small. In parti
ular, we

dis
uss problems where the number of terminals is small, meaning jT j = O(1), and also problems where

the optimal value is small, meaning the number of Steiner trees in an optimal pa
king is either one or

two. Kaski [19℄ showed that the problem IUE-unit
ap is NP-hard even if the number of terminals is 7,

and moreover, the problem of �nding two edge-disjoint Steiner trees is NP-hard. Flor�een et al. [10℄ showed

that the spe
ial 
ase of the problem IUV-unit
ap with only 4 terminal nodes is NP-hard. Our hardness

results for small-parameter problems are as follows.

� Pa
king undire
ted edge-disjoint Steiner trees (IUE-unit
ap): We show that the spe
ial 
ase of the

problem with four terminal nodes is APX-hard. (An early draft of our paper proved, independently of [19℄,

that �nding two edge-disjoint Steiner trees is NP-hard.)

� Pa
king undire
ted vertex-disjoint Steiner trees (IUV-unit
ap): We show essentially the same hardness

results for IUV-unit
ap as for IUE-unit
ap, that is, the spe
ial 
ase of the problem with four terminal

nodes is APX-hard, and the problem of �nding two vertex-disjoint Steiner trees is NP-hard.

� Pa
king dire
ted edge-disjoint Steiner trees (IDE-unit
ap): We show that the problem of �nding two

edge-disjoint dire
ted Steiner trees with only three terminal nodes is NP-hard.

Table 1 summarizes the results of this paper and the previous works [10, 12, 17, 19, 23℄; results from

this paper are 
ited by theorem number, and results from other papers are indi
ated by 
iting the paper.

Very re
ently, we have obtained a randomized O(log n) approximation algorithm for IUV, using di�erent

methods from the ones used in this paper [6℄. This, together with Theorem 3.9, implies a threshold of

�(log n) for the hardness of IUV. This result will appear elsewhere.

For the problems IUV, IUV-priority, IDE, and IDV, we are not aware of any previous results on
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Table 1: Summary of results

Problem Approx.Guarantee Hardness Hardness for small parameters

IUE-unit
ap 26[23℄ APX-hard[17℄ APX-hard for 4 terminals (T3.3)

NP-hard for 2 trees[19℄

GUV O(log n

p

n) (T3.11)

IUV O(log n)[6℄

IUV-unit
ap 
(logn)-hard (T3.9) APX-hard for 4 terminals (T3.8)

NP-hard for 2 trees (T3.2)

GUV-priority O(n

1

2

+�

) (T3.12) 
(n

1

2

��

)[12℄

IUV-priority 
(n

1

3

��

)-hard (T3.15)

GDE O(m

1

2

+�

) (T2.15) 
(m

1

2

��

)[12℄

IDE-unit
ap 
(m

1

3

��

) (T2.8) NP-hard for 3 terminals and 2 trees (T2.3)

GDV O(n

1

2

+�

) (T2.16) 
(n

1

2

��

)[12℄

IDV-unit
ap 
(n

1

3

��

) (T2.4) NP-hard for 3 terminals and 2 trees (T2.2)

approximation algorithms or hardness results other than [10℄, although there is extensive literature on ap-

proximation algorithms for the 
orrespondingminimum-weight Steiner tree problems (e.g., [4℄ for minimum-

weight dire
ted Steiner trees and [20, 15℄ for minimum-node-weighted Steiner trees).

Se
tion 2 has our results on dire
ted graphs for problemsGDE, GDV, and their spe
ial 
ases. Se
tion

3 has our results on undire
ted graphs for problems IUE, GUV, GUV-priority, and their spe
ial 
ases.

2 Pa
king Dire
ted Steiner Trees

In this se
tion, we study the problem of pa
king dire
ted Steiner trees. We start with an auxiliary result:

The problems IDE and IDV are equivalent in the sense that there is a polynomial-time redu
tion from

either problem to the other problem that preserves the optimal value (number of Steiner trees in an optimal

pa
king). Then we present hardness results for IDE-unit
ap (i.e., edge-disjoint dire
ted 
ase), and these

immediately imply similar hardness results for IDV-unit
ap (i.e., dire
ted vertex-disjoint version). We

also present an approximation algorithm for GDE whi
h implies a similar approximation algorithm for

GDV. The proof of the following theorem is easy. The idea for the �rst dire
tion is to insert a new node

in every edge, and for the se
ond one is to split every vertex into two adja
ent verti
es.

Theorem 2.1 Given an instan
e I = (G(V;E); T � V ) of IDE (of IDV), there is an instan
e I

0

=

(G

0

(V

0

; E

0

); T

0

� V ) of IDV (of IDE) with jG

0

j = poly(jGj), su
h that I has k dire
ted Steiner trees

satisfying the 
apa
ities of the edges (verti
es) if and only if I

0

has k dire
ted Steiner trees satisfying the


apa
ities of the verti
es (edges). The same statement holds for GDE and GDV.

Proof: (1st dire
tion)

We insert a new Steiner node v

xy

in every edge xy, and we �x the 
apa
ity of v

xy

(in G

0

) to be the same

as the 
apa
ity of xy (in G). All the other Steiner nodes of G

0

(
orresponding to Steiner nodes of G) get

5



in�nite 
apa
ities. The root and the other terminals are the same in G and G

0

. It 
an be seen that G has k

(dire
ted) Steiner trees satisfying edge 
apa
ities if and only if G

0

has k (dire
ted) Steiner trees satisfying

vertex 
apa
ities.

(2nd dire
tion)

We 
onstru
t G

0

from G in the following way. For ea
h node v 2 V , G

0


ontains two nodes v

1

; v

2

. If v 2 T

then both v

1

and v

2

be
ome terminals in G

0

, and if r 2 T is the root then r

1

be
omes the root in G

0

. We

add v

1

v

2

to E

0

and give it the same 
apa
ity as vertex v in G. If v 2 T , then we give in�nite 
apa
ity to

v

1

v

2

. Furthermore, for every edge uv 2 E we 
reate an edge u

2

v

1

(with in�nite 
apa
ity) in E

0

and for

every edge vw 2 E we 
reate an edge v

2

w

1

(with in�nite 
apa
ity) in E

0

.

It is easy to see that if T is a 
olle
tion of k Steiner trees in G that satisfy vertex 
apa
ities then there

is a 
olle
tion T

0

of k Steiner trees in G

0

that satisfy edge 
apa
ities. Conversely, suppose that T

0

is a


olle
tion of k Steiner trees in G

0

satisfying edge 
apa
ities. Then for every edge v

1

v

2

(
orresponding to

a vertex v 2 V (G) with 
apa
ity 


v

in G) there are at most 


v

trees 
ontaining that edge. Therefore, by


ontra
ting the edges of the form v

1

v

2

on ea
h tree of T

0

we obtain a 
olle
tion of k Steiner trees in G su
h

that for every vertex v there are at most 


v

trees 
ontaining it.

2.1 Hardness results

First we prove that IDV-unit
ap is NP-hard even in the simplest non-trivial 
ase where there are only

three terminals (one root r and two other terminals) and we are asked to �nd only 2 vertex-disjoint Steiner

trees. The problem be
omes easy if any of these two 
onditions is tighter, i.e., if the number of terminals is

redu
ed to 2 or the number of Steiner trees that we have to �nd is redu
ed to 1. If the number of terminals

is arbitrary, then we show that IDV-unit
ap is NP-hard to approximate within a fa
tor of O(n

1

3

��

) for any

� > 0. The proof does not rely on the PCP theorem. Also, as we mentioned before, both of these hardness

results 
arry over to IDE. For both redu
tions, we use the following well-known NP-hard problem (see

[13℄):

Problem: 2DIRPATH:

Instan
e: A dire
ted graph G(V;E), distin
t verti
es x

1

; y

1

; x

2

; y

2

2 V .

Question: Are there two vertex-disjoint dire
ted paths, one from x

1

to y

1

and the other from x

2

to y

2

in

G?

Theorem 2.2 Given an instan
e of IDV-unit
ap with only three terminals (root r and two terminals t

1

and t

2

), it is NP-hard to de
ide if it has 2 vertex-disjoint dire
ted Steiner trees.

Proof: Let I = (G;x

1

; y

1

; x

2

; y

2

) be an instan
e of 2DIRPATH. Constru
t G

0

from G by adding three

terminal nodes, r; t

1

; t

2

with r being the root, and 
reating dire
ted edges rx

1

, rx

2

, y

1

t

1

, x

2

t

1

, y

2

t

2

, and x

1

t

2

.

We 
laim that I is a \Yes" instan
e if and only if G

0

has two Steiner trees rooted at r. If there are (vertex)

disjoint paths x

1

P

1

y

1

and x

2

P

2

y

2

in G then 
learly x

1

P

1

y

1

[frx

1

; y

1

t

1

; x

1

t

2

g and x

2

P

2

y

2

[frx

2

; y

2

t

2

; x

2

t

1

g

form two vertex-disjoint dire
ted Steiner trees. Conversely, if there are two vertex-disjoint dire
ted Steiner

trees T

1

and T

2

in G

0

then, sin
e r has only two outgoing edges, we may assume that rx

1

2 T

1

and rx

2

2 T

2

.

Therefore, there is a path from x

1

to t

1

in T

1

, whi
h must go through y

1

(sin
e x

2

is not in T

1

), and a path

6



from x

2

to t

2

in T

2

, whi
h must go through y

2

(sin
e x

1

is not in T

2

). These two paths are vertex-disjoint

be
ause T

1

and T

2

are vertex-disjoint.

From Theorems 2.1 and 2.2, it follows that:

Theorem 2.3 Given an instan
e I of IDE-unit
ap and only three terminals, (root r and two terminals

t

1

and t

2

) it is NP-hard to de
ide if it has 2 edge-disjoint dire
ted Steiner trees.

Now we show that, unless P=NP, any approximation algorithm for IDV-unit
ap has a guarantee of


(n

1

3

��

). A similar 
onstru
tion shows a hardness of 
(m

1

3

��

) for IDE-unit
ap.

Theorem 2.4 Given an instan
e of IDV-unit
ap, it is NP-hard to approximate the solution within O(n

1

3

��

)

for any � > 0.

Proof: We use a redu
tion from the 2DIRPATH problem. Our proof is inspired by a redu
tion used in

[12℄ for the edge-disjoint path problem. Assume that I = (G;x

1

; y

1

; x

2

; y

2

) is an instan
e of 2DIRPATH

and let � > 0 be given. We 
onstru
t a dire
ted graph H. First we 
onstru
t a graph G

0

whose underlying

stru
ture is shown in Figure 1. For N = jV (G)j

1=�

, 
reate two sets of verti
es A = fa

1

; : : : ; a

N

g and

B = fb

1

; : : : ; b

N

g. In the �gure, all the edges are dire
ted from top to bottom and from left to right. For

ea
h gray box, there is a vertex at ea
h of the four 
orners, and there are two edges, from left to right and

from top to bottom. This graph may be viewed as the union of N vertex-disjoint dire
ted trees T

1

; : : : ; T

N

,

where T

i

is rooted at a

i

and has paths to all the verti
es in B�fb

i

g. Ea
h tree T

i


onsists of one horizontal

path H

i

, whi
h is essentially the ith horizontal row above b

j

's, and starts with a

i

; v

i

1

; : : : and ends in v

i

N

,

together with N � 1 verti
al paths P

i

j

(1 � j 6= i � N), su
h that ea
h of these verti
al paths bran
hes out

from the horizontal path, starting at vertex v

i

j

and ending at vertex b

j

2 B. Ea
h vertex v

i

j

is in the ith

horizontal row, and is the start vertex of a verti
al path that ends at b

j

; note that there are no verti
es

v

i

i

. Also, note that ea
h gray box 
orresponds to a triple (i; j; `) where the box is in the ith horizontal

line and is in the verti
al path that starts at v

`

j

and ends at b

j

; the 
orner verti
es of the gray box are

labeled s

i

`j

; t

i

`j

; p

`

ji

; q

`

ji

for the left, right, top, and bottom 
orners, respe
tively. More spe
i�
ally, for T

1

the

horizontal and verti
al paths are: H

1

= a

1

; s

1

21

; t

1

21

; : : : ; s

1

N1

; t

1

N1

; v

1

2

; s

1

32

; t

1

32

; : : : ; v

1

3

; : : : ; v

1

N

, and P

1

j

= v

1

j

; b

j

,

for 2 � j � N . For T

2

the horizontal and verti
al paths are: H

2

= a

2

; v

2

1

; s

2

31

; t

2

31

; : : : ; s

2

N2

; t

2

N2

; v

2

3

; : : : ; v

2

N

,

and P

2

j

= v

2

j

; p

2

j1

; q

2

j1

; b

j

(for 1 � j 6= 2 < N), and P

2

N

= v

2

N

; b

N

. In general, for T

i

:

� H

i

= a

i

; v

i

1

; s

i

(i+1)1

; t

i

(i+1)1

; : : : ; s

i

N1

; t

i

N1

; v

i

2

; s

i

(i+1)2

; t

i

(i+1)2

; : : : ; s

i

N2

; t

i

N2

; v

i

3

; : : : ; v

i

N�1

; s

i

(i+1)(N�1)

;

t

i

(i+1)(N�1)

; : : : ; s

i

N(N�1)

; t

i

N(N�1)

; v

i

N

,

� For j 6= i < N : P

i

j

= v

i

j

; p

i

j(i�1)

; q

i

j(i�1)

; p

i

j(i�2)

; q

i

j(i�2)

; : : : ; p

i

j1

; q

i

j1

; b

j

, and P

i

N

= v

i

N

; b

N

.

Graph H is obtained from G

0

by making the following modi�
ations:

� For ea
h gray box, with 
orresponding triple say (i; j; `) and with verti
es s

i

`j

; t

i

`j

; p

`

ji

; q

`

ji

, we �rst

remove the edges s

i

`j

t

i

`j

and p

`

ji

q

`

ji

, then we pla
e a 
opy of graph G and identify verti
es x

1

; y

1

; x

2

,

and y

2

with s

i

`j

; t

i

`j

; p

`

ji

; and q

`

ji

, respe
tively.
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v

1

4

v

1

2

v

1

3

v

2

3

v

4

1

v

N�1

1

v

2

4

v

3

4

a

1

a

2

a

3

a

4

a

N�1

a

N

b

3

b

2

b

1

b

4

v

2

1

v

3

1

s

2

31

t

2

31

t

2

41

q

4

12

s

2

41

v

2

1

p

3

12

q

3

12

p

4

12

b

N�1

b

N

v

1

N�1

v

1

N

v

2

N

v

3

N

v

4

N

v

N�1

N

v

2

N�1

v

3

N�1

v

4

N�1

Figure 1: Constru
tion of H: ea
h gray box will be repla
ed with a 
opy of G

� Add a new vertex r (root) and 
reate dire
ted edges from r to a

1

; : : : ; a

N

.

� Create N new dire
ted edges a

i

b

i

, for 1 � i � N .

The set of terminals (for the dire
ted Steiner trees) is B[frg = fb

1

; : : : ; b

N

; rg. The proof follows from

the following two Lemmas.

Lemma 2.5 If I is a \Yes" instan
e of 2DIRPATH, then H has N vertex-disjoint dire
ted Steiner trees.

Proof: Consider the vertex-disjoint trees T

1

; : : : ; T

N

explained above. At every gray-box interse
tion with

verti
es s

i

��

; t

i

��

; p

�

�i

; q

�

�i

, instead of using edges s

i

��

t

i

��

and p

�

�i

q

�

�i

des
ribed in G

0

, we use the disjoint paths

that exist in the lo
al 
opy of G from s

i

��

(equivalent to x

1

in G) to t

i

��

(equivalent to y

1

in G) and from

p

�

�i

(equivalent to x

2

in G) to q

�

�i

(equivalent to y

2

in G). Now by adding edges ra

i

and a

i

b

i

to T

i

, we

obtain a Steiner tree for H. Thus H has N vertex-disjoint Steiner trees. This proves Lemma 2.5.

Lemma 2.6 If I is a \No" instan
e of 2DIRPATH, then H has exa
tly 1 vertex-disjoint dire
ted Steiner

tree.

Proof: First, note that H always has at least one Steiner tree, namely, the union of paths L

i

= r; a

i

; b

i

,

for 1 � i � N . Now assume that I is a \No" instan
e and by way of 
ontradi
tion assume that there is

a set T = fT

1

; : : : ; T

k

g, with k � 2, of vertex-disjoint Steiner trees in H. Note that ea
h a

i

belongs to at

most one Steiner tree T

�

2 T .

Claim 2.7 There 
annot be a dire
ted path from a

i

to any b

j

(with j > i) in any tree T

�

2 T .
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Proof: We prove this by indu
tion on i. For the basis of the indu
tion, 
onsider a

1

and suppose that

there is a path P

�

(a

1

; b

j

) from a

1

to b

j

(j � 2) in some tree T

�

2 T . Let T

�

2 T be another tree in T

and look at the path P

�

(r; b

1

) from r to b

1

in T

�

. Consider the embedding of these two paths P

�

(a

1

; b

j

)

and P

�

(r; b

1

) on the plane. There has to be an interse
ting point (on the horizontal path from a

1

to v

1

2

)

of these two paths. In other words, there has to be a gray-box in whi
h these two paths 
ross ea
h other

without having any vertex in 
ommon. But sin
e G is a \No" instan
e, this is not possible. So there is no

path from r to b

1

in any other tree T

�

2 T , a 
ontradi
tion.

For the indu
tion step, let i � 2 and assume that there is a path P

�

(a

i

; b

j

) from a

i

to b

j

(j > i) in some

tree T

�

2 T . Let T

�

2 T be any other tree in T and P

�

(r; b

i

) be a path from r to b

i

in T

�

. We assume this

path goes through a

l

, for some 1 � l � N . By indu
tion hypothesis, there is no path from a

1

; : : : ; a

i�1

to

b

i

in any tree. Also, a

i

2 T

�

. So l > i.

Again, if we 
onsider the embeddings of these two paths P

�

(a

i

; b

j

) and P

�

(r; b

i

) on the plane, there is

an interse
ting gray box in whi
h these two paths 
ross ea
h other without having any vertex in 
ommon.

But this is impossible be
ause G is a \No" instan
e. This proves Claim 2.7.

Therefore, the only possible path from r to b

N

goes through a

N

. Thus, there 
an be only one Steiner

tree in T : the one that 
ontains a

N

. This proves Lemma 2.6.

The number of 
opies of G in the 
onstru
tion of H is O(N

3

) where N = jV (G)j

1=�

. So the number of

verti
es in H is O(N

3+�

). By Lemmas 2.5 and 2.6 it is NP-hard to de
ide if H has at least N or at most

one dire
ted Steiner trees. This 
reates a gap of 
(n

1

3

��

). This proves Theorem 2.4.

For IDE-unit
ap we use a similar redu
tion. The only di�eren
es are: (i) the instan
e that we use as

the building blo
k in our 
onstru
tion (
orresponding to graph G above) is an instan
e of another well-

known NP-hard problem, namely edge-disjoint 2DIRPATH (instead of vertex-disjoint), (ii) the parameter

N above is jE(G)j

1=�

. Using this redu
tion we 
an show:

Theorem 2.8 Given an instan
e of IDE-unit
ap, it is NP-hard to approximate the solution within O(m

1

3

��

)

for any � > 0.

2.2 Approximation algorithms

In this se
tion we show that, although GDE is hard to approximate within a ratio of O(m

1

3

��

), there is

an approximation algorithm with a guarantee of O(m

1

2

+�

) (details in Theorem 2.15). The algorithm is

LP-based with a simple rounding s
heme similar to those in [2, 21℄. The main idea of the algorithm is to

start with one of the known approximation algorithms for �nding a Minimum-weight Dire
ted Steiner Tree.

Using this and an extension of Theorem 4.1 in [17℄, we obtain an approximate solution to the fra
tional

version of GDE. After that, a simple randomized rounding algorithm yields an integral solution. A similar

method yields an approximation algorithm for GDV that has a guarantee of O(n

1

2

+�

).

We may formulate GDE as an integer program (IP). Re
all that we have a digraph G(V;E), ` roots

r

1

; : : : ; r

`

, and ` sets of terminals T

1

; : : : ; T

`

. In the following, F denotes the 
olle
tion of all dire
ted

Steiner trees in G. We use F to denote an element of F , i.e., F denotes a dire
ted Steiner tree of G. For

ea
h F 2 F , there is an i 2 f1; : : : ; `g su
h that F 
ontains T

i

and has a dire
ted path from r

i

to ea
h

node in T

i

.

9



maximize

P

F2F

x

F

subje
t to 8e 2 E :

P

F :e2F

x

F

� 


e

8F 2 F : x

F

2 f0; 1g

(1)

The fra
tional pa
king edge 
apa
itated dire
ted Steiner tree problem (fra
tional GDE, for short) is

the linear program (LP) obtained by relaxing the integrality 
ondition in the above IP to x

F

� 0. For

any instan
e I of the (integral) pa
king problem, we denote the fra
tional instan
e by I

f

. The proof of

Theorem 4.1 in [17℄ 
an be easily adapted to prove the following:

Theorem 2.9 There is an �-approximation algorithm for fra
tional GDE if and only if there is an �-

approximation algorithm for the minimum (edge weighted) dire
ted Steiner tree problem.

Charikar et al. [4℄ gave an O(n

�

)-approximation algorithm for the minimum-weight dire
ted Steiner

tree problem. This, together with Theorem 2.9 implies:

Corollary 2.10 There is an O(n

�

)-approximation algorithm for fra
tional GDE.

The key lemma in the design of our approximation algorithm for GDE is as follows.

Lemma 2.11 Let I be an instan
e of GDE, and let '

�

be the (obje
tive) value of a (not ne
essarily

optimal) feasible solution fx

�

F

: F 2 Fg to I

f

su
h that the number of non-zero x

�

F

's is polynomially

bounded and ea
h x

�

F

< 1. Then, we 
an �nd in polynomial time, a solution to I with value at least


(maxf'

�

=

p

m; minf'

�

2

=m; '

�

gg).

Proof: We will use the following simple and well-known deviation bound.

Lemma 2.12 (Cherno�-Hoe�ding Bounds) Let X

1

;X

2

; : : : ;X

q

be a set of q independent random variables

with X

i

2 f0; 1g and let X =

P

q

i=1

X

i

. Then for 0 � Æ < 1:

Pr[X < (1� Æ)E[X℄℄ � e

�Æ

2

E[X℄=2

:

The following simple lemma has been used (with k = 2) in [2℄:

Lemma 2.13 Assume that A = fa

1

; : : : ; a

n

g is a set of n non-negative reals and let A

k

be the set of all

subsets of size k of A. If

P

n

i=1

a

i

� Q , then

P

fa

i

1

;:::;a

i

k

g2A

k

a

i

1

a

i

2

: : : a

i

k

�

�

n

k

�

(Q=n)

k

.

Proof: For �; � 2 f1; : : : ; ng, if a

�

< a

�

, then adding any 0 < � � a

�

� a

�

to a

�

and subtra
ting it from

a

�

will in
rease the value of

P

a

i

1

a

i

2

: : : a

i

k

, while keeping the

P

n

i=1

a

i

un
hanged. So the maximum value

of

P

a

i

1

a

i

2

: : : a

i

k

is obtained when all a

�

's are equal. This proves Lemma 2.13.

If '

�

� 10e

p

m (e is the base of natural logarithm) then it is enough to just �nd one Steiner tree and

return it. So from now on we assume that '

�

� 10e

p

m. For every tree F 2 F for whi
h x

�

F

> 0, let's pi
k

10



that tree with probability x

�

F

=�, for some � � 1 to be de�ned later. Note that we assumed x

�

F

< 1. Let

X

F

be the random variable that is 1 if we pi
k tree F and 0 otherwise. Then for X =

P

F2F

X

F

(i.e. the

total number of trees pi
ked by the algorithm), we have:

E[X℄ =

X

F2F

Pr[X

F

= 1℄ =

X

F2F

x

�

F

�

=

'

�

�

:

For every edge e 2 E, de�ne the bad event A

e

to be the event that the 
apa
ity 
onstraint of e is

violated, i.e. more than 


e

trees 
ontaining e are pi
ked. Our goal is to show that with some positive

probability, none of these bad events happen (i.e. all A

e

's hold) and that the total number of trees pi
ked

is not too small. We want to �nd a good upper bound for Pr[A

e

℄. For every edge e, denote the number of

trees F with x

�

F

> 0 that 
ontain e by  

e

. By this de�nition:

Pr[A

e

℄ �

X




e

+1

Y

i=1

x

�

T

a

i

=�;

where the summation is over all subsets fF

a

1

; : : : ; F

a




e

+1

g of size 


e

+1 of trees with x

�

F

a

i

> 0 that 
ontain

edge e. Therefore, using Lemma 2.13:

Pr[A

e

℄ �

�

 

e




e

+ 1

��




e

� 

e

�




e

+1

�

�

e 

e




e

+ 1

�




e

+1

�




e

� 

e

�




e

+1

�

e

2

�

2

;

where we have used the fa
t

�

n

k

�

� (

en

k

)

k

for the se
ond inequality. It is intuitively 
lear that if A

e

holds

then it does not in
rease the probability of any other A

e

0

. In other words, events A

e

are \positively


orrelated". This will be formalized in the following lemma that follows easily from FKG inequality (of

Fortuine-Ginibre-Kasteleyn):

Lemma 2.14 Pr[

V

e2E

A

e

℄ �

Q

e2E

Pr[A

e

℄ � (1�

e

2

�

2

)

m

.

So, the probability that at least one event A

e

happens is at most 1 � (1 � e

2

=�

2

)

m

. Also, by Lemma

2.12, for 0 � Æ < 1: Pr[X < (1� Æ)E[X℄℄ � e

�Æ

2

'

�

=2�

. Thus:

Pr[(X < (1� Æ)E[X℄) _ (9e 2 E : A

e

)℄ � e

�Æ

2

'

�

=2�

+ 1� (1� e

2

=�

2

)

m

:

Using the approa
h of [2℄ (whi
h is essentially the method of 
onditional probability), if we 
an show that

for suitable Æ and �: (1 � e

2

=�

2

)

m

> e

�Æ

2

'

�

=2�

then we 
an eÆ
iently �nd a sele
tion of trees su
h that

X � (1� Æ)'

�

=� and that no edge 
onstraint is violated.

Case 1: If '

�

� m and we set Æ =

1

2

and � = e

p

m, then (re
all that '

�

� 10e

p

m) we 
an �nd a


olle
tion F

0

� F of dire
ted Steiner trees that obey the edge 
apa
ities with jF

0

j � '

�

=2e

p

m.

Case 2: If '

�

� m then by setting Æ =

1

2

and � = 32em='

�

, we 
an �nd a 
olle
tion F

0

� F of dire
ted

Steiner trees that obey the edge 
onstraints with jF

0

j � '

�

2

=64em.

Case 3: if '

�

> m then there is a 
onstant 


0

> 0 su
h that with Æ =

1

2

and � = 


0

: (1 � e

2

=�

2

)

m

>

e

�Æ

2

'

�

=2�

. Again, we 
an �nd a 
olle
tion F

0

� F of dire
ted Steiner trees with jF

0

j �

'

�

2


0

. This proves

Lemma 2.11.
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Theorem 2.15 Let � > 0 be a 
onstant. There is a polynomial-time algorithm for GDE that �nds a set

of dire
ted Steiner trees (satisfying the edge 
apa
ity 
onstraints) of size 
(maxf'

f

=m

1+�

2

; '

2

f

=m

1+�

g) if

'

f

� m, and of size 
('

f

=m

�

2

) otherwise, where '

f

denotes the optimal value of the instan
e of fra
tional

GDE.

Proof: Let I

f

be the fra
tional instan
e. By Corollary 2.10, we 
an �nd an approximate solution x with

obje
tive value '

�

for I

f

su
h that '

�

� 
'

f

=m

�

2

for some 
onstant 
 and the given � > 0.

Then we apply a prepro
essing step to the fra
tional solution x. For every Steiner tree F with x

F

� 1

we \take out" bx

F


 
opies of that tree and put it in the �nal integral solution, we de
rease x

F

by bx

F


,

and also we update the 
apa
ities of the edges a

ordingly. This de
omposes x into a (multi)set of Steiner

trees F

1

and a fra
tional part (with ea
h entry x

F

< 1). We will \round" the fra
tional part x to an

integer solution (using Lemma 2.11). For the rest of the proof we may assume that the fra
tional solution

x has ea
h entry < 1, sin
e the other 
ase redu
es to this one.

Note that the approximate fra
tional solution x 
ontains only a polynomial number of Steiner trees

with non-zero fra
tional values (this follows from the proof of Theorem 2.9 whi
h is essentially the same

as Theorem 4.1 in [17℄). If we substitute '

�

in Lemma 2.11 we obtain an approximation algorithm that

�nds a set F

0

of dire
ted Steiner trees su
h that F

0

has the required size.

For GDV we do the following. Given an instan
e I of GDV with graph G(V;E) and terminal sets

T

1

; : : : ; T

`

� V (with jV j = n and jEj = m), we �rst apply Theorem 2.1 to produ
e an instan
e I

0

of GDE with graph G

0

(V

0

; E

0

) and terminal sets T

0

1

; : : : ; T

0

`

� V

0

. By the 
onstru
tion of G

0

we have

jV

0

j = 2jV j = 2n and there are at most n edges in E

0

with bounded 
apa
ities (
orresponding to the

verti
es of G). Therefore, if we use the algorithm of Theorem 2.15, the number of bad events will be n,

rather than m. Using this observation we have the following:

Theorem 2.16 Let � > 0 be a 
onstant. There is a polynomial-time algorithm for GDV that �nds a set

of dire
ted Steiner trees (satisfying the vertex 
apa
ity 
onstraints) of size 
(maxf'

f

=n

1+�

2

; '

2

f

=n

1+�

g) if

'

f

� n, and of size 
('

f

=n

�

2

) otherwise, where '

f

denotes the optimal value of the instan
e of fra
tional

GDV.

3 Pa
king Undire
ted Steiner Trees

For pa
king edge-disjoint undire
ted Steiner trees (IUE-unit
ap), Jain et al. [17℄ showed that the (general)

problem is APX-hard, and Kaski [19℄ showed the spe
ial 
ase of the problem with only 7 terminal nodes

is NP-hard. Here we show that IUE-unit
ap is APX-hard even when there are only 4 terminals. In an

early draft of this paper we also showed, independently of [19℄, that �nding two edge-disjoint Steiner trees

is NP-hard. Both of these hardness results 
arry over (using similar 
onstru
tions) to IUV-unit
ap. The

following observation will be used in our proofs:

Observation 3.1 For any solution of any of our Steiner tree pa
king problems, we may assume that: (1)

In any Steiner tree, none of the leaves is a Steiner node (otherwise we simply remove it). (2) Every Steiner

node with degree 3 belongs to at most one Steiner tree.
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3.1 Hardness results for small-parameter problems

Using the above observation, the proof of NP-hardness for �nding two edge-disjoint Steiner trees (for

instan
e see [19℄) implies the following theorem.

Theorem 3.2 Finding 2 undire
ted vertex disjoint Steiner trees is NP-hard.

Theorem 3.3 IUE-unit
ap is APX-hard even if there are only 4 terminals.

Proof: We use a redu
tion from Bounded 3-Dimensional Mat
hing (B3DM). Assume that we are given

three disjoint setsX;Y;Z (ea
h 
orresponding to one part of a 3-partite graphG), with jXj = jY j = jZj = n,

and a set E � X � Y � Z 
ontaining m triples. Furthermore, we assume that ea
h vertex in X [ Y [ Z

belongs to at most 5 triples. It is known [18℄ that there is an absolute 
onstant �

0

> 0 su
h that it is

NP-hard to distinguish between instan
es of B3DM where there is a perfe
t mat
hing (i.e., n vertex-disjoint

triples) and those in whi
h every mat
hing (set of vertex-disjoint triples) has size at most (1��

0

)n. Assume

that x

1

; : : : ; x

n

, y

1

; : : : ; y

n

, and z

1

; : : : ; z

n

are the nodes of X, Y , and Z, respe
tively. We 
onstru
t a graph

H whi
h 
onsists of:

� 4 terminals t

x

, t

y

, t

z

, and t

yz

.

� Non-terminals x

1

; : : : ; x

n

, y

1

; : : : ; y

n

, and z

1

; : : : ; z

n

(
orresponding to the nodes inX;Y;Z), x

0

1

; : : : ; x

0

m�n

,

y

0

1

; : : : ; y

0

m�n

, and z

0

1

; : : : ; z

0

n

.

� Two non-terminals U and W .

� Edges t

x

x

i

, t

y

y

i

, t

z

z

0

i

, z

0

i

z

i

, and t

yz

z

0

i

, for 1 � i � n.

� Edges t

x

x

0

i

, x

0

i

y

0

i

, x

0

i

U , y

0

i

t

y

, and y

0

i

t

yz

, for 1 � i � m� n.

� m� n parallel edge from W to t

z

.

� For ea
h triple e

q

= x

i

y

j

z

k

2 E, 3 non-terminals v

q




; v

q

x

; v

q

z

and the following edges: v

q

x

x

i

, v

q




y

j

, v

q

z

z

k

,

v

q




v

q

x

, v

q




v

q

z

, v

q

x

U , and v

q

z

W .

See Figure 2. Now we prove that (a)[
ompleteness℄ if G has a perfe
t mat
hing then H has m edge-

disjoint Steiner trees and (b)[soundness℄ if every mat
hing in G has size at most (1 � �

0

)n then H has at

most (1� �

1

)m edge-disjoint Steiner trees, for �

1

� �

0

=110.

Lemma 3.4 (
ompleteness) If G has a perfe
t mat
hing M = fe

a

1

; e

a

2

; : : : ; e

a

n

g then H has m edge-

disjoint Steiner trees.

Proof: For ea
h triple e

q

= x

i

y

j

z

k

2 M we 
onstru
t a tree T

q

by using the following edges: t

x

x

i

, t

y

y

j

,

t

z

z

0

k

, z

0

k

z

k

, x

i

v

q

x

, v

q

x

v

q




, v

q




y

j

, v

q




v

q

z

, v

q

z

z

k

, and z

0

k

t

zy

. (See the tree shown by bold lines in Figure 2). This

gives a set S

1

of n edge-disjoint trees. Without loss of generality assume that e

1

; : : : ; e

m�n

are the triples

that are not in M . For ea
h triple e

p

= x

i

0

y

j

0

z

k

0

62M , 1 � p � m� n, we 
onstru
t a tree T

p

by using the

13



t

y

t

x

t

yz

y

1

y

j

y

n

y

0

m�n

x

0

1

x

0

m�n

U

v

q




v

q

x

x

1

x

i

x

n

W

t

z

v

q

z

z

n

z

0

n

z

k

z

0

k

z

1

z

0

1

y

0

1

m edges

m� n edges

m edges

Figure 2: Constru
tion with 4 terminals from B3DM

following edges: t

x

x

0

p

, x

0

p

y

0

p

, y

0

p

t

y

, y

0

p

t

yz

, x

0

p

U , Uv

p

x

, v

p

x

v

p




, v

p




v

p

z

, v

p

z

W , and (one of the parallel edges) Wt

z

.

This gives a set S

2

of m� n edge-disjoint trees. It is not hard to see that all these trees in S

1

and S

2

are

edge-disjoint. This proves Lemma 3.4.

Now assume that H has a set T = fT

1

; : : : ; T

m

0

g of edge-disjoint Steiner trees, withm

0

at least (1��

1

)m.

Our goal is to show that, G will have a mat
hing of size at least (1� 110�

1

)n.

Claim 3.5 There is a subset T

0

� T of size at least (1 � 11�

1

)m su
h that every tree T

i

2 T

0

has the

following properties: (i) all the terminals have degree 1, and (ii) there is exa
tly one (unique) vertex v

q




(for some 1 � q � m) in T

i

and furthermore both v

q

x

v

q




and v

q




v

q

z

are in T

i

, and there is no q

0

6= q for whi
h

v

q

0

x

or v

q

0

z

is in T

i

.

Proof: Sin
e degree of t

x

is exa
tly m in H, there are at most �

1

m trees in T in whi
h t

x

is not a leaf. To

see this, let � be the number of Steiner trees in T that ea
h have at least 2 edges in
ident with t

x

; sin
e

these trees \use" at least 2� edges in
ident with t

x

, there are at most m � 2� other Steiner trees in T ;

then we have m� �

1

m � jT j � m� �, and this implies that � � �

1

m. The same 
laim applies to all the

terminals, be
ause they all have degree exa
tly m.

It follows that there is a set T

00

� T of size at least (1� 3�

1

)m of trees in whi
h t

yz

and t

y

both have

degree 1. For ea
h tree of T

00

, there is at least one 1 � q � m, su
h that the path that 
onne
ts t

z

to t

x

goes through edge v

q

z

v

q




. To see this note that t

yz

has degree 1 in every tree of T

00

, hen
e, for ea
h of these

trees, the t

z

; t

x

path does not use any edge in
ident to t

yz

; moreover, if we delete t

yz

and all the edges

v

q

z

v

q




for q = 1; : : : ;m, then t

x

and t

z

are dis
onne
ted; thus the t

z

; t

x

path must use one of the edges v

q

z

v

q




.

Then the number of trees in T

00

that have at least two verti
es v

q




and v

q

0




is at most 3�

1

m; also, the same


laim holds for verti
es v

q

z

and v

q

0

z

. (To see this, let � be the number of trees in T

00

that ea
h have at least

2 verti
es v

q




and v

q

0




; note that the verti
es v

q




and v

q

z

have degree 3 so by Observation 3.1(2) ea
h su
h

vertex is in at most one tree; then there are at most m�2� other trees in T

00

, sin
e ea
h of the trees in T

00

has a vertex v

q

z

; thus we have (1� 3�

1

)m � jT

00

j � m��, and this implies that � � 3�

1

.) Therefore, there
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is a set T

�

� T

00

of size at least (1� 6�

1

)m of trees for whi
h there is a unique q su
h that both v

q




and v

q

z

are in the tree and there is no q

0

6= q su
h that either v

q

0




or v

q

0

z

is in the tree. Similarly, sin
e t

y

has degree

1, in every tree of T

00

, the path between t

z

and t

x


annot 
ontain t

y

. Hen
e, ea
h tree of T

00


ontains at

least one vertex v

p

x

, for some 1 � p � m. In parti
ular ea
h tree of T

�

that 
ontains v

q




and v

q

z

(for some

1 � q � m), 
ontains v

q

x

as well. Then the number of trees in T

00

that have at least 2 verti
es v

p

x

is at most

3�

1

m. Thus, at least (1 � 6�

1

� 3�

1

)m of the trees in T

�

do not violate 
ondition (ii). There are at most

2�

1

m trees in T

00

su
h that either t

x

or t

z

is a non-leaf (by the argument at the start of this proof). Hen
e,

the number of trees that violate neither (i) nor (ii) is at least (1� 9�

1

� 2�

1

)m = (1� 11�

1

)m. This proves

Claim 3.5.

Consider a set T

0

of Steiner trees of H as des
ribed in the previous 
laim. Note that jT

0

j � (1�11�

1

)m.

Pi
k any tree T

a

2 T

0

that 
ontains t

x

x

0

i

for some 1 � i � m� n. Clearly the path that 
onne
ts t

x

to t

z

goes through the unique vertex v

q




that belongs to T

a

(be
ause t

yz

has degree 1). We 
laim that y

0

i


annot

belong to any tree in T

0

other than T

a

. Otherwise, let y

0

i

2 T

b

, for some b 6= a. Therefore, be
ause x

0

i

62 T

b

and by Observation 3.1(1), t

y

y

0

i

and t

yz

y

0

i

must be in T

b

. But sin
e both t

y

and t

yz

are leaves in every tree

in T

0

and in parti
ular in T

b

, y

0

i

x

0

i

must be in T

b

, a 
ontradi
tion. Then we may add y

0

i

to T

a

(if it is not

already in T

a

), and add the edges y

0

i

t

y

and y

0

i

t

yz

(if other edges are in
ident to t

y

or t

yz

, then we remove

those edges). We still have a Steiner tree whi
h is edge-disjoint from the other trees in T

0

. We apply this

modi�
ations for any tree T

a

2 T

0

that 
ontains some edge t

x

x

0

i

for some 1 � i � m� n.

Claim 3.6 There is a set T

00

� T

0

of size at least (1� 22�

1

)m su
h that every tree in T

00


ontains at most

one vertex from Q = fy

0

1

; : : : ; y

0

m�n

g [ fz

0

1

; : : : ; z

0

n

g.

Proof: Sin
e all verti
es in Q have degree 3, ea
h of them belongs to at most one Steiner tree. So, on
e a

vertex v 2 Q is in a tree T

a

2 T

0

then the edges t

yz

v 
annot be in any other tree in T

0

. Therefore, if there

are � trees in T

0

that ea
h 
ontain two or more verti
es from Q, then they \use" at least 2� edges in
ident

with t

yz

, and there 
an be at mostm�2� other Steiner trees in T

0

. Then we havem�11�

1

m � jT

0

j � m��,

and this implies that � � 11�

1

m. We remove from T

0

all the trees that have � 2 verti
es from Q. This

gives the desired set T

00

, and this proves Claim 3.6.

Consider the subset T

00

� T

0

as de�ned in the previous 
laim. Re
all that for every tree T

a

2 T

00

, (i)

terminals have degree 1, (ii) there is one unique vertex v

q




in T

a

and both edges v

q




v

q

x

and v

q




v

q

z

are in T

a

, and

(iii) there is no other vertex v

q

0

x

or v

q

0

z

in T

a

, for q

0

6= q, (iv) there is at most one vertex from set Q in T

a

, and

(v) if t

x

x

0

i

2 T

a

for some 1 � i � m�n then t

y

y

0

i

, t

yz

y

0

i

, and y

0

i

x

0

i

are all in T

a

, and therefore no vertex from

fz

0

1

; : : : ; z

0

n

g is in T

a

, i.e., the edge in
ident with t

z

in T

a

is t

z

W . Remove all the trees in T

00

that satisfy


ondition (v) above to obtain set T

new

. Sin
em � 5n, we have jT

new

j � (1�22�

1

)m�(m�n) � (1�110�

1

)n.

Lemma 3.7 (soundness) T

new

indu
es a mat
hing of size jT

new

j in G.

Proof: By de�nition of T

new

, in every tree T

a

2 T

new

: (i) t

x

and t

y

and t

z

are adja
ent to verti
es x

i

, y

j

,

and z

0

k

, respe
tively (for some unique 1 � i; j; k � n), and z

0

k

z

k

2 T

a

, and (ii) there is exa
tly one (unique)

v

q




that belongs to T

a

, and v

q

x

v

q




2 T

a

and v

q




v

q

z

2 T

a

, and (iii) there is no other vertex v

q

0

x

or v

q

0

z

in T

a

, that

is x

i

v

q

x

2 T

a

and v

q

z

z

k

2 T

a

and v

q




y

j

2 T

a

. This implies that T

a

indu
es a triple (x

i

; y

j

; z

k

) in the 3-partite

graph G. Sin
e the trees in T

new

are edge-disjoint and moreover, ea
h of these trees 
ontains exa
tly one
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node from ea
h of the 3 sets fx

1

; : : : ; x

n

g, fy

1

; : : : ; y

n

g, fz

1

; : : : ; z

n

g, it follows that these jT

new

j triples are

vertex-disjoint. Thus they form a mat
hing of size at least (1� 110�

1

)n in G. This proves Lemma 3.7.

By Lemma 3.7, if every mat
hing in G has size at most (1 � �

0

)n then H has at most (1 � �

0

=110)m

edge-disjoint Steiner trees. This 
ompletes the proof of Theorem 3.3.

The 
onstant 110 in the above theorem is not optimal. We 
an �nd expli
it lower bounds for the

hardness of IUE-unit
ap with 
onstant number of terminals using the known hardness results for kDM,

for higher values of k. For instan
e, Chleb��k and Chleb��kov�a [7℄ proved that 4DM (with upper bounds on

the degree of ea
h vertex) is hard to approximate within a fa
tor

48

47

. Using this and a redu
tion similar to

the one presented in Theorem 3.3 it seems possible to show that IUE-unit
ap with 5 terminals is hard to

approximate within a fa
tor (1 +

1

2000

). The proof of Theorem 3.3 extends to give the next result.

Theorem 3.8 IUV-unit
ap is APX-hard with only 4 terminals.

Proof: First, we prove APX-hardness with only 6 terminals, by using the same redu
tion as in Theorem

3.3. The only di�eren
e is that verti
es U and W are also terminals in the 
onstru
tion. Now it is not

hard to prove that: (i) if the given 3-partite graph G has a perfe
t mat
hing then H has m vertex disjoint

Steiner trees, and (ii) if every mat
hing in G has size at most (1 � �

0

)n then H has at most (1 � �

1

)m

vertex-disjoint Steiner trees, where �

1

is within a 
onstant fa
tor of �

0

. We skip the details.

A more 
areful redu
tion similar to the one in Theorem 3.3 improves the number of terminals from 6

to 4. The basi
 
hange is to repla
e U with m � n 
opies of it u

1

; : : : ; u

m�n

. We have an edge from x

0

i

to ea
h u

i

(for i = 1; : : : ;m � n). We 
onne
t every u

1

; : : : ; u

m�n

to every vertex v

q

x

(for q = 1; : : : ;m).

We do similar 
hanges for W , that is, we repla
e it with m� n 
opies w

1

; : : : ; w

m�n

, and 
onne
t ea
h of

w

1

; : : : ; w

m�n

to t

z

and to ea
h vertex v

q

z

(for q = 1; : : : ;m). We skip the details as they are similar to

those of Theorem 3.3.

3.2 The unrestri
ted IUV and GUV problems

The next theorem shows that IUV-unit
ap is signi�
antly harder than IUE-unit
ap. We show this by

a redu
tion from the set-
over pa
king problem (or domati
 number problem). Given a bipartite graph

G(V

1

[ V

2

; E), a set-
over (of V

2

) is a subset S � V

1

su
h that every vertex of V

2

has a neighbor in S.

A set-
over pa
king is a 
olle
tion of pairwise disjoint set-
overs of V

2

. The goal is to �nd a pa
king of

set-
overs of maximum size. Feige et al. [9℄ show that, unless P=NP, there is no o(log n)-approximation

algorithm for set-
over pa
king, where n = jV

1

j+ jV

2

j. We have the following theorem.

Theorem 3.9 IUV-unit
ap, even restri
ted to the 
ase that both the set of terminals and the set of

Steiner nodes are independent, 
annot be approximated within ratio 


0

logn, for some 
onstant 


0

> 0,

unless P=NP.

Proof: Given a bipartite graph G(V

1

[ V

2

; E) as the instan
e of set-
over pa
king problem, the instan
e

for IUV-unit
ap problem will be G

0

that is obtained from G by adding a vertex t

0

and 
onne
ting it to

all the verti
es in V

1

. Let the terminal set of G

0

be t

0

[ V

2

. We 
laim that G

0

has set-
over pa
king of size

p if and only if G

0

has p vertex-disjoint Steiner trees. If sets S

1

; : : : ; S

p

form a set-
over pa
king then it is
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easy to see that T

i

= S

i

[ V

2

[ ft

0

g, for 1 � i � p, forms a set of vertex-disjoint Steiner trees. Conversely,

if T

1

; : : : ; T

p

are vertex-disjoint Steiner trees then, sin
e V

2

is an independent set, for ea
h T

i

there has to

be a set S

i

� V

1

of verti
es su
h that every vertex in V

2

has a neighbor in S

i

in order to be 
onne
ted to

the rest of the tree.

On the other hand, we obtain an O(

p

n log n) algorithm for GUV (whi
h 
ontains IUV-unit
ap as a

spe
ial 
ase). To do so, 
onsider the fra
tional version of GUV obtained by relaxing the integrality 
ondi-

tion in the IP formulation. The separation problem for the dual of this LP is the minimum node-weighted

Steiner tree problem. For this problem, [20℄ and and [15℄ give O(log n) approximation algorithms. Using

the following analog of Theorem 2.9 (or Theorem 4.1 in [17℄) we obtain a polytime O(log n)-approximation

algorithm for fra
tional GUV.

Lemma 3.10 There is an �-approximation for fra
tional GUV if and only if there is an �-approximation

for the minimum node-weighted Steiner tree problem.

Remark: Lemma 3.10 and the fa
t that the minimum node-weighted Steiner tree problem is hard to

approximate within O(log k) (with k being the number of terminals) yields an alternative proof for the


(log k) hardness of IUV-unit
ap.

The algorithm for GUV is similar to the ones we presented for GDE and GDV. That is, we apply

randomized rounding to the solution of the fra
tional GUV instan
e. Skipping the details, this yields the

following:

Theorem 3.11 Let � > 0 be a 
onstant. There is a polynomial-time algorithm for GUV that �nds a

set of Steiner trees (satisfying the vertex 
apa
ity 
onstraints) of size 
(maxf'

f

=

p

n log n; '

2

f

=n log

2

ng) if

'

f

� n, and of size 
('

f

= log n) otherwise, where '

f

denotes the optimal value of the instan
e of fra
tional

GUV.

3.3 Pa
king vertex-disjoint priority Steiner trees

The priority Steiner tree problem has been studied by Charikar et al. [5℄. Here, we study the problem of

pa
king vertex-disjoint priority Steiner trees of undire
ted graphs. (One di�eren
e with the earlier work in

[5℄ is that we asso
iate weights and priorities with verti
es rather than with edges.) Consider an undire
ted

graph G = (V;E) with a set of terminals T � V , one of whi
h is distinguished as the root r. Let every

vertex v have a nonnegative integer p

v

as its priority, and let every vertex v have a nonnegative integer 


v

as

its 
apa
ity. A priority Steiner tree is a Steiner tree su
h that for ea
h terminal t 2 T every vertex v on the

r; t path has priority p

v

� p

t

. In the problem IUV-priority (pa
king undire
ted vertex-
apa
itated priority

Steiner trees) the goal is to �nd a maximum set of priority Steiner trees obeying vertex 
apa
ities (i.e., for

ea
h Steiner vertex v 2 V �T the number of trees 
ontaining v is � 


v

). In the problem GUV-priority, we

have ` sets of terminals T

1

; : : : ; T

`

and ` roots r

1

; : : : ; r

`

(where r

i

2 T

i

, for i = 1; : : : ; `, and ` is polynomial

in n), and the goal is to �nd a maximum set of trees obeying the vertex 
apa
ities, where ea
h of these

trees must have an i 2 f1; : : : ; `g su
h that the tree is a priority Steiner tree with root r

i

and terminal

set T

i

(that is, the tree 
ontains all the nodes in T

i

and for ea
h t 2 T

i

every vertex v on the r

i

; t path

has p

v

� p

t

). The algorithm we presented for GUV extends to GUV-priority, giving roughly the same

approximation guarantee.
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Theorem 3.12 Let � > 0 be a 
onstant. There is a polynomial-time algorithm for GUV-priority that �nds

a set of priority Steiner trees (satisfying the vertex 
apa
ity 
onstraints) of size 
(maxf'

f

=n

1+�

2

; '

2

f

=n

1+�

g)

if '

f

� n, and of size 
('

f

=n

�

2

) otherwise, where '

f

denotes the optimal value of the instan
e of fra
tional

GUV-priority.

Proof: The fra
tional pa
king problem for GUV-priority is obtained in the usual way (formulate the

pa
king problem as an integer program and then relax the integer variables to be nonnegative reals).

First note that in the dual of the LP formulation of fra
tional GUV-priority, the separation problem

is the minimum (node-weighted) priority Steiner tree problem, where the node weights 
orrespond to the

(nonnegative) variables of the dual. The following lemma, together with the O(n

�

) approximation algorithm

of [4℄ for minimum (ar
-weighted) dire
ted Steiner trees, shows that there is an O(n

�

) approximation

algorithm for the minimum (node-weighted) priority Steiner tree problem. (In the lemma, we abuse the

notation and denote instan
es of these problems by the asso
iated graphs or digraphs.)

Lemma 3.13 There is a polynomial-time algorithm that given an instan
e G = (V;E) of the minimum

(node-weighted undire
ted) priority Steiner tree problem 
onstru
ts an instan
e G

00

of the minimum (ar
-

weighted) dire
ted Steiner tree problem su
h that G has a priority Steiner tree of weight W if and only if

G

00

has a dire
ted Steiner tree of weight W .

Proof: Let G(V;E) be the given undire
ted graph, let r be the root, and let the set of terminals be T � V ;

ea
h vertex v 2 V has a weight w

v

and a priority p

v

. Without loss of generality, we may assume that the

vertex priorities p

v

are in the range 1; : : : ; n, and the root r has priority n. We assume (w.l.o.g.) that ea
h

terminal in G has weight zero.

Let G

0

be the digraph obtained from graph G by �rst splitting ea
h vertex v into two verti
es v

1

; v

2

and adding the ar
 v

1

v

2

, and then repla
ing ea
h edge xy 2 E by a pair of ar
s x

2

y

1

, y

2

x

1

; moreover, for

ea
h v 2 V , de�ne the weight and priority of ar
 v

1

v

2

to be w

v

and p

v

, and de�ne the weight and priority

of the other ar
s to be 0 and n, respe
tively. For ea
h possible priority ` 2 f1; : : : ; ng, we start with a


opy G

0

`

of G

0

and we remove all ar
s that have priority less than ` (thus ea
h ar
 in G

0

`

has priority � `).

Finally, for ` = n; n� 1; : : : ; 2, for ea
h node v 2 G we add an ar
 from the 
opy of v

2

in G

0

`

to the 
opy

of v

2

in G

0

`�1

. These new ar
s have a weight of 0 and a priority of n (so their weights and priorities will

not a�e
t our proof). In the resulting digraph, let the root be the node r

1

in G

0

n

, and for ea
h terminal

vertex t 2 T of G let the 
opy of node t

2

in G

0

p

t

be a terminal (thus t 
orresponds to t

2

in the 
opy of G

0

indexed by p

t

). Denote the dire
ted instan
e by G

00

, and denote its set of terminals and root by T

00

and

r

00

, respe
tively (see Figure 3 for an illustration).

Consider any terminal t 2 T of G, and let t

00

denote the 
orresponding terminal of G

00

. Clearly, in G

00

,

every ar
 in any (dire
ted) path from r

00

to t

00

has priority at least p

t

. Moreover, for any path between r

and t in G su
h that every vertex v in the path has p

v

� p

t

, G

00

has dire
ted paths from r

00

to t

00

. Our


onstru
tion pi
ks one of these r

00

; t

00

dire
ted paths as follows: Let the r; t path of G be v

0

; v

1

; v

2

; : : : ; v

q

(where v

0

= r; v

q

= t); we assign a number p

00

(v) to ea
h vertex v in this path su
h that p

t

� p

00

(v) � p

v

,

p

00

(t) = p

t

, p

00

(r) = p

r

, and moreover, these numbers form a non-in
reasing sequen
e along the r; t path

(i.e., p

00

(v

0

) � p

00

(v

1

) � : : : � p

00

(v

q

)). Then the r

00

; t

00

dire
ted path of G

00


onsists of the nodes r

00

= r

1

,

r

2

in G

0

n

, followed by a dire
ted path from (the 
opy of) r

2

in G

0

n

to (the 
opy of) r

2

in G

0

p

00

(v

1

)

, followed
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n
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Figure 3: Graph G(V;E), and dire
ted graph G

00

, showing only G

0

5

, G

0

2

, and G

0

1

; also, only some of the

ar
s from v

2

in G

0

l

to v

2

in G

0

l�1

are shown.
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by v

1

1

and v

2

1

in G

0

p

00

(v

1

)

, followed by a dire
ted path from (the 
opy of) v

2

1

in G

0

p

00

(v

1

)

to (the 
opy of) v

2

1

in

G

0

p

00

(v

2

)

, followed by v

1

2

and v

2

2

in G

0

p

00

(v

2

)

, . . . , followed by v

1

q

and v

2

q

in G

0

p

00

(v

q

)

.

It 
an be seen that 
orresponding to any dire
ted Steiner tree H

00

of G

00

there is a priority Steiner tree

of G whose weight is at most the weight of H

00

. (To see this, let S be the set of Steiner verti
es v of G

su
h that one of the 
opies of the ar
 v

1

v

2

is in H

00

; then the subgraph of G indu
ed by S [ T has an r; t

path for ea
h t 2 T , and moreover, ea
h Steiner vertex v in an r; t path has p

v

� p

t

be
ause the ar
 v

1

v

2

(in H

00

) o

urs in say G

0

p

00

(v)

where p

v

� p

00

(v) � p

t

.)

Moreover, it 
an be seen that 
orresponding to any priority Steiner tree H of G there is a dire
ted

Steiner tree H

00

of G

00

with the same weight. (To see this, we asso
iate a number p

00

(v) with ea
h vertex v

of H, where p

00

(v) is the maximum priority of any terminal in the subtree of H rooted at v; thus p

00

(v) � p

v

,

8v 2 V , and for ea
h terminal t, every vertex v in the r; t path of H has p

00

(v) � p

t

; then for ea
h terminal

vertex v 2 T and for ea
h Steiner vertex v in H, we add to H

00

(the 
opy of) nodes v

1

; v

2

and ar
 v

1

v

2

in

G

0

p

00

(v)

; �nally we add to H

00

appropriate ar
s of weight 0 and priority n.)

Consequently, an �-approximate solution to the minimum ar
-weighted dire
ted Steiner tree problem

in G

00

gives an �-approximate solution to the minimum node-weighted priority Steiner tree problem in G.

This proves Lemma 3.13

The next result follows from Lemma 3.13 and another analog of Theorem 2.9 (or Theorem 4.1 in [17℄)

that relates the fra
tional GUV-priority problem to the minimum (node weighted) priority Steiner tree

problem.

Lemma 3.14 There is an O(n

�

)-approximation algorithm for the fra
tional GUV-priority problem.

The above lemma 
an be used to obtain an O(n

1

2

+�

)-approximation algorithm for the GUV-priority

problem, similar to the approximation algorithm for GUV; we �nd an approximately optimal solution to

the fra
tional pa
king problem and then apply randomized rounding; see the analysis in Se
tion 2.2. This

proves Theorem 3.12.

On the other hand, we prove an 
(n

1

3

��

) hardness result for IUV-priority by adapting the proof of

Theorem 2.4, thus improving on our logarithmi
 hardness result for IUV. The main di�eren
e from the

proof of Theorem 2.4 is that we use instan
es of the Undir-Node-USF problem (Undire
ted Node 
apa
itated

Unsplittable Flow) { whi
h is shown to be NP-
omplete in [12℄ { instead of instan
es of 2DIRPATH as the

modules that are pla
ed on the \gray boxes" in Figure 1.

Theorem 3.15 Given an instan
e of IUV-priority, it is NP-hard to approximate the solution within

O(n

1

3

��

) for any � > 0.

Proof: The 
onstru
tion is the same as in the proof of Theorem 2.4, ex
ept that the edges are undire
ted

and we repla
e the \modules" (gray box interse
tions) that 
onsist of the same instan
e of the 2DIRPATH

problem by parameterized instan
es of the Undir-Node-USF problem, des
ribed below. An instan
e of

the Undir-Node-USF problem is an undire
ted graph G(V;E) with distin
t verti
es x

1

; y

1

; x

2

; y

2

2 V , plus

two integers p

2

> p

1

� 0. Furthermore, ea
h node v of G has a priority p

v

. We may assume that G has

an x

2

; y

2

path su
h that ea
h vertex v on this path has p

v

� p

2

(this follows from the 
onstru
tion of
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Guruswami et al. [12℄). The question is whether or not there exist two vertex-disjoint paths Q

1

; Q

2

, su
h

that Q

i

(for i = 1; 2) starts at x

i

, ends at y

i

, and every node v of Q

i

has priority p

v

� p

i

. Guruswami et al.

[12℄ (see Theorem 3 in their paper) proved the following result (by giving a redu
tion from the satis�ability

problem): Given an instan
e of Undir-Node-USF, it is NP-
omplete to de
ide whether the answer is \Yes"

or \No". Moreover, this holds for any two distin
t integers p

2

; p

1

. (We remark that our notation di�ers

from that of [12℄; they use the terms \node 
apa
ities 


v

", and \sour
e-sink pairs (s

i

; t

i

)" with \demands

d

i

" whereas we use \node priorities p

v

", and we have two pairs (x

1

; y

1

) with priority p

1

and (x

2

; y

2

) with

priority p

2

; there is no other di�eren
e.)

In the proof of Theorem 2.4 we make the following 
hanges. We �x N = jV (G)j

1

�

, where G is the

\module" graph (instan
e of Undir-Node-USF). The terminals b

1

; : : : ; b

N

are given distin
t priorities, say,

1; : : : ; N . We remove all the edges a

i

b

i

, i = 1; : : : ; N . For ea
h gray box interse
tion with verti
es

s

i

��

; t

i

��

; p

�

�i

; q

�

�i

we identify verti
es x

2

; y

2

with s

i

��

; t

i

��

(horizontal line) and �x priority p

2

= N (to


onne
t b

N

to the root), and we identify verti
es x

1

; y

1

with p

�

�i

; q

�

�i

(verti
al line) and �x priority p

1

= �

(to 
onne
t b

�

to the root). All the nodes v that are not in the interior of any \module" get priority

p

v

= N .

It 
an be seen that Lemma 2.5 in the proof of Theorem 2.4 applies to the new setting (for IUV-priority).

Now, 
onsider any priority Steiner tree T

q

. Every vertex in the r; b

N

path (of T

q

) must have priority N ,

thus this path 
annot 
ontain any \verti
al line segments" (paths 
ontaining edges of the form p

�

�i

q

�

�(i+1)

);

that is, this path 
orresponds to one of the horizontal lines H

i

. Using this, it 
an be seen that Lemma 2.6

in the proof of Theorem 2.4 applies to the new setting (for IUV-priority). This proves Theorem 3.15.
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