Hardness and Approximation Results for Packing Steiner Trees

Joseph Cheriyan*
Department of Combinatorics and Optimization,
University of Waterloo, Waterloo, Canada N2L 3G1

jcheriya@math.uwaterloo.ca

Mohammad R. Salavatipour
Department of Computing Science,
University of Alberta, Edmonton, Alberta, Canada T6G 2E8

mreza@cs.ualberta.ca

Abstract

We study approximation algorithms and hardness of approximation for several versions of the problem
of packing Steiner trees. For packing edge-disjoint Steiner trees of undirected graphs, we show APX-
hardness for 4 terminals. For packing Steiner-node-disjoint Steiner trees of undirected graphs, we show
a logarithmic hardness result, and give an approximation guarantee of O(y/nlogn), where n denotes the
number of nodes. For the directed setting (packing edge-disjoint Steiner trees of directed graphs), we
show a hardness result of Q(m%_e) and give an approximation guarantee of O(m%“), where m denotes
the number of edges. We have similar results for packing Steiner-node-disjoint priority Steiner trees of
undirected graphs.

1 Introduction

We study approximation algorithms and hardness of approximation for several versions of the problem of
packing Steiner trees. Given an undirected graph G = (V, E) and a set of terminal nodes T'C V', a Steiner
tree is a connected, acyclic subgraph that contains all the terminal nodes (nonterminal nodes, which are
called Steiner nodes, are optional). The basic problem of packing edge-disjoint undirected Steiner trees is
to find as many edge-disjoint Steiner trees as possible. Besides this problem, we study some other versions;
see below for details. All of the Steiner tree packing problems discussed in this paper are NP-hard, although
some special cases may have polynomial-time algorithms.

We will use three-letter abbreviations to denote different versions of the problem of packing Steiner
trees. The first letter is either I or G, and denotes whether or not all Steiner trees have identical terminal
sets. The second letter is either D or U, and denotes whether the graph is directed or undirected. The third

*Supported by NSERC grant No. OGP(0138432.
fSupported by an NSERC postdoctoral fellowship, Dept. of Combinatorics and Optimization at University of Waterloo,
and a University start-up fund at University of Alberta.

letter is either E or V, and denotes whether the constraints are on the edges or vertices (e.g. edge-disjoint
or vertex-disjoint). Now we define different variations of the problem of packing disjoint Steiner trees.

IUE: The input to this version consist of an undirected graph G = (V, E) with capacity c. on every
edge e € E, and a terminal set 7' C V. The goal is to find the maximum number of Steiner trees (each
of which contains T') such that every edge e € E is in at most ¢, Steiner trees. Therefore the problem of
packing edge-disjoint Steiner trees mentioned earlier is the special case of IUE where every edge has unit
capacity. For this reason we call it the IUE-unitcap problem.

GUE: This is a generalization of IUE. Here together with the undirected graph G = (V, £) with
capacities on the edges, we have £ terminal sets T1,...,T; (where £ is polynomial in n) and the goal is to
find the maximum number of Steiner trees, such that each Steiner tree contains one of the terminal sets
T1,...,Ty, and each edge e is contained in < ¢, trees.

IUV: The problem is similar to IUE except that we have capacity ¢, on every vertex v (instead of
capacities on the edges) and the goal is to find the maximum number of Steiner trees such that every vertex
v is in at most ¢, Steiner trees. We assume that there are no edges between terminal nodes (i.e., T' is an
independent set of (F); this assumption may be enforced by subdividing each edge between two terminals
by inserting a distinct Steiner vertex with unit capacity.

GUYV: This is the generalization of IUV where the instance has ¢ terminal sets T4,...,T; (where ¢
is polynomial in n) of G and the goal is to find the maximum number of Steiner trees, such that each
Steiner tree contains one of the terminal sets 17, ...,7T}, and that each Steiner vertex v is contained in < ¢,
trees. For this and other problems on packing (directed or undirected) vertex-capacitated Steiner trees
with multiple terminal sets 77, ...,7Ty, our assumption is that each Steiner tree H has an associated index
i €{1,...,¢} such that H contains 7T, and any vertex of V' — T; may be present in H as a Steiner vertex;
thus a Steiner tree with terminal set T; may contain vertices from (7} U...UTy) — T; as Steiner vertices.

The problems defined above can also be considered when the input graph is directed. Suppose G(V, E)
is a directed graph, T' C V a set of terminals, and r € T" is a specified root. A directed Steiner tree rooted
at r is a rooted subtree of G that contains a directed path from r to ¢, for each terminal ¢ € T'.

IDE and GDE: The instance to IDE is the same as that of IUE except that the graph is directed
and there is a root » € T'. The goal is to find the maximum number of directed Steiner trees rooted at r
such that each edge e is contained in < ¢, directed trees. The problem GDE is the generalization where
the instance has ¢ terminal sets T1,...,7Ty and £ roots r1,...,r; (where £ is polynomial in n, and r; € T,
i=1,...,¢), and the goal is to find the maximum number of directed Steiner trees, each rooted at an r;
and containing all the nodes in T; (for an 7 = 1,...,£), such that each edge e is contained in < ¢, directed
trees.

IDV and GDV: These problems are directed versions of IUV and GUV. That is, we have a directed
graph G, a capacity ¢, on every Steiner vertex v, and the goal is to find the maximum number of directed
Steiner trees such that each Steiner vertex v is contained in < ¢, directed trees. In IDV (similar to IDE)
there is only one terminal set and in GDV (similar to GDE) there are ¢ terminal sets 71, ..., 7.

The problem of packing edge-disjoint undirected Steiner trees in its full generality (i.e. GUE) has
applications in VLSI circuit design (e.g., see [14, 24]). Other applications include multicasting in wireless
networks (see [10]) and broadcasting large data streams, such as videos, over the Internet (see [17]). There
is significant motivation from the areas of graph theory and combinatorial optimization. Menger’s theorem

on packing edge-disjoint s, t-paths [8] corresponds to the special case of packing edge-disjoint Steiner trees
on two terminal nodes (i.e., T' = {s,t}). Another special case is when all the nodes are terminals (i.e.,
T = V). Then the problem is to find a maximum set of edge-disjoint spanning trees. This topic was studied
in the 1960’s by graph theorists, and a min-max theorem was developed by Tutte and independently by
Nash-Williams [8]. Subsequently, Edmonds and Nash-Williams derived such results in the more general
setting of the matroid intersection theorem. One consequence is that efficient algorithms are available
via the matroid intersection algorithm for the case of T = V. A set of nodes S is said to be A-edge
connected if there exist A edge-disjoint paths between every two nodes of S. An easy corollary of the
min-max theorem of Nash-Williams and Tutte is that if the node set V' is 2k-edge connected, then the
graph has k edge-disjoint spanning trees. Recently, Kriesell [22] conjectured an exciting generalization: If
the set of terminals is 2k-edge connected, then there exist k edge-disjoint Steiner trees. He proved this for
Eulerian graphs by an easy application of the splitting-off theorem together with the min-max theorem of
Nash-Williams and Tutte. Note that a constructive proof of this conjecture may give a 2-approximation
algorithm for IUE-unitcap. Jain, Mahdian, and Salavatipour [17] gave an approximation algorithm with
guarantee (roughly) %. Moreover, using a versatile and powerful proof technique (that we will borrow and
apply in the design of our algorithms), they showed that the fractional version of IUE-unitcap has an a-
approximation algorithm if and only if the minimum-weight Steiner tree problem has an a-approximation
algorithm (Theorem 4.1 in [17]). The latter problem is well studied and is known to be APX-hard. It
follows that IUE-unitcap is APX-hard (Corollary 4.3 in [17]). Frank et al. [11] gave a 3-approximation
algorithm for the special case of IUE-unitcap where no two Steiner nodes are adjacent. Very recently Lau
[23], based on the result of Frank et al. [11], has given an O(1)-approximation algorithm for IUE-unitcap
(but Kriesell’s conjecture remains open).

Several of our proof techniques are inspired by results for disjoint-paths problems in the papers by
Guruswami et al. [12], Baveja and Srinivasan [2], and Kolliopoulos and Stein [21]. In these problems, we
are given a graph and a set of source-sink pairs, and the goal is to find a maximum set of edge/node
disjoint source-sink paths. Although there is no direct relation between IUE-unitcap (i.e. edge-disjoint
Steiner trees) and edge-disjoint paths problems (neither problem is a special case of the other one) GUE
is a common generalization of both these problems. Also, see Carr and Vempala [3] and Vempala and
Vocking [25] for results on multicast congestion.

The underlying assumption for most of our hardness results is P#NP. Throughout, we use € to denote
any small positive real number. The number of nodes and edges of a graph are denoted by n and m,
respectively. Note that we use “vertex disjoint Steiner trees” to mean trees that are disjoint on the Steiner
vertices (and of course they contain all the terminal vertices). Most of our hardness (of approximation)
results are presented for the most specialized version from the relevant family of problems (e.g., Theorem 2.4
pertains to the special case of IDE-unitcap, namely, packing directed edge-disjoint Steiner trees), and thus
we immediately get the same hardness result for all of the problems in the relevant family (e.g., Theorem
2.4 implies the same hardness result for GDE); but better hardness results may be known for the most
general problem in the relevant family (e.g., GDE contains the problem of packing edge-disjoint paths
in directed graphs, for which a hardness lower bound of Q(méff) is known [12], hence this lower bound
applies to GDE). Most of our results on approximation algorithms and guarantees pertain to the most
general version in the relevant family of problems, and thus we immediately get the same approximation
guarantees for all of the problems in the relevant family, though better approximation guarantees may be
known for some specialized problems in the relevant family.

Consider the problems IUV, GUV, GUV-priority (to be defined later), and their special cases. Using
the fact that IUE-unitcap is APX-hard, Floréen et al. [10] showed that IUV-unitcap is APX-hard. They
raised the question whether this problem is in the class APX. We prove an (logn)-hardness result (lower
bound) for IUV-unitcap. This shows that IUV-unitcap is significantly harder than TUE-unitcap, and
settles (in the negative) the open question of Floréen et al. [10]. We give an approximation guarantee
(upper bound) of O(y/nlogn) for GUV, by an LP-based rounding algorithm. We study another natural
generalization of IUV, namely Packing undirected vertex-capacitated priority Steiner trees (IUV-priority
for short), which is motivated by the Quality of Service in network design problems (see [5] for applications).
For IUV-priority (defined in Subsection 3.3), we show a lower-bound of Q(n%*) on the approximation
guarantee; moreover, our approximation algorithm for GUV extends to GUV-priority to give a guarantee
of O(n%“). We mention that a hardness lower bound of Q(n%*) is given in [12, Theorem 2] for another
special case of GUV-priority, namely, the problem of packing vertex-disjoint priority s;,t; paths.

We prove stronger hardness results when the underlying graph is directed. As mentioned earlier, one
special case of GDE is the problem of packing edge-disjoint paths in a directed graph, and a hardness
lower bound of Q(m%_f) is given in [12]. We prove an Q(m%_e)—hardness result for IDE-unitcap (which is
another special case of GDE). Moreover, we give an approximation algorithm with a guarantee of O(m%"'e)
for GDE. For directed graphs, IDE and IDV (and also GDE and GDV) are similar, see Theorem 2.1.
We get a lower-bound of Q(n%%) on the approximation guarantee for IDV-unitcap. Moreover, we give an

approximation algorithm with a guarantee of O(n%“) for GDV.

We now focus on hardness (of approximation) results for several versions of the problem of packing
Steiner trees (with identical terminal sets) when some of the key parameters are small. In particular, we
discuss problems where the number of terminals is small, meaning |T'| = O(1), and also problems where
the optimal value is small, meaning the number of Steiner trees in an optimal packing is either one or
two. Kaski [19] showed that the problem IUE-unitcap is NP-hard even if the number of terminals is 7,
and moreover, the problem of finding two edge-disjoint Steiner trees is NP-hard. Floréen et al. [10] showed
that the special case of the problem IUV-unitcap with only 4 terminal nodes is NP-hard. Our hardness
results for small-parameter problems are as follows.

e Packing undirected edge-disjoint Steiner trees (IUE-unitcap): We show that the special case of the
problem with four terminal nodes is APX-hard. (An early draft of our paper proved, independently of [19],
that finding two edge-disjoint Steiner trees is NP-hard.)

e Packing undirected vertez-disjoint Steiner trees (IUV -unitcap): We show essentially the same hardness
results for IUV-unitcap as for IUE-unitcap, that is, the special case of the problem with four terminal
nodes is APX-hard, and the problem of finding two vertex-disjoint Steiner trees is NP-hard.

e Packing directed edge-disjoint Steiner trees (IDE-unitcap): We show that the problem of finding two
edge-disjoint directed Steiner trees with only three terminal nodes is NP-hard.

Table 1 summarizes the results of this paper and the previous works [10, 12, 17, 19, 23]; results from
this paper are cited by theorem number, and results from other papers are indicated by citing the paper.
Very recently, we have obtained a randomized O(logn) approximation algorithm for ITUV, using different
methods from the ones used in this paper [6]. This, together with Theorem 3.9, implies a threshold of
©(logn) for the hardness of IUV. This result will appear elsewhere.

For the problems TUV, IUV-priority, IDE, and IDV, we are not aware of any previous results on

Table 1: Summary of results

Problem Approx.Guarantee | Hardness Hardness for small parameters

IUE-unitcap | 26[23] APX-hard[17] APX-hard for 4 terminals (T3.3)
NP-hard for 2 trees[19]

GUV O(logny/n) (T3.11)

IUv O(logn)[6]

IUV-unitcap Q(logn)-hard (T3.9) | APX-hard for 4 terminals (T3.8)

NP-hard for 2 trees (T3.2)

GUV-priority | O(n27¢) (T3.12) Q(nz=9)[12]

IUV-priority Q(n3€)-hard (T3.15)

GDE O(m2Te) (T2.15) | Q(mz)[12]

IDE-unitcap Q(m%_e) (T2.8) NP-hard for 3 terminals and 2 trees (T2.3)
GDV O(nz*¢) (T2.16) Qn29)[12]

IDV-unitcap Q(n%_f) (T2.4) NP-hard for 3 terminals and 2 trees (T2.2)

approximation algorithms or hardness results other than [10], although there is extensive literature on ap-
proximation algorithms for the corresponding minimum-weight Steiner tree problems (e.g., [4] for minimum-
weight directed Steiner trees and [20, 15] for minimum-node-weighted Steiner trees).

Section 2 has our results on directed graphs for problems GDE, GDYV, and their special cases. Section
3 has our results on undirected graphs for problems IUE, GUV, GU V-priority, and their special cases.

2 Packing Directed Steiner Trees

In this section, we study the problem of packing directed Steiner trees. We start with an auxiliary result:
The problems IDE and IDV are equivalent in the sense that there is a polynomial-time reduction from
either problem to the other problem that preserves the optimal value (number of Steiner trees in an optimal
packing). Then we present hardness results for IDE-unitcap (i.e., edge-disjoint directed case), and these
immediately imply similar hardness results for IDV-unitcap (i.e., directed vertex-disjoint version). We
also present an approximation algorithm for GDE which implies a similar approximation algorithm for
GDYV. The proof of the following theorem is easy. The idea for the first direction is to insert a new node
in every edge, and for the second one is to split every vertex into two adjacent vertices.

Theorem 2.1 Given an instance I = (G(V,E),T C V) of IDE (of IDV), there is an instance I' =
(G'(V',E"), T" C V) of IDV (of IDE) with |G'| = poly(|G|), such that I has k directed Steiner trees
satisfying the capacities of the edges (vertices) if and only if I' has k directed Steiner trees satisfying the
capacities of the vertices (edges). The same statement holds for GDE and GDV.

Proof: (1st direction)
We insert a new Steiner node v,y in every edge zy, and we fix the capacity of vy, (in G') to be the same
as the capacity of zy (in G). All the other Steiner nodes of G' (corresponding to Steiner nodes of G) get

infinite capacities. The root and the other terminals are the same in G and G’. It can be seen that G has k
(directed) Steiner trees satisfying edge capacities if and only if G’ has k (directed) Steiner trees satisfying
vertex capacities.

(2nd direction)

We construct G’ from G in the following way. For each node v € V', G' contains two nodes vy, vy. If v € T
then both v; and vo become terminals in G’, and if r € T is the root then r; becomes the root in G'. We
add vive to E' and give it the same capacity as vertex v in G. If v € T, then we give infinite capacity to
v1vg. Furthermore, for every edge uv € F we create an edge uov; (with infinite capacity) in E’ and for
every edge vw € E we create an edge vow; (with infinite capacity) in E’.

It is easy to see that if 7 is a collection of k Steiner trees in G that satisfy vertex capacities then there
is a collection 7 of k Steiner trees in G’ that satisfy edge capacities. Conversely, suppose that 77 is a
collection of k Steiner trees in G' satisfying edge capacities. Then for every edge vjvy (corresponding to
a vertex v € V(G) with capacity ¢, in G) there are at most ¢, trees containing that edge. Therefore, by
contracting the edges of the form vyv9 on each tree of 7’ we obtain a collection of & Steiner trees in G such
that for every vertex v there are at most ¢, trees containing it. [|

2.1 Hardness results

First we prove that IDV-unitcap is NP-hard even in the simplest non-trivial case where there are only
three terminals (one root r and two other terminals) and we are asked to find only 2 vertex-disjoint Steiner
trees. The problem becomes easy if any of these two conditions is tighter, i.e., if the number of terminals is
reduced to 2 or the number of Steiner trees that we have to find is reduced to 1. If the number of terminals
is arbitrary, then we show that IDV-unitcap is NP-hard to approximate within a factor of O(n%*) for any
€ > 0. The proof does not rely on the PCP theorem. Also, as we mentioned before, both of these hardness
results carry over to IDE. For both reductions, we use the following well-known NP-hard problem (see

[13]):

ProBLEM: 2DIRPATH:
INSTANCE: A directed graph G(V, F), distinct vertices z1,y1,z2,y2 € V.

QUESTION: Are there two vertex-disjoint directed paths, one from x; to y; and the other from zs to yo in
G?

Theorem 2.2 Given an instance of IDV -unitcap with only three terminals (root r and two terminals t;
and tz), it is NP-hard to decide if it has 2 vertex-disjoint directed Steiner trees.

Proof: Let I = (G,z1,y1,T2,y2) be an instance of 2DIRPATH. Construct G’ from G by adding three
terminal nodes, r, 1, to with r being the root, and creating directed edges rx 1, rx2, y1t1, ot1, yola, and z;ts.
We claim that I is a “Yes” instance if and only if G’ has two Steiner trees rooted at r. If there are (vertex)
disjoint paths z1 Pyy; and z9 P,y in G then clearly z1 Py U{rzi,yi1t1, z1t2} and zoPoyys U{rzy, yota, ot }
form two vertex-disjoint directed Steiner trees. Conversely, if there are two vertex-disjoint directed Steiner
trees T} and T, in G’ then, since r has only two outgoing edges, we may assume that rz; € Ty and rzy € Th.
Therefore, there is a path from x; to ¢; in 77, which must go through y; (since z2 is not in 71), and a path

from zy to ty in T,, which must go through y, (since z is not in 7%). These two paths are vertex-disjoint
because 17 and T5 are vertex-disjoint.]

From Theorems 2.1 and 2.2, it follows that:

Theorem 2.3 Given an instance I of IDE-unitcap and only three terminals, (root r and two terminals
t1 and te) it is NP-hard to decide if it has 2 edge-disjoint directed Steiner trees.

I\IIOW we show that, unless P=NP, any approximation 1algorithm for IDV-unitcap has a guarantee of
Q(n3"°). A similar construction shows a hardness of 2(m3) for IDE-unitcap.

Theorem 2.4 Given an instance of IDV -unitcap, it is NP-hard to approximate the solution within O(n%_e)
for any € > 0.

Proof: We use a reduction from the 2DIRPATH problem. Our proof is inspired by a reduction used in
[12] for the edge-disjoint path problem. Assume that I = (G, z1,y1,z2,y2) is an instance of 2DIRPATH
and let € > 0 be given. We construct a directed graph H. First we construct a graph G’ whose underlying
structure is shown in Figure 1. For N = [V(G)|'/¢, create two sets of vertices A = {ay,...,ay} and
B = {by,...,by}. In the figure, all the edges are directed from top to bottom and from left to right. For
each gray box, there is a vertex at each of the four corners, and there are two edges, from left to right and
from top to bottom. This graph may be viewed as the union of N vertex-disjoint directed trees 11,...,Ty,
where T; is rooted at a; and has paths to all the vertices in B — {b;}. Each tree T; consists of one horizontal
path H?, which is essentially the ith horizontal row above b;’s, and starts with a;, vi, ... and ends in vﬁv,
together with NV — 1 vertical paths Pf (1 <j#14 < N),such that each of these vertical paths branches out
from the horizontal path, starting at vertex vg and ending at vertex b; € B. Each vertex vg is in the ith
horizontal row, and is the start vertex of a vertical path that ends at b;; note that there are no vertices
v!. Also, note that each gray box corresponds to a triple (i,7,#) where the box is in the ith horizontal

(3
line and is in the vertical path that starts at v¢ and ends at b;; the corner vertices of the gray box are

o J
labeled s}j, t}j, pﬁi, qfi for the left, right, top, and bottom corners, respectively. More specifically, for 717 the
horizontal and vertical paths are: H' = a1, 83,43, ... ,s}m, t}\,l, vs, 352, téZ, . ,v%, e ,v]l\,, and le = vjl-, bj,
for 2 < j < N. For Tj the horizontal and vertical paths are: H? = ag,v?,s3,,3,,... ,s%m,t%m,vg, . ,’UIZV,

and Pj2 = v?,p?l,qul,bj (for 1 <j#2 < N), and P4 = v%,by. In general, for T}:

i i ol i i o4 i G i i o4 i i i
e H _a’17vl’s(i+1)1’t(i+1)1"“’SN17tN17,027s(z’+1)2’t(i+1)2"“’SN27tN27U37"'7UN71’S(i+1)(N—1)7
t’i s’i t’L ’Ui
(i+1)(N—1)7 " °N(N—1)? "N(N—1)? "N

e For j #¢ < N: P; = v;-,p;'.(z.il),q;(iil),p;.(iim,q;(iﬁ), .. ,pé-l,q;:l,bj, and P]i\, = va,bN.
Graph H is obtained from G' by making the following modifications:

e For each gray box, with corresponding triple say (i,7,¢) and with vertices s@j,t}}j,pﬁi,qfi, we first
remove the edges séjtéj and pgiqfi, then we place a copy of graph G and identify vertices z1,y1, o,
and yo with séj, téj, pgi, and qfi, respectively.

Figure 1: Construction of H: each gray box will be replaced with a copy of G

e Add a new vertex r (root) and create directed edges from r to ay,...,an.

e Create N new directed edges a;b;, for 1 <7 < N.

The set of terminals (for the directed Steiner trees) is BU{r} = {b1,...,bn,r}. The proof follows from
the following two Lemmas.

Lemma 2.5 If [is a “Yes” instance of 2DIRPATH, then H has N vertex-disjoint directed Steiner trees.

Proof: Consider the vertex-disjoint trees 11, ...,Tn explained above. At every gray-box intersection with
vertices Sixﬁ’ ty, 4 pgi, qgi, instead of using edges s, 5%6 and pgiqgi described in G’, we use the disjoint paths
that exist in the local copy of G from s;,4 (equivalent to 21 in G) to &4 (equivalent to y; in G) and from
P& (equivalent to z9 in G) to q3; (equivalent to y, in G). Now by adding edges ra; and a;b; to Tj, we
obtain a Steiner tree for H. Thus H has N vertex-disjoint Steiner trees. This proves Lemma, 2.5. [

Lemma 2.6 If I is a “No” instance of 2DIRPATH, then H has ezxactly 1 vertez-disjoint directed Steiner
tree.

Proof: First, note that H always has at least one Steiner tree, namely, the union of paths L; = r, a;, b;,
for 1 <7 < N. Now assume that [is a “No” instance and by way of contradiction assume that there is
aset T ={T1,...,Tk}, with & > 2, of vertex-disjoint Steiner trees in H. Note that each a; belongs to at
most one Steiner tree T, € T .

Claim 2.7 There cannot be a directed path from a; to any b; (with j > i) in any tree To, € T.

Proof: We prove this by induction on ¢. For the basis of the induction, consider a; and suppose that
there is a path P,(a1,b;) from a; to bj (j > 2) in some tree T,, € 7. Let T3 € T be another tree in 7
and look at the path Pg(r,b1) from r to by in Tg. Consider the embedding of these two paths P,(a1,b;)
and Pg(r,by) on the plane. There has to be an intersecting point (on the horizontal path from a; to v})
of these two paths. In other words, there has to be a gray-box in which these two paths cross each other
without having any vertex in common. But since G is a “No” instance, this is not possible. So there is no
path from r to by in any other tree T € T, a contradiction.

For the induction step, let ¢ > 2 and assume that there is a path P,(a;, b;) from a; to b; (j > %) in some
tree T, € T. Let T € T be any other tree in 7 and Pg(r, b;) be a path from r to b; in Ts. We assume this
path goes through a;, for some 1 <[< N. By induction hypothesis, there is no path from ay,...,a;_1 to
b; in any tree. Also, a; € T,. So | > 1.

Again, if we consider the embeddings of these two paths P,(a;,b;) and Pg(r,b;) on the plane, there is
an intersecting gray box in which these two paths cross each other without having any vertex in common.
But this is impossible because G is a “No” instance. This proves Claim 2.7. [|

Therefore, the only possible path from r to by goes through ap. Thus, there can be only one Steiner
tree in 7 the one that contains ay. This proves Lemma 2.6. [|

The number of copies of G in the construction of H is O(N?) where N = |V (G)|"/¢. So the number of
vertices in H is O(N3¢). By Lemmas 2.5 and 2.6 it is NP-hard to decide if H has at least N or at most

one directed Steiner trees. This creates a gap of Q(néff). This proves Theorem 2.4. [

For IDE-unitcap we use a similar reduction. The only differences are: (i) the instance that we use as
the building block in our construction (corresponding to graph G above) is an instance of another well-
known NP-hard problem, namely edge-disjoint 2DIRPATH (instead of vertex-disjoint), (ii) the parameter
N above is |E(G)|"/¢. Using this reduction we can show:

Theorem 2.8 Given an instance of IDE-unitcap, it is NP-hard to approximate the solution within O(m%_e)
for any € > 0.

2.2 Approximation algorithms

In this section we show that, although GDE is hard to approximate within a ratio of O(m%*), there is
an approximation algorithm with a guarantee of O(m%“) (details in Theorem 2.15). The algorithm is
LP-based with a simple rounding scheme similar to those in [2, 21]. The main idea of the algorithm is to
start with one of the known approximation algorithms for finding a Minimum-weight Directed Steiner Tree.
Using this and an extension of Theorem 4.1 in [17], we obtain an approximate solution to the fractional
version of GDE. After that, a simple randomized rounding algorithm yields an integral solution. A similar
method yields an approximation algorithm for GDV that has a guarantee of O(n%“).

We may formulate GDE as an integer program (IP). Recall that we have a digraph G(V, E), ¢ roots
r1,...,7¢, and £ sets of terminals 77,...,7;. In the following, F denotes the collection of all directed
Steiner trees in G. We use F' to denote an element of F, i.e., F' denotes a directed Steiner tree of G. For
each F' € F, there is an 7 € {1,...,¢} such that F' contains 7; and has a directed path from r; to each
node in T;.

maximize) pc TR
subject to Ve € E:) . cpar <ce (1)
VFeF: zpe{0,1}

The fractional packing edge capacitated directed Steiner tree problem (fractional GDE, for short) is
the linear program (LP) obtained by relaxing the integrality condition in the above IP to xp > 0. For
any instance I of the (integral) packing problem, we denote the fractional instance by Iy. The proof of
Theorem 4.1 in [17] can be easily adapted to prove the following:

Theorem 2.9 There is an a-approximation algorithm for fractional GDE if and only if there is an «-
approzimation algorithm for the minimum (edge weighted) directed Steiner tree problem.

Charikar et al. [4] gave an O(n®)-approximation algorithm for the minimum-weight directed Steiner
tree problem. This, together with Theorem 2.9 implies:

Corollary 2.10 There is an O(n)-approzimation algorithm for fractional GDE.
The key lemma in the design of our approximation algorithm for GDE is as follows.

Lemma 2.11 Let I be an instance of GDE, and let ¢* be the (objective) value of a (not necessarily
optimal) feasible solution {z} : F € F} to Iy such that the number of non-zero x3.’s is polynomially
bounded and each x7, < 1. Then, we can find in polynomial time, a solution to I with value at least

Q(max{p*//m, min{p**/m, ©*}}).
Proof: We will use the following simple and well-known deviation bound.

Lemma 2.12 (Chernoff-Hoeffding Bounds) Let X1, Xs,...,Xq be a set of q independent random variables
with X; € {0,1} and let X = Y1 | X;. Then for 0 < ¢é < 1:

Pr[X < (1 - O)E[X]] < e BN/,
The following simple lemma has been used (with £ = 2) in [2]:

Lemma 2.13 Assume that A = {a1,...,an} is a set of n non-negative reals and let Ay be the set of all
subsets of size k of A. If Y. 1 a; < Q , then Z{ailrn,aik}EAk i iy - - az, < (1) (Q/n)*.

Proof: For o, 8 € {1,...,n}, if an < ag, then adding any 0 < € < ag — a4 to a, and subtracting it from
ag will increase the value of)" a;,ai, . . . a;, , while keeping the " | a; unchanged. So the maximum value
of Y aj ai, ... a; is obtained when all a,’s are equal. This proves Lemma 2.13. []

If * < 10ey/m (e is the base of natural logarithm) then it is enough to just find one Steiner tree and
return it. So from now on we assume that ¢* > 10e\/m. For every tree F' € F for which z7 > 0, let’s pick

10

that tree with probability «% /A, for some A > 1 to be defined later. Note that we assumed z}, < 1. Let
XF be the random variable that is 1 if we pick tree I and 0 otherwise. Then for X =), - X (i.e. the
total number of trees picked by the algorithm), we have:

* *
ElX]= Y PrXp=1]= TF:W—.
FeF Frer

For every edge e € FE, define the bad event A, to be the event that the capacity constraint of e is
violated, i.e. more than ¢, trees containing e are picked. Our goal is to show that with some positive
probability, none of these bad events happen (i.e. all A.’s hold) and that the total number of trees picked
is not too small. We want to find a good upper bound for Pr[A,]. For every edge e, denote the number of
trees F' with 27, > 0 that contain e by .. By this definition:

ce+1
Prid] <>] 7, A
i=1
where the summation is over all subsets {Fy,, ..., Fy, ,,} of size ¢ + 1 of trees with z7, > 0 that contain

edge e. Therefore, using Lemma 2.13:

we Ce ce+1 61/18 ce+1 Co ce+1 2
Pr[Ae]§<ce+1> <>\1/Je> S<ce+1> <>\1/Je> a2

where we have used the fact (Z) < (%)k for the second inequality. It is intuitively clear that if A, holds
then it does not increase the probability of any other A.. In other words, events A. are “positively
correlated”. This will be formalized in the following lemma that follows easily from FKG inequality (of
Fortuine-Ginibre-Kasteleyn):

Q

IN

2

Lemma 2.14 Pr{A,., Ac] > [Tep Pr[Ac] > (1 - &)™

So, the probability that at least one event A, happens is at most 1 — (1 — e?/A?)™. Also, by Lemma
2.12, for 0 < 6 < 1: Pr[X < (1 — 0)E[X]] < e ¢ /2| Thus:

Pr[(X < (1=8E[X])V(Be € E: A)] < e P¢/2A 41— (1—¢e?/XH)™.

Using the approach of [2] (which is essentially the method of conditional probability), if we can show that
for suitable § and A: (1 — e?/A2)™ > e 9°¢"/2X then we can efficiently find a selection of trees such that
X > (1 —=0)p*/X and that no edge constraint is violated.

Case 1: If * < m and we set § = 3 and A = ey/m, then (recall that ¢* > 10ey/m) we can find a
collection F' C F of directed Steiner trees that obey the edge capacities with |F'| > ¢*/2ey/m.

Case 2: If p* < m then by setting 0 = % and A = 32em/p*, we can find a collection F' C F of directed
Steiner trees that obey the edge constraints with |F'| > ¢*2/64em.

Case 3: if ¢* > m then there is a constant ¢y > 0 such that with § = 3 and A = ¢p: (1 — €2/A%)™ >
e=0°¢"/2X Again, we can find a collection F' C F of directed Steiner trees with |F/| > £-. This proves

2co
Lemma 2.11. []

11

Theorem 2.15 Let € > 0 be a constant. There is a polynomial-time algorithm for GDE that finds a set
14€
of directed Steiner trees (satisfying the edge capacity constraints) of size Q(max{wf/m%, go?/mHE}) if

or < m, and of size Q((pf/mg) otherwise, where ¢y denotes the optimal value of the instance of fractional
GDE.

Proof: Let Iy be the fractional instance. By Corollary 2.10, we can find an approximate solution z with
objective value ¢* for Iy such that ¢* > cpr/ m? for some constant ¢ and the given e > 0.

Then we apply a preprocessing step to the fractional solution x. For every Steiner tree F' with xp > 1
we “take out” |zp| copies of that tree and put it in the final integral solution, we decrease zp by |zp],
and also we update the capacities of the edges accordingly. This decomposes = into a (multi)set of Steiner
trees F; and a fractional part (with each entry zp < 1). We will “round” the fractional part z to an
integer solution (using Lemma 2.11). For the rest of the proof we may assume that the fractional solution
x has each entry < 1, since the other case reduces to this one.

Note that the approximate fractional solution x contains only a polynomial number of Steiner trees
with non-zero fractional values (this follows from the proof of Theorem 2.9 which is essentially the same
as Theorem 4.1 in [17]). If we substitute ¢* in Lemma 2.11 we obtain an approximation algorithm that
finds a set F' of directed Steiner trees such that F’ has the required size. [|

For GDV we do the following. Given an instance I of GDV with graph G(V, E) and terminal sets
Ty,..., Ty C V (with |[V| = n and |E| = m), we first apply Theorem 2.1 to produce an instance I’
of GDE with graph G'(V',E') and terminal sets 77,...,7; C V'. By the construction of G’ we have
|[V'| = 2|V] = 2n and there are at most n edges in E’ with bounded capacities (corresponding to the
vertices of). Therefore, if we use the algorithm of Theorem 2.15, the number of bad events will be n,
rather than m. Using this observation we have the following:

Theorem 2.16 Let € > 0 be a constant. There is a polynomial-time algorithm for GDV that finds a set
1+e
of directed Steiner trees (satisfying the vertex capacity constraints) of size Q(max{wf/n%, go?f/nl"‘f}) if

o < n, and of size Q(gof/né) otherwise, where @ denotes the optimal value of the instance of fractional
GDV.

3 Packing Undirected Steiner Trees

For packing edge-disjoint undirected Steiner trees (IUE-unitcap), Jain et al. [17] showed that the (general)
problem is APX-hard, and Kaski [19] showed the special case of the problem with only 7 terminal nodes
is NP-hard. Here we show that IUE-unitcap is APX-hard even when there are only 4 terminals. In an
early draft of this paper we also showed, independently of [19], that finding two edge-disjoint Steiner trees
is NP-hard. Both of these hardness results carry over (using similar constructions) to IUV-unitcap. The
following observation will be used in our proofs:

Observation 3.1 For any solution of any of our Steiner tree packing problems, we may assume that: (1)
In any Steiner tree, none of the leaves is a Steiner node (otherwise we simply remove it). (2) Every Steiner
node with degree 8 belongs to at most one Steiner tree.

12

3.1 Hardness results for small-parameter problems

Using the above observation, the proof of NP-hardness for finding two edge-disjoint Steiner trees (for
instance see [19]) implies the following theorem.

Theorem 3.2 Finding 2 undirected vertex disjoint Steiner trees is NP-hard.
Theorem 3.3 TUE-unitcap is APX-hard even if there are only 4 terminals.

Proof: We use a reduction from Bounded 3-Dimensional Matching (B3DM). Assume that we are given
three disjoint sets X, Y, Z (each corresponding to one part of a 3-partite graph G), with | X| = |Y| = |Z] = n,
and a set £ C X XY X Z containing m triples. Furthermore, we assume that each vertex in X UY U Z
belongs to at most 5 triples. It is known [18] that there is an absolute constant ¢y > 0 such that it is
NP-hard to distinguish between instances of B3DM where there is a perfect matching (i.e., n vertex-disjoint
triples) and those in which every matching (set of vertex-disjoint triples) has size at most (1 —€p)n. Assume
that 1,...,2n, y1,...,yn, and 21, ..., 2z, are the nodes of X, Y, and Z, respectively. We construct a graph
H which consists of:

4 terminals ., ty, t,, and t,,.

/

e Non-terminals Z1,...,%pn, Y1,-..,Yn, and 21, ..., z, (corresponding to the nodes in X, Y, Z), «,... 2, _,.

!/ !/ ! !
Yloe s Ymen, and 27, ..., 2.

e Two non-terminals U and W.

o Edges t,xi, tyy;, t.2), 2.z, and ty,z;, for 1 <4 < n.

!

o Edges t,), zjy;, z;U, yity, and yjt,,, for 1 <i <m —n.

e m — n parallel edge from W to ¢,.

e For each triple e, = z;y;2; € E, 3 non-terminals vd, vE, vf and the following edges: viwz;, vgyj, viz,

vdvl, vivl, viU, and vIW.

See Figure 2. Now we prove that (a)[completeness] if G has a perfect matching then H has m edge-
disjoint Steiner trees and (b)[soundness] if every matching in G has size at most (1 — ¢p)n then H has at
most (1 — €1)m edge-disjoint Steiner trees, for €; > ¢€y/110.

Lemma 3.4 (completeness) If G has a perfect matching M = {eq,,€qy,---,€a,} then H has m edge-
disjoint Steiner trees.

Proof: For each triple e, = z;y,2; € M we construct a tree T, by using the following edges: t,x;, t,y;,
t.2)., 22k, Tivs, vivd, vy, vivl, viz,, and z)t,,. (See the tree shown by bold lines in Figure 2). This
gives a set S1 of n edge-disjoint trees. Without loss of generality assume that ej,..., e, 5 are the triples
that are not in M. For each triple e, = zyyjiziy € M, 1 < p < m — n, we construct a tree Tj, by using the

13

Figure 2: Construction with 4 terminals from B3DM

following edges: tyx),, T,yy, Yptys Yptyz, T,U, Uvk, vive, vevs, viW, and (one of the parallel edges) Wt..

This gives a set So of m — n edge-disjoint trees. It is not hard to see that all these trees in S; and Sy are
edge-disjoint. This proves Lemma 3.4. [|

Now assume that H hasaset 7 = {11, ..., T, } of edge-disjoint Steiner trees, with m' at least (1—e1)m.
Our goal is to show that, G will have a matching of size at least (1 — 110e1)n.

Claim 3.5 There is a subset T' C T of size at least (1 — 11ey)m such that every tree T; € T' has the
following properties: (i) all the terminals have degree 1, and (ii) there is ezactly one (unique) vertex vd

(for some 1 < g < m) in T; and furthermore both vivd and vivl are in T;, and there is no ¢ # q for which

vl or vl isin T;.

Proof: Since degree of t, is exactly m in H, there are at most e;m trees in 7 in which ¢, is not a leaf. To
see this, let @ be the number of Steiner trees in 7 that each have at least 2 edges incident with %,; since
these trees “use” at least 2a edges incident with ¢,, there are at most m — 2« other Steiner trees in 7;
then we have m — eym < |T| < m — a, and this implies that o < ¢;m. The same claim applies to all the
terminals, because they all have degree exactly m.

It follows that there is a set 7" C T of size at least (1 — 3e1)m of trees in which ¢,, and ¢, both have
degree 1. For each tree of 7", there is at least one 1 < g < m, such that the path that connects t, to t;
goes through edge vivé. To see this note that ¢,, has degree 1 in every tree of 7", hence, for each of these
trees, the ¢,,t, path does not use any edge incident to t,.; moreover, if we delete t,, and all the edges
vivd for ¢ =1,...,m, then t, and t, are disconnected; thus the t,, ¢, path must use one of the edges viv.
Then the number of trees in 7" that have at least two vertices v and vg’ is at most 3e;m; also, the same
claim holds for vertices v? and vg,. (To see this, let @ be the number of trees in 7" that each have at least
2 vertices v and vg’; note that the vertices vd and v have degree 3 so by Observation 3.1(2) each such
vertex is in at most one tree; then there are at most m — 2« other trees in 7", since each of the trees in 7"
has a vertex v%; thus we have (1 —3e;)m < |T”| < m — «, and this implies that o < 3¢;.) Therefore, there

14

is a set 7% C T" of size at least (1 — 6€;)m of trees for which there is a unique ¢ such that both v¢ and v

are in the tree and there is no ¢’ # ¢ such that either vgl or vg’ is in the tree. Similarly, since ¢, has degree

1, in every tree of 7", the path between ¢, and ¢, cannot contain ¢,. Hence, each tree of 7" contains at
least one vertex vf, for some 1 < p < m. In particular each tree of 7* that contains v{ and v (for some
1 < ¢ < m), contains v# as well. Then the number of trees in 7" that have at least 2 vertices v} is at most
3erm. Thus, at least (1 — 6e; — 3e1)m of the trees in 7* do not violate condition (i¢). There are at most
2e1m trees in T such that either ¢, or ¢, is a non-leaf (by the argument at the start of this proof). Hence,
the number of trees that violate neither () nor (i7) is at least (1 — 9¢; — 2e1)m = (1 — 11e)m. This proves

Claim 3.5. =

Consider a set 7' of Steiner trees of H as described in the previous claim. Note that |77| > (1 —11ey)m.
Pick any tree T, € 7' that contains ¢,z for some 1 < i < m — n. Clearly the path that connects ¢, to t,
goes through the unique vertex v¢ that belongs to T, (because ¢,, has degree 1). We claim that y; cannot
belong to any tree in 7 other than 7,. Otherwise, let y; € T}, for some b # a. Therefore, because z; & T),
and by Observation 3.1(1), ¢,y; and t,.y; must be in T},. But since both ¢, and ¢,, are leaves in every tree
in 7" and in particular in T}, yiz} must be in T}, a contradiction. Then we may add y} to Tj (if it is not
already in T,), and add the edges yt, and y;t,. (if other edges are incident to ¢, or t,,, then we remove
those edges). We still have a Steiner tree which is edge-disjoint from the other trees in 7'. We apply this
modifications for any tree T, € 7' that contains some edge ¢,z for some 1 <i < m —n.

Claim 3.6 There is a set T" C T' of size at least (1 —22¢1)m such that every tree in T" contains at most
one vertex from Q ={y},...,yb_,t U{z},..., 2}

Proof: Since all vertices in) have degree 3, each of them belongs to at most one Steiner tree. So, once a
vertex v € @ is in a tree Ty, € T’ then the edges t,,v cannot be in any other tree in 7'. Therefore, if there
are « trees in 7' that each contain two or more vertices from @), then they “use” at least 2« edges incident
with ¢,,, and there can be at most m —2ca other Steiner trees in T'. Then we have m—11leym < |T'| < m—a,
and this implies that o < 11le;m. We remove from 7' all the trees that have > 2 vertices from Q. This
gives the desired set 7", and this proves Claim 3.6.]

Consider the subset 7" C 7" as defined in the previous claim. Recall that for every tree T, € T", (i)
. q . q q q q .

? ?
terminals have degree 1, (i7) there is one unique vertex v¢ in Ty, and both edges vévi and v¢v? are in T}, and
i1i) there is no other vertex vl or v in 7}, for ¢/ 1v) there is at most one vertex from set () in T,,, and

7 q q7 ?

s ! - ! !/ !0 H
x a =t = - 3 z2d9 e} as
(v) if tya; € T, for some 1 <4 < m —n then tyy;, t,,y;, and yjz; are all in T,, and therefore no vertex from
2y, 20} is in Ty, i.e., the edge incident with ¢, in T, is t,W. Remove all the trees in 7" that satisfy
1 n g

condition (v) above to obtain set 7,ey. Since m < 5n, we have |Thew| > (1—22¢1)m—(m—n) > (1—110€;)n.
Lemma 3.7 (soundness) 7,¢, induces a matching of size |Thew| in G.

Proof: By definition of 7T,ew, in every tree T, € Tpew: (i) t, and ¢, and ¢, are adjacent to vertices x;, y;,
and z;,, respectively (for some unique 1 < 4,7,k < n), and 2z, € T,, and (i) there is exactly one (unique)
vé that belongs to T, and vivd € T, and viv! € T,, and (i74) there is no other vertex vg’ or vg’ in T,, that
is ;0L € T, and vz, € T, and vgyj € Ty,. This implies that T, induces a triple (z;,y;, 2;) in the 3-partite
graph G. Since the trees in T}, are edge-disjoint and moreover, each of these trees contains exactly one

15

node from each of the 3 sets {z1,...,z,}, {y1,-.-,yn}, {#1,-.-, 20}, it follows that these |T},c,| triples are
vertex-disjoint. Thus they form a matching of size at least (1 — 110¢;)n in G. This proves Lemma 3.7. m

By Lemma 3.7, if every matching in G has size at most (1 — €p)n then H has at most (1 — ¢/110)m
edge-disjoint Steiner trees. This completes the proof of Theorem 3.3. [|

The constant 110 in the above theorem is not optimal. We can find explicit lower bounds for the
hardness of IUE-unitcap with constant number of terminals using the known hardness results for kDM,
for higher values of k. For instance, Chlebik and Chlebikova [7] proved that 4DM (with upper bounds on
the degree of each vertex) is hard to approximate within a factor %. Using this and a reduction similar to
the one presented in Theorem 3.3 it seems possible to show that IUE-unitcap with 5 terminals is hard to

approximate within a factor (1 + ﬁ). The proof of Theorem 3.3 extends to give the next result.
Theorem 3.8 IUV -unitcap is APX-hard with only 4 terminals.

Proof: First, we prove APX-hardness with only 6 terminals, by using the same reduction as in Theorem
3.3. The only difference is that vertices U and W are also terminals in the construction. Now it is not
hard to prove that: (7) if the given 3-partite graph G has a perfect matching then H has m vertex disjoint
Steiner trees, and (i4) if every matching in G has size at most (1 — €p)n then H has at most (1 — €;)m
vertex-disjoint Steiner trees, where €; is within a constant factor of €y. We skip the details.

A more careful reduction similar to the one in Theorem 3.3 improves the number of terminals from 6
to 4. The basic change is to replace U with m — n copies of it uy,...,up—,. We have an edge from
to each u; (for i = 1,...,m —n). We connect every uy,..., U, , to every vertex vi (for ¢ = 1,...,m).
We do similar changes for W, that is, we replace it with m — n copies wq, ..., Wn_n, and connect each of
Wi,y Wy p t0 t, and to each vertex vi (for ¢ = 1,...,m). We skip the details as they are similar to
those of Theorem 3.3. m

3.2 The unrestricted IUV and GUYV problems

The next theorem shows that IUV-unitcap is significantly harder than TUE-unitcap. We show this by
a reduction from the set-cover packing problem (or domatic number problem). Given a bipartite graph
G(V1 U Vs, E), a set-cover (of V) is a subset S C V; such that every vertex of V5 has a neighbor in S.
A set-cover packing is a collection of pairwise disjoint set-covers of V5. The goal is to find a packing of
set-covers of maximum size. Feige et al. [9] show that, unless P=NP, there is no o(logn)-approximation
algorithm for set-cover packing, where n = |V}| + |V2|. We have the following theorem.

Theorem 3.9 IUV -unitcap, even restricted to the case that both the set of terminals and the set of
Steiner nodes are independent, cannot be approzimated within ratio cologn, for some constant cg > 0,
unless P=NP.

Proof: Given a bipartite graph G(V; U V,, E) as the instance of set-cover packing problem, the instance
for IUV-unitcap problem will be G’ that is obtained from G by adding a vertex ty and connecting it to
all the vertices in V;. Let the terminal set of G’ be ty U V5. We claim that G’ has set-cover packing of size
p if and only if G’ has p vertex-disjoint Steiner trees. If sets Si,..., S, form a set-cover packing then it is

16

easy to see that T; = S; U Vo U {tp}, for 1 <i < p, forms a set of vertex-disjoint Steiner trees. Conversely,
it Th,...,T, are vertex-disjoint Steiner trees then, since V5 is an independent set, for each T; there has to
be a set S; C Vp of vertices such that every vertex in V5 has a neighbor in S; in order to be connected to
the rest of the tree. [|

On the other hand, we obtain an O(y/nlogn) algorithm for GUV (which contains IUV-unitcap as a
special case). To do so, consider the fractional version of GUV obtained by relaxing the integrality condi-
tion in the IP formulation. The separation problem for the dual of this LP is the minimum node-weighted
Steiner tree problem. For this problem, [20] and and [15] give O(logn) approximation algorithms. Using
the following analog of Theorem 2.9 (or Theorem 4.1 in [17]) we obtain a polytime O(logn)-approximation
algorithm for fractional GUV.

Lemma 3.10 There is an a-approzimation for fractional GUYV if and only if there is an a-approzimation
for the minimum node-weighted Steiner tree problem.

Remark: Lemma 3.10 and the fact that the minimum node-weighted Steiner tree problem is hard to
approximate within O(logk) (with &k being the number of terminals) yields an alternative proof for the
(log k) hardness of IUV-unitcap.

The algorithm for GUYV is similar to the ones we presented for GDE and GDV. That is, we apply
randomized rounding to the solution of the fractional GUYV instance. Skipping the details, this yields the
following;:

Theorem 3.11 Let € > 0 be a constant. There is a polynomial-time algorithm for GUV that finds a
set of Steiner trees (satisfying the vertex capacity constraints) of size Q(max{¢s/\/nlogn, go?c/n log?n}) if

5 < n, and of size Q(ps/logn) otherwise, where ¢y denotes the optimal value of the instance of fractional
GUV.

3.3 Packing vertex-disjoint priority Steiner trees

The priority Steiner tree problem has been studied by Charikar et al. [5]. Here, we study the problem of
packing vertex-disjoint priority Steiner trees of undirected graphs. (One difference with the earlier work in
[5] is that we associate weights and priorities with vertices rather than with edges.) Consider an undirected
graph G = (V, E) with a set of terminals 7' C V', one of which is distinguished as the root r. Let every
vertex v have a nonnegative integer p, as its priority, and let every vertex v have a nonnegative integer ¢, as
its capacity. A priority Steiner tree is a Steiner tree such that for each terminal ¢ € T" every vertex v on the
r,t path has priority p, > p;. In the problem IUV-priority (packing undirected vertex-capacitated priority
Steiner trees) the goal is to find a maximum set of priority Steiner trees obeying vertex capacities (i.e., for
each Steiner vertex v € V —T the number of trees containing v is < ¢;,). In the problem GUV-priority, we

have ¢ sets of terminals 71, ..., Ty and £ roots ry,...,ry (where r; € T;, for i = 1,...,¢, and £ is polynomial
in n), and the goal is to find a maximum set of trees obeying the vertex capacities, where each of these
trees must have an ¢ € {1,...,¢} such that the tree is a priority Steiner tree with root r; and terminal

set T; (that is, the tree contains all the nodes in 7; and for each ¢ € T; every vertex v on the r;, ¢ path
has p, > p¢). The algorithm we presented for GUV extends to GUV-priority, giving roughly the same
approximation guarantee.

17

Theorem 3.12 Lete > 0 be a constant. There is a polynomial-time algorithm for GUV -priority that finds
14€
a set of priority Steiner trees (satisfying the vertex capacity constraints) of size Q(max{wf/n%, w%/n1+5})

if oy < m, and of size Q(gof/ng) otherwise, where @y denotes the optimal value of the instance of fractional
GUV-priority.

Proof: The fractional packing problem for GUV-priority is obtained in the usual way (formulate the
packing problem as an integer program and then relax the integer variables to be nonnegative reals).
First note that in the dual of the LP formulation of fractional GUV-priority, the separation problem
is the minimum (node-weighted) priority Steiner tree problem, where the node weights correspond to the
(nonnegative) variables of the dual. The following lemma, together with the O(n¢) approximation algorithm
of [4] for minimum (arc-weighted) directed Steiner trees, shows that there is an O(n®) approximation
algorithm for the minimum (node-weighted) priority Steiner tree problem. (In the lemma, we abuse the
notation and denote instances of these problems by the associated graphs or digraphs.)

Lemma 3.13 There is a polynomial-time algorithm that given an instance G = (V, E) of the minimum
(node-weighted undirected) priority Steiner tree problem constructs an instance G" of the minimum (arc-
weighted) directed Steiner tree problem such that G has a priority Steiner tree of weight W if and only if
G" has a directed Steiner tree of weight W.

Proof: Let G(V, E) be the given undirected graph, let r be the root, and let the set of terminals be T' C V;
each vertex v € V has a weight w, and a priority p,. Without loss of generality, we may assume that the
vertex priorities p, are in the range 1,...,n, and the root r has priority n. We assume (w.l.o.g.) that each
terminal in G' has weight zero.

Let G’ be the digraph obtained from graph G by first splitting each vertex v into two vertices v, v?

and adding the arc v'v?, and then replacing each edge xy € E by a pair of arcs z2y', y?z'; moreover, for
each v € V, define the weight and priority of arc v'v? to be w, and p,, and define the weight and priority
of the other arcs to be 0 and n, respectively. For each possible priority ¢ € {1,...,n}, we start with a
copy G of G’ and we remove all arcs that have priority less than £ (thus each arc in G has priority > /).
Finally, for £ = n,n — 1,...,2, for each node v € G we add an arc from the copy of v? in G, to the copy
of v? in G} ;. These new arcs have a weight of 0 and a priority of n (so their weights and priorities will
not affect our proof). In the resulting digraph, let the root be the node 7! in GJ,, and for each terminal
vertex ¢ € T of G let the copy of node #? in G;t be a terminal (thus ¢ corresponds to ¢? in the copy of G
indexed by p;). Denote the directed instance by G”, and denote its set of terminals and root by 7" and
", respectively (see Figure 3 for an illustration).

Consider any terminal ¢t € T of G, and let ¢ denote the corresponding terminal of G”. Clearly, in G”,
every arc in any (directed) path from r” to ¢t” has priority at least p;. Moreover, for any path between r
and t in G such that every vertex v in the path has p, > p;, G" has directed paths from " to . Our
construction picks one of these r” ¢ directed paths as follows: Let the r,¢ path of G be vy, v1,v2,...,v4
(where vy = r,vy = t); we assign a number p”(v) to each vertex v in this path such that p; < p"(v) < p,,
p"(t) = pt, p"(r) = pr, and moreover, these numbers form a non-increasing sequence along the r, ¢ path
(ie., p"(vo) > p"(v1) > ... > p"(vy)). Then the r” ¢" directed path of G” consists of the nodes r” = r!,
r? in G!, followed by a directed path from (the copy of) r? in G’, to (the copy of) 2 in G;,,(Ul), followed

18

(w, not shown)

Pv

I:l terminal

Q Steiner node

e .
TR
PPas I \‘\\ -
o 2\ _> {@ @ G, (n=5)

\.\‘\‘\=-=.‘Z__../"/“/' Vs ~N

e W,1,2 = Wy
Dyly2 = Po

8 “ /{ = wi; =0

. N ‘ pi; =n=>5
_.\.\ \ o e
e £ S arcs of directed
Steiner tree
- J
S0 i
T e — - ‘/{ N T

Figure 3: Graph G(V, E), and directed graph G”, showing only Gf, G, and G; also, only some of the

arcs from v? in G} to v? in G} | are shown.

19

by v and v? in G;,,(vl), followed by a directed path from (the copy of) v? in G;,,(vl) to (the copy of) v? in

G, (02)? followed by v% and v% in G;,,(

1 2 !
» ..., followed by Vg and vy In Gp,,()

v2)’ Uq

It can be seen that corresponding to any directed Steiner tree H” of G” there is a priority Steiner tree
of G whose weight is at most the weight of H”. (To see this, let S be the set of Steiner vertices v of G
such that one of the copies of the arc v'v? is in H"; then the subgraph of G induced by S UT has an r, ¢
path for each ¢ € T', and moreover, each Steiner vertex v in an r,t path has p, > p; because the arc v'v?
(in H") occurs in say G;,,(U) where p, > p"(v) > p:.)

Moreover, it can be seen that corresponding to any priority Steiner tree H of G there is a directed
Steiner tree H" of G" with the same weight. (To see this, we associate a number p”(v) with each vertex v
of H, where p”(v) is the maximum priority of any terminal in the subtree of H rooted at v; thus p"(v) < p,,
Vv € V, and for each terminal ¢, every vertex v in the r, ¢ path of H has p”(v) > py; then for each terminal
vertex v € T and for each Steiner vertex v in H, we add to H" (the copy of) nodes v', v? and arc v'v? in
G; ")} finally we add to H" appropriate arcs of weight 0 and priority n.)

Consequently, an a-approximate solution to the minimum arc-weighted directed Steiner tree problem
in G” gives an a-approximate solution to the minimum node-weighted priority Steiner tree problem in G.
This proves Lemma 3.13 [|

The next result follows from Lemma 3.13 and another analog of Theorem 2.9 (or Theorem 4.1 in [17])
that relates the fractional GUV-priority problem to the minimum (node weighted) priority Steiner tree
problem.

Lemma 3.14 There is an O(n®)-approzimation algorithm for the fractional GUV -priority problem.

The above lemma can be used to obtain an O(n%"'e)—approximation algorithm for the GUV-priority
problem, similar to the approximation algorithm for GUV; we find an approximately optimal solution to
the fractional packing problem and then apply randomized rounding; see the analysis in Section 2.2. This
proves Theorem 3.12. [|

On the other hand, we prove an Q(n%*) hardness result for IUV-priority by adapting the proof of
Theorem 2.4, thus improving on our logarithmic hardness result for IUV. The main difference from the
proof of Theorem 2.4 is that we use instances of the Undir-Node-USF problem (Undirected Node capacitated
Unsplittable Flow) — which is shown to be NP-complete in [12] - instead of instances of 2DIRPATH as the
modules that are placed on the “gray boxes” in Figure 1.

Thelorem 3.15 Given an instance of TUV -priority, it is NP-hard to approzimate the solution within
O(n3~) for any € > 0.

Proof: The construction is the same as in the proof of Theorem 2.4, except that the edges are undirected
and we replace the “modules” (gray box intersections) that consist of the same instance of the 2DIRPATH
problem by parameterized instances of the Undir-Node-USF problem, described below. An instance of
the Undir-Node-USF problem is an undirected graph G(V, E) with distinct vertices z1,y1, z2,y2 € V, plus
two integers po > p; > 0. Furthermore, each node v of G has a priority p,. We may assume that G has
an xg,ys path such that each vertex v on this path has p, > po (this follows from the construction of

20

Guruswami et al. [12]). The question is whether or not there exist two vertex-disjoint paths @1, @2, such
that Q; (for i = 1,2) starts at z;, ends at y;, and every node v of @Q; has priority p, > p;. Guruswami et al.
[12] (see Theorem 3 in their paper) proved the following result (by giving a reduction from the satisfiability
problem): Given an instance of Undir-Node-USF, it is NP-complete to decide whether the answer is “Yes”
or “No”. Moreover, this holds for any two distinct integers po, p1. (We remark that our notation differs
from that of [12]; they use the terms “node capacities ¢,”, and “source-sink pairs (s;,t;)” with “demands
d;” whereas we use “node priorities p,”, and we have two pairs (z1,y1) with priority p; and (x2,ys) with
priority po; there is no other difference.)

In the proof of Theorem 2.4 we make the following changes. We fix N = |V(G)|%, where G is the
“module” graph (instance of Undir-Node-USF). The terminals by, ..., by are given distinct priorities, say,
1,...,N. We remove all the edges a;b;, ©+ = 1,...,N. For each gray box intersection with vertices
sgﬂ,taﬂ, PG qf; we identify vertices z2,y, with sgﬂ,tgﬂ (horizontal line) and fix priority p, = N (to
connect by to the root), and we identify vertices z1,y; with PG 95 (vertical line) and fix priority p; = /8
(to connect bg to the root). All the nodes v that are not in the interior of any “module” get priority
py = N.

It can be seen that Lemma 2.5 in the proof of Theorem 2.4 applies to the new setting (for IUV-priority).
Now, consider any priority Steiner tree Tj,. Every vertex in the r, by path (of Tj;,) must have priority N,
thus this path cannot contain any “vertical line segments” (paths containing edges of the form pgiqgf(i +1));

that is, this path corresponds to one of the horizontal lines H®. Using this, it can be seen that Lemma 2.6
in the proof of Theorem 2.4 applies to the new setting (for IUV-priority). This proves Theorem 3.15. m

References

[1] S. Arora and C. Lund, Hardness of approzimations, in Approzimation Algorithms for NP-hard Prob-
lems, Dorit Hochbaum Ed., PWS Publishing, 1996.

[2] A. Baveja and A. Srinivasan, Approzimation algorithms for disjoint paths and related routing and
packing problems, Mathematics of Operations Research 25:255-280, 2000. Earlier version in FOCS1997.

[3] R. Carr, and S. Vempala, Randomized metarounding, Random Structures and Algorithms, 20:343-352,
2002. Earlier version in STOC 2000.

[4] M. Charikar, C. Chekuri, T. Cheung, Z. Dai, A. Goel, S. Guha, and M. Li, Approzimation algorithms
for directed Steiner problem, J.Algorithms 33(1):73-91, 1999. Earlier version in SODA 1998.

[6] M. Charikar, J. Naor, and B. Schieber, Resource optimization in QoS multicast routing of real-time
multimedia, Proc. 19th Annual IEEE INFOCOM (2000).

[6] J. Cheriyan and M.R. Salavatipour, Packing Element-Disjoint Steiner Trees, manuscript, 2004.

[7] M. Chlebik and J. Chlebikovd, Inapprozimability results for bounded variants of optimization problems,
In Proceedings of 14th International Symposium on Fundamentals of Computation Theory FCT 2003,
LNCS 2751, pp 27-38.

[8] R. Diestel, Graph Theory, Springer, New York, NY, 2000.

21

[9]

[10]

[11]

[12]

[13]

U. Feige, M. Halldorsson, G. Kortsarz, and A. Srinivasan, Approzimating the domatic number, Siam
J.Computing 32(1):172-195, 2002. Earlier version in STOC 2000.

P. Floréen, P. Kaski, J. Kohonen, and P. Orponen, Multicast time mazimization in energy constrained
wireless networks, in Proc. 2003 Joint Workshop on Foundations of Mobile Computing (DIALM-
POMC2003), San Diego, CA, 2003.

A. Frank, T. Kirdly, M. Kriesell, On decomposing a hypergraph into k connected sub-hypergraphs,
Discrete Applied Mathematics 131(2):373-383, 2003.

V. Guruswami, S. Khanna, R. Rajaraman, B. Shepherd, and M. Yannakakis, Near-optimal hardness
results and approximation algorithms for edge-disjoint paths and related problems, J.Computer and
System Sciences 67(3):473-496, 2003. Earlier version in STOC 1999.

S. Fortune, J. Hopcroft, and J. Wyllie, The directed subgraph homeomorphism problem, Theoretical
Computer Science 10(2):111-121, 1980.

M. Grotschel, A. Martin, and R. Weismantel, The Steiner tree packing problem in VLSI design,
Mathematical Programming 78:265-281, 1997.

S. Guha and S. Khuller, Improved methods for approximating node weighted Steiner trees and connected
dominating sets, Information and Computation 150:57-74, 1999. Earlier version in FST&TCS 1998.

E. Hazan, S. Safra, and O. Schwartz, On the hardness of approxzimating k-dimensional matching,
Electronic Collogium on Computational Complexity, Rep.No.20, 2003.

K. Jain, M. Mahdian, M.R. Salavatipour, Packing Steiner trees, Proc. SODA2003.

V. Kann, Mazimum bounded 3-dimensional matching is MAX SNP-complete, Information Processing
Letters 37:27-35, 1991.

P. Kaski, Packing Steiner trees with identical terminal sets, Information Processing Letters 91(1):1-5,
2004.

P.N. Klein and R. Ravi, a nearly best-possible approzimation algorithm for node-weighted Steiner trees,
J. Algorithms 19(1):104-114, 1995.

S.G. Kolliopoulos and C. Stein, Approzimating disjoint-path problems using packing integer programs,
Mathematical Programming 99:63-87, 2004. Earlier version in Proc. IPCO1998.

M. Kriesell, Edge-disjoint trees containing some given wvertices in a graph, J.Combinatorial Theory
(B) 88:53-65, 2003.

L. Lau, An approzimate maz-Steiner-tree-packing min-Steiner-cut theorem, Proc. 45th IEEE FOCS
2004.

A. Martin and R. Weismantel, Packing paths and Steiner trees: Routing of electronic circuits, CWI
Quarterly 6:185-204, 1993.

S. Vempala, and B. Vocking, Approzimating multicast congestion, Proc. 10th ISAAC, Chennali,
Springer LNCS, 367-372, 1999.

22

