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Abstract1

We consider the Travelling Salesman Problem with Neighbourhoods (TSPN) on the Euclidean plane2

(R2) and present a Polynomial-Time Approximation Scheme (PTAS) when the neighbourhoods are3

parallel line segments with lengths between [1, λ] for any constant value λ ≥ 1. In TSPN (which4

generalizes classic TSP), each client represents a set (or neighbourhood) of points in a metric and5

the goal is to find a minimum cost TSP tour that visits at least one point from each client set. In the6

Euclidean setting, each neighbourhood is a region on the plane. TSPN is significantly more difficult7

than classic TSP even in the Euclidean setting, as it captures group TSP. A notable case of TSPN8

is when each neighbourhood is a line segment. Although there are PTASs for when neighbourhoods9

are fat objects (with limited overlap), TSPN over line segments is APX-hard even if all the line10

segments have unit length. For parallel (unit) line segments, the best approximation factor is 3
√

211

from more than two decades ago. The PTAS we present in this paper settles the approximability of12

this case of the problem. Our algorithm finds a (1 + ε)-factor approximation for an instance of the13

problem for n segments with lengths in [1, λ] in time nO(λ/ε3).14
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1 Introduction15

The Travelling Salesman Problem (TSP) is one of the most fundamental and well-studied16

problems in combinatorial optimization due to its wide range of applications. In TSP, one17

is given a set of points in a metric space and the goal is to find a (closed) tour (or walk)18

of minimum length visiting all the points. For several decades, the classic algorithm by19

Christofides [10] and independently by Serdyukov [32] which implies a 3
2 -approximation was20

the best-known approximation for TSP until a recent result in [24] which shows a slight21

improvement. Several generalizations (or special cases) of TSP have been studied as well,22

the most notable is when the points are given in fixed dimension Euclidean space. Arora23

and Mitchell [4, 30] presented different PTASs for (fixed dimension) Euclidean TSP. There24

have been many papers that have extended these results. Arkin and Hassin [3] introduced25

the notion of TSP with neighbourhoods (TSPN).26

An instance of TSPN is a set of neighbourhoods (or regions) given in a metric space,27

and the goal is to find a minimum length (or cost) tour that visits all these regions. Each28

region can be a single point or could be defined by a subset of points. They gave several29

O(1)-approximations for the geometric settings where each region is some well-defined shape30

on the plane, e.g. disks, and parallel unit length segments. Several papers have studied31

TSPN for various classes of neighbourhoods and under different metrics.32

TSPN is much more difficult than TSP in general and in special cases, just as group33

Steiner tree is much more difficult than Steiner tree (one can consider each neighbourhood34

as a group/set from which at least one point needs to be visited). In group Steiner tree35

or group TSP, one is given a metric along with groups of terminals (each group is a finite36

set). The goal is to find a minimum cost Steiner tree (or a tour) that contains (or visits) at37

least one terminal from each group. TSPN generalizes group TSP by allowing infinite size38

groups. Using the hardness result for group Steiner tree [22], it follows that general TSPN39

is hard to approximate within a factor better than Ω(log2−ε n) for any ε > 0 even on tree40

metrics. The algorithms for group Steiner tree on trees in [20], and embedding of metrics41

onto tree metrics in [18], imply an O(log3 n)-approximation for TSPN in general metrics.42

Unlike Euclidean TSP (which has a PTAS), TSPN is APX-hard on the Euclidean plane43

(i.e. R2) [11]. The special case when each region is an arbitrary finite set of points in the44

Euclidean plane (group TSP) has no constant approximation [31] and the problem remains45

APX-hard even when each region consists of exactly two points [13].46

Focusing on Euclidean metrics, most of the earlier work have studied the cases where47

the regions (or objects) are fat. Roughly speaking, it usually means the ratio of the smallest48

enclosing circle to the largest circle fitting inside the object is bounded. There are some49

work on when regions are not fat, most notably when the regions are (infinite) lines or line50

segments or in higher dimensions when they are hyperplanes. For the case of infinite line51

segments on R2, the problem for n lines can be solved exactly in O(n4 log n) time by a52

reduction to the Shortest Watchman Route Problem (see [12, 23]). For the same setting,53

Dumitrescu and Mitchell [14] presented a linear time π
2 -approximation, which was improved54

to
√

2 by Jonsson [23] (again in linear time). For infinite lines in higher dimensions (i.e. ≥ 3),55

the problem is proved to be APX-hard (see [2] and references there). For neighbourhoods56

being hyperplanes and dimension being d ≥ 3, Dumitrescu and Tóth [15] present a constant57

factor approximation (which grows exponentially with d). For arbitrary d, they present an58

O(log3 n)-approximation. For any fixed d ≥ 3, authors of [1] present a PTAS.59

For parallel (unit) line segments on the plane (R2) Arkin and Hassin [3] presented a60

(3
√

2 + 1)-approximation which was improved to 3
√

2 by [14], which remains the best-known61
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approximation for this case as far as we know for over two decades. Authors of [17] proved62

that TSPN for unit line segments (in arbitrary orientation) is APX-hard. In this paper,63

we settle the approximability of TSPN when regions are parallel line segments of similar64

length (unit length is a special case) and present a PTAS for it. As mentioned above, the65

best-known approximation for unit length parallel segments has ratio 3
√

2 [14]. We first focus66

on the case of unit line segments and show how our result extends to when line segments67

have bounded length ratio. This is in contrast with the APX-hardness of [17] for unit line68

segments with arbitrary orientation. Our result also implies a (2 + ε)-approximation for the69

case where the segments can be both vertical and horizontal.70

1.1 Related Work71

The work on TSPN is extensive, we list a subset of the most notable and relevant work72

here and refer to the references of them for earlier works. All works listed are for R2
73

metric. Arkin and Hassin [3] presented constant factor approximations for several TSPN74

cases including when the neighbourhoods are parallel unit-length line segments (with ratio75

3
√

2 + 1). Very recently, PTASs were proposed for the case of unit disks and unit squares in76

[5]. Mata and Mitchell [25] presented O(log n)-approximation for general connected polygonal77

neighbourhoods. Mitchell [28] gave a PTAS the case that regions are disjoint fat objects.78

This built upon his earlier work on PTAS for Euclidean TSP [30]. However, it is still open79

whether the problem is APX-hard for disjoint (general) shapes. Dumitrescu and Mitchell80

[14] presented several results, including O(1)-approximation for TSPN where objects are81

connected regions of the same or similar diameter. This implies O(1)-approximation for line82

segments of the same length in arbitrary orientation. They also improved the bounds for83

cases of parallel segments of equal length, translates of a convex region, and translates of a84

connected region. For parallel (unit) line segments they obtain a 3
√

2-approximation which85

remained the best ratio for this class until now. Feremans and Grigoriev [19], gave a PTAS for86

the case that regions are disjoint fat polygons of similar size. A similar result was obtained by87

[7] which gave a PTAS for TSPN for disjoint fat regions of similar sizes. Mitchell [29] presented88

an O(1)-approximation for planar TSPN with pairwise-disjoint connected neighbourhoods of89

any size or shape (see also [11]). Subsequently, [16] gave O(1)-approximation for discrete90

setting where regions are overlapping, convex, and fat with similar size.91

These results were further generalized by Chan and Elbassioni [8] who presented a92

QPTAS for fat weakly disjoint objects in doubling dimensions (this allows limited amount93

of overlapping of the objects). This was further improved to a PTAS for the same setting94

[9]. The TSPN problem is even harder if the neighbourhoods are disconnected. See the95

surveys of Mitchell [26, 27]. If the metric is planar and each group (or neighbourhood)96

is the set of vertices around a face, [6] presents a PTAS for the group Steiner tree and a97

(2 + ε)-approximation for TSPN.98

1.2 Our Results and Technique99

The main result of this paper is the following theorem.100

▶ Theorem 1. Given a set of n parallel (say vertical) line segments with lengths in [1, λ] for101

a fixed λ as an instance of TSPN, there is an algorithm that finds a (1 + ε)-approximation102

solution in time nO(λ/ε3).103

The algorithm we present is randomized but can be easily derandomized (like the PTAS104

for classic TSP). To simplify the presentation, we give the proof for the case of unit line105

segments first.106
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This problem generalizes the classic (point) TSP (at a loss of (1 + ε) factor). Given a107

point TSP instance, scale the plane so that the minimum distance between the points is at108

least 1/ε; call this instance I. Obtain instance I ′ for line TSP by placing a vertical unit line109

segment over each point. It is easy to see that the optimum solutions of I and I ′ differ by at110

most an ϵ factor.111

The difficult cases for line TSP are when the line segments are not too far apart (for e.g.112

they can be packed in a box of size O(
√

n) or smaller). There are two key ingredients to our113

proof that we explain here. One may try to adapt the hierarchical decomposition by Arora114

[4] to this setting. Following that hierarchical decomposition, the first issue is that some line115

segments might be crossing the horizontal dissecting lines, and so we don’t have independent116

sub-instances, and it is not immediately clear in which subproblem these crossing segments117

must be covered. Note that the number of line segments crossing a dissecting line can be118

large. Our first insight is the following:119

Insight 1: At a loss of (1 + ε), we can drop the line segments crossing horizontal dissecting120

lines and instead requiring a subset of portals of each square (of the dissection) to be visited,121

provided we continue the quad-tree decomposition until each square has size Θ(1/ε).122

In other words, assuming all the squares in the decomposition have height at least123

Ω(1/ε), then at a small loss we can show that a solution for the modified instance where124

line segments on the boundary of the squares are dropped, can be extended to a solution125

for the original instance. So, proving this property allows us to work with the hierarchical126

(quad-tree) decomposition until squares of size Θ(1/ε). This can be proved by a proper127

packing argument. But then we need to be able to solve instances where the height of the128

sub-problem instance is bounded by O(1/ε). Let’s define the notion of shadow of a solution129

(or in general, shadow of a collection of paths on the plane) as the maximum number of130

times a vertical sweeping line Γ (that moves from left to right) intersects any of these paths.131

Our second insight is the following:132

Insight 2: If we consider a window that is a horizontal strip of height O(h) and move133

this window vertically anywhere over an optimum solution, then the shadow of the parts of134

optimum visible in this strip is at most O(h).135

In other words, one expects that in the base case of the decomposition (where squares136

have height Θ(1/ε)), the shadow is bounded by O(1/ε). Despite our efforts, proving this137

appears to be more difficult than thought and it seems there are examples where, even in138

the unit length segments, the shadow may be large (see Figure 1). We were not able to139

prove this nor come up with an explicit counterexample. However, we are able to prove the140

following slightly weaker version that still allows us to prove the final result:141

(Revised) Insight 2: There is a (1 + ε)-approximate solution such that the shadow of any143

strip of height h over that solution is bounded by O(f(ε) · h). for some function f(·).144

The proof of this insight forms the bulk of our work. We characterize specific structures145

that would be responsible for having a large shadow in a solution and show how we can146

modify the solution to a (1 + ε)-approximate one with shadow O(1/ε). Consider the unit147

line segments case, and suppose opt is the cost of an optimum solution.148

▶ Theorem 2. Given any ε > 0, there is a solution O′ of cost at most (1 + ε) · opt such that149

in any strip of height 1, the shadow of O′ is O(1/ε).150

We will show that this near-optimum solution has in fact further structural properties that151

allow us to solve the bounded height cases at the base cases of the hierarchical decomposition152

using a Dynamic Program (DP) which, later on, is referred to as the inner DP. Proof of this153

theorem is fairly long and involves multiple steps that gradually proves structural properties154

for specific configurations.155
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Figure 1 A potential arrangement of line segments where the solution has a large shadow142

To get a very high level idea of the proof of this theorem, consider some fixed optimum156

solution OPT. We decompose the problem into horizontal strips by drawing horizontal lines,157

called cover-lines that are 1-unit apart. The region of the plane between two consecutive158

cover-lines is called a strip. Note that each line segment crosses one cover-line (or might159

touch exactly two consecutive cover-lines). Let’s consider one strip, say S, and consider the160

intersection of OPT with this strip. This intersection looks like a collection of paths that161

enter/exit this strip. We define the shadow of this strip similarly: consider a hypothetical162

vertical sweep line that moves left to right along the x-axis, the maximum number of163

intersections of this sweep line with these pieces of OPT restricted to S is the shadow in164

S. We show that we can modify OPT to a near-optimum solution of cost at most (1 + ε)165

times that of OPT so that the shadow in each strip is at most O(1/ε). To prove this, we166

show that there are certain potential structures that can cause OPT having a large shadow167

in a strip, one of which we call a zig-zag (see Figure 5). We show that we can modify OPT168

(at a small increase to the cost) so that the shadow becomes bounded along each zig-zag (or169

similar structures).170

Organization of the paper: We start by some preliminaries in the next section. In171

Section 3, we present some structural properties of a near-optimum solution and prove172

Theorem 2. We describe the main algorithm in Section 4, which includes the outer DP and173

inner DP. All the missing proofs appear in the full version of the paper [21].174

2 Preliminaries175

Suppose we are given n vertical line segments s1, . . . , sn of lengths in the range [1, λ] for176

some constant λ ≥ 1, and the top and bottom points of each si are denoted by st
i and sb

i ,177

respectively. These end-points are also called tips of the segment. For any point p, let x(p)178

and y(p) denote the x and y-coordinates of p, respectively. Similarly, for any segment or179

vertical line s, let x(s) denote its x-coordinate. For two points p, q, we use ||pq|| to denote180

the Euclidean distance between them. A feasible (TSP) tour is specified by a sequence of181

points where each of these points is on one of the segments of the instance and each line182

segment has at least one such point, and the tour visits these points consecutively using183
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straight lines. The line that connects two consecutive points in a tour is called a leg of the184

tour. In our problem, the goal is to find a TSP tour of minimum total length. As mentioned185

earlier, we focus on the case where all the line segments have length 1 and then show how186

the proof easily extends to the setting where they have lengths in [1, λ]. Fix an optimum187

solution, which we refer to by OPT and use opt to refer to its cost. Our goal is to show the188

existence of a near-optimum (i.e. (1 + ε)-approximate) structured solution that allows us to189

find it using dynamic programming.190

First, we show at a small loss we can assume all the line segments have different x-191

coordinates. We assume that the minimal bounding box of these line segments has length192

L and height H. For now, assume H > 3 (case of H ≤ 3 is easier, see Theorem 4). Let193

B = max{L, H −2}. So opt ≥ 2B; we can also assume B ≤ n
ε , because otherwise opt ≥ 2n/ε194

and if we consider an arbitrary point on each line segment (say the lower tip) and use a195

PTAS for the classic TSP for these points, then it will be a PTAS for our original instance as196

well (because we pay at most an extra +2 for each line for a total of 2n which is O(ε · opt)).197

For a given ϵ > 0, consider a grid on the plane with side length ϵB
n2 . Now move each line198

segment (parallel to the y-axis) so that the lower tip of each si is moved to the nearest199

grid point where there is no other line segment si with that x-coordinate. By doing this,200

all the segments will have different x-coordinates and each segment would move at most201 √
2

2 · εB
n < ϵB

n , and in total, all segments would move at most a distance of ϵB. So the202

optimum value of the new instance has cost at most (1 + ε) · opt. For simplicity of notations,203

from now on we assume the original instance has this property and let OPT (and opt) refer204

to an optimum (and its value) of this modified instance.205

3 Properties Of A Structured Near-Optimum Solution206

One special instance of the problem is when there is a horizontal line that crosses all the207

input segments. This special case can be detected and solved easily. Otherwise, any optimum208

solution will visit at least 3 points that are not colinear. In such cases, like in the classic209

(point) TSP [4], we can assume the optimum does not cross itself, i.e. there are no two legs of210

the optimum ℓ (between points p, q) and ℓ′ (between points p′, q′) that intersect, as otherwise211

removing these two and adding the pair of pq′, p′q or pp′, qq′ will be a feasible solution of212

smaller cost.213

▶ Definition 3. Given a collection P of paths on the plane and a vertical line at point x0 ∈ R,214

the shadow at x0 is the number of legs of the paths in P that have an intersection with the215

vertical line at x0. The shadow of a given range [a, b] is defined to be the maximum shadow216

of values x0 ∈ [a, b].217

Note that if a solution is self-crossing, the operation of uncrossing (which reduces the218

cost) does not increase the shadow219

Suppose the sequence of points of OPT is p1, p2, . . . , pσ and the straight lines connecting220

these points (i.e. legs of OPT) are ℓ1, ℓ2, . . . , ℓσ where ℓi connects two points pi, pi+1 (with221

pσ+1 = p1), and each si has at least one point pj on it. We consider OPT oriented in this222

order, i.e. going from pi to pi+1. Since all segments have distinct x-coordinates, we can223

assume No two consecutive points pi, pi+1 are on the same line segment by short-cutting (so224

no leg ℓi is vertical) and all points pi on distinct line segments have distinct x-coordinates.225

As mentioned before, let the length of the sides of the minimal bounding box of an226

instance of the problem be L × H. By proving the following special case, we show we can227

instead focus on the cases that H is large.228
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▶ Theorem 4. If H ≤ 3, then the shadow of an optimum solution is at most 2.229

From now on we assume that H > 3. Our main goal is to prove Theorem 2.230

▶ Definition 5. Given a segment s and a leg ℓ incident to a point on s, we say ℓ is to the231

left of s if ℓ is entirely in the subplane x ≤ x(s); and ℓ is to the right of s if ℓ is entirely in232

the subplane x ≥ x(s).233

Since there are no vertical legs, there is no leg that is both to the left and to the right of a234

segment of the instance at the same time. Consider any segment si and suppose that ℓj , ℓj+1235

are the two legs of OPT with common end-point pj that is on si. Let st
i and sb

i denote236

the top and the bottom tips of si. We consider 3 possible cases for the location of pj and237

the arrangement of ℓj , ℓj+1. Informally, one possibility is that the two legs ℓj , ℓj+1 form a238

straight line that crosses si at pj ; one possibility is that the two legs are touching si at one239

of its tips (i.e. pj = st
i or pj = sb

i) such that one is to the left and one is to the right of si240

and they don’t make a straight line, and the third possibility is that the two legs ℓj , ℓj+1 are241

on the same side (both left or both right) of si.242

▶ Observation 6. Consider any segment si (with top/bottom points st
i,sb

i ) and suppose that243

ℓj , ℓj+1 are the two legs of OPT with common end-point pj that is on si. Then either:244

The subpath of OPT going through pj−1, pj , pj+1 forms a straight line (i.e. ∠ℓjpjℓj+1 = π),245

and ℓj , ℓj+1 are on two sides (left/right) of si; then we call pj a straight point, or246

pj is a tip of si (i.e. pj = st
i or pj = sb

i), ∠ℓjpjℓj+1 ̸= π and ℓj and ℓj+1 are on two247

sides of si (one left and one right); in this case pj is called a break point, or248

both ℓj , ℓj+1 are on the left or on the right of si; in this case pj is called a reflection249

point.250

For the case of a reflection point pj with two legs ℓj , ℓj+1, if both legs are to the left of252

the segment it is called a left reflection point and otherwise it is a right reflection point. Also253

note that if ℓj , ℓj+1 are on the two sides of si and ∠ℓipjℓi+1 ̸= π, then pj must be a tip, or254

else we could move pj slightly up or down and reduce the length of OPT (see Figure 2).255

Figure 2 If pj isn’t a tip of si, then ℓj , ℓj+1 must be collinear251

▶ Lemma 7. If P is a subpath of OPT with end-points p, q where both are to the right of a256

vertical line Γ, and if P crosses Γ, then the left-most point on P to the left of Γ is a right257

reflection point (symmetric statement holds for opposite directions).258

▶ Definition 8. Consider an arbitrary reflection point r on a segment s. Let the two legs259

of OPT incident to r visited before and after r (on the orientation of OPT) be ℓ− and ℓ+,260

respectively. ℓ− is said to be on top of ℓ+ if all the points of ℓ− have larger y-coordinate261

than all of the points of ℓ+. In this case we also call ℓ− the upper leg and ℓ+ the lower leg.262

Also, in this case, r is called a descending reflection point. If ℓ+ is on top of ℓ−, then r is263

called an ascending reflection point.264
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If ℓj , ℓj+1 are two legs incident to a reflection point p on a segment s, if the angle between265

ℓj and s is the same as the angle between ℓj+1 and s (i.e. ℓj+1 is like the reflection of a ray266

ℓj on mirror s) then p is called a pure reflection point.267

▶ Lemma 9. Any reflection point that is not a tip of a segment is a pure reflection point.268

We say a subpath contains a reflection point pj if pj is not the start or end vertex of the269

subpath (i.e. both legs of incident to pj belong to that subpath.)270

▶ Lemma 10. If a sweeping vertical line Γ moves left to right on the x-axis, the only271

values of x for which the shadow at Γ changes will be when Γ hits a reflection point on272

that x-coordinate. Specifically, this means that any subpath of OPT that doesn’t contain a273

reflection point, must have a shadow of 1 throughout its length.274

▶ Definition 11. Let P1 and P2 be any two subpaths of OPT. We say P1 is above P2 in275

range I = [x0, x1] if for every vertical line Γ with x(Γ) ∈ I, the top-most intersection of Γ with276

these two paths is a point on P1. We say P2 is below P1 if the bottom-most intersection of Γ277

with P1, P2 is a point on P2. Similarly, we say L1 is to the left of L2 in range I ′ = [y0, y1]278

if for every horizontal line Λ with y(Λ) ∈ I ′, the left-most intersection point of Λ with L1, L2279

(i.e. one with the least x value) always belongs to L1. We say L2 is to the right of L1 if the280

right-most intersection of Λ is with L2.281

Figure 3 In range I, P1 is above P2, P3, and P2 is above P3282

▶ Lemma 12. For any distinct points pj and pj′ on OPT, following OPT according to its283

orientation, either the path from pj to pj′ or the path from pj′ to pj must contain at least284

one reflection point.285

▶ Lemma 13. Among the set of points visited by OPT following its orientation, suppose286

pj , pj′ , j < j′ (on segments si, si′ , respectively) are two consecutive reflection points (i.e. no287

other reflection point exists in between them). Then pj and pj′ cannot be both left or both288

right reflection points. Furthermore, if si is to the left of si′ then pj is a right reflection and289

pj′ is a left reflection (the opposite holds if si′ is to the left of si).290

▶ Corollary 14. Consecutive reflection points in OPT alternate between left and right291

reflections.292

3.1 Strips, Zig-zag, Sink293

We decompose the problem into horizontal strips by drawing some parallel horizontal lines,294

which we call cover-lines. Starting from the bottom tip of the top-most segment, draw295

parallel horizontal lines that are 1-unit apart, these are our cover-lines. Each input segment296

is considered "covered" by the top-most (i.e. the first) cover-line that intersects it. Let’s label297

these cover-lines by C1, C2, . . ..298
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▶ Definition 15 (strip, top/bottom segments). The region of the plane between two consecutive299

cover-lines Cτ , Cτ+1 is called a strip and denoted by Sτ . We consider Cτ , Cτ+1 part of Sτ300

as well. The input line segments that are intersecting the top cover-line of Sτ (Cτ ) are called301

top segments, and the segments covered by the bottom cover-line (Cτ+1) are called bottom302

segments of the strip.303

We show the near-optimum solution guaranteed by Theorem 2 has more structural304

properties that will be defined later. Note that once we prove that theorem, it follows that if305

we restrict a solution to h > 1 many strips, then the shadow is bounded by O(h/ε) as well.306

For now, let us focus on an (arbitrary) strip Sτ and imagine we cut the plane along307

Cτ , Cτ+1 and look at the pieces of line segments of the instance left inside this strip, along308

with pieces of OPT inside Sτ . Each top segment is now a partial segment in Sτ that has one309

end on Cτ ; and each bottom segment has one end on Cτ+1. Let OPTτ be the restriction310

of OPT to Sτ . For each leg of OPT that intersects Cτ or Cτ+1, we add a dummy point at311

the intersection(s) of that leg with Cτ and Cτ+1 (so that the components of OPTτ become312

consistent with our definition of legs). So OPTτ can be seen as a collection of subpaths313

within Sτ (possibly along Cτ or Cτ+1). Following the orientation of OPT, each subpath of314

OPTτ is formed by it intersecting with Sτ , traveling within Sτ (possibly along one of the315

cover-lines), and then exiting Sτ . Using the dummy points added, each path in OPTτ is a316

subpath of OPT that is between two points on cover-lines (these are called the entry points317

of the path with the strip. A formal definition is provided below).318

▶ Definition 16 (entry points, loops, ladders). For each subpath Pj of OPTτ , let ej and oj be319

the first and last intersections of Pj with the interior of Sτ . Points ej and oj are called the320

entry points of Pj.321

If both ej and oj lie on the same cover-line (either Cτ or Cτ+1), then Pj is called a loop,322

otherwise it’s called a ladder. If a subpath of OPTτ enters Sτ at ej on a cover-line and323

follows on that cover-line to point oj and exits the strip, it is a special case of loop that we324

refer to as a cover-line loop.325

Figure 4 An example of loops and ladders in a strip Sτ (i.e. area between cover-lines Cτ , Cτ+1)326

Since we’re assuming H > 3 (see Theorem 4), we get that OPT is not limited to a single327

strip, and that it has to indeed enter and exit any given strip that it intersects with (i.e. there328

is no strip that OPT completely lies inside it). Note that if a path of OPTτ is a cover-line329

loop, i.e. a section of the line Cτ or Cτ+1, then the entry points of that path must be the two330

end-points of this section. In other words, if for a cover-line loop of OPTτ the first point is331

ej on (say) Cτ , and the last point is oj on Cτ , then this subpath must be travelling straight332
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from ej to oj without any change of direction. This is true because otherwise, that cover-line333

loop would have to go back and forth on some portion on a cover-line, which is only possible334

if it’s self-intersecting; but this is against our assumption that OPT is not self-crossing. The335

two structures defined below (called a zig-zag and a sink) are the two configurations that336

can cause a large shadow.337

▶ Definition 17 (Zig-zag/Sink). Consider any loop or ladder of OPTτ , call it P . Let338

R = r1, r2, . . . , rt be the sequence of points of P that are reflection points (indexed by339

the order they’re visited). Consider any maximal sub-sequence rj , rj+1, . . . , rq of R (with340

q ≥ j + 1) such that all are ascending or all are descending reflections, and the segments341

containing them alternate between top and bottom segments; then the subpath P that starts342

at rj and ends at rq is called a zig-zag.343

If rj , rj+1, . . . , rq is a maximal sub-sequence of R that are all ascending or all descending,344

and all belong to top segments or all belong to bottom segments; then the subpath P that345

starts at rj and ends at rq is called a sink (see Figure 5).346

Figure 5 Examples of a sink (left) and a zig-zag (right). Bold dots indicate the reflection points.347

Note that each zig-zag has at least two reflection points (or else it will be a sink). Also,348

using Corollary 14, the reflection points in a zig-zag or sink should alternate between left349

and right reflection. The next important lemma is used critically to show that very specific350

structures (namely zig-zags and sinks) are responsible for having large shadow along a ladder351

or loop in OPTτ . Additionally, we can partition each ladder/loop into parts (subpaths), such352

that the shadow of the ladder/loop is equal to the maximum shadow among these parts, and353

each part is a path that consists of up to three sinks and/or zig-zags. So the shadow of a354

loop/ladder is within O(1) of the maximum shadow of zig-zag/sinks along it.355

▶ Lemma 18. Consider any strip Sτ and any ladder or loop P ∈ OPTτ within Sτ . Suppose356

the sequence of reflection points of P is r1, . . . , rq. Then these reflection points can be357

partitioned into disjoint parts, say part i consists of reflection points rai
, rai+1, . . . , raj

, where358

the subpath of P from rai
to raj

is concatenation of up to three sections in the following359

order: a) A sink , followed by b) A zig-zag , followed by c) A sink, where any of these three360

sections can possibly be empty, and the last reflection of a section is common with the first361
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reflection of the next section. Furthermore, for any vertical line Γ, there is at most one of362

these parts (of the partition) that intersects with it, i.e. the shadow of the ladder/loop is the363

maximum shadow among the parts plus 2.364

The proof of this lemma is rather involved (see [21] for details). To give an idea of the365

proof, we essentially show that for any loop/ladder in any strip, the vertical line at which366

the largest shadow for that loop/ladder happens, can intersect with at most two sinks and a367

zig-zag. So the shadow of a loop or ladder is within O(1) of the maximum shadow of the368

zig-zags and sinks along itself. The following lemma is one of the main components of proof369

of Theorem 2.370

▶ Lemma 19. Consider OPTτ for an arbitrary strip Sτ , and let optτ be the total cost of371

OPTτ . Given any ε > 0, we can change OPTτ to a solution of cost at most (1 + O(ε)) · optτ372

where the shadow of each zig-zag and sink is at most O(1/ε).373

The following corollary immediately follows from Lemmas 18 and 19:374

▶ Corollary 20. There is a (1 + ε)-approximate solution in which all loops/ladders have375

shadow O(1/ε).376

▶ Definition 21. Let R = pi, pi+1, . . . , pq be any sequence of consecutive points in OPT such377

that pi and pq are reflection points. If none of pj’s (i < j < q) in R is a tip of a segment,378

then R is called a pure reflection sequence.379

So each point in R is either a straight point or a pure reflection according to Lemma 9.380

▶ Lemma 22. Consider OPTτ for an arbitrary strip Sτ and suppose the total length of legs381

of OPTτ is optτ . Given ε > 0, we can change OPTτ to a solution of cost at most (1+ε) ·optτ382

in which the size of any pure reflection sequence is bounded by O( 1
ϵ ).383

Our next goal is to show that for any vertical line, it can intersect at most O(1) many384

loops or ladders of OPTτ in a strip Sτ . This together with the above corollary implies there385

is a (1 + ε)-approximate solution where the shadow in each strip Sτ is O(1/ε).386

▶ Definition 23. A collection of loops and or ladders are said to be overlapping with each387

other if there is a vertical line that intersects all of them.388

▶ Lemma 24. Consider OPTτ , the restriction of OPT to any strip Sτ . We can modify the389

solution (without increasing the shadow or the cost) such that there are at most O(1) loops390

or ladders in OPTτ that all are overlapping with each other.391

Assuming the correctness of main lemmas defined above (i.e. Lemmas 18, 19, 22, and392

24), we can now prove Theorem 2.393

Proof of Theorem 2. If the height of the bounding box is at most 3, simply use Theorem394

4. Otherwise, consider any strip Sτ (to be more precise, Sτ can be any arbitrary strip of395

height 1 in the plane). Using Lemma 19, there is a solution O′′ of cost at most (1 + ε) · opt396

where the shadow of each sink and zig-zag is bounded by O(1/ε). By Lemma 18, each loop397

or ladder in Sτ has a shadow that is at most 3 times the maximum shadow of a sink or398

zig-zag in it, plus two. So each loop or ladder has shadow O(1/ε). Finally, Lemma 24 shows399

that there can be at most O(1) overlapping loops or ladders in a strip. Thus, the overall400

shadow of O′′ in Sτ is bounded by O(1/ε). Furthermore, we apply Lemma 22 on O′′ to get401

a solution O′. This new solution has the property that with an additional cost of factor402

(1 + O(ε)) compared to O′′, the size of any pure reflection sequence is bounded by O(1/ε).403

The total cost of O′′ is at most (1 + O(ε)) · opt and the shadow is bounded by O(1/ε). ◀404
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Note: Although having a bound on the length of pure reflection sequences is not in the405

statement of the theorem, we use this extra property crucially in designing our DP to find a406

near-optimum solution.407

4 Main Algorithm and Reduction to Structured Bounded Height408

Instances409

As mentioned in the introduction, we follow the paradigm of Arora [4] for designing a410

PTAS for classic Euclidean TSP with some modifications. We focus more on defining the411

modifications that we need to make to that algorithm. First, we describe the main algorithm412

and how it reduces the problem into a collection of instances with a constant-height bounding413

box. We show how those instances can be solved using another DP (referred to as the inner414

DP), and how we can combine the solutions for them using another DP (referred to as the415

outer DP) to find a near-optimum solution of the original instance. Recall that in Section416

2, we assumed the minimal bounding box of the instance has length L and height H and417

we defined B = max{L, H − 2}, and also we can assume that B ≤ n
ε . We moved each418

line segment to be aligned with a grid point with side length ϵB
n2 (at a loss of (1 + ε) at419

approximation). Now, we scale the grid (as well as the line segments of the instance) by a420

factor of ρ = 4n2

ϵB so that each grid cell has size 4. We obtain an instance where each line421

segment has length ρ, all have even integer coordinates, any two segments are at least 4 units422

apart, and the bounding box has size N = O(n2/ε). Let this new instance be I. Note that423

if we define cover-lines as before but with a spacing of ρ, all the arguments for the existence424

of a near-optimum solution with a bounded shadow in any strip (the area between two425

consecutive cover-lines) still hold. We will present a PTAS for this instance. It can be seen426

that this implies a PTAS for the original instance of the problem. From now on, we use OPT427

to refer to an optimum solution of instance I, and opt to refer to its cost. Note that since428

the bounding box has side length N , then opt ≥ 2N . Similar to Arora’s approach, we do429

the hierarchical dissectioning of the instance into nested squares using random axis-parallel430

dissectioning lines, and put portals at these dissecting lines. We continue this dissectioning431

process until the distances between horizontal (and so vertical) dissecting lines is h · ρ for432

h = ⌈1/ε⌉. So at the leaf nodes of our recursive decomposition quad-tree, each square is433

(h ·ρ)× (h ·ρ), and the height of the decomposition is log(N/ρh) = O(log n) since B ≤ n
ε . We434

choose vertical dissecting lines only at odd x-coordinates so no line segment of the instance435

will be on a vertical dissecting line.436

We define our cover-lines Cτ based on these horizontal dissecting lines carefully. Consider437

the first (horizontal) dissecting line we choose, this will be a cover-line, and then moving in438

both up and down directions from this line, we draw horizontal lines that are ρ apart. These439

will be all the cover-lines. Label the cover-lines from the top to bottom by C1, C2, . . . , Cσ440

in that order. As before, the smallest index τ such that Cτ crosses a line segment is the441

cover-line that "covers" that line segment. We partition the cover-lines into h groups based on442

their indices: Group Gj contains all those cover-lines with index τ where j = τ (mod h). Let443

Gj∗ be the group of cover-lines that includes the first horizontal dissecting line, and hence all444

the other horizontal dissecting lines as well. The arguments for the case of unit-length line445

segments to show there is a near-optimum solution in which the shadow in each strip of height446

1 is O(1/ε) (Theorem 2), also imply the same for the scaled instance I. Furthermore, if we447

consider h consecutive strips, i.e. the area between two consecutive cover-lines in the same448

group Gj , then there is a near-optimum solution that has shadow O(h/ε) = O(1/ε2). Our449

goal is to show that, at a (1 + ε)-factor loss, we can simply drop the line segments that are450

SoCG 2025



XX:12 A PTAS for TSP with Neighbourhoods Over Parallel Line Segments

intersecting the horizontal dissecting lines (i.e. all those intersecting cover-lines in Gj∗) with451

appropriate consideration of portals (to be described). Removing the line segments that cross452

the dissecting lines allows us to decompose the instance into "independent" sub-instances453

that interact only via portals. The details of how to remove these segments which leads to454

proof of Lemma 25 below are deferred to the full version [21].455

Similar to Arora’s scheme for TSP, for m = O( 1
ε log(N/ρh)), we place portals at all 4456

corners of a square in the decomposition, plus an additional m − 1 equally distanced portals457

along each side (so a total of 4m portals on the perimeter of a square of the dissection). For458

simplicity, we assume m is a power of 2 and at least 4
ε log(N/ρh). We say a tour is portal459

respecting if it crosses between two squares in our decomposition only via portals of the460

squares. A tour is r-light if it crosses the portals on each side of a square of the dissection at461

most r times. For classic (point) TSP, it can be shown that there is a near-optimum solution462

that is portal respecting and r-light for r = O(1/ε). Our goal is to show a similar statement,463

except that we want the restriction of the tour to each "base" square of side length O(h · ρ)464

to have bounded (by O(h/ε) = O(1/ε2)) shadow as well. We then show that we can find465

an optimum solution with a bounded shadow for the base cases using a DP. This will be466

our inner DP. We then show how the solutions of for the 4 sub-squares of a square in our467

decomposition can be combined into a solution for the bigger subproblem using the outer468

DP. We show that at a small loss in approximation (i.e. O(ε · opt)), we can drop all the469

line segments of input that are intersecting the horizontal dissecting lines (i.e. covered by a470

cover-line in group Gj∗), solve appropriate subproblems, and then extend the solutions to471

cover those dropped segments. This modification requires certain portals of each square in472

the decomposition to be visited in the solution for that square. We show there is a feasible473

solution that visits all the remaining segments as well as the "required" portals, of total cost474

at most (1 + ε) · opt, and that such a solution can be extended to a feasible solution visiting475

all the segments of the original instance (i.e. including the ones that we dropped) at an extra476

cost of O(ε · opt).477

▶ Lemma 25. Given instance I, there is another instance I ′ that is obtained by removing478

all the segments that are crossing cover-lines in Gj∗ (i.e. intersecting horizontal dissecting479

lines), and instead some of the portals around (more precisely, the top and bottom sides of)480

each square of quad-tree dissection are required to be covered (visited); such that there is a481

solution for I ′ of cost at most (1 + O(ε)) · opt, and such a solution can be extended to a482

feasible solution of I of cost at most (1 + O(ε)) · opt. Furthermore, the shadow of the solution483

for I ′ between any two consecutive cover-lines in Gj∗ is at most 4 more than the shadow of484

OPT between those two lines.485

The outer DP based on the quad-tree dissection is similar to the classic PTAS for486

Euclidean TSP. One can show that for r = O(1/ε), there is a r-light portal respecting tour487

for I ′ with cost at most (1 + ε) · opt′ where opt′ is the cost of an optimum solution fo I ′.488

The DP will also "guess" in the recursion for each square, which portals are the "required"489

portals around it. The base case of this DP will be instances with bounding box of size ρ · h.490

For such instances, we solve the problem using an inner DP. Informally, the inner DP is a491

nontrivial generalization of the DP for the classic (and textbook example) bitonic TSP in492

which the shadow is 2. In our case, the shadow is O(1/ε2). We defer the details of both the493

inner and outer DP to the full version [21].494
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