Approximation Schemes for Orienteering and
Deadline TSP in Doubling Metrics

Kinter Ren &

Department of Computer Science, University of Alberta, Edmonton, Canada

Mohammad R. Salavatipour =

Department of Computer Science, University of Alberta, Edmonton, Canada

—— Abstract

In this paper we look at various extensions of the classic Traveling Salesman Problem (TSP) on
graphs with bounded doubling dimension and bounded treewidth and present approximation schemes
for them. Suppose we are given a weighted graph G = (V| E) with a start node s € V, distances
on the edges d : E — Q7 and integer k. In k-stroll problem the goal is to find a path from s of
minimum length that visits at least k vertices. In k-path we are given an additional end node t € V'
and the path is supposed to go from s to t. The dual problem to k-stroll is the rooted orienteering
in which instead of k we are given a budget B and the goal is to find a walk of length at most
B starting at s that visits as many vertices as possible. In the point-to-point orienteering (P2P
orienteering) we are given start and end nodes s, ¢ and the walk is supposed to start at s and end at
t. In the deadline TSP (which generalizes P2P orienteering) we are given a deadline D(v) for each
v € V and the goal is to find a walk starting at s that visits as many vertices as possible before
their deadline (where the visit time of a node is the distance travelled from s to that node). The
best approximation for rooted orienteering (or P2P orienteering) is (2 + €)-approximation [13] and
O(log n)-approximation for deadline TSP [4]. For Euclidean metrics of fixed dimension, Chen and
Har-Peled present [16] a PTAS for rooted orienteering. There is no known approximation scheme
for deadline TSP for any metric (not even trees). Our main result is the first approximation scheme
for deadline TSP on metrics with bounded doubling dimension (which includes Euclidean metrics).
To do so we first we present a quasi-polynomial time approximation scheme for k-path and P2P
orienteering on such metrics. More specifically, if G is a metric with doubling dimension x and aspect

O((log A/5)2“+1)

ratio A, we present a (1 + ¢)-approximation that runs in time n . Building upon these,

we obtain an approximation scheme for deadline TSP when the distances and deadlines are integer

which runs in time no((logA/E)2N+2)

. The same approach also implies a bicriteria (1 +¢,1 + ¢)-
approximation for deadline TSP for when distances and deadlines are in Q. For graphs with
bounded treewidth w we show how to solve k-path and P2P orienteering exactly in polynomial time

and a (1 4 ¢)-approximation for deadline TSP in time n©((~1°8 A/,

2012 ACM Subject Classification Theory of computation — Routing and network design problems

Keywords and phrases Deadline Traveling Salesman Problem, Orienteering, Doubling Metrics,
Approximation algorithm

Digital Object Identifier 10.4230/LIPIcs. APPROX/RANDOM.2025.1
Category APPROX
Related Version Full Version: https://arxiv.org/abs/2405.00818 [31]

Funding Kinter Ren: Supported by NSERC DG of the 2nd author.
Mohammad R. Salavatipour: NSERC

1 Introduction

We study a fundamental variant of the Traveling Salesman Problem (TSP) in which the
“salesman” wants to visit as many customers as possible before their required service deadlines.
Suppose we are given a weighted graph G = (V, E) with a start node s € V, deadlines

© Kinter Ren and Mohammad R. Salavatipour;

licensed under Creative Commons License CC-BY 4.0
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2025).
Editors: Alina Ene and Eshan Chattopadhyay; Article No. 1; pp. 1:1-1:22

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:zr4@ualberta.ca
mailto:mrs@ualberta.ca
https://orcid.org/0000-0002-7650-2045
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2025.1
https://arxiv.org/abs/2405.00818
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

1:2

Approximation Schemes for Orienteering and Deadline TSP in Doubling Metrics

D:V — Q7, and a distance/length function d : E — Q. In the deadline TSP problem, our
objective is to find a path (or a walk) starting at s that visits as many nodes as possible by
their deadlines. We say that the path visits node v by its deadline if the length of the path,
starting at s until it visits v (for the first time), is at most D(v). A node might be visited
multiple times, but it is counted only once. Alternatively, we can assume G is a complete
weighted graph where the edge weights satisfy triangle inequality, i.e. the (V,d) is a metric
space.

A special case of the deadline TSP is the rooted Orienteering problem, where all the nodes
have a universal deadline B (think of it as a budget for the length of the path travelled) and
the goal is to find a path, starting at s, of length at most B that visits as many vertices
as possible. Researchers have also studied another version of the Orienteering, known as
point-to-point Orienteering problem, denoted by P2P orienteering, where we are given a
start node s € V, an end node t € V, and a budget B. Here, our objective is to find an s-t
path of length at most B that visits as many nodes (other than s,t) as possible. This too
can be viewed as a special case of deadline TSP: the deadlines for each node v are set as
B —d(v,t), and the deadline TSP path is completed by connecting it directly to the end
node t. Notice that P2P orienteering can be seen as the “dual” of the k-path problem [12].
It is almost the same as the classical k-stroll problem [9] (also known as the (path) k-TSP
problem [16]) except in k-stroll we are given a start node v € V and integer k and the
objective is to find a minimum-length path from s visiting at least k nodes, while in k-path
problem we are given an additional end node ¢ € V' and the path is supposed to go from s to
t. It is important to note that P2P orienteering and k-path are equivalent in terms of exact
algorithms. However, an approximation for one problem does not imply an approximation
for the other.

Blum et al. [9] developed the first O(1)-approximation algorithm for the rooted orienteer-
ing problem in a general metric space. Their main approach involves a clever reduction to
k-TSP, via an intermediate problem. They introduced the concept of excess (also referred to
as regret) for a path and formulated the related minimum-excess problem, demonstrating that
an approximation for the latter extends to an approximation for the orienteering problem.
Given a path P that includes two vertices u, v, let dp(u,v) denote the length of the sub-path
from w to v. The excess of an s, t-path P, denoted by Ep, is the difference between the
length of the path and the distance between the endpoints of the path, Ep = dp(s,t) —d(s,t)
and the minimum-excess problem seeks to find an s-t path of minimum-excess that visits
at least k nodes. Moreover, they [9] demonstrated that the min-excess problem can be
approximated using algorithms for k-stroll, implying that an approximation algorithm for
k-stroll leads to an approximation algorithm (with a constant factor loss in the ratio) for the
orienteering problem, via the intermediate min-excess problem. Applying a similar approach
and concentrating on enhancing the approximation algorithm for the k-stroll, the factor
has been refined to the currently best (2 + €)-approximation, which also extends to P2P
orienteering [13] in a general metric space.

Chen and Har-Peled [16] developed the first Polynomial-Time Approximation Scheme
(PTAS) for the rooted orienteering problem in a fixed-dimensional Euclidean space. The prior
reduction by [9] increases the approximation ratio by a constant factor and can not provide
a PTAS. To achieve a PTAS for the rooted orienteering problem, Chen and Har-Peled [16]
introduced the concept of p-excess for a path (extending the notion of the excess of a path)
and defined (e, p)-approximation for k-TSP. Roughly speaking, the u-excess of a path is the
difference between its length and the length of the best approximation of the path using
straight lines between only p nodes of the path (as opposed to considering the length of the

K. Ren and M. R. Salavatipour

line connecting the two endpoints of the path, as in the min-excess path). This notion is
formally defined soon. An (e, p)-approximation for rooted k-TSP is any path that starts
from the root and visits k points and whose length is at most ||P*|| + € - Ep~ ,,, where ||P*||
denotes the length of the optimal rooted k-TSP path and Ep- , is the y-excess for the optimal
path. Note that the upper bound provided by (e, u)-approximation for the k-TSP may be
significantly tighter than that by (1 + €)-approximation (namely, (1 + ¢€) - ||P*||), especially
when g is sufficiently large, as the u-excess of a path can be much smaller than the length of
the path. In fact, Chen and Har-Peled [16] showed that the algorithm of Mitchell for classic
TSP on Euclidean plane [29] provides a (e, %)—approximation for the rooted k-TSP problem
on the that metric and this leads to a PTAS for the rooted orienteering problem.

Deadline TSP seems substantially more difficult to approximate. For deadline TSP
Bansal et al. [4] presented an O(logn)-approximation and extended that to an O(log® n)-
approximation for the Time-Window TSP problem (where each node v, other than a deadline
D(v), has also “release” time R(v), and it is “counted” if the time it is visited along the
output path falls in the interval [R(v), D(v)]). They also provided a bicriteria approximation:
one that produces a log(1/e)-approximate solution that violates the deadlines by (1 + ¢).
The O(log n)-approximation remains the best known approximation for deadline TSP on
general metrics (in polynomial time). More recently, Friggstad and Swamy [20] presented
an O(1)-approximation for deadline TSP which runs in time O(n'°®"2) where A is the
diameter of the graph; for this they assume that distances (and so deadlines) are all integers.
Approximations for both orienteering and deadline TSP for other metrics (such as directed
graphs) have been obtained as well (discussed in Section 1.2). For instance, for deadline
TSP on trees Farbstein and Levin [18], present a bicriteria (1 + &, 1 + £)-approximation (i.e.
(1 + e)-approximation and violating the deadlines by (1 + ¢)).

To the best of our knowledge, there is no true approximation scheme for deadline TSP
on any metrics (even on Trees). Our goal in this work has been to obtain an approximation
scheme for deadline TSP on bounded doubling dimensions (which includes Euclidean metrics
as a special case). We should note that the best known approximation for deadline TSP
on Euclidean metrics is the same as general metrics: O(logn)-approximation in polynomial
time and O(1)-approximation in time O(n!°8"4).

1.1 Our Results and Techniques

By scaling we assume all distances are between 1 and A. Our main result of the paper is a
Quasi-Polynomial Time Approximation Scheme QPTAS (under mild conditions) for deadline
TSP on doubling metrics. (see the full version of our paper [31] for all missing proofs)

» Theorem 1. Suppose G = (V, E) is a graph with doubling dimension k, start nodes s € V
and deadline D(v) for v € V as an instance of deadline TSP where distances (and deadlines)
are integer values. There is a (randomized) (1 + €)-approxzimation for deadline TSP that
runs in time nO (08 8/e)* %)

This is the first approximation scheme for any non-trivial metrics for deadline TSP. We
note that not violating any of the deadlines is the critical. Along the way to obtain this goal
we present a number of other results that are used as building blocks in the proof of this main
theorem. As a starting point we show that orienteering can be solved exactly in polynomial
time on graphs with bounded treewidth and how this can be turned into a QPTAS for
deadline TSP on such metrics when the distances are integer and A is quasi-polynomial in n.

1:3

APPROX/RANDOM 2025

1:4

Approximation Schemes for Orienteering and Deadline TSP in Doubling Metrics

» Theorem 2. Given a graph with treewidth w, there is an exact algorithm with running
time is O(Poly(n) ~w“2) for solving the k-path or P2P orienteering problem. Furthermore,
there is an approzimation scheme for deadline TSP on such graphs with integer distances
with running time n©(« log A/)?)

Proof of this Theorem (see the full version [31]) is simpler and has some of the main
ideas used in the subsequent theorems; so is a good starting point. We should note that
recently (independently and after the first version of our paper [31] appeared), [10] considered
orienteering on graph with bounded treewidth and obtained a (1 + ¢)-approximation by
designing a different dynamic programming.

Next we focus on metrics with bounded doubling dimension.

» Theorem 3. Given a graph G = (V, E) with doubling dimension k, start and end nodes
s,t € V and integer k. There is a (randomized) (1 + ¢)-approximation for k-path that runs
in nO(1es &™) e

We actually show a stronger bound on the length of the k-path solution produced by this
theorem which bounds the ezcess or regret similar to [16] for Euclidean metrics. Although
getting a QPTAS for k-path on doubling metrics isn’t difficult using the known techniques,
one needs the stronger bound obtained here (with respect to excess) as it is crucially used to
prove the following:

» Theorem 4. Given a graph G = (V, E) with doubling dimension k, start and end nodes
s,t € V and length budget B. There is a (randomized) (1 + €)-approximation for P2P
orienteering that runs in time pO((log /> 1)

Building upon these theorems we then have the tools needed to prove Theorem 1. We
note that the algorithm of this theorem can be adapted to obtain a (randomized) bicriteria
(1+¢€,1+ ¢e)-approximation for deadline TSP (i.e. cost at most 1 + ¢ the optimum while
violating the deadlines by at most 1+ ¢) that works even when distances are in QT (instead
of integer) with the same running time.

Limitations of known techniques. The reason that our running time in Theorems 1, 3, and
4, includes log A in the exponent is that our algorithm uses the (randomized) hierarchical
decomposition of such metrics [32], which produces a decomposition of height O(log A). A
natural question is: why can’t we get rid of the dependence on A (like [32])? One should note
that for most vehicle routing problems on Euclidean or doubling metrics, one can assume that
A = Poly(n) by a standard scaling of distances at a loss of (1 + £) in approximation factor
(for e.g. this has been the first step in [2, 32, 7] for designing approximation schemes for TSP
on Euclidean and doubling metrics). This however does not work for budgeted versions (such
as orienteering or deadline TSP) as a feasible solution for the scaled version might violate
the budget(s) by a (1 + €) factor in the original version. In other words, once we scale the
distances (by 1+ ¢ factor) to reduce to an instance with Poly(n) distances, a solution in the
new instance will not yield a feasible solution in the original as the hard budget constraint
(on the total distance) may be violated. Another point worth mentioning is that, although

O(Polylog(A+n)) for k-path on doubling

one can get an approximation scheme (with time n
metrics by embedding them into Polylog(A)-treewidth metrics [33] and using Theorem 2,
this will not lead to an approximation scheme for orienteering or deadline TSP as one needs
a stronger guarantee, like we obtain in the proof of Theorem 3. Again, this is for the same
reason that obtaining a true (and not bicriteria) PTAS for Orienteering on Euclidean metrics
[16] required stronger k-path algorithms. In general, embedding results cannot be used for

budgeted versions of vehicle routing (such as orienteering or deadline TSP).

K. Ren and M. R. Salavatipour

A natural question is: can’t one extend the known techniques developed for designing
PTAS’s for TSP on various metrics (such as planar metrics [28] or doubling metrics [7, 3]) to
the setting of orienteering or deadline TSP? It appears the answer is not easy for orienteering
and deadline TSP. In general, budgeted versions seem more difficult on any metrics. Extending
the ideas of [7] to orienteering or deadline TSP encounters some problems. The very first one
(as mentioned above) is the assumption that distances are bounded by Poly(n) by scaling
and losing a (1 + ¢)-factor. This can be done for k-path but not in the budgeted settings
such as orienteering or deadline TSP. Even if one bypasses this issue, the algorithm of [7]
considers tours that are sparse or dense (we have a similar breakdown in our proof). However,
for both situations [7] considers (approximate) portal respecting tours. Such tours might
have large excess (or regret); so although they will have an approximately optimal overall
length, they don’t have the stronger bound (with respect to the excess) needed to obtain a
P2P orienteering solution (see [13, 16]). Furthermore, our algorithm for deadline TSP has a
step (similar to [20]) that needs to guess a set of vertices whose “excess” (which is defined to
be the difference of its visit time in optimum vs. the shortest path distance to the root) is
growing geometrically. This requires guessing ©(log A) many vertices. So overall, there are
several obstacles to overcome to turn these algorithms into a PTAS. Nonetheless we hope
that ideas developed here (in the proof of Theorem 1) can be used and extended to obtain a
PTAS for deadline TSP in doubling or maybe Euclidean metrics.

1.2 Related Works

The seminal works of Arora [2] and Mitchell [29] presented the first PTAS for Euclidean
TSP and some of its variants such as k-TSP. However, extending this to orienteering proved
to be challenging. For orienteering on Euclidean plane Arkin et al. [1] presented a (2 + ¢)-
approximation. The first PTAS for rooted orienteering on Euclidean metrics was given by
Chen and Har-Peled [16]. More recently Gottlieb et al. [23] presented a more efficient PTAS
for rooted orienteering on Euclidean metrics.

For orienteering on general metrics there are several O(1)-approximations [9, 13, 19],
with the current best being (2 + ¢)-approximation by [13]. For orienteering on directed
graphs Chekuri and P4l [15] present a quasi-polynomial time for various problems including
deadline TSP, such as an O(logopt)-approximation for time window in quasi-polynomial
time. Nagarajan and Ravi [30] also present poly-logarithmic approximations for directed
variants of k-TSP and Orienteering, some of these results were improved in [8]. Chekuri et al.
[13] present an O(log? opt)-approximation for the time-window version and an O(log opt)-
approximation for P2P orienteering on directed graphs. There is also a line of research on
stochastic orienteering (e.g. see [25, 5, 27]).

As said earlier, the best known result for deadline TSP on general metrics is by [4] which
is an O(logn)-approximation. They also provide a bicriteria (O(log é)7 1+¢). Assuming
distances (and deadlines) are integers, this implies an O(log Diax)-approximation where Dyyax
is the maximum deadline. Different extensions of deadline TSP have been studied also. For
instance, Bansal et al. [4] present an O(log? n)-approximation for the time-window version and
an O(log Dyax)-approximation when the time window values are integer. Chekuri et al. [13]
prove that any a-approximation for P2P orienteering implies an O(« max {log opt, log %})-
approximation for the time-window version where opt is the optimal value and L., and
Ly, are the sizes of the largest and smallest windows. For the variant of time-window
TSP where there are multiple time-windows given for each node, Garg et al. [22] proved
an Q288") hardness of approximation even on trees. There are other variants of

logloglogn
orienteering and deadline TSP that have been studied (see [13, 15, 20, 21]).

1:5

APPROX/RANDOM 2025

1:6

Approximation Schemes for Orienteering and Deadline TSP in Doubling Metrics

Some variants of vehicle routing problems have been studied on doubling metric as well.
Talwar [32] presented a QPTAS for TSP on such metrics. Bartal et al. [7] building upon the
work of Talwar presented a PTAS for TSP on doubling metrics. Several variants of TSP,
such as Capacitated Vehicle Routing Problem (CVRP) or TSP with neighborhoods have
approximation schemes on doubling metrics [11, 26].

2 Preliminaries

We consider a metric space (V,d) as a (complete) weighted graph G = (V, E). By scaling
we assume the minimum pair-wise distance is 1 and diameter is A. For v € V and r > 0,
we let B(v,r) = {u € V' | d(u,v) < r} denote the ball of radius r around v. The doubling
dimension [24] of a metric space (V,d) is the smallest value k such that for all v € V, for
all p > 0, every ball B(v,2p) can be covered by the union of at most 2 balls of the form
B(z,p), where z € V. A metric is called doubling when its doubling dimension is a constant.
For a subset U C V, the diameter of U, denoted by Ay, is defined as max,, ey d(u,v).

We now formally define the problems. We consider a metric space (V,d) which is induced
by an edge-weighted graph G = (V, E). Let P = (v1,vs,...,v;) be a path in G, starting at
s =v; and ending at t = vg. The length of the path is denoted by ||P|| = Zi:ll d(vi, Vig1)-
We use |P| to denote the number of vertices on the path. If P is a walk then |P| is the
number of distinct nodes in P. Let a u-jump of P be a path (vi = v;,, viy, ..., v;, = vg) of
size u < k obtained from P by bypassing some of its intermediate points. The optimum
p-jump of P, denoted by J;(P), is the p-jump of P with the maximum length. We define
the p-excess of P (see [16]), denoted by Ep,,, to be the difference between the length of P
and the length of J;;(P), i.e. Ep, = ||P|| —|[J;(P)[|. Observe that £p,, may be significantly
smaller than || P||, especially when p is sufficiently large.

In k-path, we are given a start node s, an end node t, and a target integer k. The goal is to
find a minimum length path from s to ¢ that visits at least k nodes. An (e, p)-approximation
for k-path is an algorithm that finds a path P with |P| = k where ||P|| < ||[P*|| +¢-Ep+
where P* is the optimum solution. We study the following extension of k-path to multi-path
in Section 3 where we design our algorithms for P2P orienteering.

» Definition 5 (multi k-path). Given a graph G = (V, E), m pairs of nodes (s;,t;), 1 <i < m,
and a target integer k, the goal of multi k-path is to find m paths P; from s; to t; in G
such that:

the total number of distinct nodes visited by all paths Py, Py, - -+ , Py, is at least k. (a node

might be visited by multiple paths, but it is counted only once.)

the total length of all m paths Y .-, || P;|| is minimized.

Notice that multi k-path becomes k-path when m = 1.

In P2P orienteering, we are given a start node s, an end node t, and a budget B. The
objective is to find an s-t path P with ||P|| < B that maximizes the count of distinct nodes
visited.

For any path P in G and nodes u,v in P, let P,, denote the subpath from u to v in P.
In deadline TSP, we are given a start node s € V and deadlines D(v) for each node in V. A
feasible solution is a path starting at s. We say that such a path visits node v € P by its
deadline if || Ps,|| < D(v). The objective is to find a path P starting at s to maximize the
count of distinct nodes visited within their deadlines.

For graphs of bounded doubling dimension, like earlier works on problems on such
metrics, we rely on a hierarchical decomposition of V. Suppose (V,d) is a doubling metric
with diameter A. We employ the hierarchical decomposition of metric spaces by means of

K. Ren and M. R. Salavatipour

probabilistic partitioning. The decomposition is essentially the one introduced by Bartal [6],
and subsequently used by others. In particular, Talwar [32] used this to design the first
approximation scheme (QPTAS) for TSP and other problems in doubling metrics. A cluster
C' in the metric (V,d) is a subset of nodes in V. A decomposition of the metric (V,d) is a
partitioning of V' into clusters. A hierarchical decomposition of V is a sequence of partitions
of V., where each partition is a refinement of the previous one. Normally this is represented
by a tree T (called the split-tree), where each node of T corresponds to a cluster. We use C
to both refer to a node in T as well as the cluster (set of nodes in V') it corresponds to. The
root node of T' corresponds to the single set {V'} and the leaf nodes correspond to singleton
sets {{v}}vyev. The children of each node C' € T correspond to a partition of C' where each
part has diameter about half of that of C. The union of all subsets corresponding to the
vertices at each level of T' constitutes a partition of V.

» Theorem 6 ([32]). There is a hierarchical decomposition of V, i.e. a sequence of partitions

Mo, Iy, ..., Ix, where II,_1 is a refinement of I1;, I, = {V'}, and Iy = {{v}}vev, and

satisfies the following:

1. TIy corresponds to the leaves and I}, corresponds to the root of the split-tree T', and height
of T is h =0 + 2, where § =log A and A is the diameter of the metric.

2. For each C € T at level i, cluster C € II;, has diameter at most 211,

The branching factor b of T' is at most 20,

4. For any u,v € V, the probability that they are in different sets corresponding to nodes in

level i of T is at most O(k) - M

w

3 An Approximation Scheme for k-path and Orienteering in Doubling
Metrics

Before we can give the proof of Theorem 1 we prove Theorems 3 and 4 as our algorithm for
Theorem 1 builds upon the idea in these proofs. Suppose that G = (V, E) (a graph with
bounded doubling dimension), s,t € V, and budget B € Q1 are given as an instance of
P2P orienteering. Let 6 = log Ag. We assume Ag is quasi-polynomial in which case ¢ is
polylogarithmic.

Overview. Before we present our approximation scheme for P2P orienteering on G let
us review the algorithm of Chen and Har-Peled [16] for P2P orienteering on Euclidean
plane. They showed that the algorithm of Mitchell [29] for Euclidean TSP in fact implies a
(e, u)-approximation for k-path, i.e. an algorithm that finds a path P with |P| = k where
||P|| < ||P*|| +€-Ep=,pu, where P* is the optimum k-path solution. Using this approximation
algorithm to solve the orienteering problem (with the assumption that & is the guessed value
of the optimum solution for orienteering), they show that one can break the path obtained by
the algorithm into u = O(%) segments, each containing ¢ - k vertices; this will be a p-jump;
once we remove one segment that has the longest length the total length of the path is
dropped by at least € - £p« ;,, and therefore the length of the resulting path is at most the
length of the optimum path ||P*|| and hence below the given budget and the total number of
nodes is at least (1 — €)k. This yields the approximation scheme for orienteering (via k-path).
The algorithm for (e, u)-approximation of k-path is essentially the algorithm of Mitchell [29]
for Euclidean TSP which breaks the problem into (polynomially many) subinstances, each
defined by a window w (a minimum bounding box). Mitchell defines a vertical (or horizontal)
line ¢ that cuts a windows w a cut and for a parameter m = O(1/¢) if the number of edges
of the optimum path that cross ¢ is no more than m then this cut is sparse; else £ is dense.

1:7

APPROX/RANDOM 2025

1:8

Approximation Schemes for Orienteering and Deadline TSP in Doubling Metrics

If ¢ is sparse one can guess the edges of the optimum in time O(n™) and break the problem
into independent instances. If there is no sparse cut then the value of the optimum in this
window is large. In this case using either Mitchell’s [29] scheme (using bridges) or Arora’s
scheme [2] for TSP (making paths portal respecting paths) one can modify the solution for
the problem restricted to w to a near optimum one of length at most (1 + -)|[P*(w)||, where
P*(w) is the restriction of the optimum path to window w. We should point out that this
idea of partitioning sub-instances into sparse and dense regions has been used in other works
(e.g. in [7] to obtain a PTAS for TSP on doubling metrics).

Our QPTAS for orienteering on doubling metrics builds upon this idea of sparse and
dense sub-instances, but the difficulty is we do not have a polynomial size set of windows
or cuts as in the Euclidean case. We first try to find a good approximation for k-path on
G with a similar stronger upper bound on the quality of the solution: a solution with a
stronger upper bound of the form ||P*||+¢€-Ep+ ,. We show the existence of a near-optimum
solution for k-path which has some structural properties. Suppose that T is a hierarchical
decomposition of G as in Theorem 6. Consider an arbitrary node C' € T of the hierarchical
decomposition at level i with children C1,...,C,. Roughly speaking we would like this near
optimum solution to have very few edges crossing between different clusters C;’s when we
focus on C' or these edges be portal-respecting if we impose some portals for each C; as in
the algorithm for TSP on doubling metrics [32]. The existanse of such a structured near
optimum allows us to find it using a DP on 7.

For simplicity of presentation, suppose P* (for k-path) is known (let’s call this “Assump-
tion 17”). As said above, consider C' € T with children Ci,...,C,. We also consider the
restriction of P* to C, denoted by P = P* N C and let Ag denote the diameter of C. We
consider two cases based on whether ||PA|| < IO%AC holds or not. If the inequality holds
we call P% sparse with respect to C else we call it dense.

Sparse case. If ||P5|| < IOE"AC, we show in this case the ezpected number of edges of
P crossing between different subgraphs Ci,...,C, is O(“lo#); this uses property 4 of
Theorem 6. For simplicity assume this actually holds with high probability instead of “in

expectation” (call this “Assumption 2”)

Dense case. If ||P5|| > lof"Ac we modify Pg to a near optimum one by making Pg to be

portal respecting when it crosses between C,...,C, (as was done for TSP for e.g. in [32]).
We consider each of C; and generate a set of O(log™ n) portals for it. We make P} portal
respecting, that is, we modify it such that it crosses between different subgraphs C; only
through portals to reduce the number of times it crosses between different subgraphs to
be poly-logarithmic. We show the expected increase of length of PZ in C' is bounded by
O(||P&|| - €/ logn), which holds by Theorem 6. Again, assume that this actually holds with
high probability instead of “in expectation” every time we do this (call this “Assumption 3”)

We modify P* to a structured near optimum solution P’ as follows. Starting from the
root of T, and let initially P’ = P*. We modify P’ as we go down the tree T for each node
C €T, if P}, (restriction of P’ to C') is sparse w.r.t. C' we make no modification going down
to children of C. However, if P/, is dense w.r.t. C, we make P/, portal respecting when
crossing between the subgraphs corresponding to children of C. This increases the length of
Pl by at most O(||P}|| - ¢/logn). Given that height of T" is O(logn), the total increase in
length of P’ over all steps can be bounded to be O(e||P*|]).

We have made a number of assumptions above that we should remove. We don’t know
P* (Assumption 1) and whether it is sparse or dense in each step we are going down the
tree T'. To remove this assumption we guess both cases of whether P* is sparse or dense at

K. Ren and M. R. Salavatipour

each step and add both into the DP. To remove Assumptions 2 and 3, we repeat the random
decomposition of Theorem 6 Q(logn) many times at each step. In other words, imagine we
do parallel (or non-deterministic) runs of the decomposition at each step we want to partition
a cluster. Then instead of things holding in expectation, one can show that in at least one
such decomposition Assumptions 2 and 3 actually hold with high probability. This idea
of repeating random decompositions has been used in earlier works, most recently by [17]
to present approximation scheme for k-MST on minor free graphs. This non-deterministic
decomposition can be described as a tree itself, which we call a -split-tree. Recall that
in the hierarchical decomposition we would partition each cluster C into C1,...,C, where
each C; has diameter at most % and o € 2009 In a ~-split-tree we consider v many
such (independent) partitions of C' in each step when we decompose C. This will help us to
show that for at least one partition, the properties that are shown to hold in expectation

(Assumptions 2 and 3) actually hold with high probability for at least one partition of C.

We don’t know which of the several parallel decompositions we run at each step will have
this property; so we guess and try all of them in our DP.

In the next subsection we formalize this and present our structural theorem that proves the
existence of a nearly optimum solution with certain properties. We then show in Subsection 3.2

that the structural theorem in fact shows the existence of a (g, u)-approximation for k-path.

In Subsection 3.3 we show how we can find that using a suitable DP. Finally in Subsection 3.4
we prove that we show an approximation scheme for P2P orienteering.

3.1 Structural Theorem

Let P be any feasible solution and P* be an optimal solution to k-path. For a subgraph (or
subset of vertices) U C G we use Py to denote the restriction of P to U.

» Definition 7. P is called n-dense with respect to U C G if || Py|| > nAy; otherwise P is
n-sparse.

We will set n = 10%. A set C CVisa p-cover for U CV if for any u € U, there exists
¢ € C such that d(u,c) < p. A set S is a p-packing if for any two distinct points v and v in

S, d(u,v) > 2p holds. A set N is a p-net for U C V if N is a §-packing and a p-cover for U.

We can find a p-net for any graph G easily by iteratively removing balls of radius p. The
center of these balls forms a p-net.
Consider a set C C G. A random partition of C is a partition ng = C1,Cs,...,Cy of C

that is obtained by taking a random Af -net of C' (i.e. the centers chosen iteratively are

picked randomly); so the balls of the net have diameter % and we know that |r¢o| < 20(%),

Note that the algorithm for proving Theorem 6 essentially starts from the single cluster
{V'} (as the root of the decomposition) and at each step, when we have a cluster C| it is
decomposed into 2°(%) parts by taking a random partition of C. We say an edge (u,v) is
crossing 7 if u and v are in different parts of 7¢ i.e. v € C; and v € C; for ¢ # j. Such
an edge is called a bridge-edge. The following lemma (implied by Theorem 6) shows one
property of bridge-edges of m¢.

» Lemma 8 ([32]). For any edge (u,v) with u,v € C, the probability that (u,v) crosses ¢
(and so is a bridge-edge) is at most ﬂ’%&v) for some constant k' = O(k).

Consider Po = PN C. We consider the set of edges of P that are bridge-edges, denoted
as Er., i.e. Er, = {(u,v) € P: (u,v) crosses m¢'}. Suppose P¢ is 7-sprase with respect to
C, ie. ||Pc|| < nA¢. We upper bound the number of bridge-edges of 7¢, i.e. the size of

E. in this case.

1:9

APPROX/RANDOM 2025

1:10

Approximation Schemes for Orienteering and Deadline TSP in Doubling Metrics

» Lemma 9. If P is n-sprase with respect to C, then E[|E,.|] < @ for some constant
K = O(k).

Now suppose P is n-dense with respect to C'. Again consider the (random) partition

mco of C. For each C; € w¢, we further consider a SA¢,-net of it where § = (recall

€
4Kk’S
d =log Ag and ' is the constant in Lemma 8), denoted as S; and we call them the portal

set for C;. The following packing property of doubling metrics bounds the size of |S;|:

» Proposition 10 ([24]). Let (V,d) be a doubling metric with doubling dimension k and
K
diameter A, and let S be a p-packing. Then |S| < (%) .

Using this proposition: |S;| < (8”—6,5)"‘. We are going to modify P such that when it
crosses between different clusters C; in m¢ (i.e. uses bridge-edges) it does so via portals
only. This means after the modification it will use portal-edges; those bridge-edges whose
both end-points are portals. We say a path P’ is portal respecting with respect to m¢ if for
any edge u,v of P’ crossing between two parts C;, C; € m¢, it only cross through portals,
ie. u € S; and v € S;. The following lemma shows that one can modify Pc to be portal

respecting with respect to m¢ with a small increase of length.

» Lemma 11. P can be changed to another path P’ that is portal respecting with respect to
nc such that E[||P'|[] < (14 5)||Pcll.

Proof. We start with P and whenever an edge u, v of P is crossing two parts C;, C; € m¢
that are not portals we replace that edge with a path between wu, v via the closest portals
in C; and Cj;. Consider any edge u,v in Pc that crosses m¢, say v € C; and v € Cj.
Let u’ be the nearest portal to u in S; and v’ be the nearest portal to v in S;. Replace
edge u,v in Po by the edges (u,u’), (v/,v"), (v',v). The increased length incurred is
d(u,u) + d(v,v") + d(v',v") — d(u,v), which is at most 2d(u,u’) 4+ 2d(v,v") by triangle
inequality. Note that because S; is a BAc,-net of C; then d(u,u’) < BA¢, < BEE and
d(v,v") < BAg, < B%. Thus the increased length incurred is at most 26A¢. Recall that
for u,v € P, the probability that (u,v) crosses 7o is at most 5/{0“5—’;)
the increased length of Po after making it portal respecting with respect to m¢ is at most

d(u,v €
S uwer K 28N = K/ B||Pel| = SlIPoll. <

Now we formalize the idea of parallel runs of the hierarchical decomposition of Theorem 6.
Note that the algorithm for proving Theorem 6 starts from the single cluster {V} (as the
root of the decomposition) and at each step uses a random partition to the current cluster
C to decompose it into 2°(%) clusters of diameter half the size. This continues until we
arrive at singleton node clusters (leaves of the split-tree). We call one random partition
of a cluster C' a split operation. The ~-split-tree hierarchical decomposition of a doubling
metric is obtained by considering v random partitions of C' (instead of just one) at each
step. A ~y-split-tree decomposition has two types of nodes that appear in alternating layers:

. Thus in expectation,

cluster nodes and split nodes. For each cluster C' we have ~ split nodes in the y-split-tree
(each corresponding to a random partition of C') and these split nodes are all children of C.
For each split node s that is a child of C, it will have children C1,...,C, that are clusters
obtained by decomposing C according to the random partition corresponding to s. We
continue until leaf nodes are cluster nodes with constant size.

» Definition 12. A ~-split tree for G is a rooted tree T with alternating levels of cluster nodes
and split nodes. A cluster node C' corresponds to a subset of V. The root of I, corresponds
to the single cluster {V'} and each leaf node corresponds to a set of size O(1) of vertices.

K. Ren and M. R. Salavatipour

Each non-leaf cluster node C has v split nodes as its children. Fach split node corresponds
to a (random) partition of C' into clusters of diameter %. Each of those clusters becomes
cluster children of the split node. So each split node has 2°(%) (cluster) children.

Suppose I' is a v-split-tree for G and @ is a partial function from (some) cluster nodes of
T" to one of their split node children with the following properties:

®(Cy) = s for some child split node of Cy (where Cy is the root of I').

if every ancestor split node of C' is in the image of ® then ®(C) is defined.

Note that this function induces a “standard” hierarchical decomposition split-tree as in
Theorem 6 as follows: start at the root node Cp = {V'} of " and let root of tree T' be Cjy and
repeat the following procedure: at each step, being at a cluster node C pick ®(C) (a split
node child of C') and consider the cluster children of ®(C), say C1,...,C,, and create nodes
corresponding to these as children of C' in T. Recursively repeat the procedure from each
of them. This builds a split-tree tree T. We call such a (partial) function ® a determining
function for I and we say T is induced by ® on I': T =Tg.

For any cluster C' and the split node defined by ®(C), we use [P* N Er, | to denote
the number of bridge-edges of P* in mg(c), i.e. [P* N Rayoy| = Ery,- Let v = 3logn,
we can build a v-split tree I" for G in the following way. We start by making Cy = {V'}
to be the root of I" and iteratively add levels to I'. For a cluster node C, we generate its
children split nodes as follows: we compute v independent random partitions of C', denoted
as {m}, 1 <i <~ Eachm = C;1,...,Cip, (where o; < 20(”)) is obtained by taking a
random Af -net for C. Let R, be the set of bridge-edges of C, i.e. edges in C crossing
it Ry, ={u,v € C:ueCj,ve sy, for j#j'}. For each C; ;, we further consider
the portal set S;; which is a BA¢, ;-net of it. Let R be the set of portal edges of C:
R ={u,veC:uecS;jvesS,, for j#j'}. Since G is a doubling metric and S is a net,
we find the following bound on the sizes of the portals: |R. | < (04]S;;])* which is bounded
by (L:’/‘;)%. We create a child split node s; for C for each ;.

For a split node s, let C be its parent cluster node and let 7; be the partition (i.e. the
Af -net for C') corresponding to s. Then for each C;; € m; we create a child cluster node
C; for s. The number of the children cluster nodes of s is at most 20(%) " We continue this
process until each leaf node is a cluster node C' with |C| = O(1). From the construction
above we know Ag, < % if C; is a child of a split node s which is a child of C. Thus there
are at most 2log Ag = 24 levels in I'. If we define the height of I" as the number of levels

of cluster nodes then the height of I' is at most 6. The branching factor of I' is then the

product of the branching factor of a cluster node and a split node, which is at most v29(%).

Hence the size of T is (3logn2°())?. Now we are ready to prove the following structure
theorem for a near optimum solution.

» Theorem 13 (structure theorem). Let graph G = (V, E) with doubling dimension k, start
and end nodes s,t € V, and integer k be given as an instance of k-path. Assuming P* is an
optimum solution and v = 3logn we can construct a ~y-split-tree where with probability at
least 1 — % there exists a determining function ® and a corresponding split-tree hierarchical
decomposition T =T|¢ of G and a nearly optimal solution P’ such that P visits at least k
vertices and for any cluster C € T we have either:

1) [P"N Ry | < 2K/ 181 o

2) |P'NR,, | < (19502 gnd ||P'NC| < (14 €)||P*NC|.

T (C)

Proof. Suppose I is a -split-tree for G. We build P’ iteratively based on P* and at the
same time build ®(-) and hence T from the top to bottom.

Initially we set P’ to be P* and start from the root cluster node Cy of T'. At any point
when we are at a cluster node C' we consider whether P’ is sparse or dense with respect to C:

1:11

APPROX/RANDOM 2025

1:12

Approximation Schemes for Orienteering and Deadline TSP in Doubling Metrics

Sparse case. If ||[P'NC|| <n-Ag,ie P’ isn-sparse with respect to C, we don’t modify
P’ N C for when going down from C to any split node s of C. Consider any child split
node s of C and let 74 be the partition of C' according to the split node s. Consider the
number of edges of P’ N C that are bridge-edges based on this partition i.e. |E; | (where
E.. =P NR;,). According to Lemma 9, E(|P' N R;,|) = E(|Er.]) < K’IO%. Let the event
A be the event that |[P'N R, | < 2/410%. By Markov inequality Pr[A,] > . Recall there
are 7 = 3logn many children split nodes of ¢, i.e. v independent random partitions of C.
Thus the probability that for at least one child split node s of ¢, event A4 holds is at least
1—(1-3)%°e" > 1 — 2L In this case we select split node s and define ®(C) = s and
consider each cluster child node of s iteratively (P’ has not changed in this step).

Dense case. Suppose P’ is n-dense with respect to C. Consider an arbitrary split child s of
C. We will modify P’ going down the split node s to be portal respecting with respect to 7
as described in Lemma 11. Assume 7y = C1,...,C,. For each C; let S; be a set of portals.
If we go down the split node s we modify P’ to be portal-respecting for each C;. Note that
the set of edges P’ crossing 7 after making it portal respecting with respect to m, is a subset
of R/ . Thus |P' N R | is at most |R_| which is at most (12&)25 in this case. According
to Lemma 11, the expected increase of length of P’ after making it portal respecting with
respect to 7, is at most 55||P’NC||. Let A, be the event that the increase of length of P after
making it portal respecting with respect to m, is at most §||P’ N C||. By Markov inequality,
Pr[A.] > 1. Recall there are v many children split nodes of C. Thus the probability that for
at least one child split node s of C' we have A is at least 1 — (1 — 3)31°¢” > 1 — 2 In this
case we set ®(C) = s for this particular split node s for which A’ happens.

Therefore, regardless of whether P’ is sparse or dense w.r.t. C, such s exists for cluster C'
with the probability at least 1 — % and we can define ®(C). Once we have ®(.) defined for
clusters at a level of T', we have determined the clusters at the same level of T = T'|¢. Note
there are at most n cluster nodes in one level of T. Thus with probability at least 1 — %
such split nodes exist for all cluster nodes in one level. Since height of I" (and T') is 4, thus
with probability at least (1 — %)5 >1- % (assuming that ¢ is polylogarithmic in n) such
®(.) is well defined over all levels. Note the increase of length of P’ only occurs when P’ is
n-dense with respect to C' and for any of these clusters C in T'|g, the increase of length P’
by modifying P’ to be portal respecting with respect to 7y is at most £|[P’ N C||. Since
this (1 + §)-factor increase occurs each time we go down the decomposition form a cluster C
to the next cluster level down, and the height of the decomposition is §, thus inductively, for
any cluster C in T'[g: [[P'NC|| < (1+ £)°||P*NC|| < ef||[P*NC|| < (1+€)||[P*NC|| for
some ¢’ > 0 depending on €. Replacing € with ¢’ we get |[|[P'NC|| < (1+¢)||P*NC|. =

3.2 (e, p)-approximation for k-path

In this section we show a stronger bound on the length of the near optimum solution P’
guaranteed by Theorem 13. Recall that a (e, u)-approximation for k-path is a path P with
|P| = k where ||P|| < ||P*|| + € - Ep+ , where P* is the optimum solution. We prove that
path P’ in Theorem 13 is in fact an (e, y1)-approximation for =[] + 1.

Recall that in the proof of the structure theorem, the increase in length of P’ only happens
in cases when P’ is dense with respect to a cluster C' in I' and we make the path portal
respecting. Consider such a dense cluster C in the hierarchical decomposition T'=I'|, i.e.
P’ is n-dense with respect to C. We show P’ has high p-excess in this case and the increased
length of P’ in C can be upper bounded by a factor of u-excess of P*.

K. Ren and M. R. Salavatipour

» Lemma 14. Let D be a set of disjoint clusters and Q be a path. Then £g o > > e p([|QN
Cll = Ac).

Proof. Intuitively, this is saying if @ passes through several (disjoint) clusters in D then the
excess of @) is at least as big as sum of excess of @) in those clusters.

Suppose start-end node of Q) are u,v and let Qg be the path just consisting of u,v. By
definition of the excess, £g 2 = ||Q|| — ||Qo||- Now consider following path @', which starts
at u and follows () but when it encounters a cluster C' in D and it visits C' for the first time
it directly connects the start and end node of the subpath of @ in C. When it encounters
a cluster C in D that is visited before, then bypasses C' entirely, i.e. directly connects the
last vertex in @) before it enters C this time and the first vertex in @ after it visits after it
exits C' this time. From the construction of @', if C' € D, then ||Q' N C|| < A¢. Clearly
for any cluster C ¢ D: [|Q' N C|| = [|Q N Cl. Thus £q. = [1QI] - 1@l = Q1] - Q]| =

2een(QNCI-RINCI) = X oep QN CI = Ag). <

» Theorem 15. Let graph G = (V, E) with doubling dimension &, start and end nodes
s,t € V, and integer k be given as an instance of k-path. Suppose P’ and Tlg are as
guaranteed by Theorem 13. Let yu =[] + 1, then P’ is a (e, ju)-approzimation.

Proof. Note that in the proof of Theorem 13, the increase of length of P’ only occurs when

P’ is n-dense with respect to a cluster C. We generate a set of disjoint clusters D in T = I'|¢:

we start from Cy (the root of T') to generate D iteratively. If P’ is n-dense with respect to C
then add C to D, if P’ is n-sprase with respect to C' and C is a non-leaf cluster node then
iteratively consider all children cluster nodes of C. Let D be the set of cluster nodes returned
by this process. From the construction of D, clusters in D are disjoint, and for each cluster

C € D, P’ is n-dense with respect to C and ||P’|| — |[|[P*|| = Yo p([[P' N C|| = [|[P* N C]).

Let {v1, -+ ,v,} be the optimal y-jump of P* and let Pi", P3,---, P;_; be the subpaths
divided by the vertices in this p-jump, i.e. P} is the subpath of P* whose start and
end are v; and v;41, respectively. By definition of excess, Ep+ ,, = Zf;l Sp;yg. For the
set D and each P, by Lemma 14, &pro > > cp(||PF N C|| — Ac). Thus Epeyp >

S Y e p(1PF N Cl| = Ag), which is e (I[P* N Cl| = (1 — 1)A¢). Recall from

the proof of Theorem 13 that we modify P’ when it is n-dense with respect to C (i.e.

|1P'NnCl|| > IO%AC) and we always have ||[P' N C|| < (1 + ¢)||P* N C||, which implies

[|P*NC|| > %AC; in a sense P* is also (almost) n-dense with respect to C. Since

p=Y 41, thus ||P* N C| — (u — 1)Ac > 20 and p- |, > 3y LA
As in the proof Theorem 13, for any cluster C’ eT, ||P ﬂC’|| < (14 ¢€)||P*NC||. Thus

1P| =11P*]| = Xeep(IIP'NCI = [IP*NCI)) < Feep ellP*NC|| < 262 Ep- y < eEpr .

We should note that we can generalize this proof slightly as follows. Suppose that we
pick some arbitrary p-jump of P* (instead of the optimum) and consider P1 e Plh1
which are the subpaths of P* defined by that u-jump. Then the same arguments show
that S0 Ep p > S S0 p(IPFNC)| = Ac) = S oep IP* N C| = (1 — 1)Ac which

implies Zizl 15;’2 > > cen IPTOCN - Using this one can show that at the end [|P'|| <

[|1P*|| + ¢ Zfz_ll Epx - This slightly more general version will be used later when designing
our algorithm for deadline TSP.

3.3 Finding A Near Optimum Solution For k-path

In this section we prove Theorem 3 by showing how we can find a near optimum solution for
k-path as guaranteed by Theorem 15 using Dynamic Programming (DP). The DP is built on
the y-split tree I' we compute. Consider an arbitrary cluster node C' in I' and the restriction

1:13

APPROX/RANDOM 2025

1:14

Approximation Schemes for Orienteering and Deadline TSP in Doubling Metrics

of the near optimum solution P’ in the subgraph G(C'), denoted by P/,. The set of edges
of P/, might be a collection of disjoint paths; one can imagine following along P’, it enters
and exits C' multiple times and each time it enters it follows a path in C until it exits again
(assuming that s,¢ are not in C'). If we denote the start-end of these subpaths in C' as s;, ¢,
1 <i<m (for some m) and if |P5| = k¢ then P/ is a feasible solution for multi k-path with
start-end pairs s;,t; and parameter kc. This suggests a subproblem in our DP table will
corresponds to an instance of multi-path k-path in a cluster C.

We define a subproblem in the DP as an instance of multi-path k-path with specified
cluster node C, integer k¢ and o¢ start-end pairs of vertices {(s;,¢;)} and the goal is to find
a set of paths {P,;}7°, such that P; is a s;-t; path in C and | U7, P;| = k¢ while minimizing
YorC Bl We use A[C ke, (si,t;)7S] to denote the subproblem defined above and let
the entry of the table store the optimal value of the solution to multi-path k-path for this
subproblem. One should note that in the proof of Theorem 13, when we build P’ from P*,
each time we go down a node of the split-tree, we might have a number of bridge-edges
(when P’ is n-sprase with respect to the current cluster C) or portal-edges (when P’ is dense
with respect to the current cluster C'). When P’ is sprase, the number of bridge-edges is at
! loiﬁ (it was event A in the sparse case) and when P’ is dense then the number of
portal-edges is at most (%”/5)2

16K'62
(=)

most 2k
. Therefore, each step P’ restricted to C might be chopped
up into at most % subpaths, each with a new start-end point in a cluster C; that is
part of the partition of C'. Given that the height of the split-tree is J, the total number of
start-end points for the instance of multi k-path at any cluster node C' is at most 6(%",‘5)2”.
This upper bounds ¢ in our subproblems.

Now we describe how to fill in the entries of the table. The base cases are when the
cluster C' has constant size |C| = a. Such instances can be solved using exhaustive search in
O(1) time.

Consider an arbitrary entry A[C, k¢, (si,t;);S;] where for all split nodes children of C
and every cluster children of them the entries of the table are computed. Consider any child
split node s of C'in I' and let Cy, C5, - - - C, be the children cluster nodes of s in I'. Recall
is the corresponding partition of C' and R, is the set of bridge-edges in C' (crossing 7). For
each Cj let S; be its portal set and recall R is the set of edges crossing m, only through
{S;}. We guess k¢, for each C; such that Z?zl kc, = kc. We show how to guess start-end

pairs {(s;, tl):{} for each C; and check the consistency of them. To do so we consider two

cases: in the first case (meaning we guess we are in the sparse case) we guess a subset of R,
of size at most 2k’ 10%; in the second case (meaning we assume we are in the dense case) we
guess a subset of R/ of size at most (L'ZI‘S)Q'“. Let E., be the subset guessed in either case.
Furthermore for each edge in E,_, we guess it is in which one of the o¢ paths with start-end
pair (s;,t;)7c, and for each path with start-end pair (s;,¢;) we guess the order of the guessed
edges appearing on the path. Specifically speaking, let e1,es--- ,e; be the edges guessed

in the path with source-sink pair (s;,¢;) appearing in this order. Let C,,,Cq,,---,C.

yary
be the children cluster nodes of s that the path encounters following ey, es--- ¢, i.e. eg
crosses between C,, and Cl,, ea crosses between C,, and Cy,, ---, and e; crosses between
Co, and Cy, ;.
the endpoint of e; in C,, and the endpoint of es in C,, to be a start-end pair in C,,, - - -,

Then we set s; and the endpoint of e; in C; to be a start-end pair in C,,,

the endpoint of ¢; in C,., and t; to be a start-end pair in C,, By doing so we generate

+1 +1°
start-end pairs for each C; and we sort them based on their ordering in s;-t; path and in the

increasing order of 4. This defines o¢, start-end pairs for each Cj.

» Lemma 16. We can compute all entries A[C, k¢, (si,t;)75,] in time nO* ™),

K. Ren and M. R. Salavatipour

The goal is to compute A[cy, k, (s, t)] where k and (s, t) are specified in the k-path instance.

Proof of Theorem 3 follows from this lemma and Theorems 13 and 15.

Proof of Lemma 16. Formally, to compute A[C, k¢, (si,%:)75]:
Consider any child split node s of C, let C1,C>,---,Cy be the children cluster nodes of s
(where g can depend on s).
Guess (i.e. try all possible values) k¢, for each C; such that Z?Zl ke, = kc.
Let 75 be the corresponding partition of C' and R, be the bridge-edges of ms. For each

Cj let S; be the portal set for it and let R/, be the set of portal-edges of m,. We consider
y slogmn .)
€ b

we guess a subset of R/ ; in both cases we denote the set of guessed edges as Er, .

both of the following two cases: 1) we guess a subset of R, of size at most 2k

For each edge in E,_, we guess it is in which one of the o¢ paths with start-end pair
(84,t:)7C; and for each path with start-end pair (s;,t;) we guess the order of the guessed

edges appearing as described above. We generate {(s;, tl)}z{ for each C; accordingly.

Then:
We set A[C, ke, (si,t:)7<,] = min 39_) A[C}, ke, (si, t)oa] + > (wwer,, A(u,v), where
the minimum is taken over all tuples s, k¢, , - - - , k¢, , (si, tl)fzci oo (siy tl):ch as described
above.

Based on the structure theorem and the recurrence given above it is straightforward to
see that this recurrence computes the best P’ as guaranteed in Theorem 15.

Now we analyze the running time. First we show the time required to compute one
entry of the DP table is nOUD*™ ™) In the recursion, for a cluster node C, there are 3logn
children split nodes of C' to consider. For a certain split node s, let C1, Ca, - - -, Cy be children
cluster nodes of s, there are at most n9 guesses to for {kc,} such that 2?21 ko, = ke,

which is at most n2°"” because g < 290) For E,_: there are two cases, if By, C Ry, then
gn

7 lo . . .
|Ex.| < 25 10%, there are at most n(**'~<) many possible Er s to consider; if Er, C R, ,

then because |R | < (Lfl‘s)% in this case there are at most 2 <n

possible E’s to consider. To generate (s;, tz):j for each C}: for a certain E,, and for each

edge in E, we guess it is in which one of o¢ paths with start-end pair (s;, ;)75 and for
each path with start-end pair (s;,t;) we guess the order of the edges appearing, which is at

16k'8 V2K 16x'8\2k
=) (F2)7"

€

many

most |E;_|'|Er.|7¢ guessings. Note at each recursion it may increase at most |E,_ | many
the number of start-end pairs and the depth of the recursion is 6. Thus o¢ < §|E;,| and
| B !B, |7 < (A828) 201 (188)2m0 (40T < 027,

We show the size of the dynamic programming table is at most n Recall an
entry of the table is of the form A[C, k¢, (s;,t;)7C,]. For C, there are at most (3logn2")°
cluster nodes in I because the size of T is at most (3logn2%)?. For k¢, there are at most n
possible value of k¢ to consider. For {s;,t;}7<,, there are at most n??¢ start-end pairs to
25(16K’8)2

€

O((2)>r 1)

consider, which is at most n because o¢ is at most 6|Er_|.
Therefore, computing the whole DP table and finding the near optimum path P’ as in

Theorem 15 takes at most nC(H*™™) time. |

3.4 Approximating P2P Orienteering on Doubling Metrics

In this section we prove Theorem 4 using the results of previous section for k-path.

» Lemma 17. Let G = (V, E) be graph with constant doubling dimension and given an
instance of a P2P orienteering on G with specified budget B, start node s € V and end node
t € V. Let P* be the optimal for this instance and k = |P*|. Then we can get a s-t path that
visits at least (1 — €)k vertices in G with the length at most B.

1:15

APPROX/RANDOM 2025

1:16

Approximation Schemes for Orienteering and Deadline TSP in Doubling Metrics

Proof. Let = [1] 4+ 1 and assume that k > y? (otherwise we can find P* in polynomial
time by exhaustive search in time O(n1/52)). We construct a subsequence of 1,--- ,k to
define a p-jump of P*: Let a; = [(1_/11)#] +1,1 < i< p. Note that a; =1 and a, = k.
Let Py, Py, -+, P;_; be the subpaths of P* divided by {va,,"-- ,va,}, i.e. P} is a subpath
of P* with the source v,, and sink v, .

For each P we consider the 2-excess of it and let P be the subpath with maximum
2-excess among { P} 7! ie. j = arg max; Ep- 2. Note |Pf| = aj4y1 —a; +1= ([J(:%ll)] +
1) — ([%} +1)+1< [%} + 1. Then let P’ be the path exactly the same as P*
except P’ directly connects v,, and v,,,, in Pr. From the construction of P,

\P’|=k_|pj\+zzk—(%1—1+22k—L%J2(1—e)k since k > p2, and (1)

[Pl = |IP"|| = €pr 2= B —Epra. (2)

We consider P’ as a feasible solution for a k’-path instance with k' = |P’| > (1 — 2¢)k and
s,t € V. By Theorem 15, we can compute a (¢, 4)-approximation for this instance where
p=[1]+1, denoted as P":

|P"| > K >(1—¢ek and (3)

1
Epr 4
M_l P’y ()

||P”H < HP’H —|—€5p/,u <B- gpj*72 —|—€c€p/7u <B- 5p;72 +

where the 2nd line uses (2). We consider the p-jump of P’ defined by (vq,,: -+ ,va,). Note
that this is is also a w-jump of P*. By the definition of excess and how we obtained P’ from
P* (by short-cutting P5):

p—1
Epru < IPI = I1{var, s va, Ml = D Epr 2 = Epr 2. (5)

i=1

Thus, using (4) and (5): ||P"|| < B — Epra+ ﬁ(i.‘;ll Epr2 — Epr 2) < B, where the
last inequality follows from the fact that £ Pr2 is the largest among all indices. <

However, for the P2P orienteering instance, P and k£ in Lemma 17 are unknown in
advance. Therefore, we will consider all possible integers 1 < k < n and for each k we get
the approximation for k-path on G with specified k and s, € V. We return the maximum k
such that the length of path we get for k-path is at most B. This completes the proof of
Theorem 4.

4 An Approximation Scheme for Deadline TSP in Doubling Metrics

In this section we prove Theorem 1. Our algorithm builds upon ideas from [20] for O(1)-
approximation for deadline TSP for general metrics combined with new ideas as well as
those developed in the previous section to get an approximation scheme for deadline TSP on
doubling metrics. Friggstad and Swamyy [20] present an O(1)-approximation for deadline
TSP running in time n©U°8"2) assuming that all distances are integers and at least 1. They
use the notion of regret which is the same as 2-excess. Note if path P visits v and then v
then short-cutting the subpath P, (replacing it with edge uv) will save a length which is
exactly £p,, 2. They guess a sequence of vertices vo = s,v1,- -+, v, of an optimal solution
(with £ = O(log A)) such that the 2-excess of the subpaths of optimal increase geometrically:
Ep 9 > o', where a is some constant satisfying 1 + o > o2. They consider a set of P2P

VU410

orienteering instances with start node v;, end node v; 1, and length budget d(v;,v;11) + .

K. Ren and M. R. Salavatipour

These instances are not independent however, hence this is a more general problem that
we call multi-path orienteering with group budget constraints (see [20]). They show given
an fS-approximation for P2P orienteering, at an another O(1)-factor loss, one can turn it
into an O(f)-approximation for multi-group multi-path orienteering. Then they concatenate
these paths; these paths are not respecting the deadlines however. In order to make them
deadline respecting, from every three consecutive paths they shortcut two of them, so another
O(1)-factor loss. The saving for the shortcutting of two paths is enough for the deadline
of every vertex in the third path being satisfied. To obtain O(1)-approximation for P2P
orienteering instances with groups, they use known reductions from the problem of maximum
coverage with group budgets to classic maximum coverage and use algorithm of [14] to get a

constant approximation via a reduction to classic P2P orienteering (see [20] for more details).

Putting everything together, to obtain an O(1)-approximation for deadline TSP they lose
O(1) factor in three steps.

In our setting in order to get a (1 + ¢)-approximation for deadline TSP on graphs with
bounded doubling dimension, we have to change all these steps so that we don’t lose more
than (1+€) factor in any step. It turns out it becomes significantly more complex to maintain
an at most (1 + €) loss in any step. As in [20], we assume distances are integer and > 1 (this
can be done as pointed out in [20] by scaling).

Overview of the proof. Suppose we have guessed a sequence of vertices (vg = $,v1, "+ , V)

of an optimum solution P* where the p-excess of the sub-path P is (at least) o, where

Vi1
a = 1+ ¢ (for simplicity assume the increase in excess is exactly «'). We also assume we

have guessed the lengths of these sub-paths, say || P} || = B;. Note that the vertices

Vi Vi1

visited in Py, , . all must have a deadline at least as big as the visit time of v; in P*(which

we have guessed since we know all previous B;’s, j < i); let W; denote this set of vertices.

Let Z; be the P2P orienteering instance with start-end pair v;, v; 41, budget B;, where the
vertices allowed to visit are W;. Note that the sub-paths Py . form a solution to these
instances Z; for ¢ > 1. If we have v;’s and B;’s, we can try to solve these O(log A) instances
simultaneously (our DP described for P2P orienteering can be expanded to handle when we

have O(log A) instances to be solved on the same ground set simultaneously).

One problem is that the vertices visited in Z; might be violating their deadlines slightly.

We will show that this violation will be small (using the assumption that the excess of
subpath Py .,
approximation for k-path to an approximation for P2P orienteering we can drop a small
fraction of vertices visited in all instances such that the total saving in time achieved for all
Z; with j < i is enough to ensure all the (remaining) vertices in Z; are visited before their
deadline. Now we start explaining the details of the proof.

Let G = (V, E) be a graph with constant doubling dimension «, given a start node s € V
and deadline D(v) for all v € V' as an instance Z of deadline TSP on G. Suppose p is a
constant (will be fixed to be [1] 41 later and let o = (1+¢). Let P* be an optimum solution
for this instance and (vg,v1,- -, vy,) be a sequence of vertices in P* satisfying the following
properties:

vg = s is the start node of P*.

v;41 is the first vertex in P* after v; with Ep-

S vien
last vertex of P*).

was ') and that by using a similar technique as we did to convert an

o> o', except possibly for v,, (the

So each vertex v; 1 is the first vertex along the optimum after v; such that the p-excess
of the subpath Py, Is at least a'. We will be guessing these vertices v;’s eventually

and try to find (good) approximations of P; We can assume that |Pr, | > u?,

ViVi41” ViVit1

1:17

APPROX/RANDOM 2025

1:18

Approximation Schemes for Orienteering and Deadline TSP in Doubling Metrics

otherwise we can compute Pj, exactly using exhaustive search. We also denote the

vertex on P* immediately before v;41 by vj. Note ||P*|| < nAg, thus m < hé (where
d = log A) for some constant h = h(e) > 0. For each 0 < i < m, we break P; into

ViVi41

i — 1 subpaths of (almost) equal sizes, denoted as P*;,1 < j < pu, by selecting a p-jump

7,_]’
_ 1,2 3 1 _ _
Jitvg = ug,uiud, . ul T el = v as follows. Assume Py ., = (vi1,. .., vig,) where
— _ _ rG=D(ki—1 o .
v; = v;1 and Vg, = Vg1, let a; = (%1 + 1 then a1 =1, ay, = k;, and if we
. * * *
consider vja,, " ,i,q, then we obtain J; by letting v; o, = u]. Suppose Jj; = J;(Py,, .)

is the optimum p-jump of P, 117711+1’ which is the p-jump with the maximum length Recall
that €p; 4 is the p-excess of Py, and with B; = [T (P)|+ Eps

ViVit+1 vivi1 M we have

| = B,;.To simplify the notation we denote the p-excess of subpath P by &,

H ViVit1 ViVi41
We also use Ei’,u to denote the p-excess of path P; ,. From the definition of (Vo, V1, , Um)

it follows that &7, > o' and &L < o' — 1. Let v be an arbitrary vertex in P} that falls
in between u? and w/™'. We use ||Ji(vi, u)|| to denote the 1ength of J; from vz to uf (ie.
following along .J; from the start node v; to u?). Define L; j = > e Wl Py -+ ||J,(UZ, ul)]|.
Note that the visiting time of v in P* (and hence the deadline of v) is lower bounded by L; ;.

Let N;; ={v:D(v) > L; j}. Observe that if we consider Py,

legs P:juj+1, 1 < j < p, then it is a P2P orienteering instance with start node v;, end node

broken up into several

v;+1 and given extra intermediate nodes u' and the path is supposed to go through these
intermediate nodes in this order; so it consists of u — 1 legs where leg] is between uj ul 1

and uses vertices in N; ; C V and total budget B; = ||J; (P,)|l + &

» Definition 18 (multiple-groups-legs orienteering). Let G = (V, E) be a graph, given m
groups each with pn — 1 legs, where leg £ of group i (0 <i<m, 1<{ < p) has start and end
node pair (s; e, ti0) and can use vertices from N; ; CV (we have the property that end-node
of leg € is the same as start node of leg £ + 1: t; 0 = 8;041), total budget for all the legs of
group i is B;. The goal is to find a collection of paths Q; ¢, for0 <i<m, 1 <{<pu—1,
such that Q; 4 is a s; 4-t; ¢ path (and so concatenation of all legs of group i gives a single path
from start node of the first leg to the last node of leg p — 1), such that ZZ;f [|Qiell < Bj
and | U?lgl U“;ll(QM NN, ¢)| is mazimized.

ViVi41

Note P Wi+ (0 <i<m,1<j<p)is a feasible solution of the multiple groups-legs
orlenteerlngL 71antance with groups 0 < i < m and legs 1 < j < u, start and end node pairs
(ul,u] +1) budgets B; and subset IV; ;. Consider the instance restricted to group 4 alone
an instance of multiple-leg P2P orienteering where we have to find a v;v;41-path that goes
through all uj ’s in order (so has p — 1 legs) and has budget B;; call this instance Z;. Note
P, is a feasible solution to Z;, thus the optimal of Z; visits at least |Py o, . | many vertices
in USZ I N; ;. We consider all Z;’s concurrently, i.c. an instance with pairs of start-end nodes
v;0;41 for group ¢ where each group is also required to go through vertlces of J; in that order
and thus has p — 1 legs where each leg has start-end pair uj u]™", total budget B; for all
the legs of group ¢, and the subset V; ; CV,0<i<m,1<j<pu for leg j of group i. For
a path @, let Q@ N N; ; be the set of vertices @) visited in N; ;. Using an argument similar to

that of Theorem 13 we can show there is a (1 + €)-approximation i.e. a set of paths Q; ;

such that Q’ s a uj u? H—path and if we define concatenation of different legs of group i
by Q) = Q; cot QZ u—1 then:

\QH—ZHQJ

j=1

IUQI—IUU (Qi; N Nij) = (1 —4e)|P7]. (7)

| < H v1v1+1|| - Eg;i# and (6)

K. Ren and M. R. Salavatipour

We also show that if v is visited by Q then if Q (,v) denotes the segment of path

. j from ui to v, then the length of the segment from v; to v in @} can be upper bounded:

j—1
195 (wis v)] = D NNQ el + 11Q% (ul, 0[] < 1 Ti(ws w))|| + (1 = £)E7 . (®)
=1
We will prove the existence of such paths Q . with a structure in the next theorem and also
how to find these using a DP. For now suppose We have found such paths @’ as described above.
We concatenate all these paths to obtain the final answer Q = Q)+ Q) + ...+ Ql,_;.
show the vertices of Q are visited before their deadlines and hence we have an approxnnatlon
for deadline TSP. Given the bounds given for the sizes of @}’s in (6), the number of vertices
visited overall (respecting their deadlines) is at least (1 — 4¢)|P*|.
To see why the vertices in Q respect their deadlines consider an arbitrary node v € Q.
Note that each @} contains the vertices in J; (as those are the vertices that define 1 — 1 legs
of the i’th group). Suppose v is visited in Q) ;, i.e. between u] and uj+1 Therefore, the

0,77
visit time of v in Q, i.e. ||Qsy|| is bounded by:

i—1
19sll = D QU +11Q5 (vi,)]
£=0

i—1

D P u Il = €€5,) + 1w ud)ll + (1 = e)€] using (6) and (8)
£=0 3

= Lij+(1-¢)&,-c> &,<D@)

IN

where the last inequality follows from the fact that 5%'/41 < a'—1and SZM >alsoe Zz;é EZM >
eYihal = (ot~ 1) >,

So we need to show the existence of Q) as described and how to find them. The road
to get these paths @} is an extension of what we had for multi-path orienteering in the
previous section and is obtained by a DP that computes multi-group-legs with multiple paths
(i.e. instances Z;’s) concurrently. The proof of following theorem is an extension of that of
Theorems 13 and 15.

» Theorem 19 (multi-groups-legs multi-paths orienteering structure theorem). Let G = (V, E)
be a graph with constant doubling dimension k, given s € V and D(v) for all v as an instance
of deadline TSP and P* be an optimal solution. Let v; (0 < i < m), u! (0 < i < m,
1<j<uw) B, and N, ; as described above for ji = L%J + 1. Consider a multi-groups-legs
orienteering instance with groups 0 < i < m and legs 1 < j < p, start and end node
pairs (u, uj+1) budgets B;, and subset N; ;. then we can construct a y-split-tree (with
v = n3") such that with probability at least 1 — % there exists a determining function ® and
a corresponding split-tree hierarchical decomposition T =Tle of G and a structured solution
of the multi- groups legs orienteering instance Q' ., (0 <i<m, 1 <j < u) such that if we

0,57
deﬁneQ’— ; o+ Q; —y for each 0 <i <m, then:
Jungt U 1(ﬂN”)|>(1—4g)|um tuz 1P*]_ | =(1—4e)[P*.
2. Il = 355 HQ il < Bi =&, = [IJi(P), I + (1 =€), and for any vertex

visited by Qf, say v visited in Q' . we have the length of the path from v; to v in Q},
denoted by [|Q!(vi, v)l, satisfies: [1Q)(vi,)| < 1J2(P2)|+ (1 — £)EL,.

3. For any cluster C € T and a partition Tec) of C’ deﬁnmg its chzldren in T, let
Rryoys Brgey are the set of bridge-edges and portal-edges of C' cut by the partition,
we have either:

1:19

APPROX/RANDOM 2025

1:20

Approximation Schemes for Orienteering and Deadline TSP in Doubling Metrics

1Q; N Ry < 2/1’10% or
/7 16
Qi N RY,)| < (F052)%.

Te(C)

Using a more complex DP and we can find a near optimum structured solution as

guranteed by this Theorem. This DP tries to solve multi-groups-legs multi-paths orienteering

simultaneously.
—— References
1 Esther M. Arkin, Joseph S. B. Mitchell, and Giri Narasimhan. Resource-constrained geometric

10

11

12

13

network optimization. In Ravi Janardan, editor, Proceedings of the Fourteenth Annual
Symposium on Computational Geometry, Minneapolis, Minnesota, USA, June 7-10, 1998,
pages 307-316. ACM, 1998. doi:10.1145/276884.276919.

Sanjeev Arora. Polynomial time approximation schemes for euclidean traveling salesman and
other geometric problems. J. ACM, 45(5):753-782, 1998. doi:10.1145/290179.290180.
Sandip Banerjee, Yair Bartal, Lee-Ad Gottlieb, and Alon Hovav. Novel properties of hierarchical
probabilistic partitions and their algorithmic applications. In 65th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2024, Chicago, IL, USA, October 27-30, 2024,
pages 1724-1767. IEEE, 2024. doi:10.1109/F0CS61266.2024.00107.

Nikhil Bansal, Avrim Blum, Shuchi Chawla, and Adam Meyerson. Approximation algorithms
for deadline-tsp and vehicle routing with time-windows. In Léaszl6 Babai, editor, Proceedings
of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, June 13-16,
2004, pages 166-174. ACM, 2004. doi:10.1145/1007352.1007385.

Nikhil Bansal and Viswanath Nagarajan. On the adaptivity gap of stochastic orienteering.
CoRR, abs/1311.3623, 2013. arXiv:1311.3623.

Yair Bartal. Probabilistic approximations of metric spaces and its algorithmic applications.
In 87th Annual Symposium on Foundations of Computer Science, FOCS ’96, Burlington,
Vermont, USA, 14-16 October, 1996, pages 184-193. IEEE Computer Society, 1996. doi:
10.1109/SFCS.1996.548477.

Yair Bartal, Lee-Ad Gottlieb, and Robert Krauthgamer. The traveling salesman problem:
Low-dimensionality implies a polynomial time approximation scheme. SIAM J. Comput.,
45(4):1563-1581, 2016. doi:10.1137/130913328.

MohammadHossein Bateni and Julia Chuzhoy. Approximation algorithms for the dir-
ected k-tour and k-stroll problems. Algorithmica, 65(3):545-561, 2013. doi:10.1007/
S00453-011-9610-6.

Avrim Blum, Shuchi Chawla, David R Karger, Terran Lane, Adam Meyerson, and Maria
Minkoff. Approximation algorithms for orienteering and discounted-reward tsp. STAM Journal
on Computing, 37(2):653-670, 2007. doi:10.1137/050645464.

Kevin Buchin, Mart Hagedoorn, Guangping Li, and Carolin Rehs. Orienteering (with time
windows) on restricted graph classes. In International Conference on Current Trends in
Theory and Practice of Computer Science, pages 151-165. Springer, 2025. doi:10.1007/
978-3-031-82670-2_12.

T.-H. Hubert Chan and Shaofeng H.-C. Jiang. Reducing curse of dimensionality: Improved
PTAS for TSP (with neighborhoods) in doubling metrics. In Robert Krauthgamer, editor,
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 754—765. SIAM, 2016. doi:
10.1137/1.9781611974331.CH54.

Kamalika Chaudhuri, Brighten Godfrey, Satish Rao, and Kunal Talwar. Paths, trees, and
minimum latency tours. In /4th Annual IEEE Symposium on Foundations of Computer
Science, 2003. Proceedings., pages 36—45. IEEE, 2003. doi:10.1109/SFCS.2003.1238179.
Chandra Chekuri, Nitish Korula, and Martin P4l. Improved algorithms for orienteering
and related problems. ACM Transactions on Algorithms (TALG), 8(3):1-27, 2012. doi:
10.1145/2229163.2229167.

https://doi.org/10.1145/276884.276919
https://doi.org/10.1145/290179.290180
https://doi.org/10.1109/FOCS61266.2024.00107
https://doi.org/10.1145/1007352.1007385
https://arxiv.org/abs/1311.3623
https://doi.org/10.1109/SFCS.1996.548477
https://doi.org/10.1109/SFCS.1996.548477
https://doi.org/10.1137/130913328
https://doi.org/10.1007/S00453-011-9610-6
https://doi.org/10.1007/S00453-011-9610-6
https://doi.org/10.1137/050645464
https://doi.org/10.1007/978-3-031-82670-2_12
https://doi.org/10.1007/978-3-031-82670-2_12
https://doi.org/10.1137/1.9781611974331.CH54
https://doi.org/10.1137/1.9781611974331.CH54
https://doi.org/10.1109/SFCS.2003.1238179
https://doi.org/10.1145/2229163.2229167
https://doi.org/10.1145/2229163.2229167

K. Ren and M. R. Salavatipour

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Chandra Chekuri and Amit Kumar. Maximum coverage problem with group budget constraints
and applications. In International Workshop on Randomization and Approzimation Techniques
in Computer Science, pages 72—-83. Springer, 2004. doi:10.1007/978-3-540-27821-4_7.
Chandra Chekuri and Martin Pal. A recursive greedy algorithm for walks in directed graphs.
In 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005), 23-25
October 2005, Pittsburgh, PA, USA, Proceedings, pages 245-253. IEEE Computer Society,
2005. doi:10.1109/SFCS.2005.9.

Ke Chen and Sariel Har-Peled. The euclidean orienteering problem revisited. SIAM Journal
on Computing, 38(1):385-397, 2008. doi:10.1137/060667839.

Vincent Cohen-Addad. Bypassing the surface embedding: approximation schemes for network
design in minor-free graphs. In Stefano Leonardi and Anupam Gupta, editors, STOC ’22:
54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24,
2022, pages 343-356. ACM, 2022. doi:10.1145/3519935.3520049.

Boaz Farbstein and Asaf Levin. Deadline TSP. Theor. Comput. Sci., 771:83-92, 2019.
d0i:10.1016/J.TCS.2018.11.016.

Zachary Friggstad and Chaitanya Swamy. Compact, provably-good Ips for orienteering and
regret-bounded vehicle routing. In Friedrich Eisenbrand and Jochen Kénemann, editors,
Integer Programming and Combinatorial Optimization - 19th International Conference, IPCO
2017, Waterloo, ON, Canada, June 26-28, 2017, Proceedings, volume 10328 of Lecture Notes
in Computer Science, pages 199-211. Springer, 2017. doi:10.1007/978-3-319-59250-3_17.

Zachary Friggstad and Chaitanya Swamy. A constant-factor approximation for directed latency

in quasi-polynomial time. J. Comput. Syst. Sci., 126:44-58, 2022. doi:10.1016/J.JCSS.2021.

12.001.

Jie Gao, Su Jia, Joseph S. B. Mitchell, and Lu Zhao. Approximation algorithms for time-
window TSP and prize collecting TSP problems. In Ken Goldberg, Pieter Abbeel, Kostas E.
Bekris, and Lauren Miller, editors, Algorithmic Foundations of Robotics XII, Proceedings of the
Twelfth Workshop on the Algorithmic Foundations of Robotics, WAFR 2016, San Francisco,
California, USA, December 18-20, 2016, volume 13 of Springer Proceedings in Advanced
Robotics, pages 560-575. Springer, 2016. doi:10.1007/978-3-030-43089-4_36.

Naveen Garg, Sanjeev Khanna, and Amit Kumar. Hardness of approximation for orienteering
with multiple time windows. In Déaniel Marx, editor, Proceedings of the 2021 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021,
pages 2977-2990. STAM, 2021. doi:10.1137/1.9781611976465.177.

Lee-Ad Gottlieb, Robert Krauthgamer, and Havana Rika. Faster algorithms for orienteering
and k-tsp. Theor. Comput. Sci., 914:73-83, 2022. doi:10.1016/J.TCS.2022.02.013.
Anupam Gupta, Robert Krauthgamer, and James R Lee. Bounded geometries, fractals, and
low-distortion embeddings. In 44th Annual IEEE Symposium on Foundations of Computer
Science, 2003. Proceedings., pages 534-543. IEEE, 2003. doi:10.1109/SFCS.2003.1238226.
Anupam Gupta, Ravishankar Krishnaswamy, Viswanath Nagarajan, and R. Ravi. Running
errands in time: Approximation algorithms for stochastic orienteering. Math. Oper. Res.,
40(1):56-79, 2015. doi:10.1287/MOOR.2014.0656.

Aditya Jayaprakash and Mohammad R. Salavatipour. Approximation schemes for capacitated
vehicle routing on graphs of bounded treewidth, bounded doubling, or highway dimension.
ACM Trans. Algorithms, 19(2):20:1-20:36, 2023. doi:10.1145/3582500.

Haotian Jiang, Jian Li, Daogao Liu, and Sahil Singla. Algorithms and adaptivity gaps
for stochastic k-tsp. In Thomas Vidick, editor, 11th Innovations in Theoretical Computer
Science Conference, ITCS 2020, January 12-14, 2020, Seattle, Washington, USA, volume
151 of LIPIcs, pages 45:1-45:25. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2020.
doi:10.4230/LIPICS.ITCS.2020.45.

Philip N. Klein. A linear-time approximation scheme for TSP in undirected planar graphs
with edge-weights. SIAM J. Comput., 37(6):1926-1952, 2008. doi:10.1137/060649562.

1:21

APPROX/RANDOM 2025

https://doi.org/10.1007/978-3-540-27821-4_7
https://doi.org/10.1109/SFCS.2005.9
https://doi.org/10.1137/060667839
https://doi.org/10.1145/3519935.3520049
https://doi.org/10.1016/J.TCS.2018.11.016
https://doi.org/10.1007/978-3-319-59250-3_17
https://doi.org/10.1016/J.JCSS.2021.12.001
https://doi.org/10.1016/J.JCSS.2021.12.001
https://doi.org/10.1007/978-3-030-43089-4_36
https://doi.org/10.1137/1.9781611976465.177
https://doi.org/10.1016/J.TCS.2022.02.013
https://doi.org/10.1109/SFCS.2003.1238226
https://doi.org/10.1287/MOOR.2014.0656
https://doi.org/10.1145/3582500
https://doi.org/10.4230/LIPICS.ITCS.2020.45
https://doi.org/10.1137/060649562

1:22

Approximation Schemes for Orienteering and Deadline TSP in Doubling Metrics

29

30

31

32

33

Joseph SB Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple
polynomial-time approximation scheme for geometric tsp, k-mst, and related problems. SIAM
Journal on computing, 28(4):1298-1309, 1999. doi:10.1137/S0097539796309764.

Viswanath Nagarajan and R. Ravi. The directed orienteering problem. Algorithmica, 60(4):1017—
1030, 2011. doi:10.1007/S00453-011-9509-2.

Kinter Ren and Mohammad R. Salavatipour. Approximation schemes for orienteering and
deadline tsp in doubling metrics, 2024. doi:10.48550/arXiv.2405.00818.

Kunal Talwar. Bypassing the embedding: algorithms for low dimensional metrics. In Laszlé
Babai, editor, Proceedings of the 36th Annual ACM Symposium on Theory of Computing,
Chicago, IL, USA, June 13-16, 2004, pages 281-290. ACM, 2004. doi:10.1145/1007352.
1007399.

Kunal Talwar. Bypassing the embedding: algorithms for low dimensional metrics. In Proc. of
36th ACM Symp. on Theory of Computing (STOC), 2004. doi:10.1145/1007352.1007399.

https://doi.org/10.1137/S0097539796309764
https://doi.org/10.1007/S00453-011-9509-2
https://doi.org/10.48550/arXiv.2405.00818
https://doi.org/10.1145/1007352.1007399
https://doi.org/10.1145/1007352.1007399
https://doi.org/10.1145/1007352.1007399

	1 Introduction
	1.1 Our Results and Techniques
	1.2 Related Works

	2 Preliminaries
	3 An Approximation Scheme for k-path and Orienteering in Doubling Metrics
	3.1 Structural Theorem
	3.2 (epsilon,mu)-approximation for k-path
	3.3 Finding A Near Optimum Solution For k-path
	3.4 Approximating P2P Orienteering on Doubling Metrics

	4 An Approximation Scheme for Deadline TSP in Doubling Metrics

