
Approximation Algorithms for the Generalized1

Point-to-Point Problem2

Zachary Friggstad �3

Department of Computing Science, University of Alberta4

Mohammad R. Salavatipour �5

Department of Computing Science, University of Alberta6

Hao Sun �7

Department of Computer Science, University of Houston8

Abstract9

We consider the Generalized Point-to-Point (GP2P) problem in which we have an edge-weighted10

graph G with (possibly negative) node charges φ(v) ∈ Z. The goal is to find a minimum-cost set11

of edges such that each component has nonnegative total charge. Viewing the positive charges12

as specifying supply and negative charges as demand quantities at various nodes, the problem is13

equivalent to build the cheapest network so that it is possible to satisfy all demands by routing14

supplies across the network.15

This problem is a significant generalization of other network design problems such as the well-16

studied Steiner Forest problem. Even the special case of only having one single demand point17

(having charge −k and all the other nodes having charge +1) is capturing the k-Minimum Spanning18

Tree problem. Earlier work by Hajiaghayi et al. (2016) [10] gave an O(logn) approximation in19

pseudo-polynomial time with further improved guarantees if the total supply is not much larger20

than the total demand, and also a 2-approximation if the total supply equals the total demand.21

Our contributions are four-fold: (a) we show how known k-Minimum Spanning Tree approx-22

imations can be extended to GP2P approximations while losing only a ε-factor if the number of23

demand points in the instance is bounded by a constant, (b) we improve the running time to be24

Fixed-Parameter Tractable (FPT) in the number of demand points in constant-dimensional Euc-25

lidean metrics, (c) we give a 2-approximation in instances where edge costs are all 1 and φ(v) = ±126

for each node v and show such instances are APX-hard, and (d) we show how the logarithmic27

approximations in earlier work can be modified to run in truly polynomial time.28

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of29

computation → Approximation algorithms analysis30

Keywords and phrases Point-to-Point Network design, Approximation, Steiner Forest, k-MST31

Digital Object Identifier 10.4230/LIPIcs.WADS.2025.3432

Funding Zachary Friggstad: Supported by NSERC.33

Mohammad R. Salavatipour : Supported by NSERC.34

1 Introduction35

Consider the following setting in a network: some locations have a finite supply of goods and36

some locations have a given demand for goods. The goal is, naturally, to route supplies to37

the demand locations in order to satisfy all demands. For example, in the Minimum-Cost38

Transportation the goal is to do this in a way that minimizes the total travel cost of39

all goods. However, it is natural to consider variations of this problem. A network-design40

version would be to install a minimum-cost set of connections (edges between locations) so41

that it is possible to find a routing satisfying demands such that each unit of supply only42

travels along installed connections. That is, we only pay one for each link. Such a setting is43

captured by the following problem.44

© Zachary Friggstad, Mohammad R. Salavatipour, and Hao Sun;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Algorithms and Data Structures (WADS 2025).
Editors: Pat Morin and Eunjin Oh; Article No. 34; pp. 34:1–34:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zacharyf@ualberta.ca
https://orcid.org/0000-0003-4039-3235
mailto:mrs@ualberta.ca
https://orcid.org/0000-0002-7650-2045
mailto:hsun33@cougarnet.uh.edu
https://orcid.org/0000-0002-2000-8080
https://doi.org/10.4230/LIPIcs.WADS.2025.34
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 Approximation Algorithms for the Generalized Point-to-Point Problem

I Definition 1. In the Generalized Point to Point Connection problem (GP2P), we45

are given a tuple (G = (V,E), c, φ) where G is an undirected graph with edge costs c(u, v) ≥ 0,46

for all e ∈ E and (possibly negative) node charges φ(v) ∈ Z, for all v ∈ V . The goal is to47

find a minimum-cost F ⊆ E such that
∑
v∈C φ(v) ≥ 0 for each connected component C ⊆ V48

of (V, F).49

A convenient view is that φ(v) < 0 corresponds to a demand point, φ(v) > 0 corresponds50

to a supply point, and φ(v) = 0 is a location that is a Steiner point. For brevity, through-51

out this paper when the instance is clear from the context we let Φ =
∑
v∈V max{1, |φ(v)|}.52

This way, Φ represents the total charge in absolute value but also ensures to count the53

zero-charge nodes.54

It seems the first study of GP2P was actually for a directed variant of the problem and55

was conducted by Di Gaspero et al. [5] in the course of studying a practical problem related to56

scheduling shifts. The undirected version itself was formally proposed by Even, Kortsarz, and57

Slany [6] under the name Infinite Capacity Minimum Edge Cost Flow problem and58

an O(log Φ)-approximation was given. The most recent work on GP2P is by Hajiaghayi et59

al. [10] where they give a 2-approximation when φ(V) = 0 and an O(log(min{n, φ(V) + 2}))-60

approximation in general time that is polynomial in Φ. This is achieved by an adaptation of61

the primal-dual algorithm of [9] for the classic Steiner Forest problem and its generalization62

(e.g. when we have a proper function). As pointed out in [6], many special cases of GP2P63

were already well-studied. For example:64

Steiner Forest: We are given terminal pairs (s1, t1), . . . , (sk, tk) in an edge-weighted65

graph and the goal is to buy the cheapest set of edges so each pair has both endpoints in66

the same component. This is modelled by GP2P by letting φ(si) = 2i and φ(ti) = −2i67

(and φ(v) = 0 for all non-terminals). Goemans and Williamson give a 2-approximation68

for Steiner Forest [9].69

k-Minimum Spanning Tree (k-MST): We are given a particular root node r ∈ V and70

an integer k ≥ 0. The goal is to find the cheapest tree including r and at least k other71

nodes. This is modelled by GP2P by letting φ(r) = −k and φ(v) = 1 for all other72

v ∈ V −{r}. Note, this instance of GP2P has only a single demand point. The history of73

approximating k-MST is storied, currently the best approximation is a 2-approximation74

[8, 4].75

Knapsack Covering: We are given n items with sizes s1, . . . , sn and costs c1, . . . , cn76

plus a demand value D. The goal is to find a minimum-cost set of items with total77

size at least D. This modelled by GP2P by using a star with center r and leaf nodes78

v1, . . . , vn. The cost of rvi is ci and the charges are φ(r) = −D and φ(vi) = si. An79

FPTAS for Knapsack Covering is known, e.g. by slightly modifying the standard80

dynamic programming based FPTAS for standard for standard Knapsack.81

Notably, all these cases have constant-factor approximations or better. An open problem is to82

determine if GP2P has a constant-factor approximation even if we allow pseudo-polynomial83

running time, i.e. running time that is polynomial in Φ; note for the purposes of getting an84

O(1)-approximation we can assume without loss of generality that the edge costs are bounded85

by a polynomial in n (see Lemma 19 in Appendix A). Even special cases of GP2P that86

generalize some of the classic problems stated above are open. For instance, for generalization87

of k-MST to the situation where we have more than one root node, say r1, r2, . . . , rd, and88

the goal is to find a minimum cost subgraph where the connected component of each ri has89

at least k nodes, it is not known if one can get an O(1)-approximation or not. This is one of90

the cases we study in this paper.91

Z. Friggstad, M. Salavatipour, and H. Sun 34:3

1.1 Our Results92

For brevity, we say an instance (G, c, φ) of GP2P is metric (Metric-GP2P) if G is a93

complete graph and edge costs satisfy the triangle inequality c(u, v) ≤ c(u,w) + c(w, v) for94

any distinct u, v, w ∈ V . As is usual with single-connectivity network design problems, e.g.95

Steiner Forest, assuming the graph is metric can be done without loss of generality. The96

standard proof is found in Lemma 18 in Appendix A. We also say an instance (G, c, φ) of97

GP2P is graphical (Graphical-GP2P) if all edge costs are 1 but G is not necessarily98

complete.99

Our results need approximation algorithms for slight generalizations of k-MST.100

I Definition 2. In k-MST with required nodes (k-MST-R), instead of a single root101

node r ∈ V we are given a subset R ⊆ V . The goal is to find the cheapest tree spanning R102

and at least k other nodes in V −R. In weighted k-MST-R (W-k-MST-R), each vertex103

v ∈ V −R is given an integer weight wv ≥ 0 and the goal is to find the cheapest tree spanning104

R plus a subset of nodes in V −R with total weight at least k.105

We note all k-MST approximations we consider in this paper can be readily adapted to106

the generalization k-MST-R. One can also extend them to W-k-MST-R that would run in107

pseudo-polynomial time (the simple reduction can be found in Appendix A).108

I Observation 3. If there is a polynomial-time α-approximation for k-MST-R then there is109

an α-approximation for W-k-MST-R whose running time is polynomial in the number of110

nodes and the total weight of all nodes.111

Let nd be the number of demand points in a given instance, i.e. |{v ∈ V : φ(v) < 0}|.112

Recall from above that k-MST is a special case of GP2P when there is only one demand113

point, i.e. nd = 1. We consider the case of GP2P with nd ≥ 1. This is akin to generalizing114

k-MST to multiple roots, each with its own size requirement, but there is one key difference.115

One might imagine a multiple-root k-MST generalization would want to keep the trees116

disjoint but in GP2P we can have multiple demand points in a single component as long as117

the total supply in the component is at least the total demand in the component.118

Our main result shows how an α-approximation for W-k-MST-R can be used to give a119

(1 + ε) · α-approximation for GP2P.120

I Theorem 4. For any ε > 0, given an α-approximation algorithm A for W-k-MST-R,121

there is a (1 + ε)α-approximation for GP2P. This algorithm makes nO(nd/ε) calls to A.122

For D-dimensional Euclidean metrics the running time of the GP2P approximation can be123

improved to O((16 · nd/ε)D·nd) calls to A.124

We also show how existing algorithms for k-MST (the (2 + ε)-approximation for k-MST125

in [3] for general metrics and the PTAS for k-MST in constant-dimensional Euclidean metrics126

[2, 11]) can be suitably adapted to given the same approximation guarantees for W-k-MST-R,127

which combined with the above theorem imply the following:128

I Corollary 5. For any ε > 0, there is a (2 + ε)-approximation for GP2P that runs in time129

is nO(nd/ε). For D-dimensional Euclidean metrics there is a (1 + ε)-approximation for GP2P130

with running time O((16 · nd/ε)D·nd · ΦO(D/ε))131

Note that the (2 + ε)-approximation for W-k-MST-R and for GP2P runs in truly132

polynomial time for any fixed nd but the (1 + ε)-approximation for the Euclidean metrics is133

polynomial in Φ, hence only pseudo-polynomial, as it is not clear how to get a PTAS for134

W-k-MST-R in the Euclidean metrics.135

WADS 2025

34:4 Approximation Algorithms for the Generalized Point-to-Point Problem

We also mention that this would also extend to doubling metrics using the quasi-polynomial136

time (1+ε)-approximation for k-MST in metrics with constant doubling dimension by Talwar137

[12]. The running time would be quasipolynomial in Φ but still FPT in nd.138

Our next collection of results is for Graphical-GP2P. First, we observe that particular139

restrictions of GP2P remain essentially as hard to approximate as the general problem.140

I Observation 6. If there is a polynomial-time α-approximation for instances of GP2P with141

φ(v) ∈ {−1,+1} for each v ∈ V , then there is a 2α-approximation for general instances of142

GP2P with running time being polynomial in Φ.143

I Observation 7. If there is a polynomial-time α-approximation for instances of Graphical-144

GP2P with φ(v) ∈ {−1, 0,+1} for each v ∈ V , then for any ε > 0 there is a (1 + ε) · α-145

approximation for general instances of GP2P with running time being polynomial in 1/ε and146

Φ.147

These simple observations are proven in Appendix B. Our main contribution here is that the148

intersection of these two restrictions of GP2P is still APX-hard but does at least admit a149

simple approximation.150

I Theorem 8. The restriction of Graphical-GP2P with φ(v) = {−1,+1} for each v ∈ V151

is APX-hard and admits a polynomial-time 2-approximation.152

Finally, we improve the running time of the logarithmic approximations in [10] by making153

them run in truly polynomial time (i.e. removing the dependence on Φ).154

I Theorem 9. There is an O(log(min{n, φ(V) + 2}))-approximation for GP2P running in155

polynomial time.156

1.2 Notation157

For a graph G = (V,E) and a subset of edges F ⊆ E, we let V (F) denote the set of all nodes in158

V that appear as the endpoint of at least one edge in F and say that F spans V (F). We refer159

to a component of G as a subset of vertices corresponding to a connected component of G. For160

a given instance (G = (V,E), c, φ) of GP2P, let Vs = {v ∈ V : φ(v) > 0} be the supply points,161

Vd = {v ∈ V : φ(v) < 0} be the demand points, and V0 = {v ∈ V : φ(v) = 0} be the Steiner162

points. Correspondingly, let ns, nd, and n0 denote their sizes with n := |V | = ns + nd + n0.163

We also use the convention c(F) :=
∑
e∈F c(e) for F ⊆ E and, similarly, φ(C) :=

∑
v∈C φ(v)164

for C ⊆ V . Note φ(V) differs from Φ :=
∑
v∈V max{1, |φ(v)|}, the former measures the165

excess of positive charge in the input and the latter measures the absolute value of all charges166

while ensuring Steiner points are still counted.167

1.3 Organization168

The algorithms proving Theorem 4 appear in Section 2. Theorem 8 is proven in Section 3169

and Section 4 then concludes the paper with the proof of Theorem 9. The proofs of some170

supporting results as well as Observations 6 and 7 appear in the appendix.171

2 Approximations for Constant nd172

The algorithms proving Theorem 4 are obtained by reducing to W-k-MST-R. Recall that173

in W-k-MST-R, we are given a set of required nodes R along with (integer) node weights174

wv ≥ 0 and the goal is to find a minimum cost tree spanning R such that the total weight of175

Z. Friggstad, M. Salavatipour, and H. Sun 34:5

the nodes in the tree is at least a given integer k. The special case of |R| = 1 and wv = 1176

for all v 6= r is the traditional k-MST problem. Despite its generality, W-k-MST-R can be177

approximated as well (or nearly as well) as the simpler k-MST problem by adapting the178

known algorithms.179

I Theorem 10. The k-MST algorithm described [3] can be adapted to give a polynomial-time180

(2 + ε)-approximation for W-k-MST-R for any constant ε > 0. Similarly, the PTAS for181

k-MST in D-dimensional Euclidean metrics described in [11] with running time O(nO(D/ε))182

can be adapted to give a PTAS for k-MST-R with the same asymptotic running time and a183

(1 + ε)-approximation for W-k-MST-R with running time O((nΦ)O(D/ε)).184

These adaptations are discussed in Appendix C. We emphasize both algorithms run in185

polynomial time (for constant ε) even if the number of required nodes R is not bounded by a186

constant. It is possible that the 2-approximations for k-MST in [8] or [4] could be extended187

to W-k-MST-R and that the PTAS for Euclidean k-MST in [2] could be similarly extended.188

We focus on these particular algorithms due to the ease in describing how to extend them.189

We present the proof of Theorem 4 in two parts. First for the general metrics and then190

the improved FPT time for D-dimensional Euclidean metrics.191

2.1 Theorem 4: General metrics192

Throughout, let OPT denote the cost of an optimum solution. Fix ε > 0 to be a sufficiently193

small constant, ε < 1/5 suffices. From Lemma 18 (Appendix A), we may assume G is a194

complete graph with edge costs satisfying the triangle inequality. For any r ≥ 0 and any195

v ∈ V we let B(v, r) = {u ∈ V : c(u, v) ≤ r} be the ball of radius r around v.196

The intuition for our algorithm is the following. If the optimum solution consisted of only197

a single tree containing all nodes with negative charge, we could treat it as a W-k-MST-R198

instance where R = Vd and k = −φ(R) while setting wv = 0 for v ∈ R and wv = φ(v) for199

v /∈ R. However, this may not be the case. To cope, we show how to decompose the instance200

into disjoint subproblems that have single-tree optimal solutions whose total costs are close201

to OPT .202

To perform the decomposition, we first show that a near-optimum solution to the original203

instance (G, c, φ) exists such that any two trees in this solution notably far apart. Then we204

guess a small “net” of points in each tree, the union of balls with a particular common radius205

around each net point covers all trees, but two balls from different trees are disjoint. This206

allows us to partition the instance into disjoint instances, one per tree in the near optimum207

solution.208

The first step is to show some near-optimum solution has its components being bounded209

away from each other.210

I Lemma 11. There is a solution F ′ ⊆ E with c(F ′) ≤ (1 + ε) ·OPT such that for any two211

components C1, C2 of (V, F ′) with C1 ∩ Vd 6= ∅ and C2 ∩ Vd 6= ∅ we have c(u, v) ≥ ε
nd
·OPT212

for any u ∈ C1, v ∈ C2.213

Proof. Let F ′ initially be an optimum solution. While there are two components C1, C2 of214

(V, F ′) with C1 ∩ Vd 6= ∅ and C2 ∩ Vd 6= ∅ such that c(u, v) < ε
nd
·OPT for some u ∈ C1 and215

v ∈ C2, add uv to F ′. Each such addition increases the cost of F ′ by at most ε
nd
· OPT216

and this procedure will be executed fewer than nd times since there are initially at most nd217

components containing a node in Vd. J218

Of course, we may also assume, by discarding edges, that F ′ is a minimal solution meaning219

F ′ − {e} is not feasible for any e ∈ F ′. So F ′ consists of m ≤ nd vertex-disjoint trees, say220

WADS 2025

34:6 Approximation Algorithms for the Generalized Point-to-Point Problem

T1, . . . , Tm ⊆ F that collectively span all of Vd plus some other nodes in V0 ∪ Vs. Any other221

node v not in a tree has φ(v) ≥ 0 and forms an isolated component of (V, F ′).222

Next, we identify a net of nodes in the trees T1, . . . , Tm that will be small enough for our223

algorithm to guess.224

I Lemma 12. For any tree T and any r > 0 there is a set N ⊆ V (T) with |N | ≤ 1 + c(T)/r225

such that c(v,N) ≤ r for each v ∈ V (T).226

Similar constructions have been considered many times before, one example is in the (2 + ε)-227

approximation for k-MST [3]. We include a proof for completeness.228

Proof. We prove this by induction on |V (T)|. Root T at an arbitrary node w. The base229

case is when c(w, v) ≤ r for each v ∈ V (T). If so, we simply let N = {w}.230

Otherwise, for two u, v ∈ V (T) let cT (u, v) be the cost of the unique u−v path in T . Pick231

any v ∈ V (T) that has maximum value cT (w, v). Note cT (w, v) ≥ c(w, v) > r. Now let u be232

the furthest node along the v − w path such that cT (v, u) ≤ r. Since c(v, u) ≤ cT (v, u) ≤ r,233

then u 6= w. Let p(u) be the parent of u in T . By our choice of u we also have cT (v, p(u)) > r.234

Let Tu denote the subtree of T rooted at u. For any v′ ∈ V (Tu) we have c(v′, u) ≤235

cT (v′, u) ≤ cT (v, u) ≤ r. Let T ′ be the tree obtained by removing the subtree rooted at u236

from T . This removes all edges of the v − p(u) path, so c(T ′) ≤ c(T)− r. By induction, we237

can find a set N ′ ⊆ V (T ′) with |N ′| ≤ 1 + c(T ′)/r ≤ c(T)/r such that c(w′, N) ≤ r for each238

w′ ∈ V (N ′).239

Finally, set N = {u} ∪N ′ and note |N | = 1 + |N ′| ≤ 1 + c(T)/r. Every u′ ∈ V (T) is now240

within distance r from some node in N , as required. J241

The entire algorithm is summarized in Algorithm 1. The high-level idea is that it guesses242

a value ν very close to OPT and then guesses the “nets” N1, . . . , Nm from Lemma 12 applied243

to each tree of the near-optimum solution F ′ using r = ε
4·nd
· ν. Below, we show for the244

proper guess of N1, . . . , Nm that the sets Vi obtained by the union of balls B(v, r) for v ∈ Vi245

are disjoint. This instance of GP2P then naturally decomposes into disjoint instances of246

W-k-MST-R. Supporting results demonstrating the performance of our algorithm are found247

below.248

Algorithm 1 GP2P approximation.

1: if F 0 = {e ∈ E : c(e) = 0} is feasible then
2: return F 0

3: for each integer b such that ν := (1 + ε)b ∈ [mine c(e),
∑
e c(e)] do

4: for each 1 ≤ m ≤ nd and each m-tuple N1, . . . , Nm ⊆ V with
∑m
i=1 |Ni| ≤ 5 · nd/ε

do
5: let r := ε

4nd
· ν and Vi := ∪v∈NiB(v, r) for each 1 ≤ i ≤ m

6: if Vi ∩ Vj 6= ∅ for distinct i, j or if Vd 6⊆ ∪mi=1Vi then
7: continue to the next iteration
8: for each 1 ≤ i ≤ m do
9: construct the W-k-MST-R instance on the subgraph G[Vi] with R = Vd ∩ Vi

and k = −φ(R)
10: let T ′i be the tree obtained by running an α-approximation on this instance
11: Record ∪mi=1T

′
i as a candidate solution.

12: return the cheapest candidate solution found over all iterations.

Z. Friggstad, M. Salavatipour, and H. Sun 34:7

We first discuss the running time. The number of iterations of the outer loop is logarithmic249

in the ratio c(E)/mine c(e), which is polynomial in the number of bits used to represent the250

costs in the instance. There are clearly only nd possible values for m and the number of251

m-tuples satisfying the stated bounds is at most nO(5·nd/ε). So when nd is regarded as a252

constant, the total number of iterations is polynomial in the input size and, thus, the entire253

algorithm makes a polynomial number of calls to a k-MST-R approximation on instances254

with at most n nodes and, otherwise, runs in polynomial time.255

Towards the performance guarantee, we show for the “correct” guess of values in the256

loops the algorithm will perform well.257

I Lemma 13. Let ν ∈ [OPT, (1 + ε) ·OPT] and T1, . . . , Tm be the trees in the near-optimum258

solution F ′ from Lemma 11. For each 1 ≤ i ≤ m, let Ni be the set identified by Lemma 12259

when applied to Ti using r = ε
4·nd
· ν. Also let Vi = ∪v∈Ni

B(v, r) for each 1 ≤ i ≤ m.260

Then (a)
∑m
i=1 |Ni| ≤ 5 · nd/ε, (b) Vi ∩ Vj = ∅ for distinct i, j, and (c) Vd ⊆ ∪mi=1Vi.261

Proof. For (a), we have262

∑
i

|Ni| ≤ m+ c(F ′)
r
≤ nd + (1 + ε) ·OPT

OPT
· 4nd
ε
≤ 5
ε
· nd.263

For (b), if, say, w ∈ Vi ∩ Vj for some distinct i, j then there would be some u ∈ Ni and264

v ∈ Nj such that265

c(u, v) ≤ c(u,w) + c(w, v) ≤ r + r = ε

2 · nd
· ν ≤ ε(1 + ε)

nd
·OPT ≤ ε

nd
·OPT.266

But this contradicts Lemma 11, which showed c(u, v) > ε
nd
· OPT . Finally, (c) follows267

because the balls B(v, r) for v ∈ Ni collectively cover all of V (Ti) and each node of Vd lies268

on some Ti. J269

To finish the analysis, consider the iteration of the algorithm for the particular setting270

of ν and T1, . . . , Tm described in Lemma 13. With these values, the algorithm proceeds to271

run the k-MST-R approximations. In the instance corresponding to Vi, we know Ti itself272

is a feasible solution so the returned tree T ′i satisfies c(T ′i) ≤ α · c(Ti). Thus, the candidate273

GP2P solution found in this iteration has cost
∑m
i=1 c(T ′i) ≤ α · c(F ′) ≤ α · (1 + ε) ·OPT .274

2.2 Theorem 4: Euclidean metrics275

We simply describe how to modify Algorithm 1. Clearly, we can use a (1 + ε)-approximation276

for W-k-MST-R in Euclidean metrics to make Algorithm 1 a (1 + ε)-approximation in277

Euclidean metrics. The pseudo-polynomial running time in the statement of Theorem 4278

comes from the fact that we only know how to adapt k-MST PTASes to k-MST-R and then279

rely on Observation 3 to get a pseudo-polynomial time W-k-MST-R (1 + ε)-approximation.280

One small comment is that even though the distances are not necessarily rational numbers,281

the number of iterations of the outer loop is still polynomial in the number of bits used to282

describe the locations of the points in V .283

To improve the running time to be FPT in nd, we change how the nets are guessed. Let284

D be the dimension of the metric, recall that D is assumed to be a constant. For brevity, let285

δ := ε/(16nd). Note 4δ · ν is the value r from Algorithm 1. The idea of the improvement286

is the following. For simplicy let’s consider the case of D = 2. If one considers a square of287

side length L, the number of disjoint balls of radius ε · L/nd that can be placed inside that288

WADS 2025

34:8 Approximation Algorithms for the Generalized Point-to-Point Problem

square is O((nd/ε)2). This simple packing argument can be used to bound the number of289

guessed points for the nets N to be bounded by O((nd/ε)D).290

For each guess ν in the outer loop, we first let N be any δ · ν-net of V . That is, every291

v ∈ V has c(v,N) ≤ δ ·ν yet c(u, v) > δ ·ν for any u, v ∈ N . Such a set N can be constructed292

by greedily adding points while maintaining the property that c(u, v) > δ · ν until no more293

points can be added. For each v ∈ V , let τ(v) be its closest point in N . So τ(v) = v for294

v ∈ N and, otherwise, we at least know c(v, τ(v)) ≤ δ · ν.295

Now let N1, . . . , Nm be the sets identified by applying Lemma 12 using r = δ · ν and let296

N ′i = {τ(v) : v ∈ Ni}. For u ∈ N ′i and v ∈ N ′j for i 6= j we still have that B(u, δ)∩B(v, δ) = ∅.297

That is, suppose otherwise and let u′ ∈ Ni be such that τ(u′) = u and v′ ∈ Nj be such that298

τ(v′) = v. Then when ν ∈ [OPT, (1 + ε) ·OPT] we have299

c(u′, v′) ≤ c(u, u′) + c(u′, v′) + c(v′, u) ≤ δ · ν + 2δ · ν + δ · ν ≤ ε

4nd
· τ ≤ ε

nd
·OPT300

which contradicts Lemma 11 and the fact that u′ and v′ lie in different trees in F ′.301

So it suffices to guess N ′1, . . . , N ′m in the algorithm. But now we leverage packing property302

of Euclidean metrics to help reduce the number of guesses to a constant depending on D,nd303

and ε.304

I Lemma 14. For each v ∈ V , |B(v, ν) ∩N | is bounded by O((4/δ)D).305

Proof. The Euclidean balls of radius δ/2 · ν about points in B(v, ν) ∩ N are disjoint by306

construction ofN and are completely contained in the Euclidean ball of radius (1+δ/2)·ν ≤ 2·ν307

about v. The volume a D-dimensional ball with radius r is within an absolute constant308

factor of f(R) := 1√
D
·
(2πe
D

)D/2 ·RD. Therefore, |B(v, ν) ∩N | is at most a constant factor309

times f(2ν)/f(δ/2 · ν) = (4/δ)D. J310

The steps for guessing N ′1, . . . , N ′m are to first try all ways to partition Vd intom nonempty311

groups, a coarse upper bound on the number of such choices is nnd

d . For each such partition,312

let v1, . . . , vm ∈ Vd be any particular representatives from the m parts. We try all tuples313

N ′1, . . . , N
′
m where each N ′i ⊆ B(vi, ν) ∩ N such that

∑
i |N ′i | ≤ 17/ε · nd (as opposed to314

5/ε · nd as in Lemma 13 since the radius δ is smaller). For each such tuple that passes the315

other requirements of Lemma 13, we partition the instance into disjoint Euclidean k-MST-R316

instances and approximate these with a PTAS. A coarse upper bound on the number of such317

tuples N ′1, . . . , N ′m is O((4/δ)D·nd).318

3 Approximation Algorithms and Hardness for Graphical-GP2P with319

±1 Charges320

Observations 6 and 7 show GP2P is not much easier to approximate if we assume either321

that φ(v) ∈ {−1,+1} for each v ∈ V or that the instance is graphical and φ(v) ∈ {−1, 0,+1}322

for each v ∈ V . We begin this section by showing the common intersection of these two323

special cases does admit a 2-approximation. After this, we complete the proof of Theorem 8324

by showing such GP2P instances remain APX-hard.325

3.1 Graphical Instances with Unit Charges326

Let (G = (V,E), c, φ) be an instance of Graphical-GP2P where φ(v) ∈ {−1,+1} for each327

v ∈ V . As usual, let OPT denote the optimum solution cost which, in this case, is just328

measuring the minimum size feasible solution F ⊆ E.329

Z. Friggstad, M. Salavatipour, and H. Sun 34:9

I Theorem 15. Let F ⊆ E be any minimal feasible solution (i.e. F − {e} is not feasible330

for any e ∈ F). Then |F | ≤ 2 ·OPT .331

A 2-approximation is then straightforward as one could simply start with F being any332

spanning tree and then iteratively try to drop an edge from F while retaining feasibility until333

no such drop is possible.334

Proof. Recall Vd = {v ∈ V : φ(v) = −1} and nd = |Vd|. So Vs = V − Vd as no charge is zero335

in this case. We claim nd ≤ OPT and that any minimal solution has size at most 2 · nd.336

Thus, any minimal solution F satisfies |F | ≤ 2 · nd ≤ 2 ·OPT , as required.337

For the first bound, let F ∗ be an optimum solution and C any connected component338

in (V, F ∗) that contains at least one node in Vd. If C has, say, nCd ≥ 1 nodes in Vd then C339

must contain at least nCd nodes in Vs as well. That is, |C| ≥ 2nCd so F ∗ contains at least340

2nCd − 1 ≥ nCd edges in component C. Summing over all components that contain at least341

one node in Vd, we see |F ∗| ≥ nd.342

Now let F be any minimal feasible solution. Let C be any connected component of (G,F)343

and let FC be the edges of F in component C. If C ∩ Vd = ∅ then minimality of F means C344

is a single node v with φ(v) = +1 (i.e. it has no edges). If C ∩ Vd 6= ∅, we claim φ(C) = 0. If345

so, then |C ∩ Vd| = |C ∩ Vs| so |FC | < 2 · |C ∩ Vd| as FC is a tree (by minimality). Summing346

over all components would complete the claim that |F | < 2 · nd.347

To see φ(C) = 0, again recall FC is a tree. Further, for each e ∈ FC we have that deleting348

e would produce a component with negative charge but it could not be that both components349

have negative charge since φ(C) ≥ 0. Consider the orientation of edges that directs each350

edge e toward the side that would have negative charge if e was deleted. Since (C,FC) is a351

tree, the orientation of edges produces a directed acyclic graph. Let r be any source node in352

this DAG.353

View the tree (C,FC) as being rooted at r and say r has m children. Let C1, . . . , Cm ⊆ C354

be such that Ci are the nodes in the subtree under the i’th child of r. Since C ∩ VD 6= ∅ and355

φ(C) ≥ 0, we know C has at least two nodes so m ≥ 1.356

By the orientation of edges, we have φ(Ci) ≤ −1 for each 1 ≤ i ≤ m. Therefore357

φ(C) = φ(r) +
m∑
i=1

φ(Ci) ≤ φ(r)−m ≤ φ(r)− 1 ≤ 0358

which, by feasibility of F , means φ(C) = 0. J359

It may be possible to get a better-than-2 approximation through a more involved approach.360

For example, notice in our proof nd ≤ OPT is only tight if all components C of the optimum361

solution F ∗ with C ∩ Vd 6= ∅ had |C| = 2 (i.e. F ∗ is a matching). So if the optimal solution362

F ∗ has at least, say, 0.01 · nd nodes of Vd in components of size greater than 2 then any363

minimal solution would be a 1.99-approximation. Otherwise, nearly all nodes of Vd are in364

components that consist of a single edge. In this case, a maximum-size matching between Vd365

and Vs would then create components of charge 0 that collectively include most nodes of Vd.366

One can even show there is a way to “alternate” the matching so that a greedy algorithm367

yields a good approximation (i.e. by alternating so our matching edges largely agree with368

the optimum matching edges), but efficiently finding such an alternation seems challenging.369

One would reasonably wonder if instances of GP2P with unit-cost edges and ±1 charges370

are actually hard. Indeed, we conclude this section by showing APX-hardness.371

I Theorem 16. The restriction of Graphical-GP2P to instances with unit edge costs and372

±1 charges is APX-hard.373

WADS 2025

34:10 Approximation Algorithms for the Generalized Point-to-Point Problem

Proof. We reduce from the Minimum Vertex Cover Problem in simple, cubic graphs374

which is known to be APX-hard [1]. That is, for some constants 0 ≤ β < α ≤ 1 it is375

NP-hard to distinguish if a cubic graph on n vertices has a vertex cover of size at most β · n376

or if all vertex covers have size exceeding α · n.377

So let G = (V,E) be an n-vertex cubic graph with m = 3n/2 edges. We obtain a graph378

H = (V ′, E′) and set the charges of v ∈ V ′ as follows.379

Initially let H = G and set φ(v) = +1 for every v ∈ V . Then subdivide each edge e with380

a single vertex ue with φ(ue) = −1. Then for each v we add new vertices v+, v−, v0, v1, v2, v3381

and edges {v0v, vv
+, v+v−, v+v1, v

+v2, v
+v3}. Here, v, v+, v1, v2, v3 all have positive charge382

and v0, v
− have negative charge. See Figure 1 for an illustration of this process.383

<latexit sha1_base64="ORpC/vZ0LRABDF6tW/rEbUtjM/A=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolI7bHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUxEGp7FbcBcg68XJShhyNQemrP4xZGqE0TFCte56bGD+jynAmcFbspxoTyiZ0hD1LJY1Q+9ni0Bm5tMqQhLGyJQ1ZqL8nMhppPY0C2xlRM9ar3lz8z+ulJqz5GZdJalCy5aIwFcTEZP41GXKFzIipJZQpbm8lbEwVZcZmU7QheKsvr5P2dcWrVqrNm3K9lsdRgHO4gCvw4BbqcA8NaAEDhGd4hTfn0Xlx3p2PZeuGk8+cwR84nz/J/Yzq</latexit>e
<latexit sha1_base64="mJrLvbJ6r3MenTc+QqSf4ZUcY/Q=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolI7bHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUDAelsltxFyDrxMtJGXI0BqWv/jBmaYTSMEG17nluYvyMKsOZwFmxn2pMKJvQEfYslTRC7WeLQ2fk0ipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTdGG4K2+vE7a1xWvWqk2b8r1Wh5HAc7hAq7Ag1uowz00oAUMEJ7hFd6cR+fFeXc+lq0bTj5zBn/gfP4Ay4GM6w==</latexit>

f

<latexit sha1_base64="0jOF767eWqNqn3s75jf17Fek4/w=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEao8FLx4r2g9oQ9lsJ+3SzSbsbgol9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IBFcG9f9cgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7cLvTFFpHstHM0vQj+hI8pAzaqz0MB24g3LFrbpLkL/Ey0kFcjQH5c/+MGZphNIwQbXueW5i/Iwqw5nAeamfakwom9AR9iyVNELtZ8tT5+TCKkMSxsqWNGSp/pzIaKT1LApsZ0TNWK97C/E/r5easO5nXCapQclWi8JUEBOTxd9kyBUyI2aWUKa4vZWwMVWUGZtOyYbgrb/8l7Svql6tWru/rjTqeRxFOINzuAQPbqABd9CEFjAYwRO8wKsjnGfnzXlftRacfOYUfsH5+AYHsI2e</latexit>v0
<latexit sha1_base64="0jOF767eWqNqn3s75jf17Fek4/w=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEao8FLx4r2g9oQ9lsJ+3SzSbsbgol9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IBFcG9f9cgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7cLvTFFpHstHM0vQj+hI8pAzaqz0MB24g3LFrbpLkL/Ey0kFcjQH5c/+MGZphNIwQbXueW5i/Iwqw5nAeamfakwom9AR9iyVNELtZ8tT5+TCKkMSxsqWNGSp/pzIaKT1LApsZ0TNWK97C/E/r5easO5nXCapQclWi8JUEBOTxd9kyBUyI2aWUKa4vZWwMVWUGZtOyYbgrb/8l7Svql6tWru/rjTqeRxFOINzuAQPbqABd9CEFjAYwRO8wKsjnGfnzXlftRacfOYUfsH5+AYHsI2e</latexit>v0

<latexit sha1_base64="5W835mtbhGiWyY90b3W9wkxxL+4=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBAEIeyKxBwDXjxGNA9I1jA7mU2GzM4uM72BEPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSKFQdf9dtbWNza3tnM7+d29/YPDwtFxw8SpZrzOYhnrVkANl0LxOgqUvJVoTqNA8mYwvJ35zRHXRsTqEccJ9yPaVyIUjKKVHkZPl91C0S25c5BV4mWkCBlq3cJXpxezNOIKmaTGtD03QX9CNQom+TTfSQ1PKBvSPm9bqmjEjT+Znzol51bpkTDWthSSufp7YkIjY8ZRYDsjigOz7M3E/7x2imHFnwiVpMgVWywKU0kwJrO/SU9ozlCOLaFMC3srYQOqKUObTt6G4C2/vEoaVyWvXCrfXxerlSyOHJzCGVyABzdQhTuoQR0Y9OEZXuHNkc6L8+58LFrXnGzmBP7A+fwB/oiNmA==</latexit>

v+
<latexit sha1_base64="5W835mtbhGiWyY90b3W9wkxxL+4=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBAEIeyKxBwDXjxGNA9I1jA7mU2GzM4uM72BEPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSKFQdf9dtbWNza3tnM7+d29/YPDwtFxw8SpZrzOYhnrVkANl0LxOgqUvJVoTqNA8mYwvJ35zRHXRsTqEccJ9yPaVyIUjKKVHkZPl91C0S25c5BV4mWkCBlq3cJXpxezNOIKmaTGtD03QX9CNQom+TTfSQ1PKBvSPm9bqmjEjT+Znzol51bpkTDWthSSufp7YkIjY8ZRYDsjigOz7M3E/7x2imHFnwiVpMgVWywKU0kwJrO/SU9ozlCOLaFMC3srYQOqKUObTt6G4C2/vEoaVyWvXCrfXxerlSyOHJzCGVyABzdQhTuoQR0Y9OEZXuHNkc6L8+58LFrXnGzmBP7A+fwB/oiNmA==</latexit>

v+<latexit sha1_base64="AfySKxKAnb7ttZJfh2jDB5wyt0Q=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBC8GHZFYo4BLx4jmgcka5idzCZDZmeXmd5ACPkELx4U8eoXefNvnCR70MSChqKqm+6uIJHCoOt+O2vrG5tb27md/O7e/sFh4ei4YeJUM15nsYx1K6CGS6F4HQVK3ko0p1EgeTMY3s785ohrI2L1iOOE+xHtKxEKRtFKD6Ony26h6JbcOcgq8TJShAy1buGr04tZGnGFTFJj2p6boD+hGgWTfJrvpIYnlA1pn7ctVTTixp/MT52Sc6v0SBhrWwrJXP09MaGRMeMosJ0RxYFZ9mbif147xbDiT4RKUuSKLRaFqSQYk9nfpCc0ZyjHllCmhb2VsAHVlKFNJ29D8JZfXiWNq5JXLpXvr4vVShZHDk7hDC7Agxuowh3UoA4M+vAMr/DmSOfFeXc+Fq1rTjZzAn/gfP4AAZ+Nmg==</latexit>

v�
<latexit sha1_base64="AfySKxKAnb7ttZJfh2jDB5wyt0Q=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBC8GHZFYo4BLx4jmgcka5idzCZDZmeXmd5ACPkELx4U8eoXefNvnCR70MSChqKqm+6uIJHCoOt+O2vrG5tb27md/O7e/sFh4ei4YeJUM15nsYx1K6CGS6F4HQVK3ko0p1EgeTMY3s785ohrI2L1iOOE+xHtKxEKRtFKD6Ony26h6JbcOcgq8TJShAy1buGr04tZGnGFTFJj2p6boD+hGgWTfJrvpIYnlA1pn7ctVTTixp/MT52Sc6v0SBhrWwrJXP09MaGRMeMosJ0RxYFZ9mbif147xbDiT4RKUuSKLRaFqSQYk9nfpCc0ZyjHllCmhb2VsAHVlKFNJ29D8JZfXiWNq5JXLpXvr4vVShZHDk7hDC7Agxuowh3UoA4M+vAMr/DmSOfFeXc+Fq1rTjZzAn/gfP4AAZ+Nmg==</latexit>

v�

<latexit sha1_base64="Nisqd/yd9Le0eXV5+VNAEi4SvPw=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaJQY4kXjxilEcCGzI7NDBhdnYzM0tCNnyCFw8a49Uv8ubfOMAeFKykk0pVd7q7glhwbVz328ltbe/s7uX3CweHR8cnxdOzlo4SxbDJIhGpTkA1Ci6xabgR2IkV0jAQ2A4mdwu/PUWleSSfzCxGP6QjyYecUWOlx2m/0i+W3LK7BNkkXkZKkKHRL371BhFLQpSGCap113Nj46dUGc4Ezgu9RGNM2YSOsGuppCFqP12eOidXVhmQYaRsSUOW6u+JlIZaz8LAdobUjPW6txD/87qJGdb8lMs4MSjZatEwEcREZPE3GXCFzIiZJZQpbm8lbEwVZcamU7AheOsvb5JWpexVy9WHm1K9lsWRhwu4hGvw4BbqcA8NaAKDETzDK7w5wnlx3p2PVWvOyWbO4Q+czx8KuI2g</latexit>v2
<latexit sha1_base64="Nisqd/yd9Le0eXV5+VNAEi4SvPw=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaJQY4kXjxilEcCGzI7NDBhdnYzM0tCNnyCFw8a49Uv8ubfOMAeFKykk0pVd7q7glhwbVz328ltbe/s7uX3CweHR8cnxdOzlo4SxbDJIhGpTkA1Ci6xabgR2IkV0jAQ2A4mdwu/PUWleSSfzCxGP6QjyYecUWOlx2m/0i+W3LK7BNkkXkZKkKHRL371BhFLQpSGCap113Nj46dUGc4Ezgu9RGNM2YSOsGuppCFqP12eOidXVhmQYaRsSUOW6u+JlIZaz8LAdobUjPW6txD/87qJGdb8lMs4MSjZatEwEcREZPE3GXCFzIiZJZQpbm8lbEwVZcamU7AheOsvb5JWpexVy9WHm1K9lsWRhwu4hGvw4BbqcA8NaAKDETzDK7w5wnlx3p2PVWvOyWbO4Q+czx8KuI2g</latexit>v2<latexit sha1_base64="vU9gjnZVMlyjlXxoiwU26Q5RyGY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEao8FLx4r2g9oQ9lsN+3SzSbsTgol9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IJHCoOt+OYWNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbhd+Z8q1EbF6xFnC/YiOlAgFo2ilh+nAG5QrbtVdgvwlXk4qkKM5KH/2hzFLI66QSWpMz3MT9DOqUTDJ56V+anhC2YSOeM9SRSNu/Gx56pxcWGVIwljbUkiW6s+JjEbGzKLAdkYUx2bdW4j/eb0Uw7qfCZWkyBVbLQpTSTAmi7/JUGjOUM4soUwLeythY6opQ5tOyYbgrb/8l7Svql6tWru/rjTqeRxFOINzuAQPbqABd9CEFjAYwRO8wKsjnWfnzXlftRacfOYUfsH5+AYJNI2f</latexit>v1

<latexit sha1_base64="vU9gjnZVMlyjlXxoiwU26Q5RyGY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEao8FLx4r2g9oQ9lsN+3SzSbsTgol9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IJHCoOt+OYWNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbhd+Z8q1EbF6xFnC/YiOlAgFo2ilh+nAG5QrbtVdgvwlXk4qkKM5KH/2hzFLI66QSWpMz3MT9DOqUTDJ56V+anhC2YSOeM9SRSNu/Gx56pxcWGVIwljbUkiW6s+JjEbGzKLAdkYUx2bdW4j/eb0Uw7qfCZWkyBVbLQpTSTAmi7/JUGjOUM4soUwLeythY6opQ5tOyYbgrb/8l7Svql6tWru/rjTqeRxFOINzuAQPbqABd9CEFjAYwRO8wKsjnWfnzXlftRacfOYUfsH5+AYJNI2f</latexit>v1
<latexit sha1_base64="47296we/woWLsY5DzUw5317/acI=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbVIEcSLx4xyiOBDZkdGpgwO7uZmSUhGz7BiweN8eoXefNvHGAPClbSSaWqO91dQSy4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU0eJYthgkYhUO6AaBZfYMNwIbMcKaRgIbAXju7nfmqDSPJJPZhqjH9Kh5APOqLHS46R33SuW3LK7AFknXkZKkKHeK351+xFLQpSGCap1x3Nj46dUGc4EzgrdRGNM2ZgOsWOppCFqP12cOiMXVumTQaRsSUMW6u+JlIZaT8PAdobUjPSqNxf/8zqJGVT9lMs4MSjZctEgEcREZP436XOFzIipJZQpbm8lbEQVZcamU7AheKsvr5PmVdmrlCsPN6VaNYsjD2dwDpfgwS3U4B7q0AAGQ3iGV3hzhPPivDsfy9ack82cwh84nz8MPI2h</latexit>v3
<latexit sha1_base64="47296we/woWLsY5DzUw5317/acI=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbVIEcSLx4xyiOBDZkdGpgwO7uZmSUhGz7BiweN8eoXefNvHGAPClbSSaWqO91dQSy4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU0eJYthgkYhUO6AaBZfYMNwIbMcKaRgIbAXju7nfmqDSPJJPZhqjH9Kh5APOqLHS46R33SuW3LK7AFknXkZKkKHeK351+xFLQpSGCap1x3Nj46dUGc4EzgrdRGNM2ZgOsWOppCFqP12cOiMXVumTQaRsSUMW6u+JlIZaT8PAdobUjPSqNxf/8zqJGVT9lMs4MSjZctEgEcREZP436XOFzIipJZQpbm8lbEQVZcamU7AheKsvr5PmVdmrlCsPN6VaNYsjD2dwDpfgwS3U4B7q0AAGQ3iGV3hzhPPivDsfy9ack82cwh84nz8MPI2h</latexit>v3

<latexit sha1_base64="j5vYNpbb7qYFfSUt6M3228pjfHA=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBAEIeyKxBwDXjxGNA9I1jA76U2GzM4uM7NiCPkELx4U8eoXefNvnCR70MSChqKqm+6uIBFcG9f9dlZW19Y3NnNb+e2d3b39wsFhQ8epYlhnsYhVK6AaBZdYN9wIbCUKaRQIbAbD66nffESleSzvzShBP6J9yUPOqLHS3dPDebdQdEvuDGSZeBkpQoZat/DV6cUsjVAaJqjWbc9NjD+mynAmcJLvpBoTyoa0j21LJY1Q++PZqRNyapUeCWNlSxoyU39PjGmk9SgKbGdEzUAvelPxP6+dmrDij7lMUoOSzReFqSAmJtO/SY8rZEaMLKFMcXsrYQOqKDM2nbwNwVt8eZk0LkpeuVS+vSxWK1kcOTiGEzgDD66gCjdQgzow6MMzvMKbI5wX5935mLeuONnMEfyB8/kDAaONmg==</latexit>

x+
<latexit sha1_base64="j5vYNpbb7qYFfSUt6M3228pjfHA=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBAEIeyKxBwDXjxGNA9I1jA76U2GzM4uM7NiCPkELx4U8eoXefNvnCR70MSChqKqm+6uIBFcG9f9dlZW19Y3NnNb+e2d3b39wsFhQ8epYlhnsYhVK6AaBZdYN9wIbCUKaRQIbAbD66nffESleSzvzShBP6J9yUPOqLHS3dPDebdQdEvuDGSZeBkpQoZat/DV6cUsjVAaJqjWbc9NjD+mynAmcJLvpBoTyoa0j21LJY1Q++PZqRNyapUeCWNlSxoyU39PjGmk9SgKbGdEzUAvelPxP6+dmrDij7lMUoOSzReFqSAmJtO/SY8rZEaMLKFMcXsrYQOqKDM2nbwNwVt8eZk0LkpeuVS+vSxWK1kcOTiGEzgDD66gCjdQgzow6MMzvMKbI5wX5935mLeuONnMEfyB8/kDAaONmg==</latexit>

x+<latexit sha1_base64="2djwjR9yw7IZK5iC/Iah2zzCOyQ=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBC8GHZFYo4BLx4jmgcka5id9CZDZmeXmVkxhHyCFw+KePWLvPk3TpI9aGJBQ1HVTXdXkAiujet+Oyura+sbm7mt/PbO7t5+4eCwoeNUMayzWMSqFVCNgkusG24EthKFNAoENoPh9dRvPqLSPJb3ZpSgH9G+5CFn1Fjp7unhvFsouiV3BrJMvIwUIUOtW/jq9GKWRigNE1Trtucmxh9TZTgTOMl3Uo0JZUPax7alkkao/fHs1Ak5tUqPhLGyJQ2Zqb8nxjTSehQFtjOiZqAXvan4n9dOTVjxx1wmqUHJ5ovCVBATk+nfpMcVMiNGllCmuL2VsAFVlBmbTt6G4C2+vEwaFyWvXCrfXharlSyOHBzDCZyBB1dQhRuoQR0Y9OEZXuHNEc6L8+58zFtXnGzmCP7A+fwBBKuNnA==</latexit>

x�<latexit sha1_base64="2djwjR9yw7IZK5iC/Iah2zzCOyQ=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBC8GHZFYo4BLx4jmgcka5id9CZDZmeXmVkxhHyCFw+KePWLvPk3TpI9aGJBQ1HVTXdXkAiujet+Oyura+sbm7mt/PbO7t5+4eCwoeNUMayzWMSqFVCNgkusG24EthKFNAoENoPh9dRvPqLSPJb3ZpSgH9G+5CFn1Fjp7unhvFsouiV3BrJMvIwUIUOtW/jq9GKWRigNE1Trtucmxh9TZTgTOMl3Uo0JZUPax7alkkao/fHs1Ak5tUqPhLGyJQ2Zqb8nxjTSehQFtjOiZqAXvan4n9dOTVjxx1wmqUHJ5ovCVBATk+nfpMcVMiNGllCmuL2VsAFVlBmbTt6G4C2+vEwaFyWvXCrfXharlSyOHBzDCZyBB1dQhRuoQR0Y9OEZXuHNEc6L8+58zFtXnGzmCP7A+fwBBKuNnA==</latexit>

x�

<latexit sha1_base64="YFMZdckuPX2qEXPhP8H2+i9BwPQ=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaJQY4kXjxilEcCGzI7DDBhdnYz02skGz7BiweN8eoXefNvHGAPClbSSaWqO91dQSyFQdf9dnIbm1vbO/ndwt7+weFR8fikZaJEM95kkYx0J6CGS6F4EwVK3ok1p2EgeTuY3Mz99iPXRkTqAacx90M6UmIoGEUr3T/1K/1iyS27C5B14mWkBBka/eJXbxCxJOQKmaTGdD03Rj+lGgWTfFboJYbHlE3oiHctVTTkxk8Xp87IhVUGZBhpWwrJQv09kdLQmGkY2M6Q4tisenPxP6+b4LDmp0LFCXLFlouGiSQYkfnfZCA0ZyinllCmhb2VsDHVlKFNp2BD8FZfXietStmrlqt3V6V6LYsjD2dwDpfgwTXU4RYa0AQGI3iGV3hzpPPivDsfy9ack82cwh84nz8NxI2i</latexit>x2
<latexit sha1_base64="YFMZdckuPX2qEXPhP8H2+i9BwPQ=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaJQY4kXjxilEcCGzI7DDBhdnYz02skGz7BiweN8eoXefNvHGAPClbSSaWqO91dQSyFQdf9dnIbm1vbO/ndwt7+weFR8fikZaJEM95kkYx0J6CGS6F4EwVK3ok1p2EgeTuY3Mz99iPXRkTqAacx90M6UmIoGEUr3T/1K/1iyS27C5B14mWkBBka/eJXbxCxJOQKmaTGdD03Rj+lGgWTfFboJYbHlE3oiHctVTTkxk8Xp87IhVUGZBhpWwrJQv09kdLQmGkY2M6Q4tisenPxP6+b4LDmp0LFCXLFlouGiSQYkfnfZCA0ZyinllCmhb2VsDHVlKFNp2BD8FZfXietStmrlqt3V6V6LYsjD2dwDpfgwTXU4RYa0AQGI3iGV3hzpPPivDsfy9ack82cwh84nz8NxI2i</latexit>x2<latexit sha1_base64="8oZbdHknIFJEVRGk4s24jd+b5L0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEao8FLx4r2lpoQ9lsN+3SzSbsTsQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/CEYX8/8h0eujYjVPU4S7kd0qEQoGEUr3T31vX654lbdOcgq8XJSgRzNfvmrN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkzCoDEsbalkIyV39PZDQyZhIFtjOiODLL3kz8z+umGNb9TKgkRa7YYlGYSoIxmf1NBkJzhnJiCWVa2FsJG1FNGdp0SjYEb/nlVdK+qHq1au32stKo53EU4QRO4Rw8uIIG3EATWsBgCM/wCm+OdF6cd+dj0Vpw8plj+APn8wcMQI2h</latexit>x1

<latexit sha1_base64="8oZbdHknIFJEVRGk4s24jd+b5L0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEao8FLx4r2lpoQ9lsN+3SzSbsTsQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/CEYX8/8h0eujYjVPU4S7kd0qEQoGEUr3T31vX654lbdOcgq8XJSgRzNfvmrN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkzCoDEsbalkIyV39PZDQyZhIFtjOiODLL3kz8z+umGNb9TKgkRa7YYlGYSoIxmf1NBkJzhnJiCWVa2FsJG1FNGdp0SjYEb/nlVdK+qHq1au32stKo53EU4QRO4Rw8uIIG3EATWsBgCM/wCm+OdF6cd+dj0Vpw8plj+APn8wcMQI2h</latexit>x1
<latexit sha1_base64="9p/k3T/pBV6ocFp7Nn3qGADQNO8=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbVIEcSLx4xyiOBDZkdemHC7OxmZtZICJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzcxvPaLSPJYPZpygH9GB5CFn1Fjp/ql32SuW3LI7B1klXkZKkKHeK351+zFLI5SGCap1x3MT40+oMpwJnBa6qcaEshEdYMdSSSPU/mR+6pScWaVPwljZkobM1d8TExppPY4C2xlRM9TL3kz8z+ukJqz6Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNi7JXKVfurkq1ahZHHk7gFM7Bg2uowS3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AD0iNow==</latexit>x3
<latexit sha1_base64="9p/k3T/pBV6ocFp7Nn3qGADQNO8=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbVIEcSLx4xyiOBDZkdemHC7OxmZtZICJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzcxvPaLSPJYPZpygH9GB5CFn1Fjp/ql32SuW3LI7B1klXkZKkKHeK351+zFLI5SGCap1x3MT40+oMpwJnBa6qcaEshEdYMdSSSPU/mR+6pScWaVPwljZkobM1d8TExppPY4C2xlRM9TL3kz8z+ukJqz6Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNi7JXKVfurkq1ahZHHk7gFM7Bg2uowS3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AD0iNow==</latexit>x3

<latexit sha1_base64="X5mvXKbnPLYQ/VRrDBQdbFEcjlA=">AAAB6nicbVBNSwMxEJ2tX7V+VT16CRZBEMquSO2x4MVjRfsB7VqyabYNzSZLkhWWpT/BiwdFvPqLvPlvTNs9aOuDgcd7M8zMC2LOtHHdb6ewtr6xuVXcLu3s7u0flA+P2lomitAWkVyqboA15UzQlmGG026sKI4CTjvB5Gbmd56o0kyKB5PG1I/wSLCQEWysdJ8+XgzKFbfqzoFWiZeTCuRoDspf/aEkSUSFIRxr3fPc2PgZVoYRTqelfqJpjMkEj2jPUoEjqv1sfuoUnVlliEKpbAmD5urviQxHWqdRYDsjbMZ62ZuJ/3m9xIR1P2MiTgwVZLEoTDgyEs3+RkOmKDE8tQQTxeytiIyxwsTYdEo2BG/55VXSvqx6tWrt7qrSqOdxFOEETuEcPLiGBtxCE1pAYATP8ApvDndenHfnY9FacPKZY/gD5/MHAymNmw==</latexit>

y+
<latexit sha1_base64="X5mvXKbnPLYQ/VRrDBQdbFEcjlA=">AAAB6nicbVBNSwMxEJ2tX7V+VT16CRZBEMquSO2x4MVjRfsB7VqyabYNzSZLkhWWpT/BiwdFvPqLvPlvTNs9aOuDgcd7M8zMC2LOtHHdb6ewtr6xuVXcLu3s7u0flA+P2lomitAWkVyqboA15UzQlmGG026sKI4CTjvB5Gbmd56o0kyKB5PG1I/wSLCQEWysdJ8+XgzKFbfqzoFWiZeTCuRoDspf/aEkSUSFIRxr3fPc2PgZVoYRTqelfqJpjMkEj2jPUoEjqv1sfuoUnVlliEKpbAmD5urviQxHWqdRYDsjbMZ62ZuJ/3m9xIR1P2MiTgwVZLEoTDgyEs3+RkOmKDE8tQQTxeytiIyxwsTYdEo2BG/55VXSvqx6tWrt7qrSqOdxFOEETuEcPLiGBtxCE1pAYATP8ApvDndenHfnY9FacPKZY/gD5/MHAymNmw==</latexit>

y+<latexit sha1_base64="LwwfK2yBB+qyPy9aw6yzsQN9/aM=">AAAB6nicbVBNSwMxEJ2tX7V+VT16CRbBi2VXpPZY8OKxov2Adi3ZNNuGZpMlyQrL0p/gxYMiXv1F3vw3pu0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbS0TRWiLSC5VN8CaciZoyzDDaTdWFEcBp51gcjPzO09UaSbFg0lj6kd4JFjICDZWuk8fLwblilt150CrxMtJBXI0B+Wv/lCSJKLCEI617nlubPwMK8MIp9NSP9E0xmSCR7RnqcAR1X42P3WKzqwyRKFUtoRBc/X3RIYjrdMosJ0RNmO97M3E/7xeYsK6nzERJ4YKslgUJhwZiWZ/oyFTlBieWoKJYvZWRMZYYWJsOiUbgrf88ippX1a9WrV2d1Vp1PM4inACp3AOHlxDA26hCS0gMIJneIU3hzsvzrvzsWgtOPnMMfyB8/kDBjGNnQ==</latexit>

y�<latexit sha1_base64="LwwfK2yBB+qyPy9aw6yzsQN9/aM=">AAAB6nicbVBNSwMxEJ2tX7V+VT16CRbBi2VXpPZY8OKxov2Adi3ZNNuGZpMlyQrL0p/gxYMiXv1F3vw3pu0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbS0TRWiLSC5VN8CaciZoyzDDaTdWFEcBp51gcjPzO09UaSbFg0lj6kd4JFjICDZWuk8fLwblilt150CrxMtJBXI0B+Wv/lCSJKLCEI617nlubPwMK8MIp9NSP9E0xmSCR7RnqcAR1X42P3WKzqwyRKFUtoRBc/X3RIYjrdMosJ0RNmO97M3E/7xeYsK6nzERJ4YKslgUJhwZiWZ/oyFTlBieWoKJYvZWRMZYYWJsOiUbgrf88ippX1a9WrV2d1Vp1PM4inACp3AOHlxDA26hCS0gMIJneIU3hzsvzrvzsWgtOPnMMfyB8/kDBjGNnQ==</latexit>

y�

<latexit sha1_base64="gDwy5AZrrOpT2G9UgqSNhjaP0gI=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkmR2mPBi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsbm1vbObmGvuH9weHRcOjltmzjVjLdYLGPdDajhUijeQoGSdxPNaRRI3gkmt3O/88S1EbF6xGnC/YiOlAgFo2ilh+mgOiiV3Yq7AFknXk7KkKM5KH31hzFLI66QSWpMz3MT9DOqUTDJZ8V+anhC2YSOeM9SRSNu/Gxx6oxcWmVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uw7qfCZWkyBVbLgpTSTAm87/JUGjOUE4toUwLeythY6opQ5tO0Ybgrb68TtrViler1O6vy416HkcBzuECrsCDG2jAHTShBQxG8Ayv8OZI58V5dz6WrRtOPnMGf+B8/gAPSo2j</latexit>y2
<latexit sha1_base64="gDwy5AZrrOpT2G9UgqSNhjaP0gI=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkmR2mPBi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsbm1vbObmGvuH9weHRcOjltmzjVjLdYLGPdDajhUijeQoGSdxPNaRRI3gkmt3O/88S1EbF6xGnC/YiOlAgFo2ilh+mgOiiV3Yq7AFknXk7KkKM5KH31hzFLI66QSWpMz3MT9DOqUTDJZ8V+anhC2YSOeM9SRSNu/Gxx6oxcWmVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uw7qfCZWkyBVbLgpTSTAm87/JUGjOUE4toUwLeythY6opQ5tO0Ybgrb68TtrViler1O6vy416HkcBzuECrsCDG2jAHTShBQxG8Ayv8OZI58V5dz6WrRtOPnMGf+B8/gAPSo2j</latexit>y2<latexit sha1_base64="Hlud8yeRg72s+837b7anEcXpr3s=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEao8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD9OBNyhX3Kq7AFknXk4qkKM5KH/1hzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx6oxcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uw7qfCZWkyBVbLgpTSTAm87/JUGjOUE4toUwLeythY6opQ5tOyYbgrb68TtpXVa9Wrd1fVxr1PI4inME5XIIHN9CAO2hCCxiM4Ble4c2Rzovz7nwsWwtOPnMKf+B8/gANxo2i</latexit>y1

<latexit sha1_base64="Hlud8yeRg72s+837b7anEcXpr3s=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEao8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD9OBNyhX3Kq7AFknXk4qkKM5KH/1hzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx6oxcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uw7qfCZWkyBVbLgpTSTAm87/JUGjOUE4toUwLeythY6opQ5tOyYbgrb68TtpXVa9Wrd1fVxr1PI4inME5XIIHN9CAO2hCCxiM4Ble4c2Rzovz7nwsWwtOPnMKf+B8/gANxo2i</latexit>y1
<latexit sha1_base64="yUpCXrgW09HinMS5hrz423QbTB4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lUao8FLx4rWltoQ9lsJ+3SzSbsboRQ+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fDoUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfjm5nffkKleSwfTJagH9Gh5CFn1FjpPutf9ssVt+rOQVaJl5MK5Gj2y1+9QczSCKVhgmrd9dzE+BOqDGcCp6VeqjGhbEyH2LVU0gi1P5mfOiVnVhmQMFa2pCFz9ffEhEZaZ1FgOyNqRnrZm4n/ed3UhHV/wmWSGpRssShMBTExmf1NBlwhMyKzhDLF7a2EjaiizNh0SjYEb/nlVfJ4UfVq1drdVaVRz+Mowgmcwjl4cA0NuIUmtIDBEJ7hFd4c4bw4787HorXg5DPH8AfO5w8Qzo2k</latexit>y3
<latexit sha1_base64="yUpCXrgW09HinMS5hrz423QbTB4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lUao8FLx4rWltoQ9lsJ+3SzSbsboRQ+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fDoUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfjm5nffkKleSwfTJagH9Gh5CFn1FjpPutf9ssVt+rOQVaJl5MK5Gj2y1+9QczSCKVhgmrd9dzE+BOqDGcCp6VeqjGhbEyH2LVU0gi1P5mfOiVnVhmQMFa2pCFz9ffEhEZaZ1FgOyNqRnrZm4n/ed3UhHV/wmWSGpRssShMBTExmf1NBlwhMyKzhDLF7a2EjaiizNh0SjYEb/nlVfJ4UfVq1drdVaVRz+Mowgmcwjl4cA0NuIUmtIDBEJ7hFd4c4bw4787HorXg5DPH8AfO5w8Qzo2k</latexit>y3

<latexit sha1_base64="Q0xRg67fgrNxfwFLjqipqZburF0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEao8FLx4r2lpoQ9lsN+3SzSbsTsQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/CEYX8/8h0eujYjVPU4S7kd0qEQoGEUr3T313X654lbdOcgq8XJSgRzNfvmrN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkzCoDEsbalkIyV39PZDQyZhIFtjOiODLL3kz8z+umGNb9TKgkRa7YYlGYSoIxmf1NBkJzhnJiCWVa2FsJG1FNGdp0SjYEb/nlVdK+qHq1au32stKo53EU4QRO4Rw8uIIG3EATWsBgCM/wCm+OdF6cd+dj0Vpw8plj+APn8wcKvI2g</latexit>x0
<latexit sha1_base64="Q0xRg67fgrNxfwFLjqipqZburF0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEao8FLx4r2lpoQ9lsN+3SzSbsTsQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/CEYX8/8h0eujYjVPU4S7kd0qEQoGEUr3T313X654lbdOcgq8XJSgRzNfvmrN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkzCoDEsbalkIyV39PZDQyZhIFtjOiODLL3kz8z+umGNb9TKgkRa7YYlGYSoIxmf1NBkJzhnJiCWVa2FsJG1FNGdp0SjYEb/nlVdK+qHq1au32stKo53EU4QRO4Rw8uIIG3EATWsBgCM/wCm+OdF6cd+dj0Vpw8plj+APn8wcKvI2g</latexit>x0

<latexit sha1_base64="BTSdLLPVOcxB0WZqCUjvsG7ACtM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEao8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD9OBOyhX3Kq7AFknXk4qkKM5KH/1hzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx6oxcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uw7qfCZWkyBVbLgpTSTAm87/JUGjOUE4toUwLeythY6opQ5tOyYbgrb68TtpXVa9Wrd1fVxr1PI4inME5XIIHN9CAO2hCCxiM4Ble4c2Rzovz7nwsWwtOPnMKf+B8/gAMQo2h</latexit>y0
<latexit sha1_base64="BTSdLLPVOcxB0WZqCUjvsG7ACtM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEao8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD9OBOyhX3Kq7AFknXk4qkKM5KH/1hzFLI66QSWpMz3MT9DOqUTDJZ6V+anhC2YSOeM9SRSNu/Gxx6oxcWGVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uw7qfCZWkyBVbLgpTSTAm87/JUGjOUE4toUwLeythY6opQ5tOyYbgrb68TtpXVa9Wrd1fVxr1PI4inME5XIIHN9CAO2hCCxiM4Ble4c2Rzovz7nwsWwtOPnMKf+B8/gAMQo2h</latexit>y0

Figure 1 An illustration of the reduction to a vertex v and two if its neighbours. In the right
picture, positively-charged nodes are shown in grey and negatively-charged nodes are shown in white.
Intuitively, selecting vv+ corresponds to using v in the vertex cover because it now permits using
the positive charge nodes v1, v2, v3 to satisfy the demands of some negative charge nodes ue.

We claim G has a vertex cover of size k if and only the Graphical-GP2P instance given384

by H and φ has a solution of size 2n+ 2m+ k = 5n+ k. So if G has a vertex cover of size at385

most βn then there is a GP2P solution of size at most (5 + β) · n and if all vertex covers386

in G have more than α · n then all solutions to this GP2P instance have size more than387

(5 + α) · n. This shows there is no 5+α
5+β -approximation for GP2P with unit edge costs and388

charges ±1 unless P = NP.389

To see the claim, first let C ⊆ V be a vertex cover of G with size k. To get a corresponding390

Graphical-GP2P solution, buy the following edges:391

For each v ∈ C, purchase vv+.392

For each v ∈ V , purchase v0v and v+v−.393

For each e ∈ E, let v be any endpoint of e in C. Purchase uev and any edge of the form394

viv
+ that was not purchased by another edge this way. Since G is cubic, this is always395

possible.396

In total, this purchases k+ 2n+ 2m = k+ 5n edges. This can be seen to be a feasible solution397

by matching each negative-charged vertex with a positively-charged vertex in its component398

in a one-to-one fashion. Such a mapping is immediate from the construction: each v0 can be399

matched with v, each v− can be matched with v+, and each ue can be matched with the400

corresponding vi purchased in the description above.401

For the converse, we first claim there is a well-structured optimal solution.402

B Claim 17. There is an optimal solution F such that: (a) for each v ∈ V both v0v and403

v+v− are in F , (b) F has exactly m edges of the form viv
+ where v ∈ V and i = 1, 2, 3,404

(c) each e ∈ E has vv+ ∈ F for at least one endpoint v of e, and (d) for each edge e = vw405

exactly one of uev ∈ F or uew ∈ F .406

Z. Friggstad, M. Salavatipour, and H. Sun 34:11

If so, then C = {v : vv+ ∈ F} is a vertex cover of G and |F | = |C|+ 2n+ 2m = |C|+ 5n, as407

required to complete the proof.408

Proof of Claim 17. Let F be an optimal solution. First observe we must have v0v ∈ F and409

v+v− ∈ F for every v ∈ V otherwise some negatively-charged node would be isolated. So in410

each component we must have the number of nodes of the form ue for various e ∈ E is at411

most the number of nodes of the form vi for various v ∈ V, i = 1, 2, 3. By optimality of F412

and the fact each vi is a pendant node, we have that these counts are in fact equal in each413

component.414

Let τ be any minimum-cost pairing of nodes ue, e ∈ E with nodes of the form vi lying415

in the same component as ue. Here, the cost of pairing two nodes is the length of their416

shortest path using only edges in F . For each e ∈ E, let Pe denote the corresponding shortest417

path from ue to τ(ue). Finally, let v(e) be the first vertex after ue along Pe, notice v(e)418

corresponds to an endpoint of e in the original cubic graph G.419

Now consider an alternative pairing of the ue vertices with the vi vertices (which do not420

necessarily need to lie in the same component as ue, for now). For each ue, pair it with any421

vertex of the form v(e)i for some i = 1, 2, 3 that has not been paired before. Such a pairing422

is possible since G is cubic. Let F ′ be obtained by modifying F in the following way. From423

F , first delete all edges of the form v+vi ∈ F then add all edges of the form v+vi where vi is424

paired under the new pairing.425

This does not change the size of F . To ensure it is feasible, do the following. For each426

e ∈ E such that P was not initially paired with one of v(e)1, v(e)2, v(e)3, it must have been427

that v(e)ue′ was the second edge along P for some e 6= e′ and that v(e′) 6= v(e) (otherwise428

Pe and Pe′ both use v(e)ue′ but in opposite directions, meaning we can uncross the paths429

to get a cheaper pairing than τ). So we remove v(e)ue′ and add v(e)v(e)+ (if it was not430

already there). Doing so for all e ∈ E will ensure it is now feasible since each ue can now431

reach the vertex it is paired with while not increasing the size of F because an edge of the432

form v(e)v(e)+ is added only after an edge of the form v(e)ue′ is removed. This also ensures433

all properties required by the claim now hold. J434

J435

4 A Polynomial-Time Logarithmic Approximation436

We show that a slight variation of algorithm of [10] yields an O(logn)-approximation in437

truly polynomial time. The algorithm in [10] begins by observing, using standard metric438

embeddings [7], that it suffices to given an O(1)-approximation if the graph is a tree which,439

after rooting at some vertex, has exactly two children per node. Then they present an exact440

algorithm using dynamic programming where one index of the DP table considers values up441

to Φ. Roughly speaking, for every vertex v and every −Φ ≤ p ≤ Φ they consider the subtree442

Tv rooted at v and compute the cheapest subset of edges in the tree such that the component443

with v has charge p and every other component in the subtree has nonnegative charge.444

We simply point out that we can flip the roles of charges and costs in the DP table. First,445

we use the reduction in Lemma 19 (using, say, ε = 1/2) to instances where each edge has its446

cost being bounded by a polynomial in n. It is easy to verify this reduction produces a tree447

if the input graph was a tree. Let (T, c, φ) be the resulting instance of GP2P, i.e. T is a448

tree and each edge cost is a positive integer bounded by a polynomial in n.449

Root T at an arbitrary node r and for each node v let Tv be the subtree under v. Our450

dynamic programming table is the following: for each node v and each 0 ≤ c ≤
∑
e∈E ce let451

WADS 2025

34:12 Approximation Algorithms for the Generalized Point-to-Point Problem

f [v, c] be the maximum p such that in the subtree Tv, it is possible to purchase edges with452

total cost at most c such that the component with v has charge at least p and every other453

component has nonnegative charge. Given these values, the optimum solution cost is then454

the minimum c such that f [r, c] ≥ 0.455

To compute the f [v, c] values:456

If v is a leaf node then f [v, c] = φ(v).457

Otherwise, say u,w are the two children of v. Intuitively, we try all subsets of {uv,wv}458

to delete and try all ways to split the remaining budget between the subproblems and459

keep the best solution found overall. That is, we try all ways to purchase a subset460

S ⊆ {uv,wv} such that c(S) ≤ c and all 0 ≤ cu, cw such that cu + cw + c(S) = c and461

such that f [u, cu] ≥ 0 if uv /∈ S and f [w, cw] ≥ 0 if uw /∈ S (i.e. if we do not purchase462

the corresponding parent edge, then the budget in the subproblem better be able to buy463

a feasible solution in the subtree).464

Then f [v, c] is the maximum of the following expression over such S, cu, cw:465

φ(v) + I[uv ∈ S] · f [u, cu] + I[uw ∈ S] · f [u, cw]466

where I[·] is the {0, 1}-indicator for the logical expression enclosed by the brackets.467

The number of distinct subproblems is polynomial in n since the edge costs are integers at468

most n and there are at most 4 · (c+1) different ways to select (S, cu, cv) in a subproblem, the469

algorithm runs in polynomial time. In particular, if C denotes the total edge cost in the tree470

then the number of distinct subproblems is O(C · n) and processing each entry f [v, c] takes471

O(c) time (including O(c) recursive calls) so the total running time is O(C2 · n). Finally,472

if one only permits recursive calls to subproblems f [v, c] where c is at most the total edge473

cost in the subtree Tv and the loops over the split cu + cv = c only iterate over values where474

cu and cv are at most the total edge cost of their respective subtrees, the running time is475

improved to O(C2).476

This polynomial-time approximation for GP2P in trees can be used in a black-box fashion477

to improve the running time of the O(log(min{n, φ(V)+2})) in [10] to run in true polynomial478

time.479

References480

1 Paola Alimonti and Viggo Kann. Some apx-completeness results for cubic graphs. Theoretical481

Computer Science, 237(1):123–134, 2000. URL: https://www.sciencedirect.com/science/482

article/pii/S0304397598001583, doi:10.1016/S0304-3975(98)00158-3.483

2 Sanjeev Arora. Polynomial time approximation schemes for euclidean traveling salesman and484

other geometric problems. J. ACM, 45(5):753–782, September 1998. doi:10.1145/290179.485

290180.486

3 Sanjeev Arora and George Karakostas. A 2 + ε approximation algorithm for the k-mst problem.487

Math. Program., 107(3):491–504, July 2006.488

4 Emmett Breen, Renee Mirka, Zichen Wang, and David P. Williamson. Revisiting garg’s489

2-approximation algorithm for the k-mst problem in graphs. In 2023 Symposium on Simplicity490

in Algorithms, SOSA 2023, pages 56–68. SIAM, 2023. URL: https://doi.org/10.1137/1.491

9781611977585.ch6, doi:10.1137/1.9781611977585.CH6.492

5 Luca Di Gaspero, Johannes Gärtner, Guy Kortsarz, Nysret Musliu, Andrea Schaerf, and493

Wolfgang Slany. The minimum shift design problem. Annals of operations research, 155:79–105,494

2007.495

6 Guy Even, Guy Kortsarz, and Wolfgang Slany. On network design problems: fixed cost496

flows and the covering steiner problem. ACM Trans. Algorithms, 1(1):74–101, July 2005.497

doi:10.1145/1077464.1077470.498

https://www.sciencedirect.com/science/article/pii/S0304397598001583
https://www.sciencedirect.com/science/article/pii/S0304397598001583
https://www.sciencedirect.com/science/article/pii/S0304397598001583
https://doi.org/10.1016/S0304-3975(98)00158-3
https://doi.org/10.1145/290179.290180
https://doi.org/10.1145/290179.290180
https://doi.org/10.1145/290179.290180
https://doi.org/10.1137/1.9781611977585.ch6
https://doi.org/10.1137/1.9781611977585.ch6
https://doi.org/10.1137/1.9781611977585.ch6
https://doi.org/10.1137/1.9781611977585.CH6
https://doi.org/10.1145/1077464.1077470

Z. Friggstad, M. Salavatipour, and H. Sun 34:13

7 Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating499

arbitrary metrics by tree metrics. Journal of Computer and System Sciences, 69(3):485–500

497, 2004. Special Issue on STOC 2003. URL: https://www.sciencedirect.com/science/501

article/pii/S0022000004000637, doi:10.1016/j.jcss.2004.04.011.502

8 Naveen Garg. Saving an epsilon: a 2-approximation for the k-mst problem in graphs. In503

Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing, STOC504

’05, page 396–402, 2005.505

9 Michel X. Goemans and David P. Williamson. A general approximation technique for506

constrained forest problems. SIAM Journal on Computing, 24(2):296–317, 1995. doi:507

10.1137/S0097539793242618.508

10 Mohammadtaghi Hajiaghayi, Rohit Khandekar, Guy Kortsarz, and Zeev Nutov. On509

fixed cost k-flow problems. Theor. Comp. Sys., 58(1):4–18, January 2016. doi:10.1007/510

s00224-014-9572-6.511

11 Joseph S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple512

polynomial-time approximation scheme for geometric tsp, k-mst, and related problems. SIAM513

Journal on Computing, 28(4):1298–1309, 1999. doi:10.1137/S0097539796309764.514

12 Kunal Talwar. Bypassing the embedding: algorithms for low dimensional metrics. In László515

Babai, editor, Proceedings of the 36th Annual ACM Symposium on Theory of Computing,516

pages 281–290. ACM, 2004. doi:10.1145/1007352.1007399.517

A Standard Reductions518

Proof of Observation 3. Each v ∈ V −R with wv ≥ 1 is replaced with (n+ 1) ·wv colocated519

copies and each v ∈ V −R with wv = 0 is left as well. In the new k-MST-R instance, use520

k′ := (n+ 1) · k. Consider any tree T (say, one obtained using a k-MST-R approximation)521

in the new instance that spans R and at least k′ other nodes. By adding 0-cost edges if522

necessary, we may assume that T contains all colocated copies of any node it spans.523

Since at most n nodes have wv = 0, then T spans at least (n+ 1) · k−n > (n+ 1) · (k− 1)524

nodes from groups of colocated copies of original nodes. Since each group has a size that is525

a multiple of n + 1, then T spans at least (n + 1) · k such nodes, i.e. viewing T as a tree526

in the original graph after contracting colocated copies of nodes it spans yields a feasible527

solution. J528

I Lemma 18. Let (G = (V,E), c, φ) be an instance of GP2P and let G′ = (V,E′) be the529

complete graph over V with metric edge costs c′(uv) given by the minimum-cost u− v path.530

Any feasible solution to the GP2P instance (G, c, φ) can be mapped to a feasible solution to531

the Metric-GP2P instance (G′, c′, φ) with no greater cost and vice-versa.532

Proof. For each e ∈ E we have c′(e) ≤ c(e) since e is one possible path between its endpoints.533

So for any feasible solution F to (G, c, φ) we have c′(F) ≤ c(F), as required. Conversely, for534

any feasible solution F ′ ⊆ E′ to (G′, c′, φ) if we let F be the union of all shortest u− v paths535

in G for each uv ∈ F ′ then F then c(F) ≤ c′(F). Also, two nodes that were in the same536

connected component in (V, F ′) still lie in the same connected component of (V, F). That is,537

each connected component C of (V, F) is the union of one or more connected components538

{C ′1, . . . , C ′a} in (V, F ′) so φ(C) =
∑a
i=1 φ(C ′) ≥ 0. J539

I Lemma 19. For any constant ε > 0, if there is an α-approximation for instances of GP2P540

where every edge cost c(e) is an integer at most n2/ε+1, then there is a (1+ε)·α-approximation541

for general instances of GP2P.542

WADS 2025

https://www.sciencedirect.com/science/article/pii/S0022000004000637
https://www.sciencedirect.com/science/article/pii/S0022000004000637
https://www.sciencedirect.com/science/article/pii/S0022000004000637
https://doi.org/10.1016/j.jcss.2004.04.011
https://doi.org/10.1137/S0097539793242618
https://doi.org/10.1137/S0097539793242618
https://doi.org/10.1137/S0097539793242618
https://doi.org/10.1007/s00224-014-9572-6
https://doi.org/10.1007/s00224-014-9572-6
https://doi.org/10.1007/s00224-014-9572-6
https://doi.org/10.1137/S0097539796309764
https://doi.org/10.1145/1007352.1007399

34:14 Approximation Algorithms for the Generalized Point-to-Point Problem

Proof. Let (G = (V,E), c, φ) be a general instance of GP2P with optimum solution F ∗ ⊆ E543

with cost OPT . By contracting 0-cost edges (which does not change the optimal solution544

value), we assume c(e) > 0 for each e ∈ E.545

First, compute smallest value ν such that every connected component C in the graph Gν546

with edges {e ∈ E : c(e) ≤ ν} has φ(C) ≥ 0. We claim ν ≤ OPT ≤ n · ν: the first bound is547

because any feasible solution must use at least one edge of cost ≥ ν by our choice of ν and548

the other is because a spanning forest of Gν is a feasible solution using fewer than n edges549

each of cost at most ν.550

Let E′ = {e ∈ E : c(e) ≤ n · ν}; we have F ∗ ⊆ E′ since OPT ≤ n · ν. Define new edge551

costs c′(e) := dn ·c(e)/(ε ·ν)e for each e ∈ E′. Notice c′(e) is a positive integer (since c(e) > 0)552

and c′(e) ≤ n · c(e)/(ε · ν) + 1 ≤ n2/ε+ 1 by construction of E′.553

Let OPT ′ denote the optimum solution cost for the GP2P instance ((V,E′), c′, φ). We554

have OPT ′ ≤ c′(F ∗) ≤
∑
e∈F∗(n · c(e)/(ε · ν) + 1) = n · OPT/(ε · ν) + n. Therefore,555

running an α-approximation on this new instance finds a set of edges F ′ ⊆ E′ with c′(F ′) ≤556

α · (n ·OPT/(ε · ν) + n). Since c(e) ≤ ε · ν · c′(e)/n for every e ∈ E′,557

c(F ′) ≤ ε · ν · c′(F ′)/n ≤ α · (OPT + ε · ν) ≤ (1 + ε) · α ·OPT.558

J559

B Restricted Instances of GP2P560

Proof of Observation 6. Let (G = (V,E), c, φ) be an instance of GP2P. As noted in the561

introduction, we may assume this is an instance of Metric-GP2P. Finally, let V ′ = V − V0562

(i.e. the nodes with non-zero φ(v)) and G′ be the subgraph of G induced by V ′. Notice the563

restriction of (G′, c, φ) to H is an instance of Metric-GP2P.564

Let F ∗ ⊆ E be an optimal solution for the original Metric-GP2P instance. For each tree565

T in the forest F ∗, let CT be the tour obtained by doubling the edges of T and shortcutting566

the resulting Eulerian tour past nodes in V0. In this way, CT spans all nodes in V − V0 that567

are spanned by T and c(CT) ≤ 2 · c(T). Thus, the optimal solution cost in the restriction to568

H is at most twice the optimal solution cost for (G, c, φ).569

To complete the reduction, for each vertex v of H if φ(v) ≥ 1 then replace v with φ(v)570

collocated copies each having charge 1 and if φ(v) ≤ −1 then replace v with −φ(v) collocated571

copies each having charge −1. Note this steps takes pseudopolynomial time. J572

Proof of Observation 7. Consider any constant 0 < ε′ ≤ 1. Let (G = (V,E), c, φ) be an573

instance of GP2P. First we consider some preprocessing. If the 0-cost edges form a feasible574

solution, then it must be optimal so there is nothing more to do. Otherwise, apply Lemma575

19 with ε := ε′/3 and let (G′ = (V,E′), c′, φ) be the resulting graph with positive integer576

edges costs being bounded by a polynomial in n.577

Let K be a positive integer to be specified later. Form (G′′ = (V ′′, E′′), c′′, φ′′) by578

performing the following operations to G′.579

Subdivide each e ∈ E′ into a path of length K · c(e) of unit cost edges. Each new vertex580

v′ in the subdivision has φ′′(v′) = 0.581

For each v ∈ V ′ with φ(v) ≥ 1, append a path Pv to v using φ(v)− 1 new vertices and582

edges: each edge has cost 1 and each vertex on Pv, including v itself, has φ′′(v) = 1. Note,583

the other endpoint of Pv is a pendant.584

Similarly each v ∈ V ′ with φ(v) ≤ −1, append a path Pv to v using −φ(v) − 1 new585

vertices and edges: each edge has cost -1 and each vertex on Pv, including v itself, has586

φ′′(v) = −1.587

Z. Friggstad, M. Salavatipour, and H. Sun 34:15

Each v ∈ V ′ with φ(v) = 0 also has φ′′(v) = 0.588

Finally, each edge e of this new graph G′′ has c′′(e) = 1.589

Observe (G′′, c′′, φ′′) is an instance of Graphical-GP2P with φ(v) ∈ {−1, 0,+1} for each590

v ∈ V ′′.591

Note a solution F ′ ⊆ E′ naturally maps to a solution in the final instance with cost at592

most Φ +K · c′(F ′) by including all pendant paths Pv and all subdivided paths corresponding593

to edges in F ′. Conversely, consider any solution F ′′ ⊆ E′′. Let F ′ ⊆ E be the set of edges594

of G′ such that their entire subdivision is included in F ′′. It is easy to verify that F ′ is a595

feasible solution with cost at most c′′(F ′′)/K.596

Let OPT ′ be the optimal solution value for instance (G′, c′, φ) and let F ′′ be the result597

of using α-approximation on (G′′, c′′, φ′′). By the preceding discussion, this yields a feasible598

solution F ′ to (G′, c′, φ) with599

c′(F ′) ≤ c′′(F ′′)/K ≤ α · (Φ +K ·OPT ′)/K = α ·OPT ′ + α · Φ/K.600

By setting K = d3 · Φ/ε′e and noting that 1 ≤ OPT as edge costs are positive integers in601

(G′, c′, φ), this is at most (1 + ε′/3) · α ·OPT ′.602

Finally, by accounting for the application of Lemma 19 at the start of this proof we603

see that we would have an approximation for the original instance (G, c, φ) with guarantee604

(1 + ε′/3)2 · α ≤ (1 + ε′) · α.605

J606

C Adapting k-MST Approximations607

We only sketch how the algorithms can be adapted. We refer the reader to the respective608

papers for their details.609

I Lemma 20 (Slight adaptation of Arora and Karakostas [3]). There is a polynomial-time610

(2 + ε)-Approximation for W-k-MST-R.611

Proof. The algorithm in [3] explicitly guesses a subset of vertices that appear in the optimum612

solution and builds that into the LP relaxation they write. So it can already handle the613

situation where we have a larger set of required nodes R. The only thing to mention is how614

it can be extended to handle node weights wv ≥ 0 for v /∈ R. We can assume each node with615

weight wv is implicitly a collection of wv many nodes connected using 0-cost edges in a star616

fashion. The algorithm of [3] first guesses an additional set of size O(1/ε) of vertices of OPT617

to be required. The next step of the algorithm is to run a “primal dual” like algorithm to618

find a tree T . This step works without modification in our setting. J619

The final step in [3] is to modify T appropriately. That is, the manner in which T was620

constructed actually provides us with two options: include some subset of nodes or not. One621

choice would result in fewer than k non-required nodes being spanned and the other would622

result in at least k non-required nodes being spanned. In [3], it is mentioned how to pick the623

correct number of nodes contiguously from this “optional” portion so that grafting them in624

to the remaining portion of T yields a feasible solution with the required number of nodes.625

The grafting only costs O(ε ·OPT) due to the guess of the net at the start of the algorithm.626

This can also be done in polynomial time if one implicitly maintains a 0-cost tree spanning627

each group of colocated points.628

I Lemma 21 (Slight adaptation of Arora [2]). There is a PTAS for k-MST-R629

WADS 2025

34:16 Approximation Algorithms for the Generalized Point-to-Point Problem

We first comment that a similar adaptation could be made to Mitchell’s PTAS [11]. We chose630

this one because it was slightly easier to describe. We also emphasize that this adaptation is631

only for unweighted k-MST-R. Combining this with Observation 3 yields a pseudo-polynomial632

time approximation scheme for W-k-MST-R.633

Proof. The PTAS for k-MST in constant-dimensional Euclidean plane uses a dynamic634

programming routine through a quadtree dissection of the plane (an in higher dimensions a635

2D-tree dissection in D-dimensional spaces). The DP table entries for each square, roughly636

speaking, describe the interface of the optimal solution across the boundary of that square637

through “portals” and also include the guess for how many nodes should be covered within638

the square. If there are required nodes R, we can use the same DP table and simply insist639

that the subproblem’s solution also span any nodes of R in the square. The base cases are640

trivially extended to this setting and the combination of subproblems (i.e. the recurrence)641

for a non-base case is identical to before. J642

	1 Introduction
	1.1 Our Results
	1.2 Notation
	1.3 Organization

	2 Approximations for Constant nd
	2.1 Theorem 4: General metrics
	2.2 Theorem 4: Euclidean metrics

	3 Approximation Algorithms and Hardness for Graphical-GP2P with 1 Charges
	3.1 Graphical Instances with Unit Charges

	4 A Polynomial-Time Logarithmic Approximation
	A Standard Reductions
	B Restricted Instances of GP2P
	C Adapting k-MST Approximations

