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Abstract9

We consider the Min-Sum k-Clustering (k-MSC) problem. Given a set of points in a metric which is10

represented by an edge-weighted graph G = (V, E) and a parameter k, the goal is to partition the11

points V into k clusters such that the sum of distances between all pairs of the points within the12

same cluster is minimized.13

The k-MSC problem is known to be APX-hard on general metrics. The best known approximation14

algorithms for the problem obtained by Behsaz, Friggstad, Salavatipour and Sivakumar [Algorithmica15

2019] achieve an approximation ratio of O(log |V |) in polynomial time for general metrics and an16

approximation ratio 2 + ϵ in quasi-polynomial time for metrics with bounded doubling dimension.17

No approximation schemes for k-MSC (when k is part of the input) is known for any non-trivial18

metrics prior to our work. In fact, most of the previous works rely on the simple fact that there is a19

2-approximate reduction from k-MSC to the balanced k-median problem and design approximation20

algorithms for the latter to obtain an approximation for k-MSC.21

In this paper, we obtain the first Quasi-Polynomial Time Approximation Schemes (QPTAS)22

for the problem on metrics induced by graphs of bounded treewidth, graphs of bounded highway23

dimension, graphs of bounded doubling dimensions (including fixed dimensional Euclidean metrics),24

and planar and minor-free graphs. We bypass the barrier of 2 for k-MSC by introducing a new25

clustering problem, which we call min-hub clustering, which is a generalization of balanced k-median26

and is a trade off between center-based clustering problems (such as balanced k-median) and pair-wise27

clustering (such as Min-Sum k-clustering). We then show how one can find approximation schemes28

for Min-hub clustering on certain classes of metrics.29
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1 Introduction33

Clustering is a fundamental problem in many areas of data analysis and machine learning34

and has many applications across various fields. Given a set of points with a notion of35

similarity (distance) between every pair of points, in a typical k clustering problem, the task36

is to partition the points into k clusters to minimize dissimilarities of the points that fall37

into the same cluster.38

In the well-known center-based k-clustering problems (such as k-center, k-median, k-39

means), the partition is obtained by selecting a set of k centers and assigning each point to40

its nearest center. The clusters are then evaluated based on the distances between the points41

and their centers: in the case of k-center, the objective is to minimize the maximum distance42

of a point to its nearest center, while in the case of k-median (k-means), respectively, the43
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(a) (b)

Figure 1 Clustering of a set of points: (a) a possible center-based clustering induced by a Voronoi
diagram of two cluster centers , and (b) a min-sum k-clustering solution for k = 2. Observe that the
min-sum k-clustering solution in (b) places all outliers into a separate cluster.

objective is to minimize the sum of distances (the sum of squared distances, respectively)44

between points and their centers. Compared to other clustering algorithms, center-based45

algorithms are efficient for clustering large datasets as the main task reduces to selecting k46

centers; once we decided on the set of centers, points that are closest to a particular center47

are considered to be part of the cluster represented by that center. Center-based clustering48

algorithms are not always precise because they heavily rely on the assumption that each49

cluster has a spherical shape and hence can be represented by one center.50

In pair-wise k-clustering, on the other hand, the goal of partitioning is to minimize the51

dissimilarity between pairs of points that are in the same cluster. For example, in the case of52

the k-diameter problem, the goal is to minimize the maximum distance between any two53

points in a cluster; or in the min-sum k-clustering problem, the goal is to minimize the sum54

of distances between all pairs of the points within the same cluster.55

Unlike center-based clustering problems, min-sum k-clustering (which is the main focus56

of this paper) is less sensitive to the shape of clusters because it forms clusters based on57

the pair-wise distances between points rather than the distances of points to their cluster58

center. Also, as observed in [8], min-sum k-clustering can handle (detect) noises (outliers) in59

an effective way: in scenarios where data include well-defined clusters and a limited number60

of scattered noises (outliers), assigning an outlier to one of the clusters would be more costly61

than placing it in an outlier cluster that holds all the outliers. This results in a solution with62

a separate cluster specifically for outliers, avoiding the limitations of center-based clustering63

algorithms, which rely on Voronoi partitioning to divide the data space into clusters and are64

unable to handle overlapping cluster spaces. See Figure 1.65

We now formally define the min-sum k-clustering problem. Given a metric space over a set66

of n points V with metric distances d(u, v) between any two u, v ∈ V . We assume the metric67

is induced by an edge-weighted graph G = (V,E). In the Min-Sum k-Clustering problem68

(k-MSC), the goal is to partition points V into k clusters C1, ..., Ck to minimize the sum69

of pairwise distances between points assigned to the same cluster:
∑k
i=1

∑
{u,v}⊆Ci

d(u, v).70

This problem is closely related to the Balanced k-Median problem (k-BM), with the same71

input as in k-MSC. Here, the goal is to select k points c1, ..., ck ∈ V as the centers of the72

clusters and partition points V into clusters C1, ..., Ck to minimize
∑k
i=1 |Ci|

∑
v∈Ci

d(v, ci).73

Related Works74

Sahni and Gonzalez introduced k-MSC in 1976 [13]. They showed the problem is NP -hard75

and provided a polynomial time k-approximation algorithm for the k-Max Cut problem, which76

is the dual of k-MSC and involves partitioning points into k clusters to maximize the distance77

between points in different clusters. Kann et al. [12] showed it is NP -Hard to approximate78
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non-metric k-MSC within O(n2−ϵ) for any ϵ > 0 and k > 3. Later, Cohen-Addad et al. [6]79

proved that it is NP -hard to approximate metric k-MSC within 1.415.80

Guttman-Beck and Hassin [11] showed that k-BM and k-MSC are closely related.81

They showed an algorithm with ρ approximation for one of these problems implies a 2ρ82

approximation for the other. In the literature, most of the previous work (with a guaranteed83

approximation factor) for k-MSC make use of this reduction. Guttman-Beck and Hassin84

[11] showed that k-BM can be solved in time nO(k) by guessing the cluster centers and sizes85

and finding the minimum-cost assignment from clients to these centers. This results in a86

2-approximation solution for the min-sum k-clustering problem when k is fixed. Bartal et al.87

[3] introduced the first polynomial time approximation algorithm for both k-MSC and k-BM88

in metric spaces. They devised an algorithm with an approximation factor of O( 1
ϵ log1+ϵ n)89

and running time of n 1
ϵ for k-BM. The algorithm is based on the embedding of metric spaces90

into hierarchically separated trees (HSTs). They also provided a bi-criteria approximation91

algorithm with a constant approximation factor with O(k) clusters. Later, Behsaz et al. [4]92

improved the result by utilizing the properties of HSTs through a direct dynamic programming93

approach, leading to a O(logn) approximation algorithm for both k-MSC and k-BM. This94

is the current best result for general metrics. They also present a quasi-polynomial time95

approximation scheme for k-BM in metrics with constant doubling dimensions, leading96

to a (2 + ϵ)-approximation algorithm for the min-sum k-clustering problem that runs in97

quasi-polynomial time. More recently Banerjee et al. [2] gave a bicriteria approximation for98

k-MSC with outliers: for any ϵ > 0, given an instance with n points and any integer n′ ≤ n,99

their algorithm finds a solution that clusters at least (1 − ϵ)n′ points whose cost is poly(1/ϵ)100

times the optimum clustering of n′ points.101

For small values of k, Vega et al. [9] introduced the first polynomial time approximation102

scheme for k-MSC in metric spaces. The running time of their algorithm is O(n3k2ϵ−k2

).103

Czumaj and Sohler [8], presented a (4 + ϵ) approximation algorithm for k-MSC in metric104

spaces with a running time of linear for k = o(logn/ log logn).105

Our Results and Techniques106

As mentioned earlier, the previous methods for designing approximation for k-MSC attempt107

to approximate the cost using a center-based clustering objective (such as k-BM [3, 4] or a108

capacitated version of k-median [2]). Such methods have a barrier of 2 (even for tree metrics).109

A key challenge in extending the framework of [4] to work directly for k-MSC is to develop110

a compact representation of the cluster types in a near-optimal solution that can capture the111

essence of the cluster without relying on a center.112

Here we introduce a new clustering objective that is in between the pair-wise distances113

objective of k-MSC and the center-based objective of k-BM, which we call min-hub114

clustering. We show that for metrics with a nice hierarchical decomposition (such as graphs115

of bounded treewidth, or bounded doubling dimension), the objective of min-hub clustering is116

a good (namely (1 + ϵ)) approximation of k-MSC and how one can obtain an approximation117

scheme for the new objective (and hence one for k-MSC).118

In center-based clustering, a cluster is represented by a single center. However, as119

demonstrated in Figure 1 (see the outlier cluster in red), not all k-MSC clusters can be120

represented by a single center. To address this, we explore the possibility of using multiple121

centers to represent a cluster. Our results show that a cluster in the k-MSC solution can be122

represented by Oϵ(1) centers, which we refer to as hubs, while incurring an error of (1 + ϵ).123

Specifically, let H be a set of hubs. The hub-distance between two points u and v in a cluster124

C is defined as the shortest path between the points that passes through hub points in H.125
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Our results show that there exists a set of H of constant size (depending on ϵ) such that126

the sum of distances between all pairs of points within C is “almost” equal to the sum of127

hub-distances between pairs of points in C. This suggests that the network interconnecting128

the hubs, called the backbone structure, carries the majority of the connection flow in the129

cluster. We represent a cluster by the type of its backbone structure and the distribution of130

points around its hubs.131

In Section 2, we consider the special case of tree metrics. We construct a dynamic program132

for k-MSC on tree metrics that have a logarithmic height. In Section 3, we extend our133

approach to cover metrics with bounded treewidth, thereby covering general trees as well.134

▶ Theorem 1. There is a quasi-polynomial time algorithm that, given an instance of k-MSC135

on a metric of treewidth f , for any ϵ > 0 finds a (1 + ϵ)-approximate solution in time136

nO(f2+( log n
ϵ )σ+1), where σ depends on ϵ.137

It is worth pointing out that, if one tries to extend the result from trees to graphs with138

treewidth f in a natural way, the algorithm will have a run time of the form n( log n
ϵ )f2+σ+1

139

(instead of nO(f2+( log n
ϵ )σ+1)), which is still quasi-polynomial for fixed f , but will not be140

quasi-polynomial if f = Polylog(n). This is essential to obtain the next three theorems, as141

we use embeddings into graphs with treewidths f = Polylog(n).142

In Section 4, using frameworks from [14], [10], and [7], we expand our results to three143

additional metric classes: bounded doubling metrics, bounded highway dimension metrics,144

and minor-free metrics, respectively.145

▶ Theorem 2. There is a quasi-polynomial time algorithm that, given an instance of k-MSC146

on a metric of doubling dimension D, for any ϵ > 0 finds a (1 + ϵ) approximate solution in147

time nO(( D log n
ϵ )2D+( log n

ϵ )σ+1).148

▶ Theorem 3. There is a quasi-polynomial time algorithm that, given an instance of k-MSC149

on a metric highway dimension D and violation λ, for any ϵ > 0 finds a (1 + ϵ) approximate150

solution in time nO((logn)α+( log n
ϵ )σ+1)), where α = O(log2(Dϵλ )/λ).151

▶ Theorem 4. There is a quasi-polynomial time algorithm that, given an instance of k-MSC152

in minor-free metrics, for any 1/2 > ϵ > 0 finds a (1 + ϵ) approximate solution in time153

nϵ
−O(1) logO(1) n.154

2 The k-MSC Problem in Tree Metrics155

In this section, we construct a dynamic program for k-MSC on trees. Consider metric (V, d)156

induced by an edge-weighted tree T = (V,E). Let w(e) denote the weight of edge e in E.157

We let T be rooted at an arbitrary vertex r ∈ V . The parent of a vertex v ∈ V \ {r} is158

the vertex adjacent to v on the path from v to r. If u is the parent of v then v is a child of u.159

A tree vertex is called a leaf if it has no children and is called an internal vertex otherwise.160

The level of each node is the number of edges on the path from it to r. The height of the161

tree is the level of the leaf node with the highest level. We use Tv to denote the subtree162

rooted at v, V (Tv) and E(Tv) to denote the vertex set and the edge set of Tv, respectively.163

By introducing zero-weight edges and nodes, we convert the tree into an equivalent binary164

tree. Note that the resulting binary tree has at most 2|V | nodes.165

We use C ⊆ V to denote a cluster and D(C) to denote the total sum of the distances166

between all pairs of points in C; i.e., D(C) =
∑

{u,v}⊆C d(u, v). We use H ⊆ V to indicate a167

set of points referred to as hubs. The distance between any two points u and v in C, when168

measured through hubs in H, is called the hub-distance and is denoted by dH(u, v). This169
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(a) (b)

Figure 2 (a) A cluster on the tree, where the blue circles specify points of this cluster. (b) Shaded
regions highlight the resulting groups by applying Lemma 5 on the cluster. Notice that the distance
between any two points of the cluster that belong to different groups (such as u and v) is equal
to their hub-distance, dH(u, v), as long as H contains the border nodes of the groups. The larger
circles around the nodes depict the border nodes of the groups (so the proper hubs of the cluster).

Algorithm 1 Tree Partitioning Algorithm
1 Cν ← ∅
2 η ← max{ν|C|, 1}
3 L← {v ∈ V : 1

2 η ≤ |V (Tv) ∩ C| ≤ η}
4 while L ̸= ∅ do
5 v̂ ← v ∈ L ▷ If multiple, select v with the lowest level.
6 g ← V (Tv̂)
7 Cν ← Cν ∪ {g}
8 remove Tv̂ from T

9 L← {v ∈ V (T ) : 1
2 η ≤ |V (Tv) ∩ C| ≤ η}

10 end
11 Cν ← Cν ∪ {V (Tr)}

is the length of the shortest path between the two points that goes through hub points in170

H; i.e., dH(u, v) = minh1,h2∈H
(
d(u, h1) + d(h1, h2) + d(h2, v)

)
. Let pH(u, v) represent the171

path between points u and v that passes through hub points in H and has the length of172

dH(u, v). The sum of pairwise hub-distances for the points in C is represented by DH(C)173

and is equal to the total sum of the hub-distances between all pairs of points in C; i.e.,174

DH(C) =
∑

{u,v}⊆C dH(u, v). Note that DV (C)=D(C).175

The following lemma shows how to find a (constant-size) set of hubs that represents a176

given cluster in metrics induced by a tree metric. See Figure 2. For a subset of nodes g ⊆ V ,177

we use δ(g) = {v ∈ g : uv ∈ E & u /∈ g} to denote the border nodes of g.178

▶ Lemma 5. Let C ⊆ V be a cluster and let T = (V,E) be a given binary tree. For179

any ν > 0, there exists a partition of V into a set of groups Cν = {g1, . . . , gσ} such that180

all of the following properties hold: (i) the subgraph induced by each group g ∈ Cν is181

connected. (ii) for each group g ∈ Cν , |g ∩ C| ∈ [1,max {1, ν|C|}]. (iii) |Cν | = O(1/ν). (iv)182

∀g ∈ Cν , |δ(g)| = O(1/ν).183

Proof. We use Algorithm 1 to compute Cν . The algorithm iteratively selects a subtree Tv̂,184

with approximately ν
2 of the total number of points |C|, adds the vertex set V (Tv̂) to Cν ,185

and removes Tv̂ from T . The number of iterations (i.e. the number of groups made by the186

algorithm) is at most 2/ν, and every vertex of V belongs to one group.187

Note that there is at most one edge between any two groups, so |δ(g)| = O(1/ν), ∀g ∈ Cν .188
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The subgraphs induced by gi’s are connected by construction. Thus, the algorithm has189

constructed a partition with the desired properties, as shown in Figure 2. ◀190

Note that each cluster covers only a subset of points, however, the groups of the cluster191

always include all the nodes of V . Given a cluster C ⊆ V and a constant ν > 0, let192

Cν = {g1, . . . , gσ} be the groups obtained by applying Lemma 5 on C with the given value193

of ν. We let Hν(C) = ∪σi=1δ(gi) denote the ν-proper hubs of the cluster. Notice that the194

size of |Hν(C)| is constant, depending on ν.195

Given a cluster C ⊆ V and a constant ν > 0, consider the ν-proper hubs of the196

cluster, Hν(C). We refer to costHν
(C) =

∑σ
i=1

∑σ
j=i+1

∑
u∈gi∩C,v∈gj∩C dHν (C)(u, v) as the197

ν-approximate cost of the cluster. This represents the sum of hub-distances between all198

pairs of points of C belonging to different groups. The following lemma shows that costHν
(C)199

is “almost” equal to D(C), when the value of ν is sufficiently small.200

▶ Lemma 6. For each such cluster C and any ν > 0, costHν
(C) ≤ D(C) ≤ (1+O(ν))costHν

(C).201

The proof is omitted due to page limitations.202

To make the presentation of our dynamic programming algorithm simpler, we formulate203

a problem with the same input and objective as the min-sum k-clustering problem, but the204

cost of clusters is evaluated by costHν(C) instead of D(C): Given a constant ν > 0 and an205

edge-weighted tree T = (V,E). In the Min-Hub k-Clustering problem (k-MHC), we are206

asked to partition points V into k clusters C1, ..., Ck to minimize
∑k
i=1 costHν

(Ci).207

▶ Theorem 7. Let ϵ > 0. A (1 + ϵ)-approximation for k-MHC will imply a (1 + O(ϵ))-208

approximation for k-MSC on tree metrics.209

The proof is omitted due to page limitations.210

2.1 QPTAS for k-MHC on Trees with Logarithmic Heights211

Theorem 7 tells us that if we try to find a clustering which optimizes the objective of212

k-MHC, then the same clustering has a good value for the objective of k-MSC. Suppose213

we are given a tree T = (V,E) that has a logarithmic height and a constant ν > 0. Let214

OPT be the minimum cost of partitioning V into k clusters C1, C2, · · · , Ck with the total215

cost being
∑k
i=1 costHν (Ci). Given ϵ > 0, we will present a dynamic program that finds216

a (1 + ϵ)-approximation of OPT . This, as a result of Theorem 7, leads to a (1 + O(ϵ))217

approximation solution for k-MSC on trees with logarithmic heights. Then, in the next218

section, we will extend the dynamic program to cover metrics with bounded treewidth,219

thereby covering general trees as well.220

Preprocessing. We assume each node of the tree has a token on it and our goal is to221

cluster the tokens. We may modify the tree by adding dummy edges (with zero weight) and222

dummy nodes (that do not have tokens). Throughout this section, we refer to a node with a223

token as a point and a node without a token as a vertex. By introducing zero-weight edges224

and nodes, we convert the tree into an equivalent binary tree in which the points are only225

located on distinct leaves. We repeatedly remove leaves with no tokens until there is no such226

leaf in the tree. We also repeatedly remove internal vertices (with no token) of degree two by227

consolidating their incident edges into one edge of the total weight.228

Cluster, Backbone Tree, and Partial Cluster Types. Let ν > 0 and consider a229

cluster C ⊆ V . Suppose Cν = {g1, . . . , gσ} are the groups by Lemma 5. We define a tree230

called the backbone tree of C, with nodes corresponding to groups g1, . . . , gσ. This tree231

has edges between nodes whose corresponding groups are connected by an edge. We use gi232
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(a) (b) (c)

Figure 3 (a) A cluster and its corresponding groups. (b) The partial cluster with respect to Tv.
(c) The corresponding backbone tree whose nodes are labelled according to their sizes/weights.

to refer to both the group and the corresponding node in the backbone tree. According to233

Cayley’s formula [1], the number of different trees that can be formed by ñ labeled nodes is234

ññ−2. Hence the cluster’s backbone tree has one of the types 1, 2, · · · , σσ−2.235

Each cluster C is associated with a pair (tb, w⃗) (referred to as the cluster type of C),236

where tb is an integer between 1 and σσ−2 and represents the type of the cluster’s backbone237

tree, and w⃗ is a vector representing the weights of each node in the backbone tree, with238

w⃗[i] = |gi ∩ C| being the number of points in the i-th group of the cluster; see Figure 3.239

The maximum number of ways to assign weights to nodes of a backbone tree is nσ, where240

n = |V |. To keep the number of different cluster types manageable, we store the group241

weights approximately by rounding them to the nearest threshold value. This reduces the242

number of possible ways to assign weights to nodes of a backbone tree to a poly-logarithmic243

number and so allows for a more compact representation of the cluster types.244

▶ Definition 8. Given ϵ > 0, let ϵ′ be ϵ
c logn . Let logarithmic threshold values be245

Φϵ,n = {ϕ1, · · · , ϕτ} where ϕi = i for 1 ≤ i ≤ ⌈ 1
ϵ′ ⌉, and for i > 1

ϵ′ we have ϕi = ⌈ϕi−1(1+ϵ′)⌉,246

and ϕτ = n. So τ = O( logn
ϵ ). We define a mapping ϕ which associates with each value247

1 ≤ i ≤ n the minimum threshold value ϕj for which i ≤ ϕj holds.248

By rounding the weights of groups to the nearest threshold value, the number of different249

cluster types is reduced to O(σσ−2( logn
ϵ′ )σ)), where σ = O(1/ν). We will show that, by choos-250

ing the number of thresholds appropriately large, the DP solution will have a multiplicative251

error of at most 1 +O(ϵ) (provided that the tree has a logarithmic height).252

For every cluster C ⊂ V and every node v ∈ V , the part of cluster that falls into Tv is253

referred to as the partial cluster of C with respect to v. To represent such a partial cluster,254

we associate it with a triple (tc, γv, s⃗v), where tc is an integer between 1 and O(σσ−2( logn
ϵ′ )σ))255

and represents the type of the cluster, γv is the split group of the partial cluster and specifies256

the group that includes the node v, and s⃗v is a vector representing the sizes of each group257

of the partial cluster that intersects with the tree Tv, with s⃗v[i] = |(gi ∩ C) ∩ V (Tv)| being258

the number of points in the i-th group that intersect with V (Tv); see Figure 3. Similar259

to the group weights, the group sizes are stored approximately by rounding them to the260

nearest threshold value. This results in a reduction of the number of partial cluster types to261

O(σσ−2( logn
ϵ′ )σ)). Observe that a partial cluster C with respect to root r is actually the full262

cluster C. This means that for every group i in the cluster, the value s⃗r[i] is equal to w⃗[i].263

We let Γv ⊆ Cν indicate the groups, called the inner groups, of the partial cluster whose264

nodes are completely contained within the tree node Tv. For a specific partial cluster type ℓ265

at v, we use the notation γℓv,Γℓv, s⃗ℓv, and w⃗ℓ to refer to its split group, inner groups, size, and266
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weight vectors, respectively. It is important to note that both the weight vector w⃗ℓ and the267

inner groups Γℓv can be obtained from the triple (tc, γv, s⃗v) that defines ℓ.268

A partial cluster type ℓ with respect to a node v is considered valid if the following269

conditions are met: (i) the values of s⃗ℓv[i] for each group i of ℓ are between 0 and w⃗ℓ[i], (ii)270

the value of w⃗ℓ[i] for each group i of ℓ is less than or equal to max{ν.
∑
i′ w⃗

ℓ[i′], 1} (see271

Lemma 5), (iii) if v is a leaf node of T , then γℓv is a leaf node of the backbone tree of ℓ (from272

the definition of the backbone tree). A partial cluster type ℓ is considered a leaf partial273

cluster type at a node v if γℓv is a leaf node of the backbone tree of ℓ and s⃗ℓv[γℓv] = 1.274

Edge Load, Partial Cluster Cost, and Cluster Cost. Consider a cluster C together275

with its groups Cν = {g1, . . . , gσ} and hubs Hν(C) , and let ℓ be the type of this cluster with276

respect to v. Recall that, vectors w⃗ℓ and s⃗ℓv are used to show the weight and the size (with277

respect to the tree Tv) of the groups within the cluster C, and γv is used to specify the group278

of the cluster that includes the node v. Here, we explain how to compute the ν-approximate279

cost of the cluster, costHν (C), by utilizing the information provided by these vectors.280

We define the load of edge e with respect to the cluster C, its groups Cν , and hubs281

Hν(C) to be the number of paths pH(u, v) that include edge e over all (u, v) ∈ X, where282

X = ∪σ̂i=1Xi and Xi = {(u, v) : u ∈ ĝi v ∈ C \ ĝi}. Let ev denote the edge connecting v to283

its parent in T . The load of edge ev with respect to ℓ can be calculated using the following284

formula, represented as loadℓ(ev):285

loadℓ(ev) =
( σ∑
i=1,i̸=γv

s⃗ℓv[i]
)
×

( σ∑
i=1

(w⃗ℓ[i] − s⃗ℓv[i])
)

︸ ︷︷ ︸
#paths crossing ev s.t. one of its ends is below γv

+ s⃗ℓv[γv] ×
( σ∑
i/∈Γv

w⃗ℓ[i]
)

︸ ︷︷ ︸
#paths crossing ev s.t. one of its ends is in γv

286

We define and compute the cost of a partial cluster type ℓ with respect to a node v (we287

denote it by costℓv) recursively as follows. For the base case, costℓv = 0, if v is a leaf node. For288

the recurrence, costℓv = costℓv1
+ costℓv2

+ loadℓ(ev1)w(ev1) + loadℓ(ev2)w(ev2), where v1, v2289

are children of v. Note that the union of groups of each cluster always includes the root node290

r (see Algorithm 1). One can verify that costℓr = costHν
(C), if ℓ stores the exact weights and291

sizes of the groups of the cluster. However, here, ℓ stores weights and sizes approximately292

and therefore the edge load loadℓ(ev) might be overestimated by a factor of (1 + ϵ′) (by293

choosing the number of thresholds appropriately large). In the next section, we will see294

how this affects our approximation solution and results in a multiplicative error of at most295

1 +O(ϵ) (provided that the tree has a logarithmic height).296

Dynamic Program297

The Dynamic Program (DP) starts at the leaves of T and works its way up, exploring298

all possible ways to form clusters. For each node v and each possible configuration Pv299

of partial clusters with respect to v, there is an entry in the DP table. A configuration300

Pv ∈ [k]O(σσ−2( log n

ϵ′ )σ)} at node v lists the number of each type of partial cluster covering301

points within subtree Tv. We let A[v,Pv] store the minimum cost to form a set of partial302

clusters, which match the configuration Pv, and cover all points in Tv. Observe that the303

number of such subproblems is at most nO(σσ−2( log n

ϵ′ )σ).304

Consider a node v in the tree T . Assume for now that we have access to a table305

λ[Pv,Pv1 ,Pv2 ], where Pv is the configuration at node v, and Pv1 and Pv2 are the configurations306

at its children nodes v1 and v2, respectively. The table λ indicates whether the configurations307

Pv, Pv1 , and Pv2 are consistent, meaning that there is a solution where the descriptions308

of partial clusters below nodes v, v1, and v2 match the configurations Pv, Pv1 , and Pv2 ,309
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(a) (b) (c)

Figure 4 Consider a node v and its children v1, v2. There are three possible scenarios in which v,
v1, and v2 may belong to one or two groups of a cluster. (a) is depicting the case where all three
nodes are in the same group, (b) is depicting the case that v and v1 are in the same group, (c) is
depicting the case that v and v2 are in the same group. Note that the case where all three nodes
belong to different groups does not happen due to Algorithm 1.

respectively. We shall describe how to compute λ. We will compute the subproblems A[v,Pv]310

in a bottom-up manner: We will compute A[v,Pv] after we have computed the subproblems311

A[v1,Pv1 ] and A[v2,Pv2 ] for the children of v. The subproblems are computed as follows:312

Base Case. For every leaf node v and every configuration Pv, set: A[v,Pv] = 0 if313

there exists a type ℓ such that Pv[ℓ] = 1 and ℓ is a leaf partial cluster at v. Otherwise, set314

A[v,Pv] = ∞.315

Recurrence. Let load(v) =
∑
ℓ Pv[ℓ]loadℓ(ev). For each internal node v and its children,316

v1, v2 and every combination of configurations of Pv on v and Pv1 ,Pv2 :317

A[v,Pv] = min
Pv,Pv1 ,Pv2 :λ[Pv,Pv1 ,Pv2 ]=True

∑
i=1,2

(
A[vi,Pvi

] + load(vi)w(vvi)
)

318

The final solution is obtained by finding the minimum value of A[r,Pr] over all config-319

urations Pr such that the sum of all Pr[ℓ] values equals k; and s⃗ℓr[i] = w⃗ℓ[i] holds, for each320

partial cluster type ℓ with Pr[ℓ] > 0, and for all i.321

Consistency Constraints. Consider a node v and its children v1, v2. Let Pv =322

(tc, γv, s⃗v), Pv1 = (tc1 , γv1 , s⃗v1), Pv2 = (tc2 , γv2 , s⃗v2) be some valid partial cluster types at323

v, v1, v2, respectively. We say Pv is consistent with Pv1 and Pv2 if the following conditions324

are met:325

Type Consistency. The types of Pv, Pv1 , and Pv2 must be the same, i.e. tc = tc1 = tc2 .326

Group Consistency. The groups of Pv1 and Pv2 are consistent with those of Pv: Recall327

that γv indicates the split group of a partial cluster Pv and Γv indicates the inner groups328

of Pv. Let δinv be the inner groups adjacent to γv in the backbone tree; δinv = δ({γv})∩Γv,329

where δ({γv}) indicates groups adjacent to γv (in the backbone tree). Depending on the330

values of γv, γv1 , γv2 , one of the following cases holds:331

If γv = γv1 = γv2 (Figure 4a), then δinv1
∪ δinv2

= δinv , δinv1
∩ δinv2

= ∅.332

If γv = γv1 and γv2 ∈ δinv (Figure 4b), then δinv1
= δinv \ {γv2}, δinv2

= δ({γv2}) \ {γv}.333

If γv = γv2 and γv1 ∈ δinv (Figure 4c), then δinv2
= δinv \ {γv1}, δinv1

= δ({γv1}) \ {γv}.334

Size Consistency. The group sizes of P1 and P2 are consistent with those of P .335

Depending on the values of γv, γv1 , γv2 , one of the following cases holds:336

If γv = γv1 = γv2 , then we ensure that ϕ
(
s⃗v1 [γv1 ] + s⃗v2 [γv2 ]

)
= s⃗v[γv].337

If γv = γv1 and γv2 ∈ δinv , then we ensure that s⃗v2 [γv2 ] = w[γv2 ] and s⃗v1 [γv1 ] = s⃗v[γv].338

If γv = γv2 and γv1 ∈ δinv , then we ensure that s⃗v1 [γv1 ] = w[γv1 ] and s⃗v2 [γv2 ] = s⃗v[γv].339

ESA 2023



45:10 Approximation Schemes for Min-Sum k-Clustering

Note that the case that γv1 = γv2 , γv ̸= γv1 is impossible since each group of the cluster340

covers a connected subtree. Furthermore, the case when γv1 ∈ δinv & γv2 ∈ δinv is impossible341

using the fact that there is no point on the internal node v (see the preprocessing step).342

The value of λ[Pv,Pv1 ,Pv2 ] is calculated recursively for every combination of configurations343

of v and its children, v1, v2. For the base case λ[⃗0, 0⃗, 0⃗] = True. Let Pv − Pv indicate the344

configuration of Pv with one less partial cluster of type Pv. For the recurrence, we consider345

all possible consistent valid partial cluster types Pv, Pv1 and Pv2346

λ[Pv,Pv1 ,Pv2 ] =
∨

∀ consistent Pv,Pv1 ,Pv2

λ[Pv − Pv,Pv1 − Pv1 ,Pv2 − Pv1 ]347

Analysis348

In our DP, configurations store the rounded sizes (and weights) of the partial clusters’ groups.349

To ensure consistency between the sizes of the groups at node v and its children v1 and v2,350

we allow the size of the group at v to be a (1 + ϵ′) upper bound for the combined size of351

the groups at v1 and v2. This results in a multiplicative error of at most (1 + ϵ′) in the352

calculation of the edges’ loads and so the cost of the partial clusters at each node of the tree353

when the sizes (weights) of merged partial clusters are rounded. Given that the height of the354

tree is h, it is not difficult to see that our dynamic programming approach finds a solution355

that is an (1 + ϵ′)h-approximation to the problem.356

The number of possible configurations Pv for each node v is at most nO(σσ−2( log n

ϵ′ )σ)),357

resulting in nO(σσ−2( log n

ϵ′ )σ)) dynamic program table entries. To compute each entry in358

the DP table, we iterate over all consistent configurations at v, v1, and v2, which takes359

nO(σσ−2( log n

ϵ′ )σ)) time. Hence, the overall running time of the algorithm is nO(σσ−2( log n

ϵ′ )σ)),360

which is still a quasi-polynomial time complexity in n. By setting ϵ′ = ϵ
logn in the threshold361

mapping, the algorithm finds a (1 + ϵ) approximation solution in time nO(σσ−2( log n
ϵ )σ+1)).362

▶ Theorem 9. There is a QPTAS for the k-MSC problem on trees with logarithmic heights.363

3 The k-MSC Problem in Metrics of Bounded Treewidth364

In this section, we extend our algorithm from Section 2 to metrics of bounded treewidth. A365

tree decomposition of a graph G = (V,E) is a tree T = (V ′, E′) on a new set of nodes V ′,366

where each i ∈ V ′ corresponds to a subset bi, called a bag, of vertices of V with the following367

properties: (i) ∪i∈V ′bi = V , (ii) for every edge uv ∈ E, there exists a bag t of T such that bt368

contains both u and v, (iii) if bi, bj contain vertex v then every bag on the path between i369

and j in T contains v. The width of a tree decomposition T is the size of the largest bag of T370

minus one; this is maxi∈V ′(|bi| − 1). The treewidth of a graph G is the minimum width over371

all possible tree decompositions of G. The authors of [5] showed that any graph G = (V,E)372

with treewidth f has a tree decomposition T of width at most 3f + 2 that has the following373

two extra properties: (i) T is binary, (ii) the height of T is O(log |V |).374

Given a graph G = (V,E) with a treewidth of f ′, we create a binary decomposition tree375

T = (V ′, E′) with a width of no more than 3f ′ + 2 and a height of logarithmic in |V | (see376

[5]). Let f be the width of T . We will refer to G as the graph and T as the tree. We will377

refer to vertices in V as nodes and vertices in V ′ as bags. We will refer to edges in G as edges378

and edges in T as super-edges. Let T be rooted at an arbitrary bag r ∈ V ′. We use Tb to379

denote the subtree rooted at the bag b, V ′(Tb) to denote the bag set of Tb, and E′(Tb) to380

denote the super-edge set of Tb. Each node u ∈ V can appear in multiple bags of V ′, and381
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these bags form a subtree of T . To ensure that each point is covered only once, we consider382

the point as a token placed at the node. We place the token of a node at the bag closest to383

the root of T that contains the node. This bag is marked as the one containing the point.384

We further modify the tree to make sure that (i) only the leaf bags contain the tokens385

and (ii) each bag contains at most one token: for any bag A that violates these two rules,386

create two new bags B and C that are identical copies of A. Move one of the tokens from the387

original bag A to bag C and place any remaining tokens in bag B. Connect the children of388

the original bag A to the newly created bag B. Connect both bags B and C to A. Finally, we389

remove all leaf bags without any tokens. This process results in a binary tree decomposition390

with a height of O(logn). We call this tree decomposition with these properties the proper391

tree decomposition of the graph. For each point u ∈ V , we let Bu ∈ V ′ denote the bag392

that contains point u. For each C ⊆ V , let BC = {Bu : u ∈ C}.393

Consider a mapping p : V ′ → V ′ that maps each bag to its parent bag and maps r to394

itself. Let eb be the super-edge between b and p(b) in T . The edges (s, t) where s ∈ b and395

t ∈ p(b) are referred to as the bridge-edges with respect to the super-edge eb. We use the396

notation es,tb to refer to these edges. An edge between such vertices s ∈ b and t ∈ p(b) is397

added in G with a weight of d(s, t) if it does not already exist. For any pair of points u and398

v in V , one can verify that there exists a path between u ∈ Bu and v ∈ Bv in the tree T399

consisting only of bridge-edges over the super-edges which is equivalent to the shortest path400

between u and v in the graph. This path connects the bags Bu and Bv in T and only uses401

the bridge-edges over the super-edges of the unique path connecting these bags in the tree.402

The length of this path is equal to d(u, v), the distance between u and v in the graph G.403

This path is referred to as pB(u, v).404

For each bag b ∈ V ′, let V ′
b = ∪i∈V ′(Tb)bi denote the union of nodes in bags of V ′(Tb).405

For a tree decomposition T = (V ′, E′) and a subset of bags V̂ ⊆ V ′, we use δ(V̂ ) = {bi ∈ V̂ :406

bibj ∈ E′ & bj /∈ V̂ } to denote the border bags of V̂ . The proof of the following lemma is407

analogous to that of Lemma 5.408

▶ Lemma 10. Given a graph G = (V,E) of bounded treewidth, a proper tree decomposition409

T = (V ′, E′) of G, a set of points C ⊆ V , for any ν > 0, there exists a partition of V ′
410

into a set of groups Cν = {g1, . . . , gσ} such that all of the following properties hold: (i)411

The subgraph induced by each group g ∈ Cν is connected in T . (ii) For each group g ∈ Cν ,412

|g ∩BC | ∈ [1,max {1, ν|C|}]. (iii) σ = O(1/ν). (iv) ∀g ∈ Cν , |δ(g)| = O(1/ν).413

Let ν > 0. Consider a cluster C ⊆ V . Let Cν = {g1, . . . , gσ} be the groups obtained by414

Lemma 10. For each such cluster C and any constant ν > 0, we letHν(C) = ∪σi=1∪j∈δ(gi)bj de-415

note the border hubs of the cluster and costHν
(C) =

∑σ
i=1

∑σ
j=i+1

∑
u∈V (gi)∩C,v∈V (gj)∩C dHν (C)(u, v)416

be the ν-approximate cost of the cluster. Notice that for any two points u and v in C that417

belong to different groups of Cν , the path pB(u, v) passes through the hubs Hν(C), implying418

d(u, v) = dHν (C)(u, v). The proof of the following is analogous to that of Theorem 7.419

▶ Theorem 11. Given ϵ > 0, a (1 + ϵ)-approximation for k-MHC, will imply a (1 +O(ϵ))-420

approximation for k-MSC on bounded treewidth graphs.421

3.1 QPTAS for k-MHC on Graphs of Bounded Treewidth422

Given ν > 0 and a graph G(V,E) that has a proper decomposition tree T = (V ′, E′) with a423

logarithmic height and a treewidth of f . Let OPT be the minimum cost of partitioning V424

into k clusters C1, C2, · · · , Ck with the total cost being
∑k
i=1 costHν

(Ci). Given ϵ > 0, we425

will present a dynamic program that finds a (1 + ϵ) approximation of OPT . This, as a result426

of Theorem 11, leads to a (1 +O(ϵ)) approximation solution for the k-MSC problem.427
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Consider a cluster C ⊆ V . Let Cν = {g1, . . . , gσ} be the groups obtained by Lemma 10428

on C. We define a backbone tree associated with the cluster C. This tree is made up of429

O(1/ν) nodes that correspond to the groups of Cν and there are edges between the nodes430

in the tree if the corresponding groups in Cν are connected by a super-edge in the tree T .431

A cluster type is defined as a node-weighted backbone tree where each node in the tree is432

assigned a weight from the threshold values Φϵ,n (see Definition 8) which represents the433

number of points in the corresponding group rounded up to the nearest threshold value.434

For each cluster C and bag b in tree T , we associate a partial cluster type to it. This435

is represented by a triple (tc, γb, s⃗b) and includes: the type of the cluster, tc; the group of436

the cluster that has bag b, γb; and a vector s⃗b, where s⃗b[i] denotes the number of points in437

the ith group located in tree Tb. It is not hard to verify that the number of possible partial438

clusters is O(σσ−2 logσ(1+ϵ′) n) = O(( logn
ϵ )σ+1), where we fix σ = O(1/ν).439

We use ℓ ∈ {1, 2, . . . , O(( logn
ϵ )σ+1)} to refer to a specific partial cluster type. A partial440

cluster type ℓ with respect to a vertex b is considered valid if: the values of s⃗ℓv[i] for each441

group i of ℓ are between 0 and w⃗ℓ[i], the value of w⃗ℓ[i] for each group i of ℓ is less than or442

equal to max{ν.
∑
i′ w⃗

ℓ[i′], 1}, and if v is a leaf vertex of T , then γℓv is a leaf node of the443

backbone tree of ℓ. A partial cluster type ℓ is considered a leaf partial cluster type at a444

vertex b if γℓb is a leaf node of the backbone tree of ℓ and s⃗ℓb[γℓv] = 1.445

Consider a cluster C together with its groups Cν = {g1, . . . , gσ} and hubs Hν(C), and446

let ℓ be the type of this cluster with respect to bag b. Here, we explain how to compute447

the ν-approximate cost of the cluster, costHν (C). Let X = ∪σi=1Xi and Xi = {(u, v) : u ∈448

V (gi) v ∈ C \ V (gi)}. Let eb denote the super edge connecting b to its parent bag p(b) in T .449

We define load of a bridge-edge es,tb with respect to the cluster C, its groups Cν , and hubs450

Hν(C) to be the number of paths pB(u, v) that contain this edge over all {u, v} ∈ X. We451

use loadℓ(es,tb ) to represent the load of bridge-edge es,tb with respect to partial cluster type ℓ452

and bag b. Similarly, we use loadℓ(eb) to represent the load of super-edge eb with respect to453

partial cluster type ℓ and bag b.454

Similarly to the case of the tree, the load of the super-edge eb with respect to ℓ can be455

calculated using the following formula: loadℓ(eb) =
( ∑σ

i=1,i̸=γb
s⃗ℓb[i]

)
×

( ∑σ
i=1(w⃗ℓ[i] − s⃗ℓb[i])

)
+456

s⃗ℓb[γb] ×
( ∑σ

i/∈Γb
w⃗ℓ[i]

)
. Note that loadℓ(eb) computes the number of paths pHν (C)(u, v) in G457

that cross the cut-set (b, p(b)) for all pairs of points (u, v) in the set X.458

When computing the cost of a cluster type, it is necessary to take into account the load459

among the bridge-edges. However, the load of a bridge-edge cannot be calculated simply from460

the sizes and weights of the groups within the cluster, unlike the load of the super-edges.461

To address this issue, for each partial cluster type ℓ and each b, we have defined a vector462

ψℓb with a dimension of f2 (where f is the treewidth of the graph), that ψℓb[e
s,t
b ] specifies the463

load of each bridge-edge es,tb with respect to ℓ. One can now compute the cost of a partial464

cluster ℓ at bag b, denoted by costℓb, recursively as follows. For the base case, costℓb = 0, if465

b is a leaf bag. For the recurrence, costℓb = costℓb1
+ costℓb2

+
∑

{s,t}∈b1×b ψ
ℓ
b1

(eb1
s,t)w(eb1

s,t) +466 ∑
{s,t}∈b2×b ψ

ℓ
b2

(eb2
s,t)w(eb2

s,t), where b1, b2 are children of b.467

We could attach ψℓb (with a dimension of f2 which approximately stores the flow of the468

bridge edges) to the vectores we store for each cluster type ℓ to obtain a QPTAS for the469

problem on graphs with bounded treewidth. However, this QPTAS cannot be extended to470

include graphs with bounded highway dimension or graphs with bounded doubling dimensions471

(as f becomes logarithmic in these cases). To address this issue, in the next section we472

propose that at each bag v, it is sufficient to store information about the total flow of the473

partial clusters that passes through the bridge edges, in addition to the information about474

the type of partial cluster covering the points within the subtree. This eliminates the need475
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to separately store the flow of each partial cluster.476

Dynamic program477

The Dynamic Program (DP) traverses T starting at the leaves and moving upward and478

considers all ways partial clusters can be made. At each bag b, a configuration < b,Pb, ψb >479

is defined. In this configuration, Pb specifies the number of partial clusters of each type480

covering points within Tb, and ψb specifies the total load for each bridge-edge over all the481

partial cluster types ℓ specified in Pb; namely, ψb =
∑
ℓ Pb[ℓ].ψℓb.482

Valid Configuration. The validity check of a configuration involves ensuring the483

feasibility of the load distributions among partial clusters. For a given bag b and configuration484

(Pb, ψb), we can use the loads of super edges to get the total loads crossing b: Ψb =485 ∑
ℓ Pb[ℓ]loadℓ(eb). We say the configuration (Pb, ψb) is valid if the following holds: ϕ(Ψb) =486

ϕ

(∑
eb

s,t∈b×p(b) ψ[ebs,t]
)

; this is, the total load of the partial clusters crossing super-edge eb487

(this can be obtained via Pb as described in the previous section) must be equal to the total488

load of the partial clusters crossing all the bridge-edges with respect to the super-edge eb.489

Note that when b is a leaf, this condition implies that, ϕ(
∑
eb

s,t∈b×p(b) ψ[ebs,t]) = ϕ(
∑
i w[i]−1).490

Assume for now that we have access to an inner table φ[(P, ψ), (P1, ψ1), (P2, ψ2)] that for491

every combination of configurations of (P, ψ) on b and (P1, ψ1), (P2, ψ2) on its children, b1, b2,492

indicates whether they are consistent or not. The representation of ⊥ is used to indicate the493

empty configurations for handling the cases when b is a leaf or has one child.494

Let A[b,Pb, ψb] be the minimum cost solution for subproblem < b,Pb, ψb > in which495

points in V ′
b are covered by a set of partial clusters whose types (and loads) are consistent496

with the configuration Pb, ψb (recall that V ′
b = ∪i∈Tb

bi).497

We will compute the subproblems A[b,Pb, ψb] in a bottom-up manner:498

Base Case. For each leaf vertex b: A[b,Pb, ψb] = 0 if φ[(Pb, ψb),⊥,⊥] = True and499

otherwise it is ∞.500

Recurrence. For each internal vertex b and its children, b1, b2:501

A[b,Pb, ψb] = min
φ[(Pb,ψb),(Pb1 ,ψb1 ),(Pb2 ,ψb2 )]=True

{ ∑
i=1,2

(
A[bi,Pbi

, ψbi
] +

∑
{s,t}∈bi×b

ψb[ebi
s,t]w(ebi

s,t)
)}

502

The case of b having one child is similar. The final solution is obtained by finding the503

minimum value of A[b,Pb, ψb] over all valid configurations < Pb, ψb > such that the sum of504

all Pb[ℓ] values equals k.505

Consistency Constraints506

Consider a bag b and its two children b1 and b2. Let < Pb, ψb >, < Pb1 , ψb1 >, and <507

Pb2 , ψb2 > be some configurations at b, b1, and b2, respectively. To check the consistency of508

them, there are two steps to follow: (1) verify the feasibility of partial cluster types; if the509

types of the partial clusters in Pb match those in Pb1 and Pb2 . (2) ensure the feasibility of load510

distributions; if the load distribution of the clusters in ψb aligns with the load distributions of511

the clusters in ψb1 and ψb2 . If these two conditions are met, φ[(Pb, ψb), (Pb1 , ψb1), (Pb2 , ψb2)]512

will be set to True. Otherwise, it will be set to False.513

514

Feasibility of Partial Cluster Types. Here we check if there is a solution where the515

descriptions of partial clusters below nodes b, b1, and b2 match the configurations Pb, Pb1 ,516

and Pb2 , respectively. This step guarantees that the final clustering covers all the points and517
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is therefore a valid solution. This check is very similar to the consistency verification we518

performed in the case of the tree. There are three cases, depending on whether b is a leaf, a519

bag with one child, or a bag with two children:520

when b is a leaf: Pb[ℓ] = 1 must hold for some ℓ, where ℓ is a leaf partial cluster at b.521

when b has one child, say bag b1: since there is no point (token) on internal bags, b and b1522

must belong to the same group. In this case, we must ensure the following: tb = tb1 (type523

consistency); γb = γb1 , δ
in
b = δinb1

(group consistency); and s⃗b = s⃗b1 (size consistency).524

when b has two children, b1, b2. Let P = (tc, γb, s⃗b), P1 = (tc1 , γb1 , s⃗b1), P2 = (tc2 , γv2 , s⃗b2)525

be considered partial cluster types at b, b1, b2, respectively. Note that the type of a cluster526

is made up of backbone tree tb and weights w⃗. Recall that similar to trees, δ({γb}) stands527

for the adjacent bags of γb and δinb stands for the adjacent bags of γb inside Tb. We say528

the partial cluster type P (with respect to Tb) is consistent with the two partial clusters529

P1 and P2 (with respect to Tb1 and Tb2 , respectively) if the following holds: (i) (type530

consistency) tc = tc1 = tc2 . (ii)(group consistency) If γb = γb1 = γb2 , then we ensure531

that δinb1
∪ δinb2

= δinb and δinb1
∩ δinb2

= ∅. If γb = γb1 and γb2 ∈ δinb , then we ensure that532

δinb1
= δinb \ {γb2} and δinb2

= δ({γb2}) \ {γb}. If γb = γb2 and γb1 ∈ δinb , then we ensure that533

δinb2
= δinb \ {γb1} and δinb1

= δ({γb1}) \ {γb}. (iii) (size consistency) If γb = γb1 = γb2 , then534

we ensure that ϕ
(
s⃗b1 [γb1 ] + s⃗b2 [γb2 ]

)
= s⃗b[γb]. If γb = γb1 and γb2 ∈ δinb , then we ensure535

that s⃗b2 [γb2 ] = w[γb2 ] and s⃗b1 [γb1 ] = s⃗b[γb]. If γb = γb2 and γb1 ∈ δinb , then we ensure536

that s⃗b1 [γb1 ] = w[γb1 ] and s⃗b2 [γb2 ] = s⃗b[γb].537

For every combination of configurations on b and its children, b1, b2, λ[Pb,Pb1 ,Pb2 ] is538

computed recursively as below. For the base case λ[⃗0, 0⃗, 0⃗] = True. For the recurrence, we539

consider all possible consistent partial cluster types Pb, Pb1 and Pb2540

λ[Pb,Pb1 ,Pb2 ] =
∨

∀ consistent Pb,Pv1 ,Pv2

λ[Pb − Pb,Pb1 − Pb1 ,Pb2 − Pb1 ]541

where Pb − Pb indicates the configuration of Pb with one less partial cluster of type Pb.542

543

Feasibility of Load Distributions. This ensures that the sum of all flows through544

the bridge edges into bag b and the sum of all flows out of it are consistent, and that the545

flow originates only from points that have tokens. This confirms the accuracy of the solution546

cost calculated using these bridge-edge load distributions. There are three cases, depending547

on whether b is a leaf, a bag with one child, or a bag with two children:548

when b is a leaf. Suppose y ∈ b is the only point of bag b, we must ensure that:549

∀st : s ∈ b, t ∈ p(b), s ̸= y, ψ[ebs,t] = 0550

when b has one child, say b1. Loads of configurations ψb, ψb1 are consistent if and only if,551

for each vertex of b, the load coming from b1 into each vertex of b is equal to the load552

going upwards, formulated as following: ∀t ∈ b.
∑
s∈b1

ψ[eb1
s,t] =

∑
u∈p(b) ψ[ebt,u]553

when b has two children, b1, b2. For each t ∈ b let Lt be
∑
s∈b1

ψ[eb1
s,t], Rt be

∑
s∈b1

ψ[eb2
s,t],554

Ut be
∑
s∈p(b) ψ[ebt,s]. Load vectors of configurations ψb, ψb1 , ψb2 are consistent if and555

only if for each u ∈ bb one of the following constraints must hold: Lb + Rb = Ub or556

|Lb −Rb| = Ub.557

Proof of Theorem 1. There are O(( logn
ϵ )σ+1) possible partial clusters, so the number of558

subproblem configurations, Pb, at bag b is nO(( log n
ϵ )σ+1). The number of the possible values559

for ψ, is nf2 , resulting in a number of DP table entries of nO(f2+( log n
ϵ )σ+1).560

Deciding configurations (Pb, ψb), (Pvb
, ψb1), (Pb2 , ψb2) are consistent requires iterating over561

all consistent configurations which are at most equal nO(f2+( log n
ϵ )σ+1). Therefore the running562
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time is nO(f2+( log n
ϵ )σ+1), which is quasi-polynomial in n. Notice that even if treewidth is563

poly-logarithmic, the running time stays quasi-polynomial.564

We lose a factor of (1 + ϵ/ logn) when computing A[b,Pb] at each level of recursion. Since565

the height of the tree is at most c logn, the approximation factor of the solution is 1 + ϵ. ◀566

4 Bounded Doubling, Highway Dimension, and Minor-Free Metrics567

We assume that the aspect ratio of a given metric in a k-MSC instance is polynomially568

bounded (the details are omitted). We use our QPTAS for k-MSC on graphs with bounded569

treewidth as a black box and combine it with embeddings into polylogarithmic-treewidth570

graphs [7, 10, 14] to develop QPTASs for k-MSC on metric spaces with bounded doubling571

dimension2, bounded highway dimension, and minor-free metrics. The details are omitted in572

this version of the paper.573
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