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Abstra
t

In 1976 Steinberg 
onje
tured that every planar graph without 4- and 5-
y
les is 3-
olorable.

Borodin and independently Sanders and Zhao showed that every planar graph without any 
y
le of

size in f4; 5; : : : ; 9g is 3-
olorable. We improve this result by showing that every planar graph without

any 
y
le of size in f4; 5; : : : ; 8g is 3-
olorable. Our proof yields an O(n

2

) time algorithm for �nding

a 3-
oloring for these graphs.

1 Introdu
tion

Almost two de
ades before the Four Color Theorem was proved, in 1959, Gr�ots
h [5℄ showed that every

planar graph without 3-
y
les is 3-
olorable. In 1976, Steinberg [2, 8℄ 
onje
tured that every planar

graph without 4- and 5-
y
les is 3-
olorable. Both 4- and 5-
y
les must be ex
luded. In fa
t there is

an in�nite family of 4-
riti
al planar graphs that have only four 4-
y
les and no 5-
y
les, and there is

an in�nite family of 4-
riti
al planar graphs that have no 4-
y
les and have only six 5-
y
les [1℄. An

equivalent formulation of this 
onje
ture is that every 4-
hromati
 planar graph has a 4- or 5-
y
le.

This problem is also dis
ussed in the monograph by Jensen and Toft [6℄ (problem 2.9).

In 1991, Erd�os relaxed the 
onje
ture of Steinberg by asking if there exists an integer k � 5 su
h that

every planar graph without 
y
les of size i, for 4 � i � k, is 3-
olorable. An answer to the question of

Erd�os (and therefore a partial answer to the 
onje
ture of Steinberg) was obtained by Abbott and Zhou

[1℄, who showed that k = 11 is suitable, i.e any planar graph without i-
y
les, 4 � i � 11, is 3-
olorable.

Borodin [3℄ improved this result to k = 10. The best known answer to this question, whi
h states that

k = 9 is suitable, is due to Borodin [4℄ and independently to Sanders and Zhao [7℄.

Let G

8

be the 
lass of planar graphs without 
y
les of size in f4; : : : ; 8g. The main result of this

paper is:

Theorem 1.1 Any graph in G

8

is 3-
olorable.

Our proof also implies an O(n

2

) time algorithm for �nding a 3-
oloring of these planar graphs. We

use the Dis
harging Method to prove Theorem 1.1. The general steps of our proof are similar to the

other known proofs based on this method. By way of 
ontradi
tion, we assume that the theorem is not

true and among the graphs that are 
ounter-examples to it we sele
t one, 
all it G, that has minimum

size. We prove some stru
tural properties for this graph. These properties are des
ribed in terms of

�

Supported by Resear
h Assistantship, Department of Computer S
ien
e, University of Toronto.

1



redu
ible 
on�gurations. A set of verti
es and/or edges is 
alled a redu
ible 
on�guration if its existen
e

in G guarantees the existen
e of a smaller 
ounter-example to Theorem 1.1. By this de�nition, G 
annot

have any redu
ible 
on�gurations. Then we pro
eed by showing that G must have at least one of these


on�gurations, whi
h is an obvious 
ontradi
tion. To prove this part we use the dis
harging method.

One key idea in the proof of Theorem 1.1 is as follows. To prove the redu
ibility of (some of) the


on�gurations, we modify the 
on�guration by removing some verti
es and edges and by adding smaller

number of verti
es and edges, whi
h will be 
alled the \gadget". This modi�
ation is designed 
arefully

so that it enfor
es some properties that we need, without 
reating any i-
y
les, 4 � i � 8. Therefore

the new graph will be in G

8

and, sin
e the original graph was a minimum 
ounter-example, there must

be a 3-
oloring of this new graph. Then using the properties of the gadget we have added, we show

that how this 3-
oloring 
an be extended to a 3-
oloring of the original graph. As we had assumed that

the original graph is a 
ounter-example to the theorem, this proves the redu
ibility of the 
on�guration.

These arguments will be 
lari�ed in se
tion 3.

The total number of redu
ible 
on�gurations

1

is 74. We provide hand-
he
kable proofs for the

(non-similar) 
on�gurations. We have also veri�ed the redu
ibility of all the 
on�gurations using a

simple and short 
omputer program, whi
h is available to the publi
 to examine. The list of all 74


on�gurations is in Appendix A. The organization of the paper is as follows. The next se
tion 
ontains

some preliminary de�nitions and notations. A hand-
he
kable proof of the redu
ible 
on�gurations

is provided in se
tion 3. The reader who is not interested in 
he
king these 
on�gurations by hand

may skip the proofs of Lemmas 3.2 to 3.13. Instead, he/she may �nd the program and the list of

all redu
ible 
on�gurations at the URL http://www.
s.toronto.edu/~mreza/3-
olor/index.html

in ele
troni
 form. Se
tion 4 
ontains the dis
harging rules whi
h also 
ompletes the proof of Theorem

1.1. There are only 7 dis
harging rules and they 
an be easily 
he
ked by hand. In se
tion 5 we des
ribe

a quadrati
 time algorithm to �nd a 3-
oloring. Finally, in se
tion 6 we explain how the program for


he
king the redu
ibility of the 
on�gurations works.

2 Preliminaries

All graphs we 
onsider are simple and �nite. We denote the vertex set of a graph G by V (G) and denote

its edge set by E(G). A k-vertex, �k-vertex, or �k-vertex, is a vertex whi
h is in
ident with exa
tly k,

at most k, or at least k edges, respe
tively. The notions of a k-fa
e, �k-fa
e, and a �k-fa
e are de�ned

similarly.

A 3-vertex is 
alled a simple vertex if none of its in
ident fa
es is a triangle. A 3-vertex in
ident with

a triangle is 
alled a bad vertex. A 4-vertex in
ident with exa
tly zero, one, or two triangles is 
alled a

type 0, a type 1, or a type 2 vertex, respe
tively. Note that every 4-vertex is one of these types, sin
e G

does not have any 4-
y
le.

Let f be a 9-fa
e whi
h has eight bad verti
es. Then f is 
alled a simple, a type 0, a type 1, a type

2, or a type 5 fa
e, if the ninth vertex of f is a simple, a type 0, a type 1, a type 2, or a 5-vertex,

respe
tively. A semi-simple fa
e is a 9-fa
e having seven bad verti
es and a type 1 vertex, whose ninth

vertex is simple. Similarly, a semi-type 0, a semi-type 1, or a semi-type 2 fa
e is a 9-fa
e having seven

bad verti
es and a type 1 vertex, whose ninth vertex is type 0, type 1, or type 2, respe
tively. (see

Figure 1 for some examples)

Let f

1

be a semi-type 0 fa
e whose verti
es are v

1

; v

2

; : : : ; v

9

, where v

1

is the type 0 vertex. Suppose

1

In fa
t, the number of redu
ible 
on�gurations is around 66 as the redu
ibility of some of them follows from the other

ones. But the proof be
omes mu
h easier when based on 74 
on�gurations.
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Figure 1: (a) A simple fa
e, (b) a semi-type 0 fa
e, (
) a semi-type 1 fa
e, (d) a semi-type 2 fa
e

that f

2

is a type 0 fa
e whose type 0 vertex is v

1

. If v

i

is the type 1 vertex of f

1

, for some 3 � i � 8,

and f

3

is a semi-simple fa
e whose type 1 vertex is v

i

, then we 
all this 
on�guration a \simple triple

stru
ture". If f

3

is a type 1 fa
e whose whose type 1 vertex is v

i

, then we 
all this 
on�guration a

\triple stru
ture of kind 1". Finally, if f

3

is a semi-type 2 fa
e, then we 
all this 
on�guration a \triple

stru
ture of kind 2". See Figures 15(A1) and 17 for some sample graphs.

3 Redu
ible Con�gurations

From now on we assume that G is a minimum 
ounter-example to Theorem 1.1. Trivially G is a


onne
ted graph. The �rst and the easiest redu
ible 
on�guration is a �2-vertex, whi
h implies that

the minimum vertex degree of G is 3. Otherwise, let v be a �2-vertex. It is easy to see that G� v 2 G

8

,

and sin
e G is a minimum 
ounter-example, we 
an 3-
olor G� v and then assign to v a 
olor di�erent

from its (at most) two neighbors to get a 3-
oloring of G.

The next redu
ible 
on�guration is des
ribed in the following lemma. Although this is already proved

in [7℄, we prove it here again for the sake of independen
e.

Lemma 3.1 A 2k-fa
e having (at least) 2k � 1 bad verti
es is redu
ible.

Proof: Assume that f is a 2k-fa
e whose verti
es are v

1

; : : : ; v

2k

, where v

1

; : : : ; v

2k�1

are bad verti
es

and v

2i�1

and v

2i

are in
ident with a triangle, 1 � i � k. By minimality of G there is a 3-
oloring of

G � (v

1

; v

2k

), 
alled C. Sin
e G is not 3-
olorable, C(v

1

) = C(v

2k

), whi
h without loss of generality,

we assume both are 1. We 
laim C(v

3

) = 1, otherwise we 
ould ex
hange C(v

1

) with C(v

2

) and get a

3-
oloring of G, whi
h would be an obvious 
ontradi
tion. Using similar argument, we 
an show that

C(v

5

) = 1, and in general by indu
tion, one 
an easily prove that C(v

2i+1

) = 1, for i = 0; 1; : : : ; k � 1.

But C(v

2k�1

) 
annot be equal to 1, as it is adja
ent to v

2k

and C(v

2k

) = 1. This 
ontradi
tion 
ompletes

the proof.

Lemma 3.2 A simple fa
e is redu
ible.

Proof: Suppose that f is a simple fa
e. Let's denote the bad verti
es of f by v

1

; v

2

; : : : ; v

8

, in 
lo
kwise

order, and 
all its simple vertex v

9

. We denote the vertex adja
ent to both v

2i�1

and v

2i

by w

i

, 1 � i � 4.

The third neighbor of v

9

is 
alled w

5

. (see Figure 2(a)). We modify G in the following way: remove all

v

1

; v

2

; : : : ; v

9

and their in
ident edges from G. Then add six new verti
es u

1

; u

2

; : : : ; u

6

. Make u

1

; u

2

; u

3

3
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Figure 2: A simple fa
e and the gadget added

and u

4

; u

5

; u

6

two triangles and add the following edges: u

1

w

1

, u

2

w

2

, u

4

w

3

, u

5

w

4

, u

3

u

6

. (see Figure

2(b)).

Call this graph G

0

and the new verti
es and edges the gadget. Clearly G

0

is planar and it is straight-

forward to verify that the pairwise distan
es of w

1

; : : : ; w

5

in G

0

using only the verti
es and the edges of

the gadget is not less than their 
orresponding distan
es in G using only the verti
es and the edges that

are removed. So G

0

2 G

8

. Sin
e the number of verti
es of G

0

is smaller than those of G, therefore by

minimality of G, there is a 3-
oloring of G

0

whi
h we 
all it C. A very useful property of the gadget is

that w

1

; : : : ; w

4


annot have all the same 
olor in C. We 
an easily prove this by 
ontradi
tion. Assume

that they all have got the same 
olor, say 1. Therefore, u

1

; u

2

; u

4

; and u

5

are all di�erent from 1. Sin
e

u

1

; u

2

; u

3

and u

4

; u

5

; u

6

are triangles and we are using only three 
olors in C, both u

3

and u

6

(that are

adja
ent) should have been 
olored 1, whi
h is impossible.

Consider 
oloring C indu
ed on G� fv

1

; : : : ; v

9

g. The only 
olored neighbor of v

9

is w

5

. So we 
an

extend C to v

9

by assigning a 
olor to it di�erent from C(w

5

). Now the only two 
olored neighbors of

v

8

are w

4

and v

9

, so there is a 
olor available for v

8

. Using the same argument we 
an extend C by


oloring v

7

; v

6

; : : : ; v

2

, greedily. By the time we get to v

1

this greedy algorithm will assign a 
olor to v

1

di�erent from C(v

2

) and C(w

1

). But sin
e G is not 3-
olorable, C(v

1

) must be equal to C(v

9

). Without

loss of generality assume that C(v

1

) = C(v

9

) = 1. We 
ould ex
hange C(v

1

) and C(v

2

) to resolve the


on
i
t between C(v

1

) and C(v

9

), unless C(v

3

) = 1. So assume that C(v

3

) = 1. Similarly, we 
ould

ex
hange C(v

3

) and C(v

4

) to make C(v

3

) 6= 1, unless C(v

5

) = 1. So we must have C(v

5

) = 1. By the

same argument we 
an show that C(v

7

) = 1.

Note: We have already used this te
hnique in the proof of Lemma 3.1, and will use it frequently in

the proofs of other lemmas. We 
all this argument the \
haining argument".

On the other hand, without loss of generality, we 
an assume that C(w

5

) = 2. Now if C(v

8

) = 2

then we 
ould simply assign C(v

9

) = 3 and resolve the 
on
i
t between C(v

9

) and C(v

1

). Therefore

C(v

8

) = 3 and C(w

4

) = 2. If C(v

6

) 6= 3 then we 
ould simply ex
hange C(v

7

) with C(v

8

) and set

C(v

9

) = 3. Therefore C(v

6

) = 3 and C(w

3

) = 2. Using the same argument C(v

4

) = C(v

2

) = 3 and

C(w

2

) = C(w

1

) = 2. But this means that all w

1

; : : : ; w

4

have the same 
olor in C, a 
ontradi
tion.

The general idea of the proof of the other 
on�gurations is basi
ally the same as above. In most of

them we need to forbid some of the verti
es from all having the same 
olor. To do this, we remove some

verti
es and edges and add a gadget whose stru
ture is similar to the one in the previous lemma. In all

the 
ases the new graph does not have any i-
y
les, for 4 � i � 8, and is a smaller graph, therefore it

is 3-
olorable. Then we show that this 3-
oloring indu
ed on the original graph (whi
h will be a partial

4
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Figure 3: A type 2 fa
e and the gadget added

3-
oloring) 
an be extended to a 3-
oloring of the whole graph, 
ontradi
ting the assumption on G.

This shows that the 
on�guration is redu
ible.

Lemma 3.3 A type 2 fa
e is redu
ible.

Proof: Suppose that f is a type 2 fa
e. Let's denote the bad verti
es of f by v

1

; v

2

; : : : ; v

8

, in 
lo
kwise

order, and 
all its type 2 vertex v

9

. We denote the vertex adja
ent to both v

2i

and v

2i+1

by w

i

, 1 � i � 4.

The 
ommon neighbor of v

9

and v

1

is w

5

.(see Figure 3(a)). We modify G in a way similar to that of

Lemma 3.2: remove v

1

; : : : ; v

9

and add a gadget similar to that of Lemma 3.2 by 
reating triangles

u

1

; u

2

; u

3

and u

4

; u

5

; u

6

, and adding u

1

w

5

, u

2

w

1

, u

4

w

2

, u

5

w

3

, and u

3

u

6

. (see Figure 3(b)).

It is straightforward to verify that the new graph G

0

is in G

8

. By minimality of G, there exists

a 3-
oloring of G

0

, say C. Note that by the same argument as we had in Lemma 3.2 we 
annot

have all w

5

; w

1

; w

2

; w

3


olored with the same 
olor in C. Consider C indu
ed on G. Sin
e the only


olored neighbors of v

9

are w

4

and w

5

, we 
an extend C to v

9

. Assign a 
olor di�erent from C(v

9

)

and C(w

5

) to v

1

. Also, starting from v

8

and moving around f towards v

2

in 
ounter
lo
kwise order,

we 
an extend C by 
oloring v

8

; : : : ; v

3

greedily. Using this greedy algorithm, v

2

will get the same


olor as v

1

, say 1, sin
e G is not 3-
olorable. By the 
haining argument similar to the one we had in

Lemma 3.2, C(v

4

) = C(v

6

) = C(v

8

) = 1. Without loss of generality we assume C(v

9

) = 2 whi
h yields

C(w

4

) = C(w

5

) = 3. If C(v

7

) 6= 2 then we 
ould set C(v

8

) = 2, C(v

9

) = 1, and C(v

1

) = 2 and get a

3-
oloring of G. So C(v

7

) = 2 and C(w

3

) = 3. By the 
haining argument C(v

5

) = C(v

3

) = 2. This

means that C(w

1

) = C(w

2

) = C(w

3

) = C(w

5

) = 3, whi
h is a 
ontradi
tion.

Lemma 3.4 Two type 0 fa
es sharing a type 0 vertex is redu
ible.

Proof: Suppose that f

1

and f

2

are two type 0 fa
es sharing a type 0 vertex. There are two possibilities.

We 
onsider ea
h 
ase separately:

Con�guration of Figure 4(a): First we remove v

1

; : : : ; v

9

and u

2

; : : : ; u

8

and all the in
ident edges.

Then add four new triangles and 
onne
t them together and to the rest of the verti
es of G as in Figure

4(b). Call this new graph G

0

. It is straightforward to verify that: (i) G

0

2 G

8

(ii) be
ause of minimality

of G there is a 3-
oloring of G

0

, say C, and (iii) w

1

; : : : ; w

6


annot all have the same 
olor in C.

Now 
onsider this 3-
oloring indu
ed on G. We 
an extend C to v

1

easily, sin
e only one neighbor

of v

1

, whi
h is u

1

, is 
olored. Similarly, we 
an extend C by 
oloring v

9

; : : : ; v

3

greedily. Also, starting

from u

2

and moving around f

2

in 
lo
kwise order, we 
an 
olor u

3

; : : : ; u

8

, greedily. Now assign a

5
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olor di�erent from C(v

3

) and C(u

8

) to v

2

, whi
h will be equal to C(v

1

). Without loss of generality,

assume that C(v

1

) = C(v

2

) = 1. By the 
haining argument starting from v

2

and going around f

1

:

C(v

4

) = C(v

6

) = C(v

8

) = 1. Similarly, by the same argument for the verti
es around f

2

: C(u

7

) =

C(u

5

) = C(u

3

) = 1.

Without loss of generality assume C(u

1

) = 3. Suppose that C(u

2

) = 3. First ex
hange C(v

3

) with

C(u

8

) (if needed) so that C(v

3

) 6= C(v

5

). Now ex
hange C(v

9

) with C(v

8

), C(v

7

) with C(v

6

), and C(v

5

)

with C(v

4

), and set C(v

1

) = 2. This gives a 3-
oloring of G whi
h is a 
ontradi
tion. Thus C(u

2

) = 2

and by the 
haining argument C(u

4

) = C(u

6

) = C(u

8

) = 2. Using exa
tly the same argument we 
an

show that C(v

9

) = 2 and by the 
haining argument C(v

7

) = C(v

5

) = 2. But this means that w

1

; : : : ; w

6

all have 
olor 3 in C, 
ontradi
ting property (iii) mentioned for C.

Con�guration of Figure 5(a): First remove v

1

; : : : ; v

9

and u

1

; : : : ; u

8

and all the in
ident edges. Then

add four new triangles and 
onne
t them together and to the rest of the verti
es of G as in Figure

5(b). Call this new graph G

0

. Again, it is straightforward to verify that: (i) G

0

2 G

8

, (ii) be
ause of

minimality of G there is a 3-
oloring of G

0

, say C, (iii) w

1

; : : : ; w

4


annot all have the same 
olor in C.

Similarly, t

1

; : : : ; t

4


annot all have the same 
olor in C.

Now 
onsider this 3-
oloring indu
ed on G. We extend C by 
oloring the un
olored verti
es of G

greedily in the following order: u

8

; u

7

; : : : ; u

1

; v

1

; v

9

; v

8

; : : : ; v

3

, sin
e at ea
h step there are at most two


olors in the neighborhood of the vertex we want to 
olor. We 
an also assign a 
olor di�erent from

C(w

1

) and C(v

3

) to v

2

. By de�nition of G, C(v

1

) = C(v

2

), whi
h we 
an assume is equal to 1. By the


haining argument C(v

4

) = C(v

6

) = C(v

8

) = 1.

Without loss of generality, assume that C(v

9

) = 3. We ex
hange C(v

9

) with C(v

8

). If C(v

7

) = 3

ex
hange C(v

7

) with C(v

6

) and then if C(v

5

) = 3 ex
hange C(v

5

) with C(v

4

). In this 
ase C(v

3

) 
annot

be 3, otherwise all w

1

; : : : ; w

4

have 
olor 2, 
ontradi
ting (iii). Note that now C(v

9

) = C(v

1

) = C(v

2

) =

1. If C(u

1

) = C(u

8

) then there are only two 
olors in the neighborhood of v

1

and so we 
an assign a

di�erent 
olor to it and get a 3-
oloring of G. So let's assume that C(u

1

) = 2 and C(u

8

) = 3 (the other


ase is symmetri
). Sin
e C(u

7

) is either 1 or 2, if we 
ould ex
hange C(u

8

) with C(u

7

) then there would

be only two 
olors in the neighborhood of v

1

and we 
ould use the same argument as mentioned above to

extend C to G. Therefore, C(u

6

) = 3. Similarly, by the 
haining argument, C(u

4

) = C(u

2

) = 3. Using

6
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w
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w
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Figure 5: Two type 0 fa
es sharing a type 0 vertex

the same argument and starting from C(u

1

) we 
an show that C(u

1

) = C(u

3

) = C(u

5

) = C(u

7

) = 2.

But this yields C(t

1

) = C(t

2

) = C(t

3

) = C(t

4

) = 1, whi
h again is a 
ontradi
tion.

Lemma 3.5 Three type 5 fa
es sharing a 5-vertex is redu
ible.

Proof: There are two possible non-symmetri
 
on�gurations, whi
h are shown in Figures 6(a) and 7(a).

We 
onsider ea
h 
ase separately:

v1

1
w 2w

3w

4
w

v4

v5
v6

v7

v8

v1
2vv9

v3

u1

u2
u3

u4

u5

u6
u7

1t

t2
t3

t4

5t

1
w 2w

3w

4
w

u8 u8

8
w

w

w

5
w

7

6

(a) (b)

t7
6t

8
w

7
w

6
w

5
w

Figure 6: Three type 5 fa
es sharing a 5-vertex

Con�guration of Figure 6(a): First we remove u

1

; : : : ; u

7

, v

2

; : : : ; v

9

, t

1

; : : : ; t

7

, and all the in
ident

edges. Then add six new triangles and 
onne
t them together and to the rest of the verti
es of G as

in Figure 6(b). Call this new graph G

0

. Again, it is straightforward to verify that: (i) G

0

2 G

8

, (ii)

7



be
ause of minimality of G there is a 3-
oloring of G

0

, say C, and (iii) w

1

; : : : ; w

8


annot all have the

same 
olor in C.

Consider this 3-
oloring indu
ed on G. We extend C by 
oloring the un
olored verti
es of G greedily

in the following order: t

1

; t

2

; : : : ; t

7

; v

9

; v

8

; : : : ; v

2

; u

7

; u

6

; : : : ; u

2

, sin
e at ea
h step there are at most two


olors in the neighborhood of the vertex we want to 
olor. We also assign a 
olor di�erent from C(u

2

)

and C(w

1

) to u

1

. Sin
e G is not 3-
olorable, C(u

1

) = C(v

1

), whi
h we 
an assume is equal to 1. By

the 
haining argument, C(u

3

) = 1, and also all u

5

; u

7

; v

4

; v

6

; v

8

; t

6

; t

4

; and t

2

must have been 
olored 1.

First we show that C(t

1

) 6= C(u

8

). Assume that they are both equal, say 2. We 
an ex
hange C(t

7

)

with C(v

9

) (if needed) so that C(v

9

) = 2, too. Similarly, we 
an ex
hange C(v

2

) with C(v

3

) if needed

to set C(v

2

) = 2. Then we 
an set C(v

1

) = 3 and get a 3-
oloring of G.

So we 
an assume that C(t

1

) = 3 and C(u

8

) = 2. If we 
ould ex
hange C(t

1

) with C(t

2

) by an

argument similar to the previous 
ase, we 
an set C(v

9

) = C(v

2

) = 2 and set C(v

1

) = 3. This shows

that we 
annot ex
hange C(t

1

) with C(t

2

), be
ause C(t

3

) = 3. By the 
haining argument C(t

5

) = 3,

too. Now, if C(v

7

) = 2 then we 
ould set C(v

8

) = 3, C(v

9

) = 1, C(t

7

) = 2, and ex
hange C(t

6

) with

C(t

5

), C(t

4

) with C(t

3

), and C(t

2

) with C(t

1

), and set C(v

1

) = 3. This shows that C(v

7

) = 3. By the


haining argument C(v

5

) = 3, and by a similar argument we 
an show that C(u

6

) = C(u

4

) = C(u

2

) = 3.

All these shows that w

1

; : : : ; w

8

are all 
olored with 2 whi
h is 
ontradi
ting property (iii) mentioned

above for C.
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w
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Figure 7: Three type 5 fa
es sharing a 5-vertex

Con�guration of Figure 7(a): First remove v

1

; : : : ; v

9

; t

1

; : : : ; t

8

; u

1

; : : : ; u

7

and all the in
ident edges.

Then add six new triangles and 
onne
t them together and to the rest of the verti
es of G as in Figure

7(b). Call this new graph G

0

. It is straightforward to verify that: (i) G

0

2 G

8

, (ii) be
ause of minimality

of G there is a 3-
oloring of G

0

, say C, and (iii) w

1

; : : : ; w

6


annot all have the same 
olor in C. Also,

w

7

; : : : ; w

10


annot all have the same 
olor in C.

Consider this 3-
oloring indu
ed on G. We extend C by 
oloring the un
olored verti
es of G greedily

in the following order: t

8

; t

7

; : : : ; t

1

; v

1

; v

9

; v

8

; : : : ; v

2

; u

7

; u

6

; : : : ; u

2

, sin
e at ea
h step there are at most

two 
olors in the neighborhood of the vertex we want to 
olor. We also assign a 
olor di�erent from

C(u

2

) and C(w

1

) to u

1

. Sin
e G is not 3-
olorable, C(u

1

) = C(v

1

), whi
h we 
an assume is equal to 1.

By the 
haining argument, C(u

3

) = 1 = C(u

5

) = C(u

7

) = C(v

4

) = C(v

6

) = C(v

8

).

8



First we show that C(t

1

) 6= C(t

8

). By 
ontradi
tion assume that they are equal to 2. So C(v

9

) = 3,

otherwise we 
ould simply set C(v

1

) = 3 and ex
hange C(v

2

) with C(v

3

) if needed. By the 
haining

argument C(v

7

) = C(v

5

) = 3. By the jumping and 
haining arguments, C(u

6

) = 3 = C(u

4

) = C(u

2

).

But this requires that all w

1

; : : : ; w

6

be 
olored 2, whi
h is 
ontradi
ting property (iii) mentioned above.

So we 
an assume that C(t

1

) = 2 and C(t

8

) = 3. If we 
ould ex
hange C(t

8

) with C(t

7

) then we


ould use the same argument as in the previous paragraph to modify C so that there are only 
olors 1

and 2 in the neighborhood of v

1

and set C(v

1

) = 3 to get a 3-
oloring of G. This 
ontradi
tion shows

that C(t

6

) = 3, and by the 
haining argument C(t

4

) = C(t

2

) = 3. We 
an do a very similar argument

to show that C(t

3

) = 2 and by the 
haining argument C(t

5

) = C(t

7

) = 2. But then we have to have

C(w

7

) = C(w

8

) = C(w

9

) = C(w

10

) = 1 whi
h is 
ontradi
ting property (iii) we mentioned.

Lemma 3.6 Two semi-simple fa
es sharing a type 1 vertex is redu
ible.

Proof: Instead, we prove that the four 
on�gurations shown in Figures 8(A), (B), (C), and (D), are

redu
ible. Ea
h of these 
on�gurations 
ontains a semi-simple fa
e f

1

, in whi
h the both neighbors of

its type 1 vertex whi
h are not in
ident with f

1

are a 3-vertex. The proof of lemma follows easily. We

�rst give the proof for the 
on�guration of Figure 8(A): By minimality of G, there is a 3-
oloring of

3w 2w

1
w

v4

v3

v2
v1

v5v6

v8

v7

f2

f2 f2

(A)

0
w

u1

u2

u8

f

f

1

2

v9

(B)

f1

(C)

f1

(D)

f1

Figure 8: Two semi-simple fa
es sharing their type 1 vertex

G

0

= G� v

1

v

2

, 
alled C. So C(v

1

) = C(v

2

), whi
h we 
an assume is equal to 1. Consider this 
oloring

indu
ed on G. By the 
haining argument C(v

4

) = C(v

6

) = C(v

8

) = C(u

2

) = 1, otherwise we 
ould

3-
olor G. Without loss of generality, assume C(w

0

) = 2. So C(v

9

) = 3 and C(u

1

) = 2, otherwise

we 
ould set C(v

1

) = 3. If C(u

8

) = 1 then we 
ould ex
hange C(u

1

) with C(v

9

) and set C(v

1

) = 3.

Therefore C(u

8

) = 2. Now set C(v

1

) = 3, C(v

9

) = 1 and assign a 
olor di�erent from 1 and C(v

7

)

(whi
h is either 2 or 3) to v

8

and give a 
olor di�erent from C(v

9

) (whi
h is 1) and C(v

8

) to u

1

(we 
an

do this be
ause C(v

9

) = C(u

2

) = 1). This gives a 3-
oloring of G, whi
h is a 
ontradi
tion.

Using very similar arguments, we 
an show that the 
on�gurations of Figures 8(B), (C), and (D) are

redu
ible.

Lemma 3.7 Two semi-type 2 fa
es sharing a type 1 vertex is redu
ible.

Proof: Suppose that f

1

and f

2

are two semi-type 2 fa
es sharing a type 1 vertex. There are eight

possible 
on�gurations of this type up to isomorphism, we 
onsider ea
h one separately. Assume that

v

1

; : : : ; v

9

are the verti
es of f

1

, where v

9

is the type 2 vertex. In the �rst two 
ases we assume that v

1

9
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Figure 9: Two semi-type 2 fa
es sharing their type 2 vertex

is the type 2 vertex of f

1

(Figures 9(a) and 10(a)). The other 
ases are based on v

2

, v

3

, or v

4

being the

type 2 vertex of f

1

, shown in Figure 11.

Con�guration of Figure 9(a): In this 
ase u

1

is the type 2 vertex of f

2

. First we remove some verti
es

and edges and add two gadgets ea
h similar to the one in lemma 3.2. The verti
es to be removed are

v

1

; : : : ; v

9

and u

1

; : : : ; u

8

, and the new graph G

0

after adding the gadgets is shown in Figure 9(b). It

is straightforward to verify that: (i) G

0

2 G

8

, (ii) be
ause of minimality of G there is a 3-
oloring of

G

0

, say C, and (iii) w

1

; : : : ; w

4


annot all have the same 
olor in C. Also, t

1

; : : : ; t

4


annot all have the

same 
olor in C.

Consider this 3-
oloring indu
ed on G. First we show that C(w

1

) 6= C(t

1

). By 
ontradi
tion, assume

that C(w

1

) = C(t

1

) = 3. Now we 
an extend C to a new 
oloring C

0

in this way: for all 
ommon

verti
es of G and G

0

, C

0

and C are equal. Then assign C

0

(v

1

) = 3, and 
olor u

8

; u

7

; : : : ; u

1

greedily.

Note that by the time we rea
h to u

1

it has three 
olored neighbors but two of them (v

1

and t

1

) have

the same 
olor. Assume that C

0

(u

1

) = 2. Set C

0

(v

9

) = 1, C

0

(v

8

) = 2, and 
olor v

2

; v

3

; : : : ; v

6

greedily.

Finally, assign a 
olor di�erent from C

0

(v

6

) and C

0

(w

2

) to v

7

. By minimality of G, both v

6

and v

7

have

the same 
olor, whi
h is 2. By the 
haining argument we must have C

0

(v

5

) = C

0

(v

3

) = C

0

(v

1

) = 2, but

C

0

(v

1

) = 3. This 
ontradi
tion shows that C(w

1

) 6= C(t

1

).

Now we extend C to 
olor the un
olored verti
es of G in a di�erent way. Assume that C(w

1

) = 3.

Sin
e C(t

1

) 6= C(w

1

) we 
an assign C(u

1

) = 3 and 
olor the un
olored verti
es of G greedily in the

following order: u

2

; : : : ; u

8

, v

1

; v

9

; v

8

; v

2

; v

3

; : : : ; v

6

. Note that by the time we want to 
olor v

9

there are

two neighbors of it (u

1

and w

1

) that have the same 
olor and so we 
an �nd a 
olor for v

9

. We also

assign a 
olor di�erent from C(v

6

) and C(w

2

) to v

7

. By de�nition of G, C(v

8

) = C(v

7

), whi
h we 
an

assume is equal to 1, By the 
haining argument C(v

5

) = C(v

3

) = C(v

1

) = 1, and so C(v

9

) = 2.

Suppose that C(u

8

) 6= 2. We 
an set C(v

1

) = 2, C(v

9

) = 1, and C(v

8

) = 2, unless C(v

2

) = 2 and by

the 
haining argument C(v

2

) = C(v

4

) = C(v

6

) = 2. But this means that all w

1

; : : : ; w

4

have 
olor 3,

whi
h 
ontradi
ts property (iii).

Now assume that C(u

8

) = 2. If we 
ould ex
hange C(u

8

) and C(u

7

) then C(u

8

) be
omes di�erent

from 2 and we 
an use the argument of the previous paragraph. This shows that C(u

6

) = 2 and by

the 
haining argument C(u

4

) = C(u

2

) = 2. If C(u

3

) 6= 3 then we 
an modify C in the following way:

set C(u

2

) = 3, C(u

1

) = 2, C(v

1

) = 3, C(v

9

) = 1, C(v

8

) = 2, ex
hange C(v

2

) with C(v

3

) if C(v

2

) = 3,

10



ex
hange C(v

4

) with C(v

5

) if C(v

4

) = 3, and �nally ex
hange C(v

6

) with C(v

7

) if C(v

6

) = 3, whi
h

yields a 3-
oloring of G. Therefore, C(u

3

) = 3 and by the 
haining argument C(u

5

) = C(u

7

) = 3. But

this means that all t

1

; : : : ; t

4

have 
olor 1, again 
ontradi
ting (iii).
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Figure 10: Two semi-type 2 fa
es sharing their type 2 vertex

Con�guration of Figure 10(a): In this 
ase u

1

is a 3-vertex in f

2

. First we remove v

2

; : : : ; v

8

and add

a gadget similar to that of Lemma 3.2. The new graph G

0

is shown in Figure 10(b). It 
an be easily

shown that: (i) G

0

2 G

8

, (ii) be
ause of minimality of G there is a 3-
oloring of G

0

, say C, and (iii)

w

1

; : : : ; w

4


annot all have the same 
olor in C.

Consider this 3-
oloring indu
ed on G. We extend C by 
oloring the un
olored verti
es of G greedily

in the following order: v

8

; v

2

; : : : ; v

6

. Then assign a 
olor di�erent from C(v

6

) and C(w

2

) to v

7

. By

minimality of G, C(v

7

) = C(v

8

) whi
h we 
an assume both are 1. By the 
haining argument C(v

5

) =

C(v

3

) = C(v

1

) = 1. Without loss of generality, assume that C(v

9

) = 2 and so C(u

1

) = C(w

1

) = 3.

If C(u

3

) = 3 then we 
ould set C(v

8

) = 2, C(v

9

) = 1, C(v

1

) = 2, then ex
hange C(v

2

) with C(v

3

)

if C(v

2

) = 2, and then ex
hange C(v

5

) with C(v

4

) if C(v

4

) = 2. In this 
ase C(v

6

) 6= 2, otherwise

w

1

; : : : ; w

4

all are 
olored 3, a 
ontradi
tion.

So assume that C(u

3

) = 2. If C(u

2

) = 2 then we 
an ex
hange C(v

1

) with C(u

1

), C(v

2

) with C(v

3

),

C(v

4

) with C(v

5

), and C(v

6

) with C(v

7

), whi
h gives a 3-
oloring of G. If C(u

2

) = 1 then we set

C(u

1

) = 2, C(v

1

) = 3, C(v

9

) = 1, and C(v

8

) = 2. Then we 
an ex
hange C(v

2

) with C(v

3

) if C(v

2

) = 3,

then ex
hange C(v

4

) with C(v

5

) if C(v

4

) = 3, and �nally ex
hange C(v

6

) with C(v

7

) if C(v

6

) = 3. So

we get a 3-
oloring of G, whi
h again is a 
ontradi
tion.

Con�gurations of Figure 11: The other possibilities, up to isomorphism, for two semi-type 2 fa
es

to sharing their type 2 vertex are shown in Figure 11. Here we only give the proof for 
on�guration of

Figure 11(A). The proof for the other 
on�gurations is almost the same.

By minimality of G, there is a 3-
oloring of G�(v

7

; v

8

), 
alled C. Consider this 
oloring indu
ed on G

in whi
h both v

7

and v

8

have the same 
olor. Without loss of generality, assume that C(v

7

) = C(v

8

) = 1.

By the 
haining argument C(v

5

) = C(v

3

) = C(u

7

) = C(u

5

) = C(u

3

) = 1. So C(v

2

) 6= 1.

First assume that both u

1

and v

1

have the same 
olor di�erent from 1, say 2. Then we 
an ex-


hange C(v

2

) with C(v

3

), C(v

4

) with C(v

5

), and C(v

6

) with C(v

7

), whi
h yields a 3-
oloring of G, a


ontradi
tion. Also, fC(v

1

); C(u

1

)g 6= f2; 3g, sin
e C(v

2

) 6= 1. So at least one of C(v

1

) or C(u

1

) is 1.

Assume that C(v

1

) = 1 and C(u

1

) = 2. So C(v

2

) = 3. If C(v

9

) = 2 we 
an set C(v

1

) = C(v

8

) = 2

and C(v

9

) = 1 whi
h gives a 3-
oloring of G. On the other hand, if C(v

9

) = 3 we 
an modify C in this

way: set C(v

2

) = 1, C(v

1

) = 3, C(v

9

) = 1, C(v

8

) = 3, assign a 
olor di�erent from C(v

4

) and 1 to v

3

.

11
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Figure 11: Two semi-type 2 fa
es sharing their type 2 vertex

Now sin
e C(v

2

) = C(u

7

) = 1, we 
an assign a 
olor di�erent from 1 and C(v

3

) to u

8

. This gives a

3-
oloring of G, an obvious 
ontradi
tion.

Now, let's assume that C(u

1

) = 1 and C(v

1

) = 2. So C(v

2

) = 3 and C(u

8

) = 2. If C(u

2

) = 2

then set C(u

1

) = 2, C(u

2

) = 1, C(u

3

) = 2, ex
hange C(u

4

) with C(u

5

), C(u

6

) with C(u

7

), C(u

8

) with

C(v

3

), C(v

4

) with C(v

5

), and C(v

6

) with C(v

7

), whi
h yields a 3-
oloring of G. If C(u

2

) = 3 then set

C(u

1

) = C(u

3

) = 3, C(u

2

) = 1, C(v

2

) = 1, ex
hange C(u

4

) with C(u

5

), and C(u

6

) with C(u

7

). Assign

a 
olor di�erent from C(v

2

) (whi
h is 1) and C(u

7

) to u

8

. Then assign a 
olor di�erent from 1 and

C(u

8

) to v

3

. Now ex
hange C(v

4

) with C(v

5

) and C(v

6

) with C(v

7

). This again is a 3-
oloring of G.

Finally, assume that C(v

1

) = C(u

1

) = 1. Without loss of generality, assume that C(v

9

) = 2. If

C(v

2

) = 2 we ex
hange it with C(u

8

) so that C(v

2

) 6= C(v

9

). Now set C(v

1

) = 2, C(v

9

) = 1, and

C(v

8

) = 2. This yields a 3-
oloring of G, whi
h is a 
ontradi
tion.

Lemma 3.8 A semi-type 2 fa
e sharing its type 1 vertex with a type 1 fa
e is redu
ible.

Proof: There are four possible 
on�gurations of this type up to isomorphism, shown in Figures 12(a),

13(A1), 13(B1), and 13(C1). We 
onsider ea
h one separately:

Con�guration of Figure 12(a): First remove v

2

; v

3

; : : : ; v

8

and all the in
ident edges and 
reate the

graph G

0

as in Figure 12(b) by adding a gadget. It is straightforward to verify that: (i) G

0

2 G

8

, (ii)

be
ause of minimality of G there is a 3-
oloring of G

0

, say C, and (iii) w

1

; : : : ; w

4


annot all have the

same 
olor in C.

Consider this 3-
oloring indu
ed on G. We extend C by 
oloring the un
olored verti
es of G greedily

in the following order: v

2

; v

8

; v

7

; : : : ; v

4

. We also assign a 
olor di�erent from C(v

2

) and C(w

4

) to v

3

.

12
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Figure 12: A semi-type 2 fa
e sharing a type 1 vertex with a type 1 fa
e

By de�nition of G, C(v

3

) = C(v

4

), whi
h we 
an assume is equal to 1, and by the 
haining argument

C(v

6

) = C(v

8

) = 1 and at least one of C(v

1

) or C(u

7

) must be 1.

First assume that C(u

7

) = 1 and C(v

1

) 6= 1. By the 
haining argument C(u

5

) = C(u

3

) = C(u

1

) =

1. Without loss of generality assume that C(v

9

) = 2 and so C(w

1

) = 3. Now set C(v

9

) = 1 and

C(u

1

) = C(v

8

) = 2, ex
hange C(u

2

) with C(u

3

), C(u

4

) with C(u

5

), C(u

6

) with C(u

7

), and C(v

3

) with

C(v

2

). The only 
on
i
t we may have is between C(v

8

) and C(v

7

), whi
h happens if C(v

7

) = 2. We 
an

ex
hange C(v

7

) with C(v

6

), unless C(v

5

) = 2. In this 
ase we 
an ex
hange C(v

5

) with C(v

4

), unless

C(v

3

) = 2. But this means that all w

1

; : : : ; w

4

have been 
olored 3, whi
h 
ontradi
ts (iii).

Now assume that C(v

1

) = 1 and C(u

7

) 6= 1. By the 
haining argument C(u

2

) = C(u

4

) = C(u

6

) = 1.

Assume that C(v

9

) = 2. Set C(v

9

) = 1, C(v

1

) = C(v

8

) = 2, and ex
hange C(v

2

) with C(v

3

). Similar

to the previous 
ase we 
an solve the possible 
on
i
t between C(v

8

) and C(v

7

), unless all w

1

; : : : ; w

4

have 
olor 3, whi
h is impossible, a

ording to (iii).

Finally, assume that C(v

1

) = C(u

7

) = 1. If we 
ould modify C(v

1

) or C(u

7

then we would redu
e

to the one of the two 
ases we just 
onsidered. Therefore, by the 
haining argument and starting from

u

7

: C(u

5

) = C(u

3

) = C(u

1

) = 1, whi
h is impossible, sin
e C(v

1

) = 1. This 
ompletes the proof of this


on�guration.

The other three possible 
on�guration of this kind, up to isomorphism, are shown in Figure 13(A1),

(B1), and (C1). First 
onsider the 
on�guration of Figure 13(A1).

Remove v

1

; v

2

; : : : ; v

9

and u

1

; : : : ; u

7

and all the in
ident edges and 
reate the graph G

0

as in Figure

13(A2). It is straightforward to verify that: (i) G

0

2 G

8

, (ii) be
ause of minimality of G there is a

3-
oloring of G

0

, say C, and (iii) w

1

; : : : ; w

6


annot all have the same 
olor in C.

Consider this 3-
oloring indu
ed on G. We extend C by 
oloring the un
olored verti
es of G greedily

in the following order: v

9

; v

1

; v

8

; v

7

; : : : ; v

3

; u

1

; u

2

; : : : ; u

7

. We also assign a 
olor di�erent from C(v

3

)

and C(u

7

) to v

2

. By de�nition of G, C(v

1

) = C(v

2

), whi
h we 
an assume is equal to 1, and by the


haining argument C(v

4

) = C(v

6

) = C(v

8

) = C(u

6

) = C(u

4

) = C(u

2

) = 1. Without loss of generality

assume that C(v

9

) = 2.

If C(u

1

) = 3 then we 
an set C(v

1

) = C(v

8

) = 2, C(v

9

) = 1, then ex
hange C(v

7

) with C(v

6

) if

C(v

7

) = 2, then ex
hange C(v

5

) with C(v

4

) if C(v

5

) = 2, and �nally ex
hange C(v

3

) with C(u

7

) if

C(v

3

) = 2. This yields a 3-
oloring of G.

So we 
an assume that C(u

1

) = 2. If we 
ould ex
hange C(u

1

) with C(u

2

) we 
ould use the argument

of the previous paragraph. So by the 
haining argument C(u

3

) = C(u

5

) = 2. We 
ould use the same

argument as in the previous 
ase unless C(v

7

) = C(v

5

) = 2. This means that all w

1

; : : : ; w

6

have

13



1
w

w2

3w

v9

1
w

w2

3w

v3 v6

v7

v8

v4 v5

f1

f2

7
u6

u
5

u

4
u

3
u u2

v1

v2

1u

4
w

5
w

6
w

6
w

5
w

4
w

0
w

0
w

f1

f2

(B2)

f1

f2

(C1) (C2)

(A1) (A2)

(B1)

Figure 13: A semi-type 2 fa
e sharing a type 1 vertex with a type 1 fa
e

been 
olored 3 in C, 
ontradi
ting property (iii) we just mentioned. This 
ompletes the proof of this


on�guration.

Using a very similar argument, we 
an prove the redu
ibility of 
on�gurations of Figure 13(B1) and

(C1). The gadget we have to add in ea
h 
ase is shown in Figures 13(B2) and (C2), respe
tively.

Lemma 3.9 A semi-type 2 fa
e sharing its type 1 vertex with a semi-simple fa
e is redu
ible.

Proof: It is straightforward to 
he
k that there are �ve possible 
on�gurations of this type up to

isomorphism. One of them is the same as the 
on�guration of Figure 10(a), and the other four ones are

equivalent to 
on�gurations of Figures 8(A1), 8(B1), 8(C1), and 8(D1). Ea
h of these 
on�gurations

are already proved to be redu
ible.

Lemma 3.10 A semi-simple fa
e sharing its type 1 vertex with a type 1 fa
e is redu
ible.

Proof: There are three possible 
on�guration up to isomorphism, shown in Figure 14(A1), (B1), and

(C1). Let's 
onsider (A1).

First remove v

1

; : : : ; v

9

and u

1

; : : : ; u

7

, and all the in
ident edges and 
reate the graph G

0

as in

Figure 14(A2). It is straightforward to verify that: (i) G

0

2 G

8

, (ii) be
ause of minimality of G there is

a 3-
oloring of G

0

, say C, and (iii) w

1

; : : : ; w

6


annot all have the same 
olor in C.

Consider this 
oloring indu
ed on G and extend it by 
oloring the un
olored verti
es of G in the

following order: v

1

; v

9

; v

8

; u

1

; : : : ; u

7

; v

7

; v

6

; : : : ; v

3

Also, assign a 
olor di�erent from C(v

3

) and C(w

1

)

to C(v

2

). By minimality of G, C(v

1

) = C(v

2

), whi
h we 
an assume is 1. By the 
haining argument
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Figure 14: A semi-simple fa
e sharing a type 1 vertex with a type 1 fa
e

C(v

4

) = C(v

6

) = C(u

6

) = C(u

4

) = C(u

2

) = C(v

8

) = 1. Without loss of generality assume that

C(w

0

) = 2. So C(v

9

) = 3, otherwise we 
ould set C(v

1

) = 3. Note that we 
an safely ex
hange C(v

7

)

with C(u

7

). If C(u

1

) 6= 3 we 
an ex
hange C(v

9

) with C(v

8

) and set C(v

1

) = 3. So C(u

1

) = 3 and

by the 
haining and jumping argument C(u

3

) = C(u

5

) = C(v

5

) = C(v

3

) = 3. But this means that all

w

1

; : : : ; w

6

have 
olor 3, 
ontradi
ting property (iii).

Using a very similar argument, we 
an prove the redu
ibility of 
on�gurations of Figures 14(B1) and

(C1). The gadget we have to add in ea
h 
ase is shown in parts (B2) and (C2), respe
tively.

Lemma 3.11 A simple triple stru
ture is redu
ible.

Proof: The redu
ibility of this stru
ture follows from the arguments we had in Lemma 3.6, if we 
onsider

f

3

as the semi-simple fa
e f

1

of 
on�gurations of Figure 8(A1), 8(B1), 8(C1), or 8(D1), depending on

the position of v

i

in fa
e f

3

.

Lemma 3.12 A triple stru
ture of kind 1 is redu
ible.

Proof: There are nine 
on�gurations of this kind, up to isomorphism, depending on whether f

2

has

an edge in 
ommon with f

1

or not, and on the value of i, whi
h de�nes the position of v

i

. Six of these

are shown in Figure 15(A1), (B1), (C1), (D1), (E1), and (F1), the other three are in Figure 16(A1),

(B1) and (C1). First 
onsider the 
on�guration of Figure 15(A1):

Remove u

1

; : : : ; u

7

; v

1

; : : : ; v

9

; t

1

; : : : ; t

7

and all the in
ident edges. Add a gadget as in Figure 15(A2).

Call this new graph G

0

. Sin
e G

0

doesn't have any i-
y
le, 4 � i � 8, by minimality of G there is a 3-


oloring of G

0

, 
alled C. Note that w

1

; w

2

; : : : ; w

8


annot all have the same 
olor in C. Indu
e C onG and

15
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Figure 15: Triple stru
ture of kind 1
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extend it greedily to the un
olored verti
es of G in the following order: v

1

; u

1

; u

2

; : : : ; u

7

; v

9

; v

8

; : : : ; v

5

;

v

2

; v

3

; t

7

; t

6

; : : : t

1

. Finally assign a 
olor di�erent from C(v

5

) and C(t

1

) to v

4

. By minimality of G we


an assume that C(v

3

) = C(v

4

) = 1 and therefore by the 
haining argument C(t

2

) = C(t

4

) = C(t

6

) = 1

and C(v

6

) = C(v

8

) = C(u

6

) = C(u

4

) = C(u

2

) = C(v

1

) = 1.

First we show that C(u

1

) 6= C(w

0

). By 
ontradi
tion assume that both are 2. Note that by (possibly)

ex
hanging C(v

9

) and C(u

7

) we 
an make C(v

9

) = 2. Similarly, we 
an ex
hange C(t

1

) with C(v

5

) (if

needed) so that C(t

1

) 6= C(t

3

). Now ex
hange C(v

2

) with C(v

3

), C(t

7

) with C(t

6

), C(t

5

) with C(t

4

),

C(t

3

) with C(t

2

), and set C(v

1

) = 3. This gives a 3-
oloring of G.

So let's assume that C(u

1

) = 2 and C(w

0

) = 3. If C(v

2

) = 3 we ex
hange C(u

7

) with C(v

9

) (if

needed) so that C(v

9

) = 3. Then we 
an set C(v

1

) = 2 and ex
hange C(u

1

) with C(u

2

), C(u

3

) with

C(u

4

), C(u

5

) with C(u

6

), C(u

7

) with C(v

8

), C(v

7

) with C(v

6

), and �nally C(v

5

) with C(v

4

). This is a

3-
oloring of G. Therefore, we 
an assume that C(v

2

) = 2. In this 
ase we 
an use the same argument,

then ex
hange C(t

1

) with C(v

4

) if C(v

4

) = 2, and then ex
hange C(v

2

) with C(v

3

), unless C(t

7

) = 2,

and by the 
haining argument C(t

5

) = C(t

3

) = 2. But this means that all w

1

; w

2

; : : : ; w

8

have 
olor 3,

whi
h is a 
ontradi
tion.

Using very similar arguments, we 
an prove the redu
ibility of the other �ve 
on�gurations shown

in Figure 15. For ea
h 
ase, the gadget that we have to add is show in the �gure next to it.

Now, let's 
onsider the 
on�guration of Figure 16(A1). Remove u

1

; : : : ; u

8

; v

1

; : : : ; v

9

; t

1

; : : : ; t

7

and

all the in
ident edges. Add two gadgets as in Figure 16(A2). Call this new graph G

0

. Sin
e G

0

doesn't

have any i-
y
le, 4 � i � 8, by minimality of G there is a 3-
oloring of G

0

, 
alled C. Note that

w

1

; : : : ; w

4


annot all have the same 
olor in C. Similarly, w

5

; : : : ; w

9


annot all have the same 
olor

in C. Indu
e C on G and extend it greedily to the un
olored verti
es of G in the following order:

u

1

; u

2

; : : : ; u

8

; v

1

; v

9

; v

8

; : : : ; v

5

; v

2

; v

3

; t

7

; t

6

; : : : t

1

. Finally assign a 
olor di�erent from C(v

5

) and C(t

1

)

to v

4

. By minimality of G we 
an assume that C(v

3

) = C(v

4

) = 1 and therefore by the 
haining

argument C(t

2

) = C(t

4

) = C(t

6

) = 1 and C(v

6

) = C(v

8

) = C(v

1

) = 1.

First we show that C(u

1

) 6= C(u

8

). By 
ontradi
tion assume that both are 2. First ex
hange C(v

5

)

with C(t

1

) (if needed) so that C(v

5

) = 2. If C(v

2

) = 3 then ex
hange C(v

2

) with C(v

3

), then ex
hange

C(t

7

) with C(t

6

) if C(t

7

) = 3, ex
hange C(t

5

) with C(t

4

) if C(t

4

) = 3, ex
hange C(t

3

) with C(t

2

) if

C(t

3

) = 3, and �nally ex
hange C(t

1

) with C(v

5

). Set C(v

1

) = 3 and ex
hange C(v

9

) with C(v

8

) if

C(v

9

) = 3, then ex
hange C(v

7

) with C(v

6

) if C(v

7

) = 3. The only 
on
i
t that we may have is when

C(v

6

) = 3 and C(v

5

) = 3. This happens only if the previous ex
hanging pro
ess was extended up to

ex
hanging C(v

5

) with C(t

1

). But in this 
ase all w

4

; : : : ; w

9

have 
olor 2, whi
h is a 
ontradi
tion.

So let's assume that C(u

1

) = 2 and C(u

8

) = 3. If we 
ould ex
hange C(u

8

) with C(u

7

) then we


ould set C(v

1

) = 3 and use the same argument as in the previous paragraph. So C(u

6

) = 3 and by

the 
haining argument C(u

4

) = C(u

2

) = 3. By the same argument and starting from u

1

, we 
an show

that C(u

3

) = C(u

5

) = C(u

7

) = 2. But this implies that all w

1

; : : : ; w

4

have 
olor 1, whi
h again is a


ontradi
tion.

Very similar arguments show the redu
ibility of 
on�gurations of Figures 16(B1) and (C1). The

gadget that we have to add is shown in Figure 16(B2) and (C2), respe
tively.

Lemma 3.13 A triple stru
ture of kind 2 is redu
ible.

Proof: Con�guration of Figure 17(a) or 17(b): If we 
onsider f

3

in these two 
on�gurations as the

fa
e f

1

in the 
on�guration of �gure 10 then exa
tly the same argument shows the redu
ibility of these

two 
ases.

Con�guration of Figure 18: By minimality of G, there is a 3-
oloring of G�(t

1

; t

2

), 
alled C. Consider

C indu
ed on G. We 
an assume that C(t

1

) = C(t

2

) = 1 and by the 
haining argument C(v

1

) = 1.
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Figure 16: Triple stru
ture of kind 1

If both C(v

4

) and C(t

8

) are di�erent from 1 then we 
an simply ex
hange C(t

1

) with C(v

3

) and get a

3-
oloring of G. So at least one of C(v

4

) and C(t

8

) is equal to 1.

First assume that C(v

4

) = 2 and C(t

8

) = 1. So by the 
haining argument C(t

6

) = C(t

4

) = 1. Now

assign C(t

3

) to both t

2

and t

4

, and set C(t

3

) = 1, ex
hange C(v

5

) with C(v

6

), and C(v

7

) with C(v

8

),

set C(v

3

) = 1, assign a 
olor di�erent from 1 and C(t

2

) to t

1

. Now sin
e C(v

1

) = C(v

3

) = 1, there is a


olor available for v

2

. This yields a 3-
oloring of G.

Now assume that C(v

4

) = 1 and C(t

8

) = 2. So by the 
haining argument C(v

6

) = C(v

8

) = C(u

6

) =

C(u

4

) = C(u

2

) = 1. Without loss of generality assume that C(w) = 3. Ex
hange C(v

9

) with C(u

7

) (if

needed) so that C(v

9

) = 3. Now set C(v

1

) = 2, ex
hange C(u

1

) with C(u

2

), C(u

3

) with C(u

4

), C(u

5

)

with C(u

6

), C(u

7

) with C(v

8

), C(v

7

) with C(v

6

), C(v

5

) with C(v

4

), set C(v

3

) = 1, C(v

2

) = 3, and

C(t

1

) = 2. This is a 3-
oloring of G.

Finally, assume that C(v

4

) = C(t

8

) = 1. So by the 
haining argument C(t

6

) = C(t

4

) = 1. Assign

C(t

3

) to both t

2

and t

4

, set C(t

3

) = 1, ex
hange C(t

5

) with C(t

6

), C(t

7

) with C(t

8

), assign a 
olor

18
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Figure 17: A triple stru
ture of kind 2
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Figure 18: A triple stru
ture of kind 2

di�erent from C(t

8

) and 1 to v

3

, and a 
olor di�erent from C(v

3

) and 1 to v

2

. This 3-
oloring of G,

whi
h is an obvious 
ontradi
tion, 
ompletes the proof of this 
on�guration.

Almost identi
al arguments work for the 
ases that one of v

4

; : : : ; v

8

is the type 2 vertex of f

1

, instead

of v

3

. Also, in ea
h 
ase, in
luding the 
on�guration of Figure 18, very similar arguments work for the


ases that one of t

4

; : : : ; t

7

is the type 2 vertex of f

3

, instead of t

3

. We do not repeat the proof for these


ases.

Con�guration of Figure 19: Remove u

1

; : : : ; u

8

and all the in
ident edges and 
reate a new graph G

0

as in Figure 19(b). By minimality of G, there is a 3-
oloring of G

0

, 
alled C. By property of the gadget

added, w

1

; : : : ; w

4


annot all have the same 
olor in G

0

. Consider C indu
ed on G and extend it to the

un
olored verti
es of G in this way: 
olor u

1

; : : : ; u

8

greedily. We show that we 
an assign a 
olor to

v

1

, after whi
h we 
an 
olor v

2

, and �nally assign a 
olor di�erent from C(v

2

) and C(v

3

) (but equal to

C(t

2

)) to t

1

. The reason that we 
an 
olor v

1

is that if, for example, C(v

9

) = 1 then the only 
ase that

we 
annot assign a 
olor to v

1

is when C(u

1

) = 2 and C(u

8

) = 3. In this 
ase, by the 
haining argument

C(u

3

) = C(u

5

) = C(u

7

) = 2 and C(u

6

) = C(u

4

) = C(u

2

) = 3, but this implies that all w

1

; : : : ; w

4

have


olor 1, whi
h is impossible. So we 
an extend C in the way we des
ribed above, to get a (improper)

3-
oloring of G with the only 
on
i
t between C(t

1

) and C(t

2

).

Assume that C(t

1

) = C(t

2

) = 1 and by the 
haining argument C(v

1

) = 1. If both C(v

4

) and C(t

8

)

are di�erent from 1 then we 
an simply ex
hange C(t

1

) with C(v

3

) and get a 3-
oloring of G. So at

least one of C(v

4

) and C(t

8

) is equal to 1.

The 
ase that C(v

4

) = 2 and C(t

8

) = 1 is identi
al to the one in the se
ond paragraph of proof of

19



f1

2v v9

v8
v7

v5
v6

v3

v4

t1

5t

t4

6t

f3

t7

t3 t2

t8

f2

u1 v1

u2

u3

u4 u5

u6
u7

8u
1

w

2
w

3
w

4
w

f1

v9

v8
v7

v5
v6

v3

v4

5t

t4

6t

f3

t7

t3 t2

t8

1
w

2
w

3
w

4
w

(a) (b)
Figure 19: A triple stru
ture of kind 2

the previous 
on�guration.

So let's assume that C(v

4

) = 1 and C(t

8

) = 2. So by the 
haining argument C(v

6

) = C(v

8

) = 1.

If C(u

1

) and C(u

8

) are both equal, to for example 2, then we 
an set C(v

1

) = 3, ex
hange C(v

8

) with

C(v

9

), C(v

7

) with C(v

6

), C(v

5

) with C(v

4

), assign 1 to v

3

, set C(v

2

) = 2 and C(t

1

) = 3. This yields a 3-


oloring of G. So C(u

1

) = 2 and C(u

8

) = 3, and by the 
haining argument C(u

3

) = C(u

5

) = C(u

7

) = 2

and C(u

6

) = C(u

4

) = C(u

2

) = 3, whi
h means all w

1

; : : : ; w

4

have the same 
olor, another 
ontradi
tion.

The proof of the 
ase that C(v

4

) = C(t

8

) = 1 is identi
al to that of 
on�guration of Figure 18. This


ompletes the proof of this 
on�guration.

Almost identi
al arguments work for the 
ases that one of v

4

; : : : ; v

8

is the type 2 vertex of f

1

, instead

of v

3

. Also, in ea
h of these 
ase, in
luding the 
on�guration of Figure 19, very similar arguments work

for the 
ases that one of t

4

; : : : ; t

7

is the type 2 vertex of f

3

, instead of t

3

. We do not repeat the proof

for these 
ases.

4 The Dis
harging Rules

We give an initial 
harge of d(v)� 6 units to ea
h vertex v and 2jf j � 6 units to ea
h fa
e f . Using the

Euler formula:

X

v2V

(d(v) � 6) +

X

f2F

(2jf j � 6) = 2jEj � 6jV j+ 4jEj � 6jF j

= �12: (1)

It is easy to see that the only elements with negative 
harges are 3-, 4- , and 5-verti
es, whi
h have


harges �3, �2, and �1 respe
tively. The goal is to show that, based on the assumption that G is a

minimum 
ounter-example, we 
an send 
harges from the fa
es to �5-verti
es su
h that all the verti
es

and fa
es have non-negative 
harge, whi
h is of 
ourse a 
ontradi
tion sin
e the total 
harge must be

negative by equation (1).

The dis
harging rules are as follows:

1. Ea
h �9-fa
e sends

3

2

units to ea
h of its bad verti
es and 1 unit to ea
h of its simple verti
es.
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2. Ea
h �10-fa
e sends 1 unit to ea
h of its 4-verti
es, and

1

2

units to ea
h of its 5-verti
es.

3. If f is semi-simple then it sends

1

2

units to its type 1 vertex.

4. If f is semi-type 2 then it sends

1

2

units to its type 1 vertex and 1 unit to its type 2 vertex.

5. If f is semi-type 1 then it sends 1 unit to its type 1 vertex whi
h is in
ident to a triangle that

shares an edge with f , and sends

1

2

to its other type 1 vertex.

6. If f is a semi-type 0 fa
e whose type 0 vertex is in
ident with a type 0 fa
e then f sends

3

4

to ea
h

of its 4-verti
es. Otherwise, it sends

1

2

to its type 0 vertex and 1 unit to its type 1 vertex.

7. If f is a 9-fa
e but not simple, semi-simple, type 0, semi-type 0, type 1, semi-type 1, type 2, or

semi-type 2, then it sends

1

2

to ea
h of its 5-verti
es and 1 to ea
h of its 4-verti
es.

Lemma 4.1 After the dis
harging phase, ea
h fa
e f will have non-negative 
harge.

Proof: If jf j = 3 then its initial 
harge is zero and it sends nothing during the dis
harging phase. If

jf j � 12 then it sends at most

3

2

jf j to its verti
es, whi
h is at most 2jf j � 6, the value of its initial


harge. If jf j = 11 then it 
an have at most 10 bad verti
es and so sends

3

2

� 10 = 15 units of 
harge

to them and sends at most 1 unit to its 11'th vertex. So the total 
harge sent out would be at most

16 whi
h is equal to its initial 
harge. By Lemma 3.1, if jf j = 10 then it has at most 8 bad verti
es.

Therefore, it sends at most 8 �

3

2

+ 2 units of 
harge to its verti
es, whi
h is equal to the value of its

initial 
harge.

The last 
ase is when jf j = 9. Note that in this 
ase the initial 
harge of f is 12. If it has 8 bad

verti
es then it only sends 8�

3

2

units to these bad verti
es, and it 
an be 
he
ked that it sends nothing

to its other vertex and therefore will have non-negative 
harge. If f has at most 6 bad verti
es then it

sends at most 6�

3

2

to these bad verti
es and at most 3 units to the other verti
es, for a total of 12.

So let's assume that it has exa
tly 7 bad verti
es. It sends 7�

3

2

to the bad verti
es and so still has

3

2

units of 
harge. If one of the non-bad verti
es is a �5-vertex then it sends at most

1

2

to it and sends

at most 1 unit to the other one and will have non-negative 
harge. The only remaining 
ase is that

both of its non-bad verti
es are �4-verti
es. This implies that f is either a semi-simple, a semi-type

0, a semi-type 1, or a semi-type 2 fa
e. In ea
h of these 
ases, by rules 3, 4, 5, and 6 it sends at most

another

3

2

units of 
harge and therefore will have non-negative 
harge.

Lemma 4.2 Every 3-vertex has non-negative 
harge after the dis
harging phase.

Proof: By rule 1 ea
h 3-vertex re
eives 3 units of 
harge and therefore will have non-negative 
harge.

Lemma 4.3 Every 4-vertex v has non-negative 
harge after the dis
harging phase.

Proof: Sin
e the initial 
harge of v is �2 it is enough to show that during the dis
harging phase v gets

at least 2 units of 
harge.

Case 1: First assume that v is a type 2 vertex. So there are two non-triangle fa
es in
ident with

it, 
alled f

1

and f

2

. If jf

1

j � 10 then by rule 2 it sends 1 unit of 
harge to v. If jf

1

j = 9 and it is a

semi-type 2 it sends 1 unit of 
harge to v by rule 4. By Lemma 3.3, f

1


annot be a type 2 fa
e. In

all other 
ases, it sends 1 unit of 
harge to v by rule 7. Therefore, in ea
h 
ase f

1

sends 1 unit to v.

Using the same argument, we 
an show that f

2

sends 1 unit of 
harge to v and therefore v will have

non-negative 
harge.
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Figure 20: (a) A type 1 vertex and its in
ident fa
es, (b) a type 0 vertex

Case 2: Now assume that v is a type 0 vertex and the non-triangle fa
es in
ident with it are f

1

, f

2

,

f

3

, and f

4

. (see Figure 20(b)). If none of these fa
es is type 0 then they ea
h sends at least

1

2

to v, for a

total of 2. By Lemma 3.4, at most one of these fa
es 
an be type 0. Without loss of generality, assume

that f

1

is type 0. Then by rule 2, 6, or 7 ea
h of f

2

, f

3

, and f

4

sends at least

3

4

to v and therefore v

gets at least 2 units of 
harge.

Case 3: Finally, assume that v is a type 1 vertex and the non-triangle fa
es in
ident with it are f

1

,

f

2

, and f

3

. (see Figure 20(a)). For ea
h of these fa
es, if it is a �10-fa
e then it sends 1 unit of 
harge

to v. If at least two of them are ea
h sending 1 unit of 
harge to v then v will have non-negative 
harge.

So let's assume that at least two of them are sending less than 1 unit of 
harge. This implies that at

least one of f

1

or f

3

is sending less than 1 unit of 
harge to v. Without loss of generality, assume it

is f

1

(by symmetry, the same arguments work for f

3

). Note that f

1


annot be simple (be
ause v is a

4-vertex), type 0 (be
ause v is a type 1 vertex), type 1 (sin
e v is in
ident with a triangle that shares an

edge with f

1

), or type 2 (be
ause v is a type 1 vertex). Also, it 
an't be semi-type 1, by the assumption

that it is sending less than 1 unit of 
harge to v, and by rule 5. Therefore, f

1

is either semi-simple,

semi-type 0, or semi-type 2:

Case 3.1: Let f

1

be semi-simple whi
h means it sends

1

2

to v. So f

2


annot be of type 1 by Lemma

3.10, and therefore sends at least

1

2

to v, by rules 2, 5, or 7. If f

3

is sending 1 unit of 
harge then v gets

2 units of 
harge and we are done. We show that in fa
t this is the 
ase. Sin
e we assumed that f

1

is

semi-simple, by Lemmas 3.6, 3.9, and 3.11 f

3


annot be a semi-simple, a semi-type 2, or a semi-type 0

fa
e whi
h is sending less than 1 unit of 
harge to v, respe
tively. Therefore f

3

will be sending at least

1 unit of 
harge to v by rules 2, 5, 6, or 7.

Case 3.2: Assume f

1

is semi-type 0 and so it sends

3

4

to v (sin
e we assumed it is sending less than

1 unit). This implies that it is adja
ent to a type 0 fa
e. Thus by Lemma 3.12 f

2


annot be of type 1,

and therefore sends at least

1

2

to v. Also, f

3


annot be a type 2 fa
e (be
ause v is a type 1 vertex) and

by Lemmas 3.11 and 3.13 it 
annot be semi-simple or semi-type 2 either. If it is a semi-type 1 it sends

1 unit of 
harge by rule 5, and if it is semi-type 0 then it sends at least

3

4

to v. Overall, v gets at least

2 units of 
harge.

Case 3.3: Now, let f

1

be semi-type 2. Thus it sends

1

2

to v. By Lemma 3.8 f

2


annot be of type

1, and therefore, sends at least

1

2

to v. Also, by Lemmas 3.9 and 3.7 f

3


annot be semi-simple, or

semi-type 2, be
ause f

1

is semi-type 2. It 
annot be type 1 either, sin
e v is a 4-vertex in
ident with a

triangle that shares an edge with it. If f

3

is a semi-type 0 then it 
annot be of a kind that sends

3

4

to v

by Lemma 3.13 be
ause f

1

is semi-type 2. If it is semi-type 1 it sends 1 unit to v by rule 5. In all other


ases, f

3

sends 1 unit of 
harge to v by rules 2 or 7, and therefore, v has non-negative 
harge.

Lemma 4.4 Every �5-vertex has non-negative 
harge, after the dis
harging phase.
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Proof: If d(v) � 6 then its initial 
harge is non-negative and it doesn't lose any 
harges in the

dis
harging phase. Assume that d(v) = 5 and the fa
es in
ident with v are f

1

; f

2

; f

3

; f

4

; f

5

. If none of

f

1

; : : : ; f

5

is triangle then by Lemma 3.5 at least three of them are not type 5 and therefore by rules

2 or 7 ea
h of them sends

1

2

to v and so v will have non-negative 
harge. Assume that exa
tly one of

f

1

; : : : ; f

5

, say f

1

, is a triangle. Then f

2

and f

5

are not type 5 and so ea
h sends at

1

2

to v, by rules 2 or

7. Finally, assume that exa
tly two of f

1

; : : : ; f

5

are triangles. (note that if more than two of them are

triangles then G will have a 4-
y
le). Without loss of generality, assume that f

1

and f

3

are triangles.

Therefore f

4

and f

5


annot be of type 5, and so ea
h of them sends

1

2

to v by rule 2 or 7.

Proof of Theorem 1.1: By Lemmas 4.1, 4.2, 4.3, and 4.4 all the elements of G will have non-

negative 
harge, after applying the dis
harging rules. Therefore, the total 
harge will be non-negative,

whi
h is 
ontradi
ting equation 1. This disproves the existen
e of G, a minimal 
ounter example to the

theorem.

5 The 3-Coloring Algorithm

The proof of Theorem 1.1 easily implies a relatively simple algorithm for �nding a 3-
oloring. We say

a planar graph has property �, if it doesn't have any fa
e of size in f4; : : : ; 8g and has no two triangles

that have an edge in 
ommon. Consider a planar graph G that has property �. One iteration of

the algorithm is to redu
e the size of the problem by removing some of the verti
es and/or edges and

possibly adding a smaller number of verti
es and edges to G while preserving property �, 
oloring the

new graph re
ursively, and then extending the 
oloring to G. We keep doing this, until the size of the

graph is O(1), when we 
an �nd a 3-
oloring in 
onstant time. Ea
h iteration 
onsists of the following

steps:

1. First 
he
k to see whether the 
urrent graph has any �2-vertex. If there exists su
h a vertex v,

then v along with its in
ident edges are removed from G. A 3-
oloring of the new graph 
an easily

be extended to v.

2. Else, 
he
k if there exists a 2k-fa
e with at least 2k�1 bad verti
es, for some k � 5. Suppose that

f = v

1

; v

2

; : : : ; v

2k

is su
h a fa
e, where v

1

; : : : ; v

2k�1

are bad and v

2i�1

and v

2i

are in
ident with

a triangle, 1 � i � k. Remove (v

1

; v

2k

) from G. By the argument of lemma 3.1 any 3-
oloring of

the new graph is also a 3-
oloring of G.

3. If neither of the �rst two 
ases happens then we apply the initial 
harges and the dis
harging

rules. As the total 
harge is negative, there must be some element (fa
e or vertex) with negative


harge. If it is a fa
e, by the proof of Lemma 4.1 it must be a simple or a type 2 fa
e. If the

element is a vertex, 
all it v, then by the proofs of Lemmas 4.3 and 4.4 v must be a vertex of

one of the 
on�gurations of Lemmas 3.2 to 3.13. In any of these two 
ases, we �nd one of the

redu
ible 
on�gurations des
ribed in se
tion 3. For ea
h 
on�guration, based on the proof of the


orresponding lemma, we 
onstru
t the graph G

0

, whi
h is either the graph obtained by removing

some verti
es and edges and adding a gadget, or by removing a single edge. Then we �nd a 3-


oloring of G

0

re
ursively. Again based on the proof of the lemma 
orresponding to the redu
ible


on�guration, we know how to extend this 3-
oloring to a 3-
oloring of G.

At ea
h iteration, the number of verti
es or edges is redu
ed by at least one. Therefore the number of

iterations of the algorithm will be at most O(jEj). Applying the initial 
harges and the dis
harging rules

takes at most O(jEj), and on
e we've done that, we 
an �nd a redu
ible 
on�guration in linear time.
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Constru
ting the graph G

0

from G takes 
onstant time. So the overall running time of the algorithm

will be O(jEj

2

). Sin
e for a planar graph jEj � 3jV j � 6, we 
an say the running time of the algorithm

is O(n

2

), where n is the size of the input.

6 The Automated Proof of Redu
ible Con�gurations

For any redu
ible 
on�guration R, a vertex v whi
h is not in R but has a neighbor in R is 
alled a

boundary vertex. For example w

1

; : : : ; w

5

in Figure 2 are boundary verti
es. For some 
on�gurations,

su
h as a simple 
on�guration, we have to forbid some of the boundary verti
es from all having the

same 
olor. We do this by adding a gadget. We 
all this set of boundary verti
es a 
onstrained group.

For some redu
ible 
on�gurations, su
h as 
on�guration of Figure 5, we have two groups of 
onstrained

verti
es. A 3-
oloring of the boundary verti
es of a redu
ible 
on�guration is 
alled valid if it satis�es the

requirements of its 
onstrained groups. That is, not all the verti
es in the same 
onstrained group have

the same 
olor. The program reads the 
on�gurations one by one and the 
orresponding 
onstrained

group(s) of verti
es. For ea
h 
on�guration and for all the possible valid 3-
olorings of its boundary

verti
es, the program 
he
ks whether the 3-
oloring is extensible to a 3-
oloring of the un
olored verti
es

of the 
on�guration or not. If all the valid 3-
olorings of the boundary verti
es are extensible, then the


on�guration is a redu
ible one. We didn't attempt to make any optimizations in the program, sin
e

this simple straightforward implementation 
he
ks all the redu
ible 
on�gurations relatively qui
kly, on

a desktop 
omputer, and further optimizations would be at the 
ost of losing its readability.
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A The List of Redu
ible Con�gurations

Here is the list of all 74 redu
ible 
on�gurations. Ea
h graph that has white verti
es and dotted edges

is the \modi�ed" version (by removing some verti
es and edges and adding a gadget) of the graph to its

left. The verti
es and the edges that have been removed are the white verti
es and the dotted edges,

respe
tively.

Simple fa
e (Lemma 3.2)

Type 2 fa
e (Lemma 3.3)

Two type 0 fa
es sharing their type 0 vertex (Lemma 3.4)

Three type 5 fa
es sharing a 5-vertex (Lemma 3.5)
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Two semi-simple fa
es sharing a type 1 vertex (Lemma 3.6)

Two semi-type 2 fa
es sharing a type 1 vertex (Lemma 3.7)

A semi-type2 fa
e sharing its type 1 vertex with a type 1 fa
e (Lemma 3.8)

A semi-simple fa
e sharing its type 1 vertex with a type 1 fa
e (Lemma 3.10)
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Triple stru
ture of kind 1 (Lemma 3.12)
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Triple stru
ture of kind 2 (Lemma 3.13)
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