## Lecture 34: NP-Completeness

Agenda:

- Example proofs of $N P$-completeness
- CNF-SAT $\leq_{p} 3$-CNF-SAT
- 3-CNF-SAT $\leq_{p}$ 3-Coloring
- 3-Coloring $\leq_{p} 4$-Coloring

Reading:

- Textbook pages 995 - 1021

Lecture 34: NP-Completeness

## CNF-SAT $\leq_{p} 3$-CNF-SAT:

- We have already shown that

SAT $\leq_{p} 3$-CNF-SAT.
Therefore, by $3-$ CNF-SAT $\in N P$, $3-$ CNF-SAT is $N P$-complete.

- We next show: CNF-SAT $\leq_{p} 3$-CNF-SAT

For every CNF formula $f$, in polynomial time we can construct a 3-CNF formula $g$ such that
$f$ is satisfiable if and only if $g$ is satisfiable

- Construction details:
- for 1 literal clause $\left(x_{i}\right)$, construct a 3-CNF formula:

$$
\left(x_{i} \vee y_{1} \vee y_{2}\right) \wedge\left(x_{i} \vee y_{1} \vee \neg y_{2}\right) \wedge\left(x_{i} \vee \neg y_{1} \vee y_{2}\right) \wedge\left(x_{i} \vee \neg y_{1} \vee \neg y_{2}\right)
$$

- for 2 literal clause $\left(x_{i} \vee x_{j}\right)$, construct a 3-CNF formula: $\left(x_{i} \vee x_{j} \vee y_{1}\right) \wedge\left(x_{i} \vee x_{j} \vee \neg y_{1}\right)$
- for 3 literal clause ( $x_{i} \vee x_{j} \vee x_{k}$ ): unchanged
- for more than 3 literal clause ( $x_{i_{1}} \vee x_{i_{2}} \vee \ldots \vee x_{i_{k}}$ ), construct a 3-CNF formula:

$$
\left(x_{i_{1}} \vee x_{i_{2}} \vee y_{1}\right) \wedge\left(\neg y_{1} \vee x_{i_{3}} \vee y_{2}\right) \wedge \ldots \wedge\left(\neg y_{k-3} \vee x_{i_{k-1}} \vee x_{i_{k}}\right)
$$

Note: for different clauses, the $y$ literals are distinct !! $g$ is the conjunctive form of these 3-CNF formulae.

Construction time is linear in the number of Boolean operations in formula $f$.

- Example: $f=\left(x_{1}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{4} \vee x_{5} \vee x_{6} \vee \neg x_{1} \vee x_{3}\right)$
- Proof of "if and only if"


## Proof of "if and only if":

- Construction details:
- for 1 literal clause $\left(x_{i}\right)$, construct a 3-CNF formula: $\left(x_{i} \vee y_{1} \vee y_{2}\right) \wedge\left(x_{i} \vee y_{1} \vee \neg y_{2}\right) \wedge\left(x_{i} \vee \neg y_{1} \vee y_{2}\right) \wedge\left(x_{i} \vee \neg y_{1} \vee \neg y_{2}\right)$
- for 2 literal clause $\left(x_{i} \vee x_{j}\right)$, construct a 3-CNF formula: $\left(x_{i} \vee x_{j} \vee y_{1}\right) \wedge\left(x_{i} \vee x_{j} \vee \neg y_{1}\right)$
- for 3 literal clause ( $x_{i} \vee x_{j} \vee x_{k}$ ): unchanged
- for more than 3 literal clause ( $x_{i_{1}} \vee x_{i_{2}} \vee \ldots \vee x_{i_{k}}$ ), construct a 3-CNF formula:
$\left(x_{i_{1}} \vee x_{i_{2}} \vee y_{1}\right) \wedge\left(\neg y_{1} \vee x_{i_{3}} \vee y_{2}\right) \wedge \ldots \wedge\left(\neg y_{k-3} \vee x_{i_{k-1}} \vee x_{i_{k}}\right)$
only if: - 1 literal clauses
- 2 literal clauses
- 3 literal clauses
- more then 3 literal clauses
if: - for 1 literal clause $\left(x_{i}\right)$,
$\left(x_{i} \vee y_{1} \vee y_{2}\right) \wedge\left(x_{i} \vee y_{1} \vee \neg y_{2}\right) \wedge\left(x_{i} \vee \neg y_{1} \vee y_{2}\right) \wedge\left(x_{i} \vee \neg y_{1} \vee \neg y_{2}\right)$
- for 2 literal clause $\left(x_{i} \vee x_{j}\right)$, $\left(x_{i} \vee x_{j} \vee y_{1}\right) \wedge\left(x_{i} \vee x_{j} \vee \neg y_{1}\right)$
- for 3 literal clause ( $x_{i} \vee x_{j} \vee x_{k}$ ),
- for more than 3 literal clause ( $x_{i_{1}} \vee x_{i_{2}} \vee \ldots \vee x_{i_{k}}$ ),

$$
\left(x_{i_{1}} \vee x_{i_{2}} \vee y_{1}\right) \wedge\left(\neg y_{1} \vee x_{i_{3}} \vee y_{2}\right) \wedge \ldots \wedge\left(\neg y_{k-3} \vee x_{i_{k-1}} \vee x_{i_{k}}\right)
$$

- Conclusion: CNF-SAT $\leq_{p} 3-C N F-S A T$.


## 3-CNF-SAT $\leq_{p} 3$-Coloring:

- Note:

3-CNF-SAT is on Boolean formulae; 3-Coloring is on graphs

- Reduction:
should construct a graph out of the Boolean formula !
- Construction details:
- assuming in the given 3-CNF formula $f$

1. $n$ variables: $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$
2. $m$ clauses: $C_{1}, C_{2}, C_{3}, \ldots, C_{m}$
3. $C_{j}=y_{1}^{j} \vee y_{2}^{j} \vee y_{3}^{j}$ ( $y_{k}^{j}$ is a literal)

- vertices in the graph $G$ :

1. $t$ (TRUE), $f$ (FALSE), $g$
2. $x_{i}$ and $\overline{x_{i}}, i=1,2,3, \ldots, n$
3. $a_{j}, b_{j}, c_{j}, d_{j}, e_{j}, j=1,2,3, \ldots, m$

- edges in the graph $G$ :

1. $(t, f),(f, g),(g, t)$
2. ( $g, x_{i}$ ) and $\left(g, \overline{x_{i}}\right), i=1,2,3, \ldots, n$
3. $\left(x_{i}, \overline{x_{i}}\right), i=1,2,3, \ldots, n$
4. $\left(a_{j}, b_{j}\right),\left(b_{j}, c_{j}\right),\left(c_{j}, a_{j}\right)$, and $\left(c_{j}, d_{j}\right),\left(d_{j}, e_{j}\right), j=1,2,3, \ldots, m$
5. $\left(t, d_{j}\right),\left(t, e_{j}\right), j=1,2,3, \ldots, m$
6. $\left(e_{j}, y_{1}^{j}\right),\left(b_{j}, y_{2}^{j}\right),\left(a_{j}, y_{3}^{j}\right), j=1,2,3, \ldots, m$

Lecture 34: NP-Completeness
3-CNF-SAT $\leq_{p} 3$-Coloring (cont'd):

- An example reduction:
$f=\left(x_{1}+\overline{x_{2}}+x_{3}\right)\left(x_{1}+x_{2}+\overline{x_{4}}\right)\left(\overline{x_{1}}+\overline{x_{3}}+x_{4}\right)\left(x_{2}+x_{3}+\overline{x_{4}}\right)\left(\overline{x_{2}}+\overline{x_{3}}+x_{4}\right)$

- An example reduction:

$$
f=\left(x_{1}+\overline{x_{2}}+x_{3}\right)\left(x_{1}+x_{2}+\overline{x_{4}}\right)\left(\overline{x_{1}}+\overline{x_{3}}+x_{4}\right)\left(x_{2}+x_{3}+\overline{x_{4}}\right)\left(\overline{x_{2}}+\overline{x_{3}}+x_{4}\right)
$$



$$
x_{1} \bullet \quad \bullet \overline{x_{1}}
$$

- 
- 



- An example reduction:

$$
f=\left(x_{1}+\overline{x_{2}}+x_{3}\right)\left(x_{1}+x_{2}+\overline{x_{4}}\right)\left(\overline{x_{1}}+\overline{x_{3}}+x_{4}\right)\left(x_{2}+x_{3}+\overline{x_{4}}\right)\left(\overline{x_{2}}+\overline{x_{3}}+x_{4}\right)
$$


-
.


- An example reduction:

$$
f=\left(x_{1}+\overline{x_{2}}+x_{3}\right)\left(x_{1}+x_{2}+\overline{x_{4}}\right)\left(\overline{x_{1}}+\overline{x_{3}}+x_{4}\right)\left(x_{2}+x_{3}+\overline{x_{4}}\right)\left(\overline{x_{2}}+\overline{x_{3}}+x_{4}\right)
$$



- An example reduction:

$$
f=\left(x_{1}+\overline{x_{2}}+x_{3}\right)\left(x_{1}+x_{2}+\overline{x_{4}}\right)\left(\overline{x_{1}}+\overline{x_{3}}+x_{4}\right)\left(x_{2}+x_{3}+\overline{x_{4}}\right)\left(\overline{x_{2}}+\overline{x_{3}}+x_{4}\right)
$$



- • •

Lecture 34: NP-Completeness
3-CNF-SAT $\leq{ }_{p}$ 3-Coloring (cont'd):

- " $f$ satisfiable $\Longrightarrow G$ is 3 -colorable":
- a truth assignment
- $t$ colored $T, f$ colored $F, g$ colored $G$
$-y_{1}^{j}=T \Longrightarrow$
$e_{j}$ colored $F$ or $G$
$d_{j}$ colored $G$ or $F$
$c_{j}$ colored $T$ or $F$, or $T$ or $G$
$-y_{1}^{j}=F \Longrightarrow$
$e_{j}$ colored $G$
$d_{j}$ colored $F$
$c_{j}$ colored $T$ or $G$
- " $G$ is 3-colorable $\Longrightarrow f$ satisfiable":
- a 3-coloring scheme
- assume $t$ colored $T, f$ colored $F, g$ colored $G$
- $e_{j}$ colored $F \Longrightarrow$
$y_{1}^{j}$ colored $T$, thus $C_{j}$ is satisfied
- $e_{j}$ colored $G \Longrightarrow$
$d_{j}$ colored $F$
$c_{j}$ colored $T$ or $G$ one of $a_{j}$ and $b_{j}$ must be colored $F$ one of $y_{2}^{j}$ and $y_{3}^{j}$ must be colored $T$, thus $C_{j}$ is satisfied
- We just proved 3 -CNF-SAT $\leq_{p} 3$-Coloring
- We have proved 3-CNF-SAT is NP-complete
- We know 3-Coloring is in $N P$
- Therefore, 3-Coloring is $N P$-complete.

Lecture 34: NP-Completeness
3-Coloring $\leq_{p} 4$-Coloring:

- An instance of 3-Coloring: a (simple, undirected, connected) graph $G=(V, E)$
- A new graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is constructed as follows:

1. $V^{\prime}=V+h, h$ is a new vertex
2. $E^{\prime}=E \cup\{(v, h) \mid v \in V\}$

- Given a 3-coloring scheme for $G$, in $G^{\prime}$, color the vertices in $V$ the same and color $h$ using an additional color.
- Given a 4-coloring scheme for $G^{\prime}$, in $G$, color the vertices the same. This is a valid coloring scheme since their color in $G^{\prime}$ must be distinct from the color for $h$, and thus there are at most 3 colors for them.
- Conclusion:

1. 3-Coloring has been proven $N P$-complete
2. 3-Coloring $\leq_{p} 4$-Coloring
3. 4-Coloring is in $N P$
4. therefore, 4-Coloring is $N P$-complete

- Extension:

For any $k \geq 3, k$-Coloring is $N P$-complete.

## Exercise.

Lecture 34: NP-Completeness Have you understood the lecture contents?

| well | ok | not-at-all | topic |
| :--- | :--- | :--- | :--- |
| $\square$ | $\square$ | $\square$ | How to prove the NP-Completeness |
| $\square$ | $\square$ | $\square$ | CNF-SAT $\leq_{p}$ 3-CNF-SAT |
| $\square$ | $\square$ | $\square$ | 3-CNF-SAT $\leq_{p}$ 3-Coloring |
| $\square$ | $\square$ | $\square$ | 3 -Coloring $\leq_{p}$ 4-Coloring |
| $\square$ | $\square$ | $\square$ | $k$-Coloring is $N P$-Complete |

