Lecture 33: NP-Completeness

Agenda:
e SAT and Cook’s theorem
e Class NP-c
e N P-completeness proof steps

e Example proof of NP-completeness:
SAT <, 3-CNF-SAT

Reading:

e Textbook pages 995 — 1021

Lecture 33: NP-Completeness

SAT — formula satisfiability and Cook’s Theorem:

e Boolean formula (recursive definition):
— Boolean variable z; (takes value TRUE or FALSE)
— suppose f and g are Boolean formulae
— —f is a Boolean formula
— fVgis a Boolean formula
— fAgis a Boolean formula
— f — g is a Boolean formula
— f <> g is a Boolean formula

e A Boolean formula is satisfiable if there is an assignment on
the Boolean variables such that the formula evaluates TRUE

e Example: ((x1 — z2) V- ((—x1 < 23) Vx4)) A T2

It is satisfiable: there is a truth assignment 1 = F', x> = F|,
x3 =T, x4 =T

e SAT problem:
Instance: a Boolean formula
Query: is the formula satisfiable?

Cook’s Theorem SAT is NP-complete.

Proof not required.

Lecture 33: NP-Completeness

SAT variants:

e Conjunctive normal form satisfiability (CNF-SAT):

literal: z; (a Boolean variable) or —z; (negation of z;)

Boolean CNF formula: C1 ACy A ... A Ch,, Where
Cj is called a clause
C; is the OR of one or more literals

example:
(mz3Var) A1) AN(mz2 Va3V x5 Vxe) A (22 V3V s)

CNF-SAT:
Instance: a Boolean CNF formula
Query: is the formula satisfiable?

Note: CNF-SAT is a subproblem of SAT

o 3-CNF-SAT:

CNF formula
every clause contains exactly 3 distinct literals

example:
(mx3VxaVrr)AN(x1VxaVae) A (—z2Vr3Vze) A(zaVI3Ves)

3-CNF-SAT:
Instance: a Boolean 3-CNF formula
Query: is the formula satisfiable?

Note: 3-CNF-SAT is a subproblem of CNF-SAT

Lecture 33: NP-Completeness

Class N P-c:

e Class NP-c: all NP-complete problems
— a subclass of NP

— NP-complete problem:
1. isin NP

2. every problem in NP is reducible to it

— Cook’s theorem implies that NP-c is NOT empty

e The relationships among 4 classes (most likely):

e Notes:

1. if any NP-complete problem is in P, then P = NP —
unlikely

2. least likely: P= NP =co—NP
3. most likely: P, NP, co-NP all different
4. big open CS problem: isit P = NP or not?

Don't try to answer at this moment!

Lecture 33: NP-Completeness

Karp's consequence of Cook’s theorem:
e Cook showed that SAT is in NP-c
e Soon after, Karp showed that 21 other problems in NP-cC

e How did Karp do this so quickly?

Using the transitivity of reduction and SAT as the base N P-
complete problem:

1. SAT reduces to 3-CNF-SAT

3-CNF-SAT reduces to 3-Coloring

3-Coloring reduces to k-Coloring (fixed k£ > 3)
SAT reduces to k-Clique

k-Clique reduces to k-Independent Set

o 0 & W N

e Now, there are thousands of problems in NP-c

e How to prove the NP-completeness (recall):
1. Prove that e NP
2. Look for a NP-complete problem M’

3. Prove that N’ reduces to N

e We will show:
SAT <, 3-CNF-SAT (today)
CNF-SAT <, 3-CNF-SAT
3-CNF-SAT <, 3-Coloring
3-Coloring <, 4-Coloring <, k-Coloring (k > 5)

Lecture 33: NP-Completeness

Proof of “SAT <, 3-CNF-SAT":

e An instance [of SAT: a Boolean formula f

e Construct an instance J of 3-CNF-SAT out of I: a Boolean
3-CNF formula g

1. construction takes polynomial time in the length of f,
which can be measured by the number of Boolean oper-
ations in f

2. f is satisfiable iff g is satisfiable

e Construction details:

— create a distinct variable for every Boolean operation in
f, and then re-write the formula

for example: f(z1,22,23) = 21V (22 < 3)

create y; for —; yo for Vv; and y3 for <. Then we will have
an equivalent formula

fl(x1,z2,23,Y1,Y2,Y3) = Yo
A(y2 < (y1Vy3))
A(y1 < (—x1))

A(y3 < (22 < x3))
The new formula f’ is in conjunctive form, in which each
term involves at most 3 literals.
construction time so far:
©(# of Boolean operations in f)

Lecture 33: NP-Completeness
Construction details (cont'd):

e — draw a truth table for every term and write down the CNF
formula

for example: for term y3 < (a2 < 3)
Y3 y3 < (z2 < x3)

&
N
8
w

Ui R
U R BT
I e ey P
LB B

construction time constant (since only 3 literals)

— write down an equivalent disjunctive normal form (DNF)
formula for negation of the term

for example: for term y3 « (x2 < x3)
“(y3 = (z2 = 23)) = (ysAx2 A -z3)
V(ys A ~z2 A x3)
V(—y3 A xo A x3)
V(—y3 A =z A —T3)

construction time constant

— the term itself is the negation of the negation (DeMorgan
Laws)

for example: for term y3 < (a2 < 3)

—(—(y3 < (z2 < 3)))

(—y3 V —x2 V x3)
/\(—|y3 V xo V —|333)
A(yz V —xo V —x3)
A(yz V x2 V x3)

construction time constant

y3 < (z2 < x3)

Lecture 33: NP-Completeness

Proof of “SAT <, 3-CNF-SAT" — conclusion:

e An instance [of SAT: a Boolean formula f

e Construct an instance J of 3-CNF-SAT out of I: a Boolean
3-CNF formula g

1.

construction takes linear time in the number of Boolean
operations in formula f, and thus polynomial time

f is satisfiable iff g is satisfiable
Proof.

notice that g is equivalent to f in the sense that
those y literals can be assigned values according to
the values of x literals.

therefore, if f is satisfiable, then ¢ is satisfiable;

on the other hand, if g is satisfiable, then the x
literals inherit the values in the truth assignment is
an assignment on which f evaluates to TRUE.

in the other words, f is satisfiable iff g is
satisfiable.

e Conclusion:
— we just showed SAT <, 3-CNF-SAT
— 3-CNF-SAT € NP
— therefore, 3-CNF-SAT is NP-complete

Lecture 33: NP-Completeness

Have you understood the lecture contents?

well ok not-at-all topic

U] U] U] SAT and Cook's theorem

U] U]] Class NP-c, properties

U] U] U] How to prove the NP-completeness
Ul U Ul SAT <, 3-CNF-SAT

