Lecture 33: NP-Completeness

Agenda:

- SAT and Cook's theorem
- Class NP-c
- NP-completeness proof steps
- Example proof of $N P$-completeness: SAT $\leq_{p} 3$-CNF-SAT

Reading:

- Textbook pages 995 - 1021

Lecture 33: NP-Completeness
SAT - formula satisfiability and Cook's Theorem:

- Boolean formula (recursive definition):
- Boolean variable x_{i} (takes value TRUE or FALSE)
- suppose f and g are Boolean formulae
- $\neg f$ is a Boolean formula
- $f \vee g$ is a Boolean formula
- $f \wedge g$ is a Boolean formula
- $f \rightarrow g$ is a Boolean formula
$-f \leftrightarrow g$ is a Boolean formula
- A Boolean formula is satisfiable if there is an assignment on the Boolean variables such that the formula evaluates TRUE
- Example: $\left(\left(x_{1} \rightarrow x_{2}\right) \vee \neg\left(\left(\neg x_{1} \leftrightarrow x_{3}\right) \vee x_{4}\right)\right) \wedge \neg x_{2}$

It is satisfiable: there is a truth assignment $x_{1}=F, x_{2}=F$, $x_{3}=T, x_{4}=T$

- SAT problem:

Instance: a Boolean formula
Query: is the formula satisfiable?
Cook's Theorem SAT is $N P$-complete.
Proof not required.

Lecture 33: NP-Completeness

SAT variants:

- Conjunctive normal form satisfiability (CNF-SAT):
- literal: x_{i} (a Boolean variable) or $\neg x_{i}$ (negation of x_{i})
- Boolean CNF formula: $C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}$, where C_{j} is called a clause
C_{j} is the OR of one or more literals
- example:
$\left(\neg x_{3} \vee x_{7}\right) \wedge\left(x_{1}\right) \wedge\left(\neg x_{2} \vee x_{3} \vee \neg x_{5} \vee x_{6}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right)$
- CNF-SAT:

Instance: a Boolean CNF formula Query: is the formula satisfiable?

Note: CNF-SAT is a subproblem of SAT

- 3-CNF-SAT:
- CNF formula
- every clause contains exactly 3 distinct literals
- example:
$\left(\neg x_{3} \vee x_{4} \vee x_{7}\right) \wedge\left(x_{1} \vee x_{4} \vee x_{6}\right) \wedge\left(\neg x_{2} \vee x_{3} \vee x_{6}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{5}\right)$
- 3-CNF-SAT:

Instance: a Boolean 3-CNF formula
Query: is the formula satisfiable?
Note: 3-CNF-SAT is a subproblem of CNF-SAT

Class NP-c:

- Class $N P$-c: all $N P$-complete problems
- a subclass of $N P$
- NP-complete problem:

1. is in $N P$
2. every problem in $N P$ is reducible to it

- Cook's theorem implies that $N P-\mathrm{c}$ is NOT empty
- The relationships among 4 classes (most likely):

- Notes:

1. if any $N P$-complete problem is in P, then $P=N P$ unlikely
2. least likely: $P=N P=\mathrm{co}-N P$
3. most likely: $P, N P$, co- $N P$ all different
4. big open CS problem: is it $P=N P$ or not?

Don't try to answer at this moment!

Karp's consequence of Cook's theorem:

- Cook showed that SAT is in $N P-\mathrm{c}$
- Soon after, Karp showed that 21 other problems in $N P-\mathrm{c}$
- How did Karp do this so quickly?

Using the transitivity of reduction and SAT as the base $N P$ complete problem:

1. SAT reduces to 3-CNF-SAT
2. 3-CNF-SAT reduces to 3-Coloring
3. 3-Coloring reduces to k-Coloring (fixed $k \geq 3$)
4. SAT reduces to k-Clique
5. k-Clique reduces to k-Independent Set
6. ...

- Now, there are thousands of problems in $N P-\mathrm{c}$
- How to prove the $N P$-completeness (recall):

1. Prove that $\Pi \in N P$
2. Look for a $N P$-complete problem Π^{\prime}
3. Prove that Π^{\prime} reduces to Π

- We will show:

SAT $\leq_{p} 3-$ CNF-SAT (today)
CNF-SAT $\leq_{p} 3$-CNF-SAT
3-CNF-SAT \leq_{p} 3-Coloring
3-Coloring $\leq_{p} 4$-Coloring $\leq_{p} k$-Coloring ($k \geq 5$)

Lecture 33: NP-Completeness

Proof of "SAT $\leq_{p} 3-C N F-S A T ":$

- An instance I of SAT: a Boolean formula f
- Construct an instance J of 3-CNF-SAT out of I : a Boolean 3-CNF formula g

1. construction takes polynomial time in the length of f, which can be measured by the number of Boolean operations in f
2. f is satisfiable iff g is satisfiable

- Construction details:
- create a distinct variable for every Boolean operation in f, and then re-write the formula for example: $f\left(x_{1}, x_{2}, x_{3}\right)=\neg x_{1} \vee\left(x_{2} \leftrightarrow x_{3}\right)$ create y_{1} for \neg; y_{2} for \vee; and y_{3} for \leftrightarrow. Then we will have an equivalent formula

$$
\begin{aligned}
f^{\prime}\left(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right)= & y_{2} \\
& \wedge\left(y_{2} \leftrightarrow\left(y_{1} \vee y_{3}\right)\right) \\
& \wedge\left(y_{1} \leftrightarrow\left(\neg x_{1}\right)\right) \\
& \wedge\left(y_{3} \leftrightarrow\left(x_{2} \leftrightarrow x_{3}\right)\right)
\end{aligned}
$$

The new formula f^{\prime} is in conjunctive form, in which each term involves at most 3 literals.
construction time so far:
Θ (\# of Boolean operations in f)

Lecture 33: NP-Completeness

Construction details (cont'd):

- - draw a truth table for every term and write down the CNF formula
for example: for term $y_{3} \leftrightarrow\left(x_{2} \leftrightarrow x_{3}\right)$

y_{3}	x_{2}	x_{3}	$y_{3} \leftrightarrow\left(x_{2} \leftrightarrow x_{3}\right)$
T	T	T	T
T	T	F	F
T	F	T	F
T	F	F	T
F	T	T	F
F	T	F	T
F	F	T	T
F	F	F	F

construction time constant (since only 3 literals)

- write down an equivalent disjunctive normal form (DNF) formula for negation of the term
for example: for term $y_{3} \leftrightarrow\left(x_{2} \leftrightarrow x_{3}\right)$

$$
\begin{aligned}
\neg\left(y_{3} \leftrightarrow\left(x_{2} \leftrightarrow x_{3}\right)\right)= & \left(y_{3} \wedge x_{2} \wedge \neg x_{3}\right) \\
& \vee\left(y_{3} \wedge \neg x_{2} \wedge x_{3}\right) \\
& \vee\left(\neg y_{3} \wedge x_{2} \wedge x_{3}\right) \\
& \vee\left(\neg y_{3} \wedge \neg x_{2} \wedge \neg x_{3}\right)
\end{aligned}
$$

construction time constant

- the term itself is the negation of the negation (DeMorgan Laws)
for example: for term $y_{3} \leftrightarrow\left(x_{2} \leftrightarrow x_{3}\right)$

$$
\begin{aligned}
y_{3} \leftrightarrow\left(x_{2} \leftrightarrow x_{3}\right)= & \neg\left(\neg\left(y_{3} \leftrightarrow\left(x_{2} \leftrightarrow x_{3}\right)\right)\right) \\
= & \left(\neg y_{3} \vee \neg x_{2} \vee x_{3}\right) \\
& \wedge\left(\neg y_{3} \vee x_{2} \vee \neg x_{3}\right) \\
& \wedge\left(y_{3} \vee \neg x_{2} \vee \neg x_{3}\right) \\
& \wedge\left(y_{3} \vee x_{2} \vee x_{3}\right)
\end{aligned}
$$

construction time constant

Lecture 33: NP-Completeness

Proof of "SAT $\leq p$-CNF-SAT" - conclusion:

- An instance I of SAT: a Boolean formula f
- Construct an instance J of 3-CNF-SAT out of I : a Boolean 3-CNF formula g

1. construction takes linear time in the number of Boolean operations in formula f, and thus polynomial time
2. f is satisfiable iff g is satisfiable Proof.
notice that g is equivalent to f in the sense that those y literals can be assigned values according to the values of x literals.
therefore, if f is satisfiable, then g is satisfiable; on the other hand, if g is satisfiable, then the x literals inherit the values in the truth assignment is an assignment on which f evaluates to TRUE.
in the other words, f is satisfiable iff g is satisfiable.

- Conclusion:
- we just showed SAT $\leq_{p} 3$-CNF-SAT
- 3-CNF-SAT $\in N P$
- therefore, 3-CNF-SAT is NP-complete

Have you understood the lecture contents?

well	ok	not-at-all	topic
\square	\square	\square	SAT and Cook's theorem
\square	\square	\square	Class NP-c, properties
\square	\square	\square	How to prove the NP-Completeness
\square	\square	\square	SAT $\leq_{p} 3-C N F-S A T$

