
Lecture 33: NP-Completeness

Agenda:

• SAT and Cook’s theorem

• Class NP -c

• NP -completeness proof steps

• Example proof of NP -completeness:

SAT ≤p 3-CNF-SAT

Reading:

• Textbook pages 995 – 1021

1

Lecture 33: NP-Completeness

SAT — formula satisfiability and Cook’s Theorem:

• Boolean formula (recursive definition):

– Boolean variable xi (takes value TRUE or FALSE)

– suppose f and g are Boolean formulae

– ¬f is a Boolean formula

– f ∨ g is a Boolean formula

– f ∧ g is a Boolean formula

– f → g is a Boolean formula

– f ↔ g is a Boolean formula

• A Boolean formula is satisfiable if there is an assignment on
the Boolean variables such that the formula evaluates TRUE

• Example: ((x1 → x2) ∨ ¬((¬x1 ↔ x3) ∨ x4)) ∧ ¬x2

It is satisfiable: there is a truth assignment x1 = F , x2 = F ,
x3 = T , x4 = T

• SAT problem:

Instance: a Boolean formula

Query: is the formula satisfiable?

Cook’s Theorem SAT is NP -complete.

Proof not required.

2

Lecture 33: NP-Completeness

SAT variants:

• Conjunctive normal form satisfiability (CNF-SAT):

– literal: xi (a Boolean variable) or ¬xi (negation of xi)

– Boolean CNF formula: C1 ∧ C2 ∧ . . . ∧ Cm, where

Cj is called a clause

Cj is the OR of one or more literals

– example:

(¬x3 ∨ x7) ∧ (x1) ∧ (¬x2 ∨ x3 ∨ ¬x5 ∨ x6) ∧ (x2 ∨ x3 ∨ x4)

– CNF-SAT:

Instance: a Boolean CNF formula

Query: is the formula satisfiable?

Note: CNF-SAT is a subproblem of SAT

• 3-CNF-SAT:

– CNF formula

– every clause contains exactly 3 distinct literals

– example:

(¬x3∨x4∨x7)∧(x1∨x4∨x6)∧(¬x2∨x3∨x6)∧(x2∨x3∨x5)

– 3-CNF-SAT:

Instance: a Boolean 3-CNF formula

Query: is the formula satisfiable?

Note: 3-CNF-SAT is a subproblem of CNF-SAT

3

Lecture 33: NP-Completeness

Class NP -c:

• Class NP -c: all NP -complete problems

– a subclass of NP

– NP -complete problem:

1. is in NP

2. every problem in NP is reducible to it

– Cook’s theorem implies that NP -c is NOT empty

• The relationships among 4 classes (most likely):

�
�

�
�P

'
&

$
%

'
& $

%

NP

co-NP

�
�

�
�NP -c

• Notes:

1. if any NP -complete problem is in P , then P = NP —
unlikely

2. least likely: P = NP = co−NP

3. most likely: P , NP , co-NP all different

4. big open CS problem: is it P = NP or not?

Don’t try to answer at this moment!

4

Lecture 33: NP-Completeness

Karp’s consequence of Cook’s theorem:

• Cook showed that SAT is in NP -c

• Soon after, Karp showed that 21 other problems in NP -c

• How did Karp do this so quickly?

Using the transitivity of reduction and SAT as the base NP -
complete problem:

1. SAT reduces to 3-CNF-SAT

2. 3-CNF-SAT reduces to 3-Coloring

3. 3-Coloring reduces to k-Coloring (fixed k ≥ 3)

4. SAT reduces to k-Clique

5. k-Clique reduces to k-Independent Set

6. . . .

• Now, there are thousands of problems in NP -c

• How to prove the NP -completeness (recall):

1. Prove that Π ∈ NP

2. Look for a NP -complete problem Π′

3. Prove that Π′ reduces to Π

• We will show:

SAT ≤p 3-CNF-SAT (today)

CNF-SAT ≤p 3-CNF-SAT

3-CNF-SAT ≤p 3-Coloring

3-Coloring ≤p 4-Coloring ≤p k-Coloring (k ≥ 5)

5

Lecture 33: NP-Completeness

Proof of “SAT ≤p 3-CNF-SAT”:

• An instance I of SAT: a Boolean formula f

• Construct an instance J of 3-CNF-SAT out of I: a Boolean
3-CNF formula g

1. construction takes polynomial time in the length of f ,
which can be measured by the number of Boolean oper-
ations in f

2. f is satisfiable iff g is satisfiable

• Construction details:

– create a distinct variable for every Boolean operation in
f , and then re-write the formula

for example: f(x1, x2, x3) = ¬x1 ∨ (x2 ↔ x3)

create y1 for ¬; y2 for ∨; and y3 for ↔. Then we will have
an equivalent formula

f ′(x1, x2, x3, y1, y2, y3) = y2
∧(y2 ↔ (y1 ∨ y3))
∧(y1 ↔ (¬x1))
∧(y3 ↔ (x2 ↔ x3))

The new formula f ′ is in conjunctive form, in which each
term involves at most 3 literals.

construction time so far:

Θ(# of Boolean operations in f)

6

Lecture 33: NP-Completeness

Construction details (cont’d):

• – draw a truth table for every term and write down the CNF
formula

for example: for term y3 ↔ (x2 ↔ x3)

y3 x2 x3 y3 ↔ (x2 ↔ x3)

T T T T
T T F F
T F T F
T F F T
F T T F
F T F T
F F T T
F F F F

construction time constant (since only 3 literals)

– write down an equivalent disjunctive normal form (DNF)
formula for negation of the term

for example: for term y3 ↔ (x2 ↔ x3)

¬(y3 ↔ (x2 ↔ x3)) = (y3 ∧ x2 ∧ ¬x3)
∨(y3 ∧ ¬x2 ∧ x3)
∨(¬y3 ∧ x2 ∧ x3)
∨(¬y3 ∧ ¬x2 ∧ ¬x3)

construction time constant

– the term itself is the negation of the negation (DeMorgan
Laws)

for example: for term y3 ↔ (x2 ↔ x3)

y3 ↔ (x2 ↔ x3) = ¬(¬(y3 ↔ (x2 ↔ x3)))
= (¬y3 ∨ ¬x2 ∨ x3)

∧(¬y3 ∨ x2 ∨ ¬x3)
∧(y3 ∨ ¬x2 ∨ ¬x3)
∧(y3 ∨ x2 ∨ x3)

construction time constant

7

Lecture 33: NP-Completeness

Proof of “SAT ≤p 3-CNF-SAT” — conclusion:

• An instance I of SAT: a Boolean formula f

• Construct an instance J of 3-CNF-SAT out of I: a Boolean
3-CNF formula g

1. construction takes linear time in the number of Boolean
operations in formula f , and thus polynomial time

2. f is satisfiable iff g is satisfiable

Proof.

notice that g is equivalent to f in the sense that
those y literals can be assigned values according to
the values of x literals.

therefore, if f is satisfiable, then g is satisfiable;

on the other hand, if g is satisfiable, then the x
literals inherit the values in the truth assignment is
an assignment on which f evaluates to TRUE.

in the other words, f is satisfiable iff g is
satisfiable.

• Conclusion:

– we just showed SAT ≤p 3-CNF-SAT

– 3-CNF-SAT ∈ NP

– therefore, 3-CNF-SAT is NP -complete

8

Lecture 33: NP-Completeness

Have you understood the lecture contents?

well ok not-at-all topic

� � � SAT and Cook’s theorem

� � � Class NP -c, properties

� � � How to prove the NP -completeness

� � � SAT ≤p 3-CNF-SAT

9

