Lecture 32: NP-Completeness

Agenda:

- Classes $P, N P$ (recall), and co- $N P$
- The notions of hardest and complete
- Polynomial-time reduction
- NP-completeness proof steps

Reading:

- Textbook pages 979 - 995

The classes of P and $N P$ (recall):

- Class P
- decision problem
- there exists some algorithm solving the problem in polynomial time
- which of the above problems are in P :

1. sorting
2. longest common subsequence
3. minimum spanning tree
4. single-source shortest paths
5. shortest x-to- y path
6. determining Eulerian graphs

- Class NP
- decision problem
- for every yes-instance, there exists a proof that the answer is yes and the proof can be verified in polynomial time
- which of the above problems are in $N P$:

1. sorting
2. longest common subsequence
3. minimum spanning tree
4. single-source shortest paths
5. shortest x-to- y path
6. determining Eulerian graphs
7. Iongest x-to- y path
8. determining Hamiltonian graphs

$P, N P$, and co- $N P$:

Question: is "determining if a graph is NOT Hamiltonian" in NP? What is a proof to answer yes?

- Class co- $N P$
- decision problem
- for every no-instance, there exists a proof that the answer is no and the proof can be verified in polynomial time
- which of the above problems are in co-NP:

1. sorting
2. longest common subsequence
3. minimum spanning tree
4. single-source shortest paths
5. shortest x-to- y path
6. determining Eulerian graphs
7. determining non-Hamiltonian graphs

One more example: "is this number prime?"

- The relationships among $P, N P$, and co- $N P$

Some well-known problems in $N P$:

- k-clique:

Given a graph, does it have a size k clique?

- k-independent set:

Given a graph, does it have a size k independent set?

- k-coloring:

Given a graph, can the vertices be colored with k colors such that adjacent vertices get different colors?

- Satisfiability (SAT):

Given a boolean expression, is there an assignment of truth values (T or F) to variables such that the expression is satisfied (evaluated to T)?

- Travel salesman problem (TSP):

Given an edge-weighted complete graph and an integer ℓ, is there a Hamiltonian cycle of length at most ℓ ?
-

Completeness and Reduction:

- For the class $N P$ of problems, which one is the hardest? Reasons to ask:
- Is every problem in NP solvable in polynomial time?
- If not, what are the characteristics of the hard problems?
- Hardest problem - solving it means you can solve every other in $N P$
- Informally, complete $=$ hardest;

Formally, we need "polynomial-time reduction":

- decision problem Π_{1} is polynomial-time reducible to Π_{2}, written as

$$
\Pi_{1} \leq_{p} \Pi_{2}
$$

if

- ヨ polynomial-time transformation function t which
- maps instances of Π_{1} to instances of Π_{2}, such that
- for every instance x of Π_{1}, the answer to x is the same as the answer to $t(x)$
- Formally, $\Pi \in N P$ is $N P$-complete if every other problem Π^{\prime} is polynomial-time reducible to Π : $\Pi^{\prime} \leq_{p} \Pi$

Examples of (polynomial-time) reduction:

1. k-independent set is reducible to k-clique

Proof. From a k-independent set instance (G, k), construct a k-clique instance to be (\bar{G}, k), where \bar{G} is the complement graph of G.
The construction takes $\Theta\left(n^{2}\right)$ time for every instance (G, k) containing n vertices and thus polynomial --- take this construction as the transformation function.
Now, X is an independent set in G iff it is a clique in \bar{G}. Proof done.
2. 3-SAT is reducible to SAT

A trivial exercise.
3. SAT is reducible to 3-SAT

A non-trivial exercise.

Proof of $N P$-completeness:

- Suppose we want to prove Π is $N P$-complete, then we need to prove

1. $\Pi \in N P$
2. for every problem $\Pi^{\prime} \in N P, \Pi^{\prime}$ is reducible to Π

- Question:

1. How many problems in $N P$? - ∞ ??!! inefficient way

Proof of $N P$-completeness:

- Observations:
- $\Pi \in N P$
- Π^{\prime} is $N P$-complete and is reducible to Π
$-\Longrightarrow \Pi$ is $N P$-complete!
- Why it is true:
- for every problem $\Pi^{\prime \prime} \in N P$
- since Π^{\prime} is $N P$-complete, $\Pi^{\prime \prime}$ is reducible to Π^{\prime}
- using the transitivity of reduction
- $\Pi^{\prime \prime}$ is reducible to Π
- Switching our goal to:

Prove that $\Pi \in N P$
Look for an $N P$-complete problem Π^{\prime} and
Prove that Π^{\prime} is reducible to Π

- Where to start with - we need a first $N P$-complete problem

Cook's Theorem: SAT is $N P$-complete.

well	ok	not-at-all	topic
\square	\square	\square	classes $P, N P$, co- $N P$
\square	\square	\square	relationships among the 3 classes
\square	\square	\square	$N P$-complete
\square	\square	\square	polynomial time reduction
\square	\square	\square	steps of $N P$-completeness proof

