Agenda:

- Classes P, NP (recall), and co-NP
- The notions of hardest and complete
- Polynomial-time reduction
- NP-completeness proof steps

Reading:

• Textbook pages 979 – 995

The classes of P and NP (recall):

- Class P
 - decision problem
 - there exists some algorithm solving the problem in polynomial time
 - which of the above problems are in P:
 - 1. sorting
 - 2. longest common subsequence
 - 3. minimum spanning tree
 - 4. single-source shortest paths
 - 5. shortest x-to-y path
 - 6. determining Eulerian graphs
- Class NP
 - decision problem
 - for every **yes**-instance, there exists a proof that the answer is yes and the proof can be verified in polynomial time
 - which of the above problems are in NP:
 - 1. sorting
 - 2. longest common subsequence
 - 3. minimum spanning tree
 - 4. single-source shortest paths
 - 5. shortest x-to-y path
 - 6. determining Eulerian graphs
 - 7. longest x-to-y path
 - 8. determining Hamiltonian graphs

P, NP, and co-NP:

Question: is "determining if a graph is NOT Hamiltonian" in NP?

What is a proof to answer **yes**?

- Class co-NP
 - decision problem
 - for every **no**-instance, there exists a proof that the answer is no and the proof can be verified in polynomial time
 - which of the above problems are in co-NP:
 - 1. sorting
 - 2. longest common subsequence
 - 3. minimum spanning tree
 - 4. single-source shortest paths
 - 5. shortest x-to-y path
 - 6. determining Eulerian graphs
 - 7. determining non-Hamiltonian graphs

One more example: "is this number prime?"

• The relationships among P, NP, and co-NP

Some well-known problems in NP:

• *k*-clique:

Given a graph, does it have a size k clique?

• *k*-independent set:

Given a graph, does it have a size k independent set?

• *k*-coloring:

Given a graph, can the vertices be colored with k colors such that adjacent vertices get different colors?

• Satisfiability (SAT):

Given a boolean expression, is there an assignment of truth values (T or F) to variables such that the expression is satisfied (evaluated to T)?

• Travel salesman problem (TSP):

Given an edge-weighted complete graph and an integer ℓ , is there a Hamiltonian cycle of length at most ℓ ?

• :

Completeness and Reduction:

- For the class *NP* of problems, which one is the hardest? Reasons to ask:
 - Is every problem in NP solvable in polynomial time?
 - If not, what are the characteristics of the hard problems?
- Hardest problem solving it means you can solve every other in ${\cal NP}$
- Informally, complete = hardest;
 Formally, we need "polynomial-time reduction":
 - decision problem Π_1 is polynomial-time reducible to $\Pi_2,$ written as

$$\Pi_1 \leq_p \Pi_2,$$

if

- \exists polynomial-time transformation function t which
- maps instances of Π_1 to instances of Π_2 , such that
- for every instance x of Π_1 , the answer to x is the same as the answer to t(x)
- Formally, $\Pi \in NP$ is *NP*-complete if every other problem Π' is polynomial-time reducible to Π : $\Pi' \leq_p \Pi$

Examples of (polynomial-time) reduction:

1. *k*-independent set is reducible to *k*-clique

Proof. From a k-independent set instance (G,k), construct a k-clique instance to be (\overline{G},k) , where \overline{G} is the complement graph of G.

The construction takes $\Theta(n^2)$ time for every instance (G, k) containing n vertices and thus polynomial --- take this construction as the transformation function.

Now, X is an independent set in G iff it is a clique in $\overline{G}.$ Proof done.

2. 3-SAT is reducible to SAT

A trivial exercise.

3. SAT is reducible to 3-SAT

A non-trivial exercise.

Proof of *NP*-completeness:

- Suppose we want to prove Π is NP-complete, then we need to prove
 - 1. $\Pi \in NP$
 - 2. for every problem $\Pi' \in NP$, Π' is reducible to Π
- Question:
 - 1. How many problems in $NP? \infty$??!! inefficient way

Proof of *NP*-completeness:

- Observations:
 - $\ \Pi \in NP$
 - Π' is *NP*-complete and is reducible to Π
 - $\implies \Pi$ is *NP*-complete !
- Why it is true:
 - for every problem $\Pi'' \in NP$
 - since Π' is *NP*-complete, Π'' is reducible to Π'
 - using the transitivity of reduction
 - Π'' is reducible to Π
- Switching our goal to:
 <u>Prove</u> that Π ∈ NP
 <u>Look for</u> an NP-complete problem Π' and
 Prove that Π' is reducible to Π
- Where to start with we need a first *NP*-complete problem

Cook's Theorem: SAT is *NP*-complete.

Have you understood the lecture contents?

well	ok	not-at-all	topic
			classes P, NP, co-NP
			relationships among the 3 classes
			NP-complete
			polynomial time reduction
			steps of NP -completeness proof