Lecture 31: NP-Completeness

Agenda:

- NP-completeness: the main ideas
- Graph representations \& size of an instance
- Decision problems \& instances
- Polynomial time
- Classes $P, N P$

Reading:

- Textbook pages 966-983

The problems we have studied:

1. Sorting
2. Longest common subsequence
3. Minimum spanning tree
4. Single-source shortest paths
can be done in $\Theta(n \log n)$ can be done in $\Theta(n \times m)$ can be done in $\Theta(m \log n)$
can be done in $\Theta(m \log n)$

They can be solved in a short amount of time.

What does "short" mean?

1. Sorting
n is the number of keys, measuring how big the sorting instance is
2. Longest common subsequence
n, m are the lengths of the sequences, measuring how big the sorting instance is
3. Minimum spanning tree
n, m are the numbers of vertices and the number of edges, measuring how big the sorting instance is
4. Single-source shortest paths
n, m are the numbers of vertices and the number of edges, measuring how big the sorting instance is
"Short" is polynomial in the "size" of the instance

Some other computational problems:

- Eulerian tour - a cycle including every edge exactly once

Determine if a graph is Eulerian
can be done in $\Theta\left(n^{2}\right)$

- Hamiltionian cycle - a cycle including every vertex exactly once

Determine if a graph is Hamiltonian
so far no known algorithm in $O\left(n^{k}\right)$ for any k

- Shortest x-to- y path
can be done in $\Theta\left(n^{2}\right)$
- Longest x-to- y path
so far no known algorithm in $O\left(n^{k}\right)$ for any k

We need/want to classify the problems into "easy" and "hard" categories ...

Lecture 31: NP-Completeness

Basic concepts:

- Size of an instance: in order to store the instance into the computer, how many memory units are necessary?
Adjacency list representation of a graph containing 6 vertices and 7 edges:

$1:$	2,	3,	5	
$2:$	1,	4,	6,	3
$3:$	2,	1		
$4:$	5,	2		
$5:$	4,	1		
$6:$	2			

6//2,3,5/1,4,6,3/2,1/5,2/4,1/2// - 32 memory units In this problem: $\Theta(n+m)$

- Polynomial time - polynomial in the size(s) of the instance(s)
- Abstract problem
- two parts:

1. a set of instances - which are inputs
2. a query - the question asked

- instance solution: answer to the query - the output

Example: minimum spanning tree problem

1. instances: all edge-weighted (simple, undirected) graphs
2. query: for input G, what is the length of an MST of G ?

Lecture 31: NP-Completeness

Basic concepts (2):

- Decision problem: the answer to the query is yes or no

Example: minimum spanning tree problem

1. instances: all $(G, \ell): G$ an edge-weighted (simple, undirected) graph, ℓ an integer
2. query: for input (G, ℓ), is there a spanning tree of G of length at most ℓ ?

- Optimization problem: abstract problem with an optimization goal
- Relations between optimization problem and its decision version
- suppose you can solve the optimization problem, then you can solve the decision problem (how?)
- suppose you can solve the decision problem, then generally you can solve the optimization problem as well (how?)
- Notes:
- for some abstract problems, their decision version is the same. Example: Hamiltonian graph problem * instances: all (simple, undirected) graphs G * query: for input G, does it have a Hamiltonian cycle?
- correspondence: optimization \leftrightarrow decision

1. minimization \leftrightarrow at most
2. maximization \leftrightarrow at least

The classes of P and $N P$:

- Class P
- decision problem
- there exists some algorithm solving the problem in polynomial time
- which of the above problems are in P :

1. sorting
2. longest common subsequence
3. minimum spanning tree
4. single-source shortest paths
5. shorest x-to- y path
6. determining Eulerian graphs

- Class NP
- decision problem
- for every yes-instance, there exists a proof that the answer is yes and the proof can be verified in polynomial time
- which of the above problems are in $N P$:

1. sorting
2. longest common subsequence
3. minimum spanning tree
4. single-source shortest paths
5. shorest x-to- y path
6. determining Eulerian graphs
7. Iongest x-to- y path
8. determining Hamiltonian graphs

Have you understood the lecture contents?

well	ok	not-at-all	topic
\square	\square	\square	rough idea on 'easy' and 'hard'
\square	\square	\square	size of an instance
\square	\square	\square	polynomial time
\square	\square	\square	abstract, optimization, decision problems
\square	\square	\square	optimization \leftrightarrow decision
\square	\square	\square	P and $N P$

