Agenda:

- NP-completeness: the main ideas
- Graph representations & size of an instance
- Decision problems & instances
- Polynomial time
- Classes P, NP

Reading:

• Textbook pages 966 – 983

The problems we have studied:

1. Sortingcan be done in $\Theta(n \log n)$ 2. Longest common subsequencecan be done in $\Theta(n \times m)$ 3. Minimum spanning treecan be done in $\Theta(m \log n)$ 4. Single-source shortest pathscan be done in $\Theta(m \log n)$

They can be solved in a <u>short</u> amount of time.

What does "short" mean?

1. Sorting

 \boldsymbol{n} is the number of keys, measuring how big the sorting instance is

2. Longest common subsequence

 $n,m\ {\rm are}\ {\rm the}\ {\rm lengths}\ {\rm of}\ {\rm the}\ {\rm sequences},\ {\rm measuring}\ {\rm how}\ {\rm big}\ {\rm the}\ {\rm sorting}\ {\rm instance}\ {\rm is}$

3. Minimum spanning tree

n,m are the numbers of vertices and the number of edges, measuring how big the sorting instance is

4. Single-source shortest paths

 $n,m\,$ are the numbers of vertices and the number of edges, measuring how big the sorting instance is

"Short" is polynomial in the "size" of the instance

Some other computational problems:

• Eulerian tour — a cycle including every edge exactly once

Determine if a graph is Eulerian

can be done in $\Theta(n^2)$

• Hamiltionian cycle — a cycle including every vertex exactly once

Determine if a graph is Hamiltonian

so far no known algorithm in $O(n^k)$ for any k

• Shortest *x*-to-*y* path

can be done in $\Theta(n^2)$

• Longest x-to-y path so far no known algorithm in $O(n^k)$ for any k

We need/want to classify the problems into "easy" and "hard" categories ...

Basic concepts:

• Size of an instance: in order to store the instance into the computer, how many memory units are necessary?

Adjacency list representation of a graph containing 6 vertices and 7 edges:

6//2,3,5/1,4,6,3/2,1/5,2/4,1/2// - 32 memory units In this problem: $\Theta(n+m)$

- Polynomial time polynomial in the size(s) of the instance(s)
- Abstract problem
 - two parts:
 - 1. a set of instances which are inputs
 - 2. a query the question asked
 - instance solution: answer to the query the output
 Example: minimum spanning tree problem
 - 1. instances: all edge-weighted (simple, undirected) graphs
 - 2. query: for input G, what is the length of an MST of G?

Basic concepts (2):

- Decision problem: the answer to the query is yes or no Example: minimum spanning tree problem
 - 1. instances: all (G, ℓ) : G an edge-weighted (simple, undirected) graph, ℓ an integer
 - 2. query: for input (G, ℓ) , is there a spanning tree of G of length <u>at most</u> ℓ ?
- Optimization problem: abstract problem with an optimization goal
- Relations between optimization problem and its decision version
 - suppose you can solve the optimization problem, then you can solve the decision problem (how?)
 - suppose you can solve the decision problem, then generally you can solve the optimization problem as well (how?)
- Notes:
 - for some abstract problems, their decision version is the same. Example: Hamiltonian graph problem
 - * instances: all (simple, undirected) graphs G
 - * query: for input G, does it have a Hamiltonian cycle?
 - correspondence: optimization \leftrightarrow decision
 - 1. minimization \leftrightarrow *at most*
 - 2. maximization \leftrightarrow at least

The classes of P and NP:

- Class P
 - decision problem
 - there exists some algorithm solving the problem in polynomial time
 - which of the above problems are in P:
 - 1. sorting
 - 2. longest common subsequence
 - 3. minimum spanning tree
 - 4. single-source shortest paths
 - 5. shorest x-to-y path
 - 6. determining Eulerian graphs
- Class NP
 - decision problem
 - for every **yes**-instance, there exists a proof that the answer is yes and the proof can be verified in polynomial time
 - which of the above problems are in NP:
 - 1. sorting
 - 2. longest common subsequence
 - 3. minimum spanning tree
 - 4. single-source shortest paths
 - 5. shorest x-to-y path
 - 6. determining Eulerian graphs
 - 7. longest x-to-y path
 - 8. determining Hamiltonian graphs

Have you understood the lecture contents?

well	ok	not-at-all	topic
			rough idea on 'easy' and 'hard'
			size of an instance
			polynomial time
			abstract, optimization, decision problems
			optimization \leftrightarrow decision
			P and NP