Agenda:

- Single-source shortest paths
- Bellman-Ford's algorithm for general case

Reading:

• Textbook pages 588 – 592

Dijkstra's SSSP algorithm (recall):

- d[v] weight of the shortest path from source s to v if no such path, set to ∞
- Idea in Dijkstra's algorithm:
 - greedily grows an SSSP tree
 - ensures that when adding a vertex, its shortest path in the current (induced) subgraph is determined
 - records for every non-tree vertex \boldsymbol{v} its best parent tree vertex $\boldsymbol{p}[\boldsymbol{v}]$

Note: very similar to Prim's MST algorithm (the min-priority queue implementation)

• Pseudocode (use d[v] as the key):

procedure dijkstra(G, w, s)**digraph G = (V, E)for each $v \in V(G)$ do **initialization $d[v] \leftarrow \infty$ $p[v] \leftarrow \text{NIL}$ $d[s] \leftarrow 0$ $Q \leftarrow V(G)$ while $Q \neq \emptyset$ do $u \leftarrow \texttt{ExtractMin}(Q)$ **s dequeued first for each $v \in Adj[u]$ do if d[u] + w(u, v) < d[v] then **update v, no matter if $v \in Q$ $p[v] \leftarrow u$ decrease-key(v, d[u] + w(u, v)) $**d[v] \leftarrow d[u] + w(u,v)$

Dijkstra's SSSP algorithm — proof of maintenance:

- (while) Loop Invariant: for every $v \in S$, d[v] records the weight of the shortest path from s to v in graph G
- Maintenance (vertex u dequeued) dist[u] — weight of a shortest path from s to u in G: — must show that at the end of loop body, d[u] = dist[u] Let P = (s, v₁, v₂, ..., v_{k-1}, u) be any shortest path from s to u in graph G:
 - y first vertex in P but not in S
 - x the vertex before y in P
 - $dist[y] \leq dist[u] y$ on the path
 - $d[y] \ge d[u]$ min-priority queue
 - d[y] = dist[y] since $x \in S$
 - conclusion: $d[u] \leq dist[u]$
- When there are negative weight edges. we <u>fail</u> to claim:
 dist[y] ≤ dist[u] y on the path
- Another problem: negative weight cycles

What is the weight of a shortest path from s to u ???

Bellman-Ford's SSSP algorithm for the general case:

- General case edge weights could be negative
- Output:
 - 1. if there is a negative weight cycle, report it
 - 2. otherwise report all the dist[u] values and associated paths
- Idea in the algorithm:

If there is no negative weight cycle reachable from s, then every s-to-u shortest path contains at most n-1 edges; also is true that when all s-to-u shortest paths are discovered, for every edge (u, v) there must be $d[v] \leq d[u] + w(u, v)$.

It follows that d[v] can be reduced n-1 times in order to have value dist[v], but no more.

• Pseudocode:

procedure bellman-ford(G, w, s)**digraph G = (V, E)for each $v \in V(G)$ do **initialization $d[v] \leftarrow \infty$ $p[v] \leftarrow \text{NIL}$ $d[s] \leftarrow 0$ for $i \leftarrow 1$ to n-1**n = |V(G)|for each edge $(u, v) \in E(G)$ do if d[u] + w(u, v) < d[v] then **update d[v] $p[v] \leftarrow u$ $d[v] \leftarrow d[u] + w(u, v)$ for each edge $(u,v) \in E(G)$ do if d[u] + w(u, v) < d[v] then **there is a negative cycle return FALSE return TRUE

Bellman-Ford's SSSP algorithm — analysis:

• An example:

- Correctness: textbook pages 589 591
- Running time:
 - 1. initialization: $\Theta(n)$
 - 2. updating $d[v]: \Theta(n \times m)$
 - 3. checking existence of negative cycles: $\Theta(m)$

Conclusion: $\Theta(nm)$ time (assuming adjacency list graph representation)

Have you understood the lecture contents?

well	ok	not-at-all	topic
			SSSP problem
			shortest path problem variants
			Dijkstra's algorithm: idea
			where Dijkstra's fails? why?
			Bellman-Ford's algorithm: idea
			execution & analysis