
Lecture 30: Graph Algorithms

Agenda:

• Single-source shortest paths

• Bellman-Ford’s algorithm for general case

Reading:

• Textbook pages 588 – 592

1

Lecture 30: Graph Algorithms

Dijkstra’s SSSP algorithm (recall):

• d[v] — weight of the shortest path from source s to v

if no such path, set to ∞

• Idea in Dijkstra’s algorithm:

– greedily grows an SSSP tree

– ensures that when adding a vertex, its shortest path in
the current (induced) subgraph is determined

– records for every non-tree vertex v its best parent tree
vertex p[v]

Note: very similar to Prim’s MST algorithm (the min-priority
queue implementation)

• Pseudocode (use d[v] as the key):

procedure dijkstra(G, w, s) **digraph G = (V, E)

for each v ∈ V (G) do **initialization
d[v]←∞
p[v]← NIL

d[s]← 0
Q← V (G)
while Q 6= ∅ do

u← ExtractMin(Q) **s dequeued first
for each v ∈ Adj[u] do

if d[u] + w(u, v) < d[v] then
**update v, no matter if v ∈ Q

p[v]← u
decrease-key(v, d[u] + w(u, v))

**d[v]← d[u] + w(u, v)

2

Lecture 30: Graph Algorithms

Dijkstra’s SSSP algorithm — proof of maintenance:

• (while) Loop Invariant: for every v ∈ S, d[v] records the weight
of the shortest path from s to v in graph G

• Maintenance (vertex u dequeued)

dist[u] — weight of a shortest path from s to u in G:

— must show that at the end of loop body, d[u] = dist[u]

Let P = (s, v1, v2, . . . , vk−1, u) be any shortest path from s to
u in graph G:

– y — first vertex in P but not in S

– x — the vertex before y in P

– dist[y] ≤ dist[u] — y on the path

– d[y] ≥ d[u] — min-priority queue

– d[y] = dist[y] — since x ∈ S

– conclusion: d[u] ≤ dist[u]

• When there are negative weight edges. we fail to claim:

— dist[y] ≤ dist[u] — y on the path

• Another problem: negative weight cycles

y - y���
����*

HH
HHH

HHY

y

y
y

HHH
HHHHj

�
���

����

- ys u3
2

-1

-1

-3

5

What is the weight of a shortest path from s to u ???

3

Lecture 30: Graph Algorithms

Bellman-Ford’s SSSP algorithm for the general case:

• General case — edge weights could be negative

• Output:

1. if there is a negative weight cycle, report it

2. otherwise report all the dist[u] values and associated paths

• Idea in the algorithm:

If there is no negative weight cycle reachable from s, then
every s-to-u shortest path contains at most n− 1 edges; also
is true that when all s-to-u shortest paths are discovered, for
every edge (u, v) there must be d[v] ≤ d[u] + w(u, v).

It follows that d[v] can be reduced n−1 times in order to have
value dist[v], but no more.

• Pseudocode:

procedure bellman-ford(G, w, s) **digraph G = (V, E)

for each v ∈ V (G) do **initialization
d[v]←∞
p[v]← NIL

d[s]← 0

for i← 1 to n− 1 **n = |V (G)|
for each edge (u, v) ∈ E(G) do

if d[u] + w(u, v) < d[v] then **update d[v]
p[v]← u
d[v]← d[u] + w(u, v)

for each edge (u, v) ∈ E(G) do
if d[u] + w(u, v) < d[v] then **there is a negative cycle

return FALSE
return TRUE

4

Lecture 30: Graph Algorithms

Bellman-Ford’s SSSP algorithm — analysis:

• An example:

y1 y2 y3

y5 y
6

y
7

y4

- -

- -
? ? ?

Q
Q

Q
Q

Q
Q

Q
Q

QQs

Q
Q

Q
Q

Q
Q

Q
Q

QQs��������������������1 Q
Q

Q
QQs

�
�

�
��3

9 1

-2 -1

3

4

-3-7

2

8 -5

4

bellman-ford(G,1):

y1:0 y2:9 y3:10

y
5:3

y
6:-7

y
7:-8

y4:-4

- -

-
?

Q
Q

Q
Q

Q
Q

Q
Q

QQs �
�

�
��3

9 1

-1

3
-7

4

• Correctness: textbook pages 589 – 591

• Running time:

1. initialization: Θ(n)

2. updating d[v]: Θ(n×m)

3. checking existence of negative cycles: Θ(m)

Conclusion: Θ(nm) time (assuming adjacency list graph rep-
resentation)

5

Lecture 30: Graph Algorithms

Have you understood the lecture contents?

well ok not-at-all topic

� � � SSSP problem

� � � shortest path problem variants

� � � Dijkstra’s algorithm: idea

� � � where Dijkstra’s fails? why?

� � � Bellman-Ford’s algorithm: idea

� � � execution & analysis

6

