## Lecture 30: Graph Algorithms

Agenda:

- Single-source shortest paths
- Bellman-Ford's algorithm for general case


## Reading:

- Textbook pages 588 - 592


## Dijkstra's SSSP algorithm (recall):

- $d[v]$ - weight of the shortest path from source $s$ to $v$ if no such path, set to $\infty$
- Idea in Dijkstra's algorithm:
- greedily grows an SSSP tree
- ensures that when adding a vertex, its shortest path in the current (induced) subgraph is determined
- records for every non-tree vertex $v$ its best parent tree vertex $p[v]$

Note: very similar to Prim's MST algorithm (the min-priority queue implementation)

- Pseudocode (use $d[v]$ as the key):
procedure dijkstra( $G, w, s$ ) $\quad * *$ digraph $G=(V, E)$
for each $v \in V(G)$ do **initialization
$d[v] \leftarrow \infty$
$p[v] \leftarrow$ NIL
$d[s] \leftarrow 0$
$Q \leftarrow V(G)$
while $Q \neq \emptyset$ do
$u \leftarrow \operatorname{ExtractMin}(Q) \quad * * s$ dequeued first
for each $v \in \operatorname{Adj}[u]$ do if $d[u]+w(u, v)<d[v]$ then
**update $v$, no matter if $v \in Q$

$$
p[v] \leftarrow u
$$

$$
\operatorname{decrease-key}(v, d[u]+w(u, v))
$$

$$
* * d[v] \leftarrow d[u]+w(u, v)
$$

## Dijkstra's SSSP algorithm - proof of maintenance:

- (while) Loop Invariant: for every $v \in S, d[v]$ records the weight of the shortest path from $s$ to $v$ in graph $G$
- Maintenance (vertex $u$ dequeued)
$\operatorname{dist}[u]$ - weight of a shortest path from $s$ to $u$ in $G$ :
- must show that at the end of loop body, $d[u]=\operatorname{dist}[u]$

Let $P=\left(s, v_{1}, v_{2}, \ldots, v_{k-1}, u\right)$ be any shortest path from $s$ to $u$ in graph $G$ :

- y - first vertex in $P$ but not in $S$
- $x$ - the vertex before $y$ in $P$
$-\operatorname{dist}[y] \leq \operatorname{dist}[u]-y$ on the path
$-d[y] \geq d[u]$ - min-priority queue
$-d[y]=\operatorname{dist}[y]$ - since $x \in S$
- conclusion: $d[u] \leq \operatorname{dist}[u]$
- When there are negative weight edges. we fail to claim: - dist $[y] \leq \operatorname{dist}[u]-y$ on the path
- Another problem: negative weight cycles


What is the weight of a shortest path from $s$ to $u$ ???

Lecture 30: Graph Algorithms Bellman-Ford's SSSP algorithm for the general case:

- General case - edge weights could be negative
- Output:

1. if there is a negative weight cycle, report it
2. otherwise report all the dist[u] values and associated paths

- Idea in the algorithm:

If there is no negative weight cycle reachable from $s$, then every s-to- $u$ shortest path contains at most $n-1$ edges; also is true that when all $s$-to- $u$ shortest paths are discovered, for every edge $(u, v)$ there must be $d[v] \leq d[u]+w(u, v)$.
It follows that $d[v]$ can be reduced $n-1$ times in order to have value dist $[v]$, but no more.

- Pseudocode:

```
\(\underline{\text { procedure bellman-ford }(G, w, s) \quad * * \text { digraph } G=(V, E), ~(V)}\)
for each \(v \in V(G)\) do \(\quad * *\) initialization
    \(d[v] \leftarrow \infty\)
    \(p[v] \leftarrow\) NIL
\(d[s] \leftarrow 0\)
for \(i \leftarrow 1\) to \(n-1 \quad * * n=|V(G)|\)
    for each edge \((u, v) \in E(G)\) do
        if \(d[u]+w(u, v)<d[v]\) then \(* *\) update \(d[v]\)
                        \(p[v] \leftarrow u\)
                \(d[v] \leftarrow d[u]+w(u, v)\)
for each edge \((u, v) \in E(G)\) do
    if \(d[u]+w(u, v)<d[v]\) then \(\quad * *\) there is a negative cycle
        return FALSE
return TRUE
```

Bellman-Ford's SSSP algorithm - analysis:

- An example:

bellman-ford $(G, 1)$ :

- Correctness: textbook pages 589-591
- Running time:

1. initialization: $\Theta(n)$
2. updating $d[v]: \Theta(n \times m)$
3. checking existence of negative cycles: $\Theta(m)$

Conclusion: $\Theta(n m)$ time (assuming adjacency list graph representation)

Have you understood the lecture contents?

| well | ok | not-at-all | topic |
| :--- | :--- | :--- | :--- |
| $\square$ | $\square$ | $\square$ | SSSP problem |
| $\square$ | $\square$ | $\square$ | shortest path problem variants |
| $\square$ | $\square$ | $\square$ | Dijkstra's algorithm: idea |
| $\square$ | $\square$ | $\square$ | where Dijkstra's fails? why? |
| $\square$ | $\square$ | $\square$ | Bellman-Ford's algorithm: idea |
| $\square$ | $\square$ | $\square$ | execution \& analysis |

