Agenda:

- Single-source shortest paths
- Dijkstra's algorithm for non-negatively weighted case

Reading:

• Textbook pages 580 - 587, 595 - 601

Shortest path problems:

- BFS recall: outputs every *s*-to-*v* shortest path
 - s start vertex
 - v reachable vertex from s (residing in a same connected component)
 - shortest # edges
 - running time $\Theta(n+m)$
- BFS solves *the single-source-shortest-path problem* on undirected unweighted graphs

Single-Source-Shortest-Path (SSSP) problem: given a source s, find out for all vertices their shortest paths from s

- Variants:
 - single source vs. all pairs
 - graphs: undirected vs. directed
 - edges: unweighted vs. weighted
 - edge weights: non-negative vs. may have negative weights
 - digraphs: acyclic vs. may have di-cycles

Note: if there is no path, the distance is set to ∞ ...

•

- SSSP problem on non-negatively weighted digraphs Dijkstra's algorithm (today)
- 2. SSSP problem on weighted digraphs Bellman-Ford's algorithm (next lecture)

Dijkstra's SSSP algorithm:

- d[v] weight of the shortest path from source s to v if no such path, set to ∞
- Idea in Dijkstra's algorithm:
 - greedily grows an SSSP tree
 - ensures that when adding a vertex, its shortest path in the current (induced) subgraph is determined
 - records for every non-tree vertex v its best parent tree vertex p[v]

Note: very similar to Prim's MST algorithm (the min-priority queue implementation)

• Pseudocode (use d[v] as the key):

G = (V, E)procedure dijkstra(G, w, s)for each $v \in V(G)$ do **initialization $d[v] \leftarrow \infty$ $p[v] \leftarrow \text{NIL}$ $d[s] \leftarrow 0$ $Q \leftarrow V(G)$ while $Q \neq \emptyset$ do $u \leftarrow \texttt{ExtractMin}(Q)$ **s dequeued first for each $v \in Adj[u]$ do if d[u] + w(u, v) < d[v] then **update v, no matter if $v \in Q$ $p[v] \leftarrow u$ decrease-key(v, d[u] + w(u, v)) $d[v] \leftarrow d[u] + w(u,v)$

Dijkstra's SSSP algorithm vs. Prim's MST algorithm:

```
**G = (V, E)
 procedure primMST(G, w, r)
   for each v \in V(G) do
                                               **initialization
       key[v] \leftarrow \infty
       p[v] \leftarrow \text{NIL}
   key[r] \leftarrow 0
   Q \leftarrow V(G)
   while Q \neq \emptyset do
        u \leftarrow \texttt{ExtractMin}(Q)
                                               **r dequeued first
        for each v \in Adj[u] do
             if v \in Q && w(u,v) < key[v] then
                                               **update v
                 p[v] \leftarrow u
                 decrease-key(v, w(u, v))
                                               **key[v] \leftarrow w(u,v)
• procedure dijkstra(G, w, s)
                                              **G = (V, E)
   for each v \in V(G) do
                                              **initialization
        d[v] \leftarrow \infty
       p[v] \leftarrow \text{NIL}
   d[s] \leftarrow 0
   Q \leftarrow V(G)
   while Q \neq \emptyset do
       u \leftarrow \texttt{ExtractMin}(Q)
                                               **s dequeued first
        for each v \in Adj[u] do
             if d[u] + w(u, v) < d[v] then
                                               **update v, no matter if v \in Q
                 p[v] \leftarrow u
                 decrease-key(v, d[u] + w(u, v))
                                               **d[v] \leftarrow d[u] + w(u, v)
```

Dijkstra's SSSP algorithm — an example:

• Input graph G:

• dijkstra(G, 1):

• dijkstra(G, 1) trace:

v	1	2	3	4	5	6	7
d[v]/p[v]	O/NIL	∞/\texttt{NIL}	$\infty/{ t NIL}$	∞/\texttt{NIL}	∞/\texttt{NIL}	∞/\texttt{NIL}	∞/\texttt{NIL}
1 1		0 /1	/NTT	/NTT	2 /1	10/1	/NTT
aequeuea	U/NIL	9/1	∞ /NIL	∞ /NIL	3/1	12/1	∞ /NIL
5 dequeued	0/NIL	9/1	11/5	$\infty/{ t NIL}$	3/1	12/1	$\infty/{ t NIL}$
2 dequeued	O/NIL	9/1	10/2	$\infty/{ t NIL}$	3/1	12/1	19/2
3 dequeued	O/NIL	9/1	10/2	25/3	3/1	12/1	19/2
6 dequeued	O/NIL	9/1	10/2	25/3	3/1	12/1	19/2
7 dequeued	O/NIL	9/1	10/2	23/7	3/1	12/1	19/2

Dijkstra's SSSP algorithm — analysis:

- Applies to undirected graphs too See the last example :-)
- Running time:

Same as the running time for Prim's MST algorithm

```
— \Theta(m \log n), assuming adjacency list graph representation and min-priority queue implemented by a heap
```

• Correctness:

Let S = V - Q

(while) Loop Invariant: for every $v \in S$, d[v] records the weight of the shortest path from s to v in graph G

Proof:

- initialization (S is empty):
- maintenance:
 Exercise: fill in the detail
- termination: S becomes V, so LI implies that for every v, d[v] records the weight of the shortest path from s to v in graph G

Dijkstra's SSSP algorithm — proof of maintenance:

• Maintenance (vertex *u* dequeued)

dist[u] — weight of a shortest path from s to u in G:

— must show that at the end of loop body, d[u] = dist[u]

Let $P = (s, v_1, v_2, \dots, v_{k-1}, u)$ be any shortest path from s to u in graph G:

- y first vertex in P but not in S
- x the vertex before y in P
- $dist[y] \leq dist[u]$ y on the path
- $d[y] \ge d[u]$ min-priority queue
- d[y] = dist[y] since $x \in S$
- conclusion: $d[u] \leq dist[u]$
- Question: why Dijkstra's algorithm does NOT apply to negative weights?

We fail to claim:

— $dist[y] \leq dist[u]$ — y on the path

• Another problem with negative weights:

Suppose there is a (direct/undirected) cycle with a negative weight

What is the weight of a shortest path from s to u ???

Have you understood the lecture contents?

well	ok	not-at-all	topic
			what is SSSP ???
			shortest path problem variants
			Dijkstra's algorithm: idea
			execution, correctness, & analysis