Lecture 29: Graph Algorithms

Agenda:

- Single-source shortest paths
- Dijkstra's algorithm for non-negatively weighted case

Reading:

- Textbook pages 580 - 587, 595 - 601

Shortest path problems:

- BFS recall: outputs every s-to- v shortest path
- s - start vertex
- v — reachable vertex from s (residing in a same connected component)
- shortest - \# edges
- running time $\Theta(n+m)$
- BFS solves the single-source-shortest-path problem on undirected unweighted graphs
Single-Source-Shortest-Path (SSSP) problem: given a source s, find out for all vertices their shortest paths from s
- Variants:
- single source vs. all pairs
- graphs: undirected vs. directed
- edges: unweighted vs. weighted
- edge weights: non-negative vs. may have negative weights
- digraphs: acyclic vs. may have di-cycles

Note: if there is no path, the distance is set to $\infty \ldots$

1. SSSP problem on non-negatively weighted digraphs Dijkstra's algorithm (today)
2. SSSP problem on weighted digraphs Bellman-Ford's algorithm (next lecture)

Dijkstra's SSSP algorithm:

- $d[v]$ - weight of the shortest path from source s to v if no such path, set to ∞
- Idea in Dijkstra's algorithm:
- greedily grows an SSSP tree
- ensures that when adding a vertex, its shortest path in the current (induced) subgraph is determined
- records for every non-tree vertex v its best parent tree vertex $p[v]$

Note: very similar to Prim's MST algorithm (the min-priority queue implementation)

- Pseudocode (use $d[v]$ as the key):
procedure dijkstra($G, w, s) \quad * * G=(V, E)$

```
for each \(v \in V(G)\) do **initialization
    \(d[v] \leftarrow \infty\)
    \(p[v] \leftarrow\) NIL
\(d[s] \leftarrow 0\)
\(Q \leftarrow V(G)\)
while \(Q \neq \emptyset\) do
    \(u \leftarrow \operatorname{ExtractMin}(Q) \quad * * s\) dequeued first
    for each \(v \in \operatorname{Adj}[u]\) do
        if \(d[u]+w(u, v)<d[v]\) then
                            **update \(v\), no matter if \(v \in Q\)
                \(p[v] \leftarrow u\)
                \(\operatorname{decrease-key}(v, d[u]+w(u, v))\)
            \(* * d[v] \leftarrow d[u]+w(u, v)\)
```

Lecture 29: Graph Algorithms
Dijkstra's SSSP algorithm vs. Prim's MST algorithm:

- procedure primMST $(G, w, r) \quad * * G=(V, E)$
for each $v \in V(G)$ do
**initialization
$k e y[v] \leftarrow \infty$
$p[v] \leftarrow \mathrm{NIL}$
$k e y[r] \leftarrow 0$
$Q \leftarrow V(G)$
while $Q \neq \emptyset$ do
$u \leftarrow \operatorname{ExtractMin}(Q) \quad * * r$ dequeued first
for each $v \in A d j[u]$ do if $v \in Q$ \&\& $w(u, v)<k e y[v]$ then
**update v
$p[v] \leftarrow u$
decrease-key $(v, w(u, v))$
$* * k e y[v] \leftarrow w(u, v)$
- procedure dijkstra $(G, w, s) \quad * * G=(V, E)$
for each $v \in V(G)$ do **initialization
$d[v] \leftarrow \infty$
$p[v] \leftarrow$ NIL
$d[s] \leftarrow 0$
$Q \leftarrow V(G)$
while $Q \neq \emptyset$ do
$u \leftarrow \operatorname{ExtractMin}(Q) \quad * * s$ dequeued first
for each $v \in A d j[u]$ do if $d[u]+w(u, v)<d[v]$ then
**update v, no matter if $v \in Q$

$$
p[v] \leftarrow u
$$

$$
\text { decrease-key }(v, d[u]+w(u, v))
$$

$$
* * d[v] \leftarrow d[u]+w(u, v)
$$

Dijkstra's SSSP algorithm - an example:

- Input graph G :

- dijkstra($G, 1$):

- dijkstra($G, 1$) trace:

v	1	2	3	4	5	6	7
$d[v] / p[v]$	$0 /$ NIL	$\infty /$ NIL					
1 dequeued	$0 /$ NIL	$9 / 1$	$\infty /$ NIL	$\infty /$ NIL	$3 / 1$	$12 / 1$	$\infty /$ NIL
5 dequeued	$0 /$ NIL	$9 / 1$	$11 / 5$	$\infty /$ NIL	$3 / 1$	$12 / 1$	$\infty /$ NIL
2 dequeued	$0 /$ NIL	$9 / 1$	$10 / 2$	$\infty /$ NIL	$3 / 1$	$12 / 1$	$19 / 2$
3 dequeued	$0 /$ NIL	$9 / 1$	$10 / 2$	$25 / 3$	$3 / 1$	$12 / 1$	$19 / 2$
6 dequeued	$0 /$ NIL	$9 / 1$	$10 / 2$	$25 / 3$	$3 / 1$	$12 / 1$	$19 / 2$
7 dequeued	$0 /$ NIL	$9 / 1$	$10 / 2$	$23 / 7$	$3 / 1$	$12 / 1$	$19 / 2$

Dijkstra's SSSP algorithm - analysis:

- Applies to undirected graphs too See the last example :-)
- Running time:

Same as the running time for Prim's MST algorithm

- $\Theta(m \log n)$, assuming adjacency list graph representation and min-priority queue implemented by a heap
- Correctness:

Let $S=V-Q$
(while) Loop Invariant: for every $v \in S, d[v]$ records the weight of the shortest path from s to v in graph G
Proof:

- initialization (S is empty):
- maintenance:

Exercise: fill in the detail

- termination: S becomes V, so LI implies that for every v, $d[v]$ records the weight of the shortest path from s to v in graph G
- Maintenance (vertex u dequeued) $\operatorname{dist}[u]$ - weight of a shortest path from s to u in G :
- must show that at the end of loop body, $d[u]=\operatorname{dist}[u]$

Let $P=\left(s, v_{1}, v_{2}, \ldots, v_{k-1}, u\right)$ be any shortest path from s to u in graph G :

- y - first vertex in P but not in S
- x - the vertex before y in P
$-\operatorname{dist}[y] \leq \operatorname{dist}[u]-y$ on the path
$-d[y] \geq d[u]$ - min-priority queue
$-d[y]=\operatorname{dist}[y]-\operatorname{since} x \in S$
- conclusion: $d[u] \leq \operatorname{dist}[u]$
- Question: why Dijkstra's algorithm does NOT apply to negative weights?
We fail to claim:
- dist $[y] \leq \operatorname{dist}[u]-y$ on the path
- Another problem with negative weights:

Suppose there is a (direct/undirected) cycle with a negative weight

What is the weight of a shortest path from s to u ???

well	ok	not-at-all	topic
\square	\square	\square	what is SSSP ???
\square	\square	\square	shortest path problem variants
\square	\square	\square	Dijkstra's algorithm: idea
\square	\square	\square	execution, correctness, \& analysis

