
Lecture 29: Graph Algorithms

Agenda:

• Single-source shortest paths

• Dijkstra’s algorithm for non-negatively weighted case

Reading:

• Textbook pages 580 – 587, 595 – 601
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Lecture 29: Graph Algorithms

Shortest path problems:

• BFS recall: outputs every s-to-v shortest path

– s — start vertex

– v — reachable vertex from s (residing in a same connected
component)

– shortest — # edges

– running time Θ(n + m)

• BFS solves the single-source-shortest-path problem on undi-
rected unweighted graphs

Single-Source-Shortest-Path (SSSP) problem: given a source
s, find out for all vertices their shortest paths from s

• Variants:

– single source vs. all pairs

– graphs: undirected vs. directed

– edges: unweighted vs. weighted

– edge weights: non-negative vs. may have negative weights

– digraphs: acyclic vs. may have di-cycles

Note: if there is no path, the distance is set to ∞ ...

•

1. SSSP problem on non-negatively weighted digraphs

Dijkstra’s algorithm (today)

2. SSSP problem on weighted digraphs

Bellman-Ford’s algorithm (next lecture)
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Lecture 29: Graph Algorithms

Dijkstra’s SSSP algorithm:

• d[v] — weight of the shortest path from source s to v

if no such path, set to ∞

• Idea in Dijkstra’s algorithm:

– greedily grows an SSSP tree

– ensures that when adding a vertex, its shortest path in
the current (induced) subgraph is determined

– records for every non-tree vertex v its best parent tree
vertex p[v]

Note: very similar to Prim’s MST algorithm (the min-priority
queue implementation)

• Pseudocode (use d[v] as the key):

procedure dijkstra(G, w, s) **G = (V, E)

for each v ∈ V (G) do **initialization
d[v]←∞
p[v]← NIL

d[s]← 0
Q← V (G)
while Q 6= ∅ do

u← ExtractMin(Q) **s dequeued first
for each v ∈ Adj[u] do

if d[u] + w(u, v) < d[v] then
**update v, no matter if v ∈ Q

p[v]← u
decrease-key(v, d[u] + w(u, v))

**d[v]← d[u] + w(u, v)
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Lecture 29: Graph Algorithms

Dijkstra’s SSSP algorithm vs. Prim’s MST algorithm:

• procedure primMST(G, w, r) **G = (V, E)

for each v ∈ V (G) do **initialization
key[v]←∞
p[v]← NIL

key[r]← 0
Q← V (G)
while Q 6= ∅ do

u← ExtractMin(Q) **r dequeued first
for each v ∈ Adj[u] do

if v ∈ Q && w(u, v) < key[v] then
**update v

p[v]← u
decrease-key(v, w(u, v))

**key[v]← w(u, v)

• procedure dijkstra(G, w, s) **G = (V, E)

for each v ∈ V (G) do **initialization
d[v]←∞
p[v]← NIL

d[s]← 0
Q← V (G)
while Q 6= ∅ do

u← ExtractMin(Q) **s dequeued first
for each v ∈ Adj[u] do

if d[u] + w(u, v) < d[v] then
**update v, no matter if v ∈ Q

p[v]← u
decrease-key(v, d[u] + w(u, v))

**d[v]← d[u] + w(u, v)
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Lecture 29: Graph Algorithms

Dijkstra’s SSSP algorithm — an example:

• Input graph G:
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• dijkstra(G,1):
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• dijkstra(G,1) trace:

v 1 2 3 4 5 6 7
d[v]/p[v] 0/NIL ∞/NIL ∞/NIL ∞/NIL ∞/NIL ∞/NIL ∞/NIL

1 dequeued 0/NIL 9/1 ∞/NIL ∞/NIL 3/1 12/1 ∞/NIL

5 dequeued 0/NIL 9/1 11/5 ∞/NIL 3/1 12/1 ∞/NIL

2 dequeued 0/NIL 9/1 10/2 ∞/NIL 3/1 12/1 19/2

3 dequeued 0/NIL 9/1 10/2 25/3 3/1 12/1 19/2

6 dequeued 0/NIL 9/1 10/2 25/3 3/1 12/1 19/2

7 dequeued 0/NIL 9/1 10/2 23/7 3/1 12/1 19/2
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Lecture 29: Graph Algorithms

Dijkstra’s SSSP algorithm — analysis:

• Applies to undirected graphs too

See the last example :-)

• Running time:

Same as the running time for Prim’s MST algorithm

— Θ(m logn), assuming adjacency list graph representation
and min-priority queue implemented by a heap

• Correctness:

Let S = V −Q

(while) Loop Invariant: for every v ∈ S, d[v] records the weight
of the shortest path from s to v in graph G

Proof:

– initialization (S is empty):

– maintenance:

Exercise: fill in the detail

– termination: S becomes V , so LI implies that for every v,
d[v] records the weight of the shortest path from s to v
in graph G
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Lecture 29: Graph Algorithms

Dijkstra’s SSSP algorithm — proof of maintenance:

• Maintenance (vertex u dequeued)

dist[u] — weight of a shortest path from s to u in G:

— must show that at the end of loop body, d[u] = dist[u]

Let P = (s, v1, v2, . . . , vk−1, u) be any shortest path from s to
u in graph G:

– y — first vertex in P but not in S

– x — the vertex before y in P

– dist[y] ≤ dist[u] — y on the path

– d[y] ≥ d[u] — min-priority queue

– d[y] = dist[y] — since x ∈ S

– conclusion: d[u] ≤ dist[u]

• Question: why Dijkstra’s algorithm does NOT apply to neg-
ative weights?

We fail to claim:

— dist[y] ≤ dist[u] — y on the path

• Another problem with negative weights:

Suppose there is a (direct/undirected) cycle with a negative
weight
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What is the weight of a shortest path from s to u ???
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Lecture 29: Graph Algorithms

Have you understood the lecture contents?

well ok not-at-all topic

� � � what is SSSP ???

� � � shortest path problem variants

� � � Dijkstra’s algorithm: idea

� � � execution, correctness, & analysis
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