Lecture 28: Graph Algorithms
Agenda:

e Prim’'s MST algorithm

e Kruskal's MST algorithm

Reading:

e [extbook pages 561 — 579

Lecture 28: Graph Algorithms
Prim’s algorithm for the MST problem (recall):

e Input: an edge-weighted (simple, undirected, connected) graph
(positive weights)

e OQutput: an MST

e Idea:

— suppose we have already an MST T” spanning subset V'
of vertices (7" is initialized empty and V' is initialized to
contain any one vertex)

— grow 7" to span one more vertex v eV — V'

— v is selected such that there is a vertex u € V’, edge (u,v)
is the minimum weighted over all edges of form (u/,v")
where v/ ¢ V' and v e V -V’

— when V’/ becomes V, terminate

e One simplest implementation:

procedure primMST(G,w,r) x»*G = (V, F)
S —{r} *xS: spanned vertex subset
T — 10 **T': MST spanning S

while |S| < |V] do
find a minimum weight edge (u,v): u €S and veV — 8
S—S+wv
T — T+ (u,v)

return T

Running time analysis:

1. finding such an edge in O(n?) (or O(m)) time
2. there are n — 1 edges in the output MST

3. therefore, in total O(n3) (or O(nm)) time

Lecture 28: Graph Algorithms

Prim's algorithm for the MST problem — correctness:
e Input graph G = (V,E): E = {e1,e2,...,en}

e Suppose edges in the output tree T are e;, e;,,...,€; _, (in the
order picked by Prim’'s algorithm)

e \Want to prove: T is an MST

e Suppose 7" is an MST and it contains edges ej,,ej,,...,€j, ,
(sorted in the way that it maps the edge order in T as much
as possible). If T'# T’ (otherwise we are done), then

— there is a minimum index k, such that e; # e,
— let Tp denote the tree formed by {ei,,€ei,,...,€i .}
— let Vo =V (Tp) and V1 =V — V)

— adding e;, to T’ creates a cycle which contains some edge,
say e;,, that has one ending vertex in V5 and the other in
%1

— T" =1T"+e;, — ej, is another spanning tree

— T” is another MST (why ?7) sharing one more edge with
T

— repeat this argument to claim that T is also an MST
e Note: this is a proof using ‘contradiction’ + ‘graph theory’.

e Proof can also be done by
(while) Loop Invariant: T is an MST on S.

Exercise !

Lecture 28: Graph Algorithms
Prim’'s algorithm for the MST problem — improvement:

e Where to improve: finding the minimum weight edge (u,v)
e Initially we need to scan all the edges, ©(m) (worst case)

e Example: input graph G-

6 7

e primMST(G,w,1): an intermediate tree
What are the candidate edges 7

Lecture 28: Graph Algorithms
Prim’s algorithm for the MST problem — improvement:

e Ideas:

1. for each non-tree vertex v, store its minimum-weight tree
neighbor p[v]

2. store edges of type (p[v],v]) in @ min-priority queue Q

3. therefore, every time the target edge can be extracted
ExtractMin(Q)

note: need to update the neighbor information for non-
tree vertices after the extraction

e Pseudocode:

procedure primMST(G,w,r) x»*G = (V, F)

for each v € V(G) do
key[v] «— oo
p[v] +— NIL
key[r] < O
while Q # () do
u «— ExtractMin(Q) *x*r dequeued first
for each v € Adj[u] do
if ve Q && w(u,v) < key[v] then **update v
plv] —u
decrease-key(v, w(u,v)) *x*xkey[v] — w(u,v)

e Analysis:

— correctness (almost done — need to prove that ExtractMin(Q)
does extract the minimum weight edge)

— running time: @(nlogn—|— ZUEV (degree(u) x log n))
so: ©(mlogn) — adjacency list graph representation

5

Lecture 28: Graph Algorithms

Kruskal's algorithm for the MST problem:

e Input: an edge-weighted (simple, undirected, connected) graph
(positive weights)

e OQutput: an MST

e Idea:
— suppose we have already an acyclic subgraph T
— grow T to by including one more edge e

— edge e is selected such that
1. maintaining ‘acyclic’
2. of minimum weight

— when T contains n — 1 edges (and thus becomes a span-
ning tree), terminate

e One implementation using DSUF:

procedure kruskalMST(G,w) x»*G = (V, F)
T — 0 *»*T: (V,T) acyclic
for each v € V(G) do

MakeSet(v)
sort edges in F/((G) into non-decreasing weight order
for each (u,v) € E(G) do *x*taken in order

if cFind(u) # cFind(v) then **(u,v) is ‘safe’
T — T4+ (u,v)
rUnion(u,v)

return (V,T)

Lecture 28: Graph Algorithms

Kruskal's algorithm for the MST problem — analysis:

e Correctness:
— by Loop Invariant: what is the loop invariant 7277

— by ‘contradiction’ 4+ ‘graph theory’

e Running time analysis (adjacency list graph representation):
1. sorting edges ©(mlogn)
2. ©(m) rUnion/cFind: O(ma(n))

3. therefore, in total ©(mlogn) time

e An example:

Lecture 28: Graph Algorithms

Have you understood the lecture contents?

well

ok

not—-at-all

topic

O o 0o o 0O

O o 0O o 0O

O O O o o

Prim’s algorithm: correctness
improved implementation and analysis
Kruskal’s algorithm: idea

correctness

DSUF implementation, execution,
& analysis

