Agenda:

- Prim's MST algorithm
- Kruskal's MST algorithm

Reading:

• Textbook pages 561 – 579

Prim's algorithm for the MST problem (recall):

- Input: an edge-weighted (simple, undirected, connected) graph (positive weights)
- Output: an MST
- Idea:
 - suppose we have already an MST T' spanning subset V' of vertices (T' is initialized empty and V' is initialized to contain any one vertex)
 - grow T' to span one more vertex $v \in V V'$
 - v is selected such that there is a vertex $u \in V'$, edge (u, v) is the minimum weighted over all edges of form (u', v') where $u' \in V'$ and $v' \in V V'$
 - when V' becomes V, terminate
- One simplest implementation:

 $\begin{array}{lll} & \label{eq:spectrum} \underline{procedure \ primMST}(G,w,r) & \ast\ast G = (V,E) \\ & S \leftarrow \{r\} & \ast\ast S \colon \text{ spanned vertex subset} \\ & T \leftarrow \emptyset & \ast\ast T \colon \text{ MST spanning } S \\ & \text{while } |S| < |V| \ \text{do} & \\ & \text{ find a minimum weight edge } (u,v) \colon u \in S \ \text{and } v \in V-S \\ & S \leftarrow S + v \\ & T \leftarrow T + (u,v) \\ & \text{return } T \end{array}$

Running time analysis:

- 1. finding such an edge in $O(n^2)$ (or O(m)) time
- 2. there are n-1 edges in the output MST
- 3. therefore, in total $O(n^3)$ (or O(nm)) time

Prim's algorithm for the MST problem — correctness:

- Input graph G = (V, E): $E = \{e_1, e_2, \dots, e_m\}$
- Suppose edges in the output tree T are $e_{i_1}, e_{i_2}, \ldots, e_{i_{n-1}}$ (in the order picked by Prim's algorithm)
- Want to prove: T is an MST
- Suppose T' is an MST and it contains edges $e_{j_1}, e_{j_2}, \ldots, e_{j_{n-1}}$ (sorted in the way that it maps the edge order in T as much as possible). If $T \neq T'$ (otherwise we are done), then
 - there is a minimum index k, such that $e_{j_k} \neq e_{i_k}$
 - let T_0 denote the tree formed by $\{e_{i_1}, e_{i_2}, \ldots, e_{i_{k-1}}\}$
 - let $V_0 = V(T_0)$ and $V_1 = V V_0$
 - adding e_{i_k} to T' creates a cycle which contains some edge, say e_{j_p} , that has one ending vertex in V_0 and the other in V_1
 - $T'' = T' + e_{i_k} e_{j_p}$ is another spanning tree
 - $T^{\prime\prime}$ is another MST (why ?) sharing one more edge with T
 - repeat this argument to claim that T is also an MST
- Note: this is a proof using 'contradiction' + 'graph theory'.
- Proof can also be done by (while) Loop Invariant: <u>T is an MST on S</u>.
 Exercise !

Prim's algorithm for the MST problem — improvement:

- Where to improve: finding the minimum weight edge (u, v)
- Initially we need to scan all the edges, $\Theta(m)$ (worst case)
- Example: input graph G:

• primMST(G, w, 1) returns:

primMST(G, w, 1): an intermediate tree
What are the candidate edges ?

Prim's algorithm for the MST problem — improvement:

- Ideas:
 - 1. for each non-tree vertex v, store its minimum-weight tree neighbor p[v]
 - 2. store edges of type (p[v], v]) in a min-priority queue Q
 - 3. therefore, every time the target edge can be extracted ExtractMin(Q)<u>note</u>: need to update the neighbor information for non-tree vertices after the extraction
- Pseudocode:

- Analysis:
 - correctness (almost done need to prove that ExtractMin(Q) does extract the minimum weight edge)
 - running time: $\Theta(n \log n + \sum_{u \in V} (\text{degree}(u) \times \log n))$ so: $\Theta(m \log n)$ — adjacency list graph representation

Kruskal's algorithm for the MST problem:

- Input: an edge-weighted (simple, undirected, connected) graph (positive weights)
- Output: an MST
- Idea:
 - suppose we have already an acyclic subgraph T
 - grow T to by including one more edge e
 - edge e is selected such that
 - 1. maintaining 'acyclic'
 - 2. of minimum weight
 - when T contains n-1 edges (and thus becomes a spanning tree), terminate
- One implementation using DSUF:

6

Kruskal's algorithm for the MST problem — analysis:

- Correctness:
 - by Loop Invariant: what is the loop invariant ???
 - by 'contradiction' + 'graph theory'
- Running time analysis (adjacency list graph representation):
 - 1. sorting edges $\Theta(m \log n)$
 - 2. $\Theta(m)$ rUnion/cFind: $O(m\alpha(n))$
 - 3. therefore, in total $\Theta(m \log n)$ time
- An example:

• kruskalMST(G, w) returns:

Have you understood the lecture contents?

well	ok	not-at-all	topic
			Prim's algorithm: correctness
			improved implementation and analysis
			Kruskal's algorithm: idea
			correctness
			DSUF implementation, execution, & analysis