
Lecture 28: Graph Algorithms

Agenda:

• Prim’s MST algorithm

• Kruskal’s MST algorithm

Reading:

• Textbook pages 561 – 579
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Lecture 28: Graph Algorithms

Prim’s algorithm for the MST problem (recall):

• Input: an edge-weighted (simple, undirected, connected) graph
(positive weights)

• Output: an MST

• Idea:

– suppose we have already an MST T ′ spanning subset V ′

of vertices (T ′ is initialized empty and V ′ is initialized to
contain any one vertex)

– grow T ′ to span one more vertex v ∈ V − V ′

– v is selected such that there is a vertex u ∈ V ′, edge (u, v)
is the minimum weighted over all edges of form (u′, v′)
where u′ ∈ V ′ and v′ ∈ V − V ′

– when V ′ becomes V , terminate

• One simplest implementation:

procedure primMST(G, w, r) **G = (V, E)

S ← {r} **S: spanned vertex subset
T ← ∅ **T: MST spanning S
while |S| < |V | do

find a minimum weight edge (u, v): u ∈ S and v ∈ V − S
S ← S + v
T ← T + (u, v)

return T

Running time analysis:

1. finding such an edge in O(n2) (or O(m)) time

2. there are n− 1 edges in the output MST

3. therefore, in total O(n3) (or O(nm)) time
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Lecture 28: Graph Algorithms

Prim’s algorithm for the MST problem — correctness:

• Input graph G = (V, E): E = {e1, e2, . . . , em}

• Suppose edges in the output tree T are ei1, ei2, . . . , ein−1 (in the
order picked by Prim’s algorithm)

• Want to prove: T is an MST

• Suppose T ′ is an MST and it contains edges ej1, ej2, . . . , ejn−1

(sorted in the way that it maps the edge order in T as much
as possible). If T 6= T ′ (otherwise we are done), then

– there is a minimum index k, such that ejk 6= eik

– let T0 denote the tree formed by {ei1, ei2, . . . , eik−1}

– let V0 = V (T0) and V1 = V − V0

– adding eik to T ′ creates a cycle which contains some edge,
say ejp, that has one ending vertex in V0 and the other in
V1

– T ′′ = T ′+ eik − ejp is another spanning tree

– T ′′ is another MST (why ?) sharing one more edge with
T

– repeat this argument to claim that T is also an MST

• Note: this is a proof using ‘contradiction’ + ‘graph theory’.

• Proof can also be done by

(while) Loop Invariant: T is an MST on S.

Exercise !

3



Lecture 28: Graph Algorithms

Prim’s algorithm for the MST problem — improvement:

• Where to improve: finding the minimum weight edge (u, v)

• Initially we need to scan all the edges, Θ(m) (worst case)

• Example: input graph G:
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• primMST(G, w,1) returns:
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• primMST(G, w,1): an intermediate tree

What are the candidate edges ?

y1 y2 y3

y5 y
6

y
7

y4

���������������������

3
8

4



Lecture 28: Graph Algorithms

Prim’s algorithm for the MST problem — improvement:

• Ideas:

1. for each non-tree vertex v, store its minimum-weight tree
neighbor p[v]

2. store edges of type (p[v], v]) in a min-priority queue Q

3. therefore, every time the target edge can be extracted
ExtractMin(Q)

note: need to update the neighbor information for non-
tree vertices after the extraction

• Pseudocode:

procedure primMST(G, w, r) **G = (V, E)

for each v ∈ V (G) do
key[v]←∞
p[v]← NIL

key[r]← 0
Q← V (G)
while Q 6= ∅ do

u← ExtractMin(Q) **r dequeued first
for each v ∈ Adj[u] do

if v ∈ Q && w(u, v) < key[v] then **update v
p[v]← u
decrease-key(v, w(u, v)) **key[v]← w(u, v)

• Analysis:

– correctness (almost done — need to prove that ExtractMin(Q)
does extract the minimum weight edge)

– running time: Θ
(
n logn +

∑
u∈V

(
degree(u)× logn

))
so: Θ(m logn) — adjacency list graph representation
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Lecture 28: Graph Algorithms

Kruskal’s algorithm for the MST problem:

• Input: an edge-weighted (simple, undirected, connected) graph
(positive weights)

• Output: an MST

• Idea:

– suppose we have already an acyclic subgraph T

– grow T to by including one more edge e

– edge e is selected such that

1. maintaining ‘acyclic’

2. of minimum weight

– when T contains n− 1 edges (and thus becomes a span-
ning tree), terminate

• One implementation using DSUF:

procedure kruskalMST(G, w) **G = (V, E)

T ← ∅ **T: (V, T ) acyclic
for each v ∈ V (G) do

MakeSet(v)
sort edges in E(G) into non-decreasing weight order
for each (u, v) ∈ E(G) do **taken in order

if cFind(u) 6= cFind(v) then **(u, v) is ‘safe’
T ← T + (u, v)
rUnion(u, v)

return (V, T )
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Lecture 28: Graph Algorithms

Kruskal’s algorithm for the MST problem — analysis:

• Correctness:

– by Loop Invariant: what is the loop invariant ???

– by ‘contradiction’ + ‘graph theory’

• Running time analysis (adjacency list graph representation):

1. sorting edges Θ(m logn)

2. Θ(m) rUnion/cFind: O(mα(n))

3. therefore, in total Θ(m logn) time

• An example:
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• kruskalMST(G, w) returns:
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Lecture 28: Graph Algorithms

Have you understood the lecture contents?

well ok not-at-all topic

� � � Prim’s algorithm: correctness

� � � improved implementation and analysis

� � � Kruskal’s algorithm: idea

� � � correctness

� � � DSUF implementation, execution,
& analysis
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