Lecture 27: Graph Algorithms
Agenda:

e Greedy algorithms: elements & properties
e Minimum spanning tree

e 15t algorithm — Prim’s

Reading:

e Textbook pages 379 — 384, 558 — 579

Lecture 27: Graph Algorithms

Minimum spanning tree (MST) problem:

e Input: edge-weighted (simple, undirected) connected graphs
(positive weights)

e Notions:
— subgraph, acyclic, tree
— spanning subgraph: subgraph including all the vertices
— spanning tree. spanning subgraph which is a tree —
acyclic connected subgraph T'= (V, E'), where E' C E
e.g., BFS/DFS (on a connected input graph) tree is a
spanning tree of the graph
— minimum spanning tree: minimum weight
e The MST Problem:

Find a minimum spanning tree for the input graph.

For example:

e The minimum spanning forest problem:
The given graph is not necessarily connected.
Find an MST for each connected component.

Lecture 27: Graph Algorithms

Greedy algorithms and MST problem:

e Greedy algorithms:

— greedy — each step makes the best choice (locally max-
imum)

— iterative algorithms

— optimal substructure

an optimal solution to the original problem contains within
it optimal solutions to subproblems

e Greedy solution may NOT be globally optimum
e.g., matrix-chain multiplication: Agxs X Asxo> X Aoxs X Asxe
Greedy: 50 4+ 150 + 180 = 380 scalar multiplications

Dynamic programming: 604 604 72 = 192 scalar multiplica-
tions

e The MST problem:
Two greedy solutions are globally optimum

— Prim's (Prim + Dijkstra 4+ Boruvka's)
growing the tree to include more vertices

— Kruskal's (Kruskal 4+ Boruvka's)
growing the forest to become a tree

Lecture 27: Graph Algorithms
Prim’'s algorithm for the MST problem:

e Input: an edge-weighted (simple, undirected, connected) graph
(positive weights)

e OQutput: an MST

e Idea:

— suppose we have already an MST T” spanning subset V'
of vertices (7" is initialized empty and V' is initialized to
contain any one vertex)

— grow 7" to span one more vertex v eV — V'

— v is selected such that there is a vertex u € V’, edge (u,v)
is the minimum weighted over all edges of form (u/,v")
where v/ ¢ V' and v e V -V’

— when V’/ becomes V, terminate

e One simplest implementation:

procedure primMST(G,w,r) x»*G = (V, F)
S ={r} **S spanned vertex subset
T=1 %" MST spanning S

while |S| < |V] do
find a minimum weight edge (u,v): u €S and veV — 8
S—S+wv
T — T+ (u,v)

return T

Running time analysis:

1. finding such an edge in O(n?) (or O(m)) time
2. there are n — 1 edges in the output MST

3. therefore, in total O(n3) (or O(nm)) time

Lecture 27: Graph Algorithms

Prim’s algorithm for the MST problem — an example:

e Input graph G:

6 7

e Correctness of Prim's algorithm (next)

e Improvement over the simplest implementation
Observation: every iteration it looks for minimum weight edge

— heap might help (next lecture)

Lecture 27: Graph Algorithms

Prim's algorithm for the MST problem — correctness:
e Input graph G = (V,E): E = {e1,e2,...,en}

e Suppose edges in the output tree T are e;, e;,,...,€; _, (in the
order picked by Prim’'s algorithm)

e \Want to prove: T is an MST

e Suppose 7" is an MST and it contains edges ej,,ej,,...,€j, ,
(sorted in the way that it maps the edge order in T as much
as possible). If T'# T’ (otherwise we are done), then

— there is a minimum index k, such that e; # e,
— let Tp denote the tree formed by {ei,,€ei,,...,€i .}
— let Vo =V (Tp) and V1 =V — V)

— adding e;, to T’ creates a cycle which contains some edge,
say e;,, that has one ending vertex in V5 and the other in
%1

— T" =1T"+e;, — ej, is another spanning tree

— T” is another MST (why ?7) sharing one more edge with
T

— repeat this argument to claim that T is also an MST
e Note: this is a proof using ‘contradiction’ + ‘graph theory’.

e Proof can also be done by
(while) Loop Invariant: T is an MST on S.

Exercise !

Lecture 27: Graph Algorithms

Have you understood the lecture contents?

well ok not-at-all topic

]]] minimum spanning tree

]]] greedy algorithms in general
U] U] U] Prim’'s algorithm: idea

0 [[one simplest implementation
O O O] execution, & analysis

[L] L] correctness

