Lecture 27: Graph Algorithms

Agenda:

- Greedy algorithms: elements \& properties
- Minimum spanning tree
- $1^{\text {st }}$ algorithm - Prim's

Reading:

- Textbook pages 379 - 384, 558 - 579

Minimum spanning tree (MST) problem:

- Input: edge-weighted (simple, undirected) connected graphs (positive weights)
- Notions:
- subgraph, acyclic, tree
- spanning subgraph: subgraph including all the vertices
- spanning tree: spanning subgraph which is a tree acyclic connected subgraph $T=\left(V, E^{\prime}\right)$, where $E^{\prime} \subset E$
e.g., BFS/DFS (on a connected input graph) tree is a spanning tree of the graph
- minimum spanning tree: minimum weight
- The MST Problem:

Find a minimum spanning tree for the input graph.
For example:

- The minimum spanning forest problem:

The given graph is not necessarily connected.
Find an MST for each connected component.

Lecture 27: Graph Algorithms
Greedy algorithms and MST problem:

- Greedy algorithms:
- greedy - each step makes the best choice (locally maximum)
- iterative algorithms
- optimal substructure an optimal solution to the original problem contains within it optimal solutions to subproblems
- Greedy solution may NOT be globally optimum e.g., matrix-chain multiplication: $A_{6 \times 5} \times A_{5 \times 2} \times A_{2 \times 5} \times A_{5 \times 6}$ Greedy: $50+150+180=380$ scalar multiplications
Dynamic programming: $60+60+72=192$ scalar multiplications
- The MST problem:

Two greedy solutions are globally optimum

- Prim's (Prim + Dijkstra + Boruvka's) growing the tree to include more vertices
- Kruskal's (Kruskal + Boruvka's) growing the forest to become a tree

Prim's algorithm for the MST problem:

- Input: an edge-weighted (simple, undirected, connected) graph (positive weights)
- Output: an MST
- Idea:
- suppose we have already an MST T^{\prime} spanning subset V^{\prime} of vertices (T^{\prime} is initialized empty and V^{\prime} is initialized to contain any one vertex)
- grow T^{\prime} to span one more vertex $v \in V-V^{\prime}$
- v is selected such that there is a vertex $u \in V^{\prime}$, edge (u, v) is the minimum weighted over all edges of form (u^{\prime}, v^{\prime}) where $u^{\prime} \in V^{\prime}$ and $v^{\prime} \in V-V^{\prime}$
- when V^{\prime} becomes V, terminate
- One simplest implementation:

```
procedure primMST(G,w,r) **G=(V,E)
S={r} **S spanned vertex subset
T=\emptyset **T MST spanning S
while }|S|<|V| d
    find a minimum weight edge (u,v): u\inS and v\inV-S
    S\leftarrowS+v
    T\leftarrowT+(u,v)
return T
```

Running time analysis:

1. finding such an edge in $O\left(n^{2}\right)$ (or $O(m)$) time
2. there are $n-1$ edges in the output MST
3. therefore, in total $O\left(n^{3}\right)$ (or $O(n m)$) time

Prim's algorithm for the MST problem - an example:

- Input graph G :

- primMST($G, w, 1$) returns:

- Correctness of Prim's algorithm (next)
- Improvement over the simplest implementation

Observation: every iteration it looks for minimum weight edge

- heap might help (next lecture)

Prim's algorithm for the MST problem - correctness:

- Input graph $G=(V, E): E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$
- Suppose edges in the output tree T are $e_{i_{1}}, e_{i_{2}}, \ldots, e_{i_{n-1}}$ (in the order picked by Prim's algorithm)
- Want to prove: T is an MST
- Suppose T^{\prime} is an MST and it contains edges $e_{j_{1}}, e_{j_{2}}, \ldots, e_{j_{n-1}}$ (sorted in the way that it maps the edge order in T as much as possible). If $T \neq T^{\prime}$ (otherwise we are done), then
- there is a minimum index k, such that $e_{j_{k}} \neq e_{i_{k}}$
- let T_{0} denote the tree formed by $\left\{e_{i_{1}}, e_{i_{2}}, \ldots, e_{i_{k-1}}\right\}$
- let $V_{0}=V\left(T_{0}\right)$ and $V_{1}=V-V_{0}$
- adding $e_{i_{k}}$ to T^{\prime} creates a cycle which contains some edge, say $e_{j_{p}}$, that has one ending vertex in V_{0} and the other in V_{1}
$-T^{\prime \prime}=T^{\prime}+e_{i_{k}}-e_{j_{p}}$ is another spanning tree
- $T^{\prime \prime}$ is another MST (why ?) sharing one more edge with T
- repeat this argument to claim that T is also an MST
- Note: this is a proof using 'contradiction' + 'graph theory'.
- Proof can also be done by (while) Loop Invariant: T is an MST on S. Exercise!

Have you understood the lecture contents?

well	ok	not-at-all	topic
\square	\square	\square	minimum spanning tree
\square	\square	\square	greedy algorithms in general
\square	\square	\square	Prim's algorithm: idea
\square	\square	\square	one simplest implementation
\square	\square	\square	execution, \& analysis
\square	\square	\square	correctness

