
Lecture 27: Graph Algorithms

Agenda:

• Greedy algorithms: elements & properties

• Minimum spanning tree

• 1st algorithm — Prim’s

Reading:

• Textbook pages 379 – 384, 558 – 579

1

Lecture 27: Graph Algorithms

Minimum spanning tree (MST) problem:

• Input: edge-weighted (simple, undirected) connected graphs
(positive weights)

• Notions:

– subgraph, acyclic, tree

– spanning subgraph: subgraph including all the vertices

– spanning tree: spanning subgraph which is a tree —
acyclic connected subgraph T = (V, E′), where E′ ⊂ E

e.g., BFS/DFS (on a connected input graph) tree is a
spanning tree of the graph

– minimum spanning tree: minimum weight

• The MST Problem:

Find a minimum spanning tree for the input graph.

For example:

y1 y2 y3

y5 y
6

y
7

y4

Q
Q

Q
Q

Q
Q

Q
Q

Q
QQ

Q
Q

Q
Q

Q
Q

Q
Q

Q
QQ���������������������Q

Q
Q

Q
QQ

�
�

�
�

��

9 2

19 18

3

17

1312

14

8 15

4

• The minimum spanning forest problem:

The given graph is not necessarily connected.

Find an MST for each connected component.

2

Lecture 27: Graph Algorithms

Greedy algorithms and MST problem:

• Greedy algorithms:

– greedy — each step makes the best choice (locally max-
imum)

– iterative algorithms

– optimal substructure

an optimal solution to the original problem contains within
it optimal solutions to subproblems

• Greedy solution may NOT be globally optimum

e.g., matrix-chain multiplication: A6×5 ×A5×2 ×A2×5 ×A5×6

Greedy: 50 + 150 + 180 = 380 scalar multiplications

Dynamic programming: 60+60+72 = 192 scalar multiplica-
tions

• The MST problem:

Two greedy solutions are globally optimum

– Prim’s (Prim + Dijkstra + Boruvka’s)

growing the tree to include more vertices

– Kruskal’s (Kruskal + Boruvka’s)

growing the forest to become a tree

3

Lecture 27: Graph Algorithms

Prim’s algorithm for the MST problem:

• Input: an edge-weighted (simple, undirected, connected) graph
(positive weights)

• Output: an MST

• Idea:

– suppose we have already an MST T ′ spanning subset V ′

of vertices (T ′ is initialized empty and V ′ is initialized to
contain any one vertex)

– grow T ′ to span one more vertex v ∈ V − V ′

– v is selected such that there is a vertex u ∈ V ′, edge (u, v)
is the minimum weighted over all edges of form (u′, v′)
where u′ ∈ V ′ and v′ ∈ V − V ′

– when V ′ becomes V , terminate

• One simplest implementation:

procedure primMST(G, w, r) **G = (V, E)

S = {r} **S spanned vertex subset
T = ∅ **T MST spanning S
while |S| < |V | do

find a minimum weight edge (u, v): u ∈ S and v ∈ V − S
S ← S + v
T ← T + (u, v)

return T

Running time analysis:

1. finding such an edge in O(n2) (or O(m)) time

2. there are n− 1 edges in the output MST

3. therefore, in total O(n3) (or O(nm)) time

4

Lecture 27: Graph Algorithms

Prim’s algorithm for the MST problem — an example:

• Input graph G:

y1 y2 y3

y5 y
6

y
7

y4

Q
Q

Q
Q

Q
Q

Q
Q

Q
QQ

Q
Q

Q
Q

Q
Q

Q
Q

Q
QQ���������������������Q

Q
Q

Q
QQ

�
�

�
�

��

9 2

19 18

3

17

1312

14

8 15

4

• primMST(G, w,1) returns:

y1 y2 y3

y5 y
6

y
7

y4

Q
Q

Q
Q

Q
Q

Q
Q

Q
QQ���������������������

�
�

�
�

��

2

3
1312 8

4

• Correctness of Prim’s algorithm (next)

• Improvement over the simplest implementation

Observation: every iteration it looks for minimum weight edge

— heap might help (next lecture)

5

Lecture 27: Graph Algorithms

Prim’s algorithm for the MST problem — correctness:

• Input graph G = (V, E): E = {e1, e2, . . . , em}

• Suppose edges in the output tree T are ei1, ei2, . . . , ein−1 (in the
order picked by Prim’s algorithm)

• Want to prove: T is an MST

• Suppose T ′ is an MST and it contains edges ej1, ej2, . . . , ejn−1

(sorted in the way that it maps the edge order in T as much
as possible). If T 6= T ′ (otherwise we are done), then

– there is a minimum index k, such that ejk 6= eik

– let T0 denote the tree formed by {ei1, ei2, . . . , eik−1}

– let V0 = V (T0) and V1 = V − V0

– adding eik to T ′ creates a cycle which contains some edge,
say ejp, that has one ending vertex in V0 and the other in
V1

– T ′′ = T ′+ eik − ejp is another spanning tree

– T ′′ is another MST (why ?) sharing one more edge with
T

– repeat this argument to claim that T is also an MST

• Note: this is a proof using ‘contradiction’ + ‘graph theory’.

• Proof can also be done by

(while) Loop Invariant: T is an MST on S.

Exercise !

6

Lecture 27: Graph Algorithms

Have you understood the lecture contents?

well ok not-at-all topic

� � � minimum spanning tree

� � � greedy algorithms in general

� � � Prim’s algorithm: idea

� � � one simplest implementation

� � � execution, & analysis

� � � correctness

7

