Lecture 26: Graph Algorithms

Agenda:

- DFS application: finding biconnected components
- Greedy algorithms: elements \& properties
- Minimum spanning tree

Reading:

- Textbook pages 379 - 384, 558 - 579

Biconnected component:

- Definition - every pair of vertices are connected by two vertex-disjoint paths
- Cut vertex - its removal increases the number of connected components
- Fact: biconnected \Longleftrightarrow no cut vertices
- Biconnected component \Longleftrightarrow maximal connected subgraph containing no cut vertex
- In a DFS tree:
- root is a cut vertex iff it has ≥ 2 child vertices (Why ???) \longrightarrow One simplest implementation (assuming connected):

1. try every vertex v as the start vertex and do the DFS
2. in the DFS tree, if $\operatorname{degree}_{D F S}(v)>1$, decompose the graph accordingly into degree ${ }_{D F S}(v)$ subgraphs sharing one common vertex v
3. repeat on subgraphs until for every subgraph the DFS tree with every possible start vertex has root degree 1 Problem: too time consuming $\Theta(n(n+m)) \ldots$

- any other vertex is a cut vertex iff vertices in the child subtrees have no back edges to its proper ancestors
\longrightarrow Idea in the improved implementation - $(\Theta(n+m))$: for each vertex v, and each of its child w, keep track of furthest back edge from the w-subtree

DFS application: finding biconnected components

- Idea in the improved implementation - $(\Theta(n+m))$:
for each vertex v, and each of its child w, keep track of furthest back edge from the w-subtree
- Details:
- for every vertex $v, 1^{\text {st }}$ encounter child w, recur from w
- last encounter w (just before backing up to v), check whether v cuts off the w-subtree (rooted at w)
- maintain dtime $[v], b[v], p[v]$ for v :

1. dtime[v] - discovery time
2. $b[v]$ - dtime of the furthest ancestor of v to which there is back edge from a descendant w of v
(a) updated when the first back edge is encountered
(b) updated when last time encounter of v (backing up)
3. $p[v]$ - parent of v in the DFS tree

- Reporting biconnected components:
- recall that biconnected components form a partition of edge set E
- when edge e first encountered, push into edge stack
- when a cut vertex discovered, pop necessary edges

Finding biconnected components - pseudocode:

```
procedure bicomponents \((G)\)
\(S=\emptyset\)
time \(\leftarrow 0\)
for each \(v \in V\) do
    \(p[v] \leftarrow 0\)
    dtime \([v] \leftarrow\) time
    \(b[v] \leftarrow n+1\)
for each \(v \in V\) do
    if dtime[v] \(=0\) then
        biDFS( \(v\) )
```

procedure $\operatorname{biDFS}(v)$
**discover v
time \leftarrow time +1
dtime $[v] \leftarrow$ time
$b[v] \leftarrow \operatorname{dtime}[v]$
for each neighbor w of v do
if dtime $[w]=0$ then
$\operatorname{push}(v, w)$
$p[w] \leftarrow v$
bidFS(w) **recursive call
if $b[w] \geq$ dtime $[v]$ then
print '(new biconnected component')
repeat
pop \& print
until (popped edge is (v, w))
else
$b[v] \leftarrow \min \{b[v], b[w]\}$
else if (dtime $[w]<\operatorname{dtime}[v]$ and $w \neq p[v]$) then
$* *(v, w)$ is a back edge from v
$\operatorname{push}(v, w)$
$b[v] \leftarrow \min \{b[v], \operatorname{dtime}[w]\}$

Finding biconnected components - example:
Execute biDFS(4) on the following graph, assuming no previous biDFS() calls:

1: 2578
2: 18
3: 679
4: 78
5: 1
6: 39
7: 134
8: 124
9: 36

Lecture 26: Graph Algorithms
Finding biconnected components - answer:

Finding biconnected components - analysis:

- Correctness ???
- Complexity - running time and space requirement:
- running time:
constant for each vertex encounter and each edge encounter \longrightarrow $\Theta\left(c_{1} n+c_{2} \sum_{v \in V} \operatorname{degree}(v)\right)=\Theta(n+m)$
- space:
assume adjacency list representation: space for graph, arrays of size n, edge stack, and runtime stack

1. space for graph and arrays $\Theta(m+n)$
2. edge stack requires $O(m)$ - since every edge pushed
3. runtime stack $O(n)$ - since at most n biDFS activations each is of constant size
4. therefore, $\Theta(n+m)$ in total

Minimum spanning tree (MST) problem:

- Input: edge-weighted (simple, undirected) connected graphs (positive weights)
- Notions:
- subgraph, acyclic, tree
- spanning subgraph: subgraph including all the vertices
- spanning tree: spanning subgraph which is a tree acyclic connected subgraph $T=\left(V, E^{\prime}\right)$, where $E^{\prime} \subset E$
e.g., BFS/DFS (on a connected input graph) tree is a spanning tree of the graph
- minimum spanning tree: minimum weight
- The MST Problem:

Find a minimum spanning tree for the input graph.
For example:

- The minimum spanning forest problem:

The given graph is not necessarily connected.
Find an MST for each connected component.

Lecture 26: Graph Algorithms
Greedy algorithms and MST problem:

- Greedy algorithms:
- greedy - each step makes the best choice (locally maximum)
- iterative algorithms
- optimal substructure an optimal solution to the original problem contains within it optimal solutions to subproblems
- Greedy solution may NOT be globally optimum e.g., matrix-chain multiplication: $A_{6 \times 5} \times A_{5 \times 2} \times A_{2 \times 5} \times A_{5 \times 6}$ Greedy: $50+150+180=380$ scalar multiplications
Dynamic programming: $60+60+72=192$ scalar multiplications
- The MST problem:

Two greedy solutions are globally optimum

- Prim's (Prim + Dijkstra + Boruvka's) growing the tree to include more vertices
- Kruskal's (Kruskal + Boruvka's) growing the forest to become a tree
well ok not-at-all topic

\square	\square	\square
\square	\square	\square

biconnected component \& cut vertex one simplest implementation via DFS the improved DFS implementation execution and correctness minimum spanning tree greedy algorithms in general

