Agenda:

- DFS application: finding biconnected components
- Greedy algorithms: elements & properties
- Minimum spanning tree

Reading:

• Textbook pages 379 – 384, 558 – 579

Biconnected component:

- Definition every pair of vertices are connected by two vertex-disjoint paths
- Cut vertex its removal increases the number of connected components
- <u>Fact</u>: biconnected \iff no cut vertices
- Biconnected component ↔ maximal connected subgraph containing no cut vertex
- In a DFS tree:
 - root is a cut vertex iff it has ≥ 2 child vertices (Why ???)
 → One simplest implementation (assuming connected):
 - 1. try every vertex v as the start vertex and do the DFS
 - 2. in the DFS tree, if $degree_{DFS}(v) > 1$, decompose the graph accordingly into $degree_{DFS}(v)$ subgraphs sharing one common vertex v
 - 3. repeat on subgraphs until for every subgraph the DFS tree with every possible start vertex has root degree 1

Problem: too time consuming $\Theta(n(n+m))$...

 any other vertex is a cut vertex iff vertices in the child subtrees have no back edges to its proper ancestors

 \longrightarrow Idea in the improved implementation — ($\Theta(n+m)$): for each vertex v, and each of its child w, keep track of furthest back edge from the w-subtree

DFS application: finding biconnected components

• Idea in the improved implementation — $(\Theta(n+m))$:

for each vertex v, and each of its child w, keep track of furthest back edge from the w-subtree

- Details:
 - for every vertex v, 1st encounter child w, recur from w
 - last encounter w (just before backing up to v), check whether v cuts off the w-subtree (rooted at w)
 - maintain dtime[v], b[v], p[v] for v:
 - 1. dtime[v] discovery time
 - 2. b[v] dtime of the furthest ancestor of v to which there is back edge from a descendant w of v
 - (a) updated when the first back edge is encountered
 - (b) updated when last time encounter of v (backing up)
 - 3. p[v] parent of v in the DFS tree
- Reporting biconnected components:
 - recall that biconnected components form a partition of edge set ${\cal E}$
 - when edge e first encountered, push into edge stack
 - when a cut vertex discovered, pop necessary edges

Finding biconnected components — pseudocode:

```
procedure bicomponents(G)
                                        **G = (V, E)
S = \emptyset
                                        **S is the edge stack
time \leftarrow 0
for each v \in V do
    p[v] \leftarrow 0
                                        **unknown yet:
                                                            NIL
    dtime[v] \leftarrow time
    b[v] \leftarrow n+1
for each v \in V do
    if dtime[v] = 0 then
         biDFS(v)
procedure biDFS(v)
                                        **discover v
time \leftarrow time +1
\texttt{dtime}[v] \leftarrow \texttt{time}
b[v] \leftarrow \texttt{dtime}[v]
                                        **no back edge from descendant yet
for each neighbor w of v do **first time encounter w
    if dtime[w] = 0 then
                                        **unknown yet
        push(v, w)
        p[w] \leftarrow v
         biDFS(w)
                                        **recursive call
         if b[w] \geq \operatorname{dtime}[v] then
             print ''new biconnected component''
             repeat
                  pop & print
             until (popped edge is (v, w))
         else
             b[v] \leftarrow \min\{b[v], b[w]\}
    else if (dtime[w] < dtime[v] and w \neq p[v]) then
                                        **(v,w) is a back edge from v
        push(v, w)
         b[v] \leftarrow \min\{b[v], \mathtt{dtime}[w]\}
```

Finding biconnected components — example:

Execute biDFS(4) on the following graph, assuming no previous biDFS() calls:

Finding biconnected components — answer:

dtime	3	4	7	1	6	8	2	5	9
	b[1]	<i>b</i> [2]	b[3]	<i>b</i> [4]	<i>b</i> [5]	<i>b</i> [6]	b[7]	b[8]	b[9]
biDFS(4)	10	10	10	1	10	10	10	10	10
4 biDFS(7)	10	10	10	1	10	10	2	10	10
4, 7} $biDFS(1)$	3	10	10	1	10	10	2	10	10
4, 7, 1} $biDFS(2)$	3	4	10	1	10	10	2	10	10
$4, 7, 1, 2\}$ $(2,1)$									
4, 7, 1, 2} biDFS(8)	3	4	10	1	10	10	2	5	10
$4, 7, 1, 2, 8\}$ $(8,1)$	3	4	10	1	10	10	2	3	10
4, 7, 1, 2, 8 (8,2)									
$\{4, 7, 1, 2, 8\}$ (8,4)	3	4	10	1	10	10	2	1	10
4, 7, 1, 2} biDFS(8) done	3	1	10	1	10	10	2	1	10
4, 7, 1} biDFS(2) done	1	1	10	1	10	10	2	1	10
4, 7, 1} biDFS(5)	1	1	10	1	6	10	2	1	10
$4, 7, 1, 5\}$ (5,1)									
4, 7, 1} biDFS(5) done	new	biconne	ected	compone	nt:	(1, 5)			
4, 7, 1 (1,7)				-					
4, 7, 1 (1,8)									
4, 7 biDFS(1) done	1	1	10	1	6	10	1	1	10
4, 7 i biDFS(3)	1	1	7	1	6	10	1	1	10
4, 7, 3 biDFS(6)	1	1	7	1	6	8	1	1	10
4, 7, 3, 6} (6,3)									
4, 7, 3, 6 biDFS(9)	1	1	7	1	6	8	1	1	9
4, 7, 3, 6, 9} (9,3)	1	1	7	1	6	8	1	1	7
4, 7, 3, 6, 9 (9, 6)									
4, 7, 3, 6 biDFS(9) done	1	1	7	1	6	7	1	1	7
4, 7, 3} biDFS(6) done	new	biconne	cted	compone	nt:	(9, 3).	(6.9). (3.	6)
4, 7, 3 (3,7)				1					
4, 7, 3 (3,9)									
4, 7 $biDFS(3)$ done	new biconnected component: (7, 3)								
$4, 7\}(7, 4)$				I					
4 biDFS(7) done	new	biconne	cted	compone	nt:	(8, 4),	(8.1), (2,	8).
				1		(1, 2).	(7, 1)), (4,	7)
biDFS(4) done	1	1	7	1	6	7	1	1	7
								6	

Finding biconnected components — analysis:

- Correctness ???
- Complexity running time and space requirement:
 - running time: constant for each vertex encounter and each edge encounter \longrightarrow $\Theta(c_1n + c_2 \sum_{v \in V} \text{degree}(v)) = \Theta(n + m)$
 - space:

assume adjacency list representation: space for graph, arrays of size n, edge stack, and runtime stack

- 1. space for graph and arrays $\Theta(m+n)$
- 2. edge stack requires O(m) since every edge pushed
- 3. runtime stack O(n) since at most n biDFS activations each is of constant size
- 4. therefore, $\Theta(n+m)$ in total

Minimum spanning tree (MST) problem:

- Input: edge-weighted (simple, undirected) connected graphs (positive weights)
- Notions:
 - subgraph, acyclic, tree
 - spanning subgraph: subgraph including all the vertices
 - spanning tree: spanning subgraph which is a tree acyclic connected subgraph T = (V, E'), where $E' \subset E$

e.g., BFS/DFS (on a connected input graph) tree is a spanning tree of the graph

- minimum spanning tree: minimum weight
- The MST Problem:

Find a minimum spanning tree for the input graph.

For example:

 The minimum spanning forest problem: The given graph is not necessarily connected.
 Find an MST for each connected component.

Greedy algorithms and MST problem:

- Greedy algorithms:
 - greedy each step makes the best choice (locally maximum)
 - iterative algorithms
 - optimal substructure an optimal solution to the original problem contains within it optimal solutions to subproblems
- Greedy solution may NOT be globally optimum e.g., matrix-chain multiplication: $A_{6\times5} \times A_{5\times2} \times A_{2\times5} \times A_{5\times6}$ Greedy: 50 + 150 + 180 = 380 scalar multiplications Dynamic programming: 60 + 60 + 72 = 192 scalar multiplications
- The MST problem:

Two greedy solutions are globally optimum

- Prim's (Prim + Dijkstra + Boruvka's)
 growing the tree to include more vertices
- Kruskal's (Kruskal + Boruvka's) growing the forest to become a tree

Have you understood the lecture contents?

well	ok	not-at-all	topic
			biconnected component & cut vertex
			one simplest implementation via DFS
			the improved DFS implementation
			execution and correctness
			minimum spanning tree
			greedy algorithms in general