Lecture 26: Graph Algorithms
Agenda:

e DFS application: finding biconnected components
e Greedy algorithms: elements & properties

e Minimum spanning tree

Reading:

e Textbook pages 379 — 384, 558 — 579

Lecture 26: Graph Algorithms

Biconnected component:

e Definition — every pair of vertices are connected by two
vertex-disjoint paths

e Cut vertex — its removal increases the number of connected
components

e Fact: biconnected «— no cut vertices

e Biconnected component <= maximal connected subgraph
containing no cut vertex

e In a DFS tree:

— root is a cut vertex iff it has > 2 child vertices (Why 777)
—— One simplest implementation (assuming connected):

1. try every vertex v as the start vertex and do the DFS

2. in the DFS tree, if degreeppq(v) > 1, decompose the
graph accordingly into degree»¢(v) subgraphs sharing
one common vertex v

3. repeat on subgraphs until for every subgraph the DFS
tree with every possible start vertex has root degree 1

Problem: too time consuming ©(n(n+m)) ...

— any other vertex is a cut vertex iff vertices in the child
subtrees have no back edges to its proper ancestors

— Idea in the improved implementation — (&(n+m)):

for each vertex v, and each of its child w, keep track of
furthest back edge from the w-subtree

Lecture 26: Graph Algorithms

DFES application: finding biconnected components

e Idea in the improved implementation — (&(n + m)):
for each vertex v, and each of its child w, keep track of furthest

back edge from the w-subtree
e Details:
— for every vertex v, 15t encounter child w, recur from w

— last encounter w (just before backing up to v), check
whether v cuts off the w-subtree (rooted at w)

— maintain dtime[v], b[v], p[v] for v:
1. dtime[v] — discovery time

2. b[v] — dtime of the furthest ancestor of v to which
there is back edge from a descendant w of v

(a) updated when the first back edge is encountered
(b) updated when last time encounter of v (backing up)

3. p[v] — parent of v in the DFS tree

e Reporting biconnected components:

— recall that biconnected components form a partition of
edge set £

— when edge e first encountered, push into edge stack

— when a cut vertex discovered, pop necessary edges

Lecture 26: Graph Algorithms

Finding biconnected components — pseudocode:

procedure bicomponents(G) **G = (V, F)

S=10 **S is the edge stack
time «— O
for each v €V do
plv] < 0 **unknown yet: NIL
dtime[v] « time
blv] — n+1
for each v €V do
if dtime[v] = 0 then
biDFS(v)

procedure biDFS(v) **discover v

time <« time +1
dtime[v] «+ time

b[v] « dtime[v] **no back edge from descendant yet
for each neighbor w of v do **xfirst time encounter w
if dtime[w] = O then **unknown yet
push(v, w)
plw] — v
biDFS(w) *x*recursive call

if b[w] > dtime[v] then
print ‘‘new biconnected component’’
repeat
pop & print
until (popped edge is (v, w))
else
b[v] < min{b[v], b[w]}
else if (dtime[w] < dtime[v] and w # p[v]) then
**(v,w) is a back edge from v
push(v, w)
b[v] < min{b[v], dtime[w]}

Lecture 26: Graph Algorithms

Finding biconnected components — example:

Execute biDFS(4) on the following graph, assuming no previous
biDFS() calls:

CONDOTHWNH

WHRWH~NO N

00 ~N 0 O1

ON WO

7

8

Lecture 26: Graph Algorithms
Finding biconnected components — answer:

1: 2 5 7 8 DFS(4) tree: g4
2: 1 8
3: 6 7 9
4. 7 8
5. 1
6: 3 9
7. 1 3 4
8. 1 2 4
9: 3 6
dtime 3 4 7 1 6 8 2 5 9
b[1] b[2] b[3] b[4] o[5] ©o[6] b[7] b[8] b[9]
biDFS(4) 10 10 10 1 10 10 10 10 10
4} biDFS(7) 10 10 10 1 10 10 2 10 10
4, 7} biDFS(1) 3 10 10 1 10 10 2 10 10
4, 7, 1} biDFS(2) 3 4 10 1 10 10 2 10 10
4, 7, 1, 2} (2,1)
4, 7, 1, 2} biDFS(8) 3 4 10 1 10 10 2 5 10
4, 7, 1, 2, 8} (8,1) 3 4 10 1 10 10 2 3 10
4, 7, 1, 2, 8} (8,2)
4, 7, 1, 2, 8} (8,4) 3 4 10 1 10 10 2 1 10
4, 7, 1, 2} biDFS(8) done | 3 1 10 1 10 10 2 1 10
4, 7, 1} biDFS(2) done 1 1 10 1 10 10 2 1 10
4, 7, 1} biDFS(5) 1 1 10 1 6 10 2 1 10
4, 7, 1, 5} (5,1)
4, 7, 1} biDFS(5) done new biconnected component: (1, 5)
4, 7, 1} (1,7)
4, 7, 1} (1,8)
4, 7} biDFS(1) done 1 1 10 1 6 10 1 1 10
4, 7} biDFS(3) 1 1 7 1 6 10 1 1 10
4, 7, 3} biDFS(6) 1 1 7 1 6 8 1 1 10
4, 7, 3, 6} (6,3)
4, 7, 3, 6} biDFS(9) 1 1 7 1 6 8 1 1 9
4, 7, 3, 6, 9} (9,3) 1 1 7 1 6 8 1 1 7
4, 7, 3, 6, 9} (9,6)
4, 7, 3, 6} biDFS(9) done | 1 1 7 1 6 7 1 1 7
4, 7, 3} biDFS(6) done new biconnected component: (9, 3), (6, 9), (3, 6)
4, 7, 3} (3,7)
4, 7, 3} (3,9)
4, 7} biDFS(3) done new biconnected component: (7, 3)
4, 74 (7,4)
4} biDFS(7) done new biconnected component: (8, 4), (8, 1), (2, 8),
1, 2, 7, 1, 4, 7N
biDFS(4) done 1 1 7 1 6 7 1 1 7

6

Lecture 26: Graph Algorithms

Finding biconnected components — analysis:

e Correctness 777

e Complexity — running time and space requirement:

— running time:
constant for each vertex encounter and each edge en-
counter —

O(cin + 2 Z’UEV degree(v)) = ©(n + m)

— Sspace:
assume adjacency list representation: space for graph,
arrays of size n, edge stack, and runtime stack

1.
2.
3.

space for graph and arrays ©(m + n)
edge stack requires O(m) — since every edge pushed

runtime stack O(n) — since at most n biDFS activa-
tions each is of constant size

therefore, ©(n + m) in total

Lecture 26: Graph Algorithms

Minimum spanning tree (MST) problem:

e Input: edge-weighted (simple, undirected) connected graphs
(positive weights)

e Notions:
— subgraph, acyclic, tree
— spanning subgraph: subgraph including all the vertices
— spanning tree. spanning subgraph which is a tree —
acyclic connected subgraph T'= (V, E'), where E' C E
e.g., BFS/DFS (on a connected input graph) tree is a
spanning tree of the graph
— minimum spanning tree: minimum weight
e The MST Problem:

Find a minimum spanning tree for the input graph.

For example:

e The minimum spanning forest problem:
The given graph is not necessarily connected.
Find an MST for each connected component.

Lecture 26: Graph Algorithms

Greedy algorithms and MST problem:

e Greedy algorithms:

— greedy — each step makes the best choice (locally max-
imum)

— iterative algorithms

— optimal substructure

an optimal solution to the original problem contains within
it optimal solutions to subproblems

e Greedy solution may NOT be globally optimum
e.g., matrix-chain multiplication: Agxs X Asxo> X Aoxs X Asxe
Greedy: 50 4+ 150 + 180 = 380 scalar multiplications

Dynamic programming: 604 604 72 = 192 scalar multiplica-
tions

e The MST problem:
Two greedy solutions are globally optimum

— Prim's (Prim + Dijkstra 4+ Boruvka's)
growing the tree to include more vertices

— Kruskal's (Kruskal 4+ Boruvka's)
growing the forest to become a tree

Lecture 26: Graph Algorithms

Have you understood the lecture contents?

well

ok

not—-at-all

topic

O o 0o o o g

O o 0o o o dg

O o 0o o o g

biconnected component & cut vertex
one simplest implementation via DFS
the improved DFS implementation
execution and correctness

Mminimum spanning tree

greedy algorithms in general

10

