
Lecture 26: Graph Algorithms

Agenda:

• DFS application: finding biconnected components

• Greedy algorithms: elements & properties

• Minimum spanning tree

Reading:

• Textbook pages 379 – 384, 558 – 579

1

Lecture 26: Graph Algorithms

Biconnected component:

• Definition — every pair of vertices are connected by two
vertex-disjoint paths

• Cut vertex — its removal increases the number of connected
components

• Fact: biconnected ⇐⇒ no cut vertices

• Biconnected component ⇐⇒ maximal connected subgraph
containing no cut vertex

• In a DFS tree:

– root is a cut vertex iff it has ≥ 2 child vertices (Why ???)

−→ One simplest implementation (assuming connected):

1. try every vertex v as the start vertex and do the DFS

2. in the DFS tree, if degreeDFS(v) > 1, decompose the
graph accordingly into degreeDFS(v) subgraphs sharing
one common vertex v

3. repeat on subgraphs until for every subgraph the DFS
tree with every possible start vertex has root degree 1

Problem: too time consuming Θ(n(n + m)) ...

– any other vertex is a cut vertex iff vertices in the child
subtrees have no back edges to its proper ancestors

−→ Idea in the improved implementation — (Θ(n + m)):

for each vertex v, and each of its child w, keep track of
furthest back edge from the w-subtree

2

Lecture 26: Graph Algorithms

DFS application: finding biconnected components

• Idea in the improved implementation — (Θ(n + m)):

for each vertex v, and each of its child w, keep track of furthest
back edge from the w-subtree

• Details:

– for every vertex v, 1st encounter child w, recur from w

– last encounter w (just before backing up to v), check
whether v cuts off the w-subtree (rooted at w)

– maintain dtime[v], b[v], p[v] for v:

1. dtime[v] — discovery time

2. b[v] — dtime of the furthest ancestor of v to which
there is back edge from a descendant w of v

(a) updated when the first back edge is encountered

(b) updated when last time encounter of v (backing up)

3. p[v] — parent of v in the DFS tree

• Reporting biconnected components:

– recall that biconnected components form a partition of
edge set E

– when edge e first encountered, push into edge stack

– when a cut vertex discovered, pop necessary edges

3

Lecture 26: Graph Algorithms

Finding biconnected components — pseudocode:

procedure bicomponents(G) **G = (V, E)

S = ∅ **S is the edge stack
time ← 0
for each v ∈ V do

p[v]← 0 **unknown yet: NIL
dtime[v]← time
b[v]← n + 1

for each v ∈ V do
if dtime[v] = 0 then

biDFS(v)

procedure biDFS(v) **discover v

time ← time +1
dtime[v]← time
b[v]← dtime[v] **no back edge from descendant yet
for each neighbor w of v do **first time encounter w

if dtime[w] = 0 then **unknown yet
push(v, w)
p[w]← v
biDFS(w) **recursive call
if b[w] ≥ dtime[v] then

print ‘‘new biconnected component’’
repeat

pop & print
until (popped edge is (v, w))

else
b[v]← min{b[v], b[w]}

else if (dtime[w] < dtime[v] and w 6= p[v]) then
**(v, w) is a back edge from v

push(v, w)
b[v]← min{b[v], dtime[w]}

4

Lecture 26: Graph Algorithms

Finding biconnected components — example:

Execute biDFS(4) on the following graph, assuming no previous
biDFS() calls:

y2
�

�
�

�
�

�
�

A
A
A
A
A
A
Ay8 y1�

�
�
�
�
�
�
y5

y4 y
7

y
3

y6�
�
�
�
�
�
�
y9

1: 2 5 7 8
2: 1 8
3: 6 7 9
4: 7 8
5: 1
6: 3 9
7: 1 3 4
8: 1 2 4
9: 3 6

DFS(4) tree: y4
�

�
��y7

�
�

��y1
�

�
��y2

�
�

��y8

A
A
AAy3

A
A
AAy6

A
A
AAy9

A
A
AAy
5

5

Lecture 26: Graph Algorithms

Finding biconnected components — answer:

1: 2 5 7 8
2: 1 8
3: 6 7 9
4: 7 8
5: 1
6: 3 9
7: 1 3 4
8: 1 2 4
9: 3 6

DFS(4) tree: x4
�

�
�x7

�
�

�x1
�

�
�x2

�
�

�x8

A
A
Ax3
A
A
Ax6
A
A
Ax9

A
A
Ax
5

dtime 3 4 7 1 6 8 2 5 9
b[1] b[2] b[3] b[4] b[5] b[6] b[7] b[8] b[9]

biDFS(4) 10 10 10 1 10 10 10 10 10
4} biDFS(7) 10 10 10 1 10 10 2 10 10
4, 7} biDFS(1) 3 10 10 1 10 10 2 10 10
4, 7, 1} biDFS(2) 3 4 10 1 10 10 2 10 10
4, 7, 1, 2} (2,1)
4, 7, 1, 2} biDFS(8) 3 4 10 1 10 10 2 5 10
4, 7, 1, 2, 8} (8,1) 3 4 10 1 10 10 2 3 10
4, 7, 1, 2, 8} (8,2)
4, 7, 1, 2, 8} (8,4) 3 4 10 1 10 10 2 1 10
4, 7, 1, 2} biDFS(8) done 3 1 10 1 10 10 2 1 10
4, 7, 1} biDFS(2) done 1 1 10 1 10 10 2 1 10
4, 7, 1} biDFS(5) 1 1 10 1 6 10 2 1 10
4, 7, 1, 5} (5,1)
4, 7, 1} biDFS(5) done new biconnected component: (1, 5)
4, 7, 1} (1,7)
4, 7, 1} (1,8)
4, 7} biDFS(1) done 1 1 10 1 6 10 1 1 10
4, 7} biDFS(3) 1 1 7 1 6 10 1 1 10
4, 7, 3} biDFS(6) 1 1 7 1 6 8 1 1 10
4, 7, 3, 6} (6,3)
4, 7, 3, 6} biDFS(9) 1 1 7 1 6 8 1 1 9
4, 7, 3, 6, 9} (9,3) 1 1 7 1 6 8 1 1 7
4, 7, 3, 6, 9} (9,6)
4, 7, 3, 6} biDFS(9) done 1 1 7 1 6 7 1 1 7
4, 7, 3} biDFS(6) done new biconnected component: (9, 3), (6, 9), (3, 6)
4, 7, 3} (3,7)
4, 7, 3} (3,9)
4, 7} biDFS(3) done new biconnected component: (7, 3)
4, 7} (7,4)
4} biDFS(7) done new biconnected component: (8, 4), (8, 1), (2, 8),

(1, 2), (7, 1), (4, 7)
biDFS(4) done 1 1 7 1 6 7 1 1 7

6

Lecture 26: Graph Algorithms

Finding biconnected components — analysis:

• Correctness ???

• Complexity — running time and space requirement:

– running time:

constant for each vertex encounter and each edge en-
counter −→
Θ(c1n + c2

∑
v∈V

degree(v)) = Θ(n + m)

– space:

assume adjacency list representation: space for graph,
arrays of size n, edge stack, and runtime stack

1. space for graph and arrays Θ(m + n)

2. edge stack requires O(m) — since every edge pushed

3. runtime stack O(n) — since at most n biDFS activa-
tions each is of constant size

4. therefore, Θ(n + m) in total

7

Lecture 26: Graph Algorithms

Minimum spanning tree (MST) problem:

• Input: edge-weighted (simple, undirected) connected graphs
(positive weights)

• Notions:

– subgraph, acyclic, tree

– spanning subgraph: subgraph including all the vertices

– spanning tree: spanning subgraph which is a tree —
acyclic connected subgraph T = (V, E′), where E′ ⊂ E

e.g., BFS/DFS (on a connected input graph) tree is a
spanning tree of the graph

– minimum spanning tree: minimum weight

• The MST Problem:

Find a minimum spanning tree for the input graph.

For example:

y1 y2 y3

y5 y
6

y
7

y4

Q
Q

Q
Q

Q
Q

Q
Q

Q
QQ

Q
Q

Q
Q

Q
Q

Q
Q

Q
QQ���������������������Q

Q
Q

Q
QQ

�
�

�
�

��

9 2

19 18

3

17

1312

14

8 15

4

• The minimum spanning forest problem:

The given graph is not necessarily connected.

Find an MST for each connected component.

8

Lecture 26: Graph Algorithms

Greedy algorithms and MST problem:

• Greedy algorithms:

– greedy — each step makes the best choice (locally max-
imum)

– iterative algorithms

– optimal substructure

an optimal solution to the original problem contains within
it optimal solutions to subproblems

• Greedy solution may NOT be globally optimum

e.g., matrix-chain multiplication: A6×5 ×A5×2 ×A2×5 ×A5×6

Greedy: 50 + 150 + 180 = 380 scalar multiplications

Dynamic programming: 60+60+72 = 192 scalar multiplica-
tions

• The MST problem:

Two greedy solutions are globally optimum

– Prim’s (Prim + Dijkstra + Boruvka’s)

growing the tree to include more vertices

– Kruskal’s (Kruskal + Boruvka’s)

growing the forest to become a tree

9

Lecture 26: Graph Algorithms

Have you understood the lecture contents?

well ok not-at-all topic

� � � biconnected component & cut vertex

� � � one simplest implementation via DFS

� � � the improved DFS implementation

� � � execution and correctness

� � � minimum spanning tree

� � � greedy algorithms in general

10

