Agenda:

- Graph traversal Depth-first search
- DFS application: finding biconnected components

Reading:

• Textbook pages 540 - 549, 558 - 559

Depth First Search (DFS):

- Input: simple undirected graph G = (V, E)
- Output: all vertices discovered (pick one vertex from each component as the start vertex)
- Idea: to search deeper in the graph whenever possible ...
- Pseudocode (recursive version):

```
**G = (V, E)
procedure DFS(G)
for each v \in V do
    c[v] \leftarrow \text{WHITE}
                                 **unknown yet
    p[v] \leftarrow \text{NIL}
                                 **predecessor
time \leftarrow 0
for each v \in V do
    if c[v] = WHITE then
         DFS-visit(v)
procedure DFS-visit(v)
                                **any v \in V
c[v] \leftarrow \text{GRAY}
                                 **start discovering v
time \leftarrow time + 1
dtime[v] \leftarrow time
for each u \in Adj[v] do
    if c[u] = WHITE then
         p[u] \leftarrow v
         DFS-visit(u)
c[v] \leftarrow \mathsf{BLACK}
                                 **finished discovering
time \leftarrow time + 1
ftime[v] \leftarrow time
```

DFS example:

•
$$V = \{1, 2, 3, 4, 5, 6\}$$

 $E = \{\{1, 3\}, \{1, 5\}, \{2, 4\}, \{2, 5\}, \{3, 4\}, \{3, 5\}, \{4, 6\}\}$
 $s = 2$

Adjacency lists:

1:	3	5	
2:	4	5	
3:	1	4	5
4:	2	3	6
5:	1	2	3
6:	4		

	1	2	3	4	5	6	DFS-visit path
color	W	W	W	W	W	W	
parent	NIL	NIL	NIL	NIL	NIL	NIL	
dtime	∞	∞	∞	∞	∞	∞	initialization
ftime	∞	∞	∞	∞	∞	∞	
color	G	W	W	W	W	W	
parent	NIL	NIL	NIL	NIL	NIL	NIL	
dtime	1	∞	∞	∞	∞	∞	DFS-visit(1)
ftime	∞	∞	∞	∞	∞	∞	
color	G	W	G	W	W	<u> </u>	
narent	NTI	NITI	1	NITI	NTI	NTI	
dtime	1	\sim	2	\sim	\sim	\sim	DFS-visit(1-3)
ftime	\sim	\sim	\sim	\sim	\sim	\sim	
color	$\frac{\infty}{G}$	$\frac{\infty}{M}$	G	G	$\frac{\infty}{M}$	$\frac{\infty}{W}$	
narent		NITI	1	с 2	NITI	NITI	
dtime	1	\sim	2	ר א	\sim	\sim	DFS-visit(1-3-4)
ftime	- ~	\sim	~	5 ~	\sim	∞	
color	G	<u> </u>	<u> </u>		$\frac{\infty}{100}$	$\frac{\infty}{100}$	
narent		4	1	3			
dtimo		4	2	2			DES - vici + (1 - 2 - 4 - 2)
ftimo	1	4	2	5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ж т	DFS = VISIC(1 = 3 = 4 = 2)
color	$\frac{\infty}{c}$	$\frac{\infty}{c}$	$\frac{\infty}{c}$	$\frac{\infty}{c}$	$\frac{\omega}{c}$	$\frac{\infty}{100}$	
Doront		G 1	1	3	3		
dtime		4	1	ა ი	2 F		
dume ftime	T	4	2	3	5	∞	DFS-V1S1t(1-3-4-2-5)
	∞	$\frac{\infty}{c}$	$\frac{\infty}{c}$	$\frac{\infty}{c}$	$\frac{\infty}{\Box}$	$\frac{\infty}{\lambda \alpha}$	
COIOr	G	G	G 1	G	Б		
parent		4	1	3	2	NIL	
atime	T	4	2	3	5	∞	DFS-visit(1-3-4-2-5)
ttime	∞	∞	∞	∞	6	∞	
COIOr	G	В	G	G	В	VV	
parent	NIL	4	1	3	2	NIL	
atime	T	4	2	3	5	∞	DFS-visit(1-3-4-2)
ttime	∞		∞	∞	6	∞	
color	G	В	G	G	В	G	
parent	NIL	4	1	3	2	4	
dtime	1	4	2	3	5	8	DFS-visit(1-3-4-6)
ftime	∞	7	∞	∞	6	∞	
color	G	В	G	G	В	В	
parent	NIL	4	1	3	2	4	
dtime	1	4	2	3	5	8	DFS-visit(1-3-4-6)
ftime	∞	7	∞	∞	6	9	
color	G	В	G	В	В	В	
parent	NIL	4	1	3	2	4	
dtime	1	4	2	3	5	8	DFS-visit(1-3-4)
ftime	∞	7	∞	10	6	9	
color	G	В	В	В	В	В	
parent	NIL	4	1	3	2	4	
dtime	1	4	2	3	5	8	DFS-visit(1-3)
ftime	∞	7	11	10	6	9	
color	В	В	В	В	В	В	
parent	NIL	4	1	3	2	4	
dtime	1	4	2	3	5	8	DFS-visit(1)
ftime	12	7	11	10	6	9	

DFS example:

- Adjacency lists:
- DFS tree: [dtime,ftime]

Notes:

- the result would be a forest of rooted trees
- the root of each tree is up to the selection (ordering of the vertices)
- parent of x is predecessor p[x]
- different orderings of adjacency lists might result in different trees
- nested structure of [dtime, ftime]
 - they don't intersect each other

DFS analysis:

- n = |V|, m = |E|
- Handshaking Lemma: $\sum_{v \in V} \text{degree}(v) = 2m$
- Analysis:
 - each vertex is discovered exactly once (WHITE \rightarrow GRAY \rightarrow BLACK) each edge is examined exactly twice
 - running time:
 - 1. adjacency list representation: $\Theta(n+2m) = \Theta(n+m)$
 - 2. adjacency matrix representation: $\Theta(n + n^2) = \Theta(n^2)$
 - space complexity:
 - 1. adjacency list representation: $\Theta(n+m)$
 - 2. adjacency matrix representation: $\Theta(n^2)$

Classifying graph edges with BFS/DFS:

- During the traversal, all vertices and edges are examined
- Given a BFS/DFS traversal forest:
 - tree root start vertex for that component
 - tree edge child discovered while processing the parent
 - each edge in the original graph is examined twice
- Question:

Where are the other possible edges, besides tree edges ???

• Answer:

With respect to the traversal forest, categorize graph edges by their first time encounter:

- tree edges
- back edges: to ancestor
- forward edges: to descendant
- cross edges: to non-ancestor, non-descendant

Note: in undirected graphs, "back" = "forward"

• Examples:

An example:

- Adjacency lists:
- DFS tree (start vertex 1):

• BFS Tree (start vertex 2):

Properties of BFS/DFS:

- BFS:
 - each graph edge connects two vertices with level-difference ≤ 1 Proof.
 - no back / forward edges
- DFS:
 - each non-tree edge is a back edge Proof.
 - no forward edges
 - no cross edges
 - vertex processing time intervals [dtime[v], ftime[v]] and [dtime[w], ftime[w]]: [dtime[v], ftime[v]] \subset [dtime[w], ftime[w]] — v is a descendant of w in the DFS forest [dtime[v], ftime[v]] \cap [dtime[w], ftime[w]] = \emptyset — no ancestordescendant relationship between v and w
- BFS vertex order:

level-order of each tree in the BFS forest

• DFS vertex order:

pre-order of each tree in the DFS forest

- Some other vertex order associated with rooted trees:
 - in-order (for binary trees only)
 - post-order

Vertex order with respect to a binary rooted tree:

• Tree:

- Vertex orders:
 - level-order: level by level (each level: left to right) (2,4,5,3,6,1)
 - pre-order: parent child one child two \ldots last child (2,4,3,6,5,1)
 - in-order: left child parent right child
 (3,4,6,2,1,5)
 - post-order: child one child two ... last child parent (3,6,4,1,5,2)

Biconnected component:

- Definition every pair of vertices are connected by two vertex-disjoint paths
- Cut vertex its removal increases the number of connected components
- <u>Fact</u>: biconnected \iff no cut vertices
- Biconnected component ↔ maximal connected subgraph containing no cut vertex
- In a DFS tree:
 - root is a cut vertex **iff** it has ≥ 2 child vertices
 - any other vertex is a cut vertex iff vertices in the child subtrees have no back edges to its proper ancestors
- One simplest implementation (assuming connected):
 - 1. try every vertex v as the start vertex and do the DFS
 - 2. in the DFS tree, if $degree_{DFS}(v) > 1$, decompose the graph accordingly into $degree_{DFS}(v)$ subgraphs with only one common vertex v
 - 3. repeat on subgraphs until for every subgraph the DFS tree with every possible start vertex has a root degree 1

Problem: too time consuming $\Theta(n(n+m))$...

• Idea in finding biconnected components via DFS tree

 $-(\Theta(n+m))$:

for each vertex v, and each of its child w, keep track of furthest back edge from the w-subtree (detail next lecture)

Have you understood the lecture contents?

well	ok	not-at-all	topic
			depth first search execution
			depth first search analysis
			graph edge categorization
			BFS/DFS vertex order
			biconnected component & cut vertex
			one simplest implementation