
Lecture 24: Graph Algorithms

Agenda:

• Graph notions (recall)

• Graph representations (recall)

• Graph traversals

– Breadth-first search (BFS)

Reading:

• Textbook pages 525 – 539

1

Lecture 24: Graph Algorithms

Review of some notions:

• (simple, undirected) graph G = (V, E)

– vertex set V

– edge set E

∗ an edge is an unordered pair of two distinct vertices

• Notions:

– adjacent (vertex – vertex, edge – edge)

– incident (vertex – edge)

– neighborhood of a vertex

– degree of a vertex — size of its neighborhood

– path (vertex – vertex)

– simple path

– connected (every pair of vertices is connected via a path)

– subgraph G′ = (V ′, E′) of G = (V, E)

∗ it is a graph, V ′ ⊆ V , and E′ ⊆ E

– connected component (maximal connected subgraph)

– vertex-disjoint simple paths

– biconnected graph

∗ connected, and every pair of vertices are connected via
two vertex-disjoint (simple) paths

– biconnected component — maximal biconnected subgraph

2

Lecture 24: Graph Algorithms

More notions:

• Notions on simple, undirected graphs:

– cycle — a path with two ending vertices collapsed

– simple cycle

– acyclic graph — a graph containing no cycles — also
called forest

– tree — connected forest

– complete graph (|E| =
|V | × (|V | − 1)

2
)

every pair of vertices are adjacent

– induced subgraph on a subset of vertices, say U ⊂ V

(U, E[U]), where E[U] = {(v1, v2) : (v1, v2) ∈ E&&v1, v2 ∈
U}

– clique (subset of vertices) — the induced subgraph is
complete

– independent set (of vertices) — the induced subgraph
contains no edge

– vertex coloring — adjacent vertices get distinct colored

• Graph variants:

– multigraph (remove “simple”)

– digraph (remove “undirected”)

– multi-digraph (remove “simple” and “undirected”)

– edge-weighted graph (every edge has a weight)

3

Lecture 24: Graph Algorithms

Additional notions on graph variants:

• Rooted tree:

– directed tree

– one vertex as the root

– can define the child-parent relationship

– we have seen this (forest of rooted trees, in DSUF)

• When the base graph is directed, path/cycle is also directed

• Directed acyclic graph — DAG

4

Lecture 24: Graph Algorithms

Two representations:

• Adjacency lists: for example,

1: 3 6
2: 5 6
3: 1 5 6
4: 9
5: 2 3 8
7: 1 2 3
7:
8: 5
9: 4

• Adjacency matrix: for example,

1 2 3 4 5 6 7 8 9
1 * *
2 * *
3 * * *
4 *
5 * * *
6 * * *
7
8 *
9 *

They both describe the following graph (graphical view):

t1
�

�
��

A
A
AAt3 t6

t5
�

�
��

t2
t8

t4 t9
t7

5

Lecture 24: Graph Algorithms

Graph traversal:

• The most elementary graph algorithm:

– goal: visit all vertices, by following all edges in some order

– e.g., maze traversal

– the most common graph traversal with a list storing “wait-
ing” vertices

1. FIFO list (queue) — breadth first search

2. LIFO list (stack) — depth first search

3. recursive — depth first search

• Applications:

– finding connected components

– determining if the graph is 2-colorable

– finding an odd cycle, if exists

– computing pairwise (unweighted) distance (BFS)

– finding biconnected components (DFS)

– finding strongly connected components (DFS)

6

Lecture 24: Graph Algorithms

Breadth First Search (BFS):

• Input: simple undirected graph G = (V, E) and start vertex s

• Output: distance (smallest number of edges) from s to each
reachable vertex
(in a same connected component, if G is not connected)

• Pseudocode:

procedure BFS(G, s) **G = (V, E), s ∈ V start vertex

for each v ∈ V − s do
c[v]← WHITE **unknown yet
d[v]←∞ **distance from s
p[v]← NIL **predecessor

Q← ∅ **waiting vertex queue
enqueue(Q, s)
c[s]← GRAY **in queue Q
d[s]← 0
while Q 6= ∅ do

u← dequeue(Q)
for each v ∈ Adj[u] do

if c[v] = WHITE then
c[v]← GRAY
d[v]← d[u] + 1
p[v]← u
enqueue(Q, v)

c[u]← BLACK **visited

• An example:

V = {1,2,3,4,5,6}
E = {{1,3}, {1,5}, {2,4}, {2,5}, {3,4}, {3,5}, {4,6}}
s = 2

7

Lecture 24: Graph Algorithms

BFS example:

• V = {1,2,3,4,5,6}
E = {{1,3}, {1,5}, {2,4}, {2,5}, {3,4}, {3,5}, {4,6}}
s = 2

x1
�

�
�

�
�

�

A
A
A
A
A
Ax3 x5

x4
�

�
�

�
�

�

x2m

x6

Adjacency lists:

1: 3 5
2: 4 5
3: 1 4 5
4: 2 3 6
5: 1 2 3
6: 4

8

Lecture 24: Graph Algorithms

BFS example:

1 2 3 4 5 6 Q
color W G W W W W {2}

distance ∞ 0 ∞ ∞ ∞ ∞

parent NIL NIL NIL NIL NIL NIL
color W B W G G W {4, 5}

distance ∞ 0 ∞ 1 1 ∞

parent NIL NIL NIL 2 2 NIL
color W B G B G G {5, 3, 6}

distance ∞ 0 2 1 1 2

parent NIL NIL 4 2 2 4
color G B G B B G {3, 6, 1}

distance 2 0 2 1 1 2

parent 5 NIL 4 2 2 4
color G B B B B G {6, 1}

distance 2 0 2 1 1 2

parent 5 NIL 4 2 2 4
color G B B B B B {1}

distance 2 0 2 1 1 2

parent 5 NIL 4 2 2 4
color B B B B B B ∅

distance 2 0 2 1 1 2

parent 5 NIL 4 2 2 4

9

Lecture 24: Graph Algorithms

BFS example:

• Adjacency lists:

1: 3 5
2: 4 5
3: 1 4 5
4: 2 3 6
5: 1 2 3
6: 4

• BFS tree:

x2
�

�
�

�
�

�

@
@

@
@

@
@x4 x5

�
�

�
�

�
�

A
A
A
A
A
Ax3 x6

�
�

�
�

�
�x1

Notes:

– root is the start vertex s

– parent of x is predecessor p[x]

– left-to-right child order depends on neighbor ordering (in
Adj[u])

10

Lecture 24: Graph Algorithms

BFS analysis:

• n = |V |, m = |E|

• Handshaking Lemma:
∑

v∈V
degree(v) = 2m

• Analysis:

– each vertex enqueued exactly once: WHITE → GRAY

– each vertex dequeued exactly once: GRAY → BLACK

– running time:

1. adjacency list representation:

Θ(n +
∑

v∈V
degree(v)) = n + 2m) = Θ(n + m)

2. adjacency matrix representation:

Θ(n +
∑

v∈V
n = n + n2) = Θ(n2)

– space complexity:

1. adjacency list representation:

Θ(n +
∑

v∈V
degree(v)) = n + 2m) = Θ(n + m)

2. adjacency matrix representation:

Θ(
∑

v∈V
n = n2) = Θ(n2)

• BFS product:

1. every s-to-v shortest path (tracing the parents)

2. putting these paths together forms the BFS tree

• Warning: vertices in other connected components wouldn’t
be discovered !!!

EXERCISE: modify the pseudocode to discover ALL vertices

11

Lecture 24: Graph Algorithms

Have you understood the lecture contents?

well ok not-at-all topic

� � � graph representation recall

� � � graph notions

� � � graph variants?

� � � breadth first search execution

� � � breadth first search analysis

12

