Lecture 24: Graph Algorithms

Agenda:

- Graph notions (recall)
- Graph representations (recall)
- Graph traversals
 - Breadth-first search (BFS)

Reading:

• Textbook pages 525 – 539

Review of some notions:

- (simple, undirected) graph G = (V, E)
 - vertex set V
 - edge set E
 - * an edge is an unordered pair of two distinct vertices
- Notions:
 - adjacent (vertex vertex, edge edge)
 - incident (vertex edge)
 - neighborhood of a vertex
 - degree of a vertex size of its neighborhood
 - path (vertex vertex)
 - simple path
 - connected (every pair of vertices is connected via a path)
 - subgraph G' = (V', E') of G = (V, E)
 - * it is a graph, $V' \subseteq V$, and $E' \subseteq E$
 - connected component (maximal connected subgraph)
 - vertex-disjoint simple paths
 - biconnected graph
 - * connected, and every pair of vertices are connected via two vertex-disjoint (simple) paths
 - biconnected component maximal biconnected subgraph

More notions:

- Notions on simple, undirected graphs:
 - cycle a path with two ending vertices collapsed
 - simple cycle
 - acyclic graph a graph containing no cycles also called *forest*
 - tree connected forest
 - complete graph ($|E| = \frac{|V| \times (|V| 1)}{2}$) every pair of vertices are adjacent
 - induced subgraph on a subset of vertices, say $U \subset V$ (U, E[U]), where $E[U] = \{(v_1, v_2) : (v_1, v_2) \in E \&\& v_1, v_2 \in U\}$
 - clique (subset of vertices) the induced subgraph is complete
 - independent set (of vertices) the induced subgraph contains no edge
 - vertex coloring adjacent vertices get distinct colored
- Graph variants:
 - multigraph (remove "simple")
 - digraph (remove "undirected")
 - multi-digraph (remove "simple" and "undirected")
 - edge-weighted graph (every edge has a weight)

Lecture 24: Graph Algorithms

Additional notions on graph variants:

- Rooted tree:
 - directed tree
 - one vertex as the root
 - can define the child-parent relationship
 - we have seen this (forest of rooted trees, in DSUF)
- When the base graph is directed, path/cycle is also directed
- Directed acyclic graph DAG

Two representations:

• Adjacency lists: for example,

• Adjacency matrix: for example,

1	1	2	3 *	4	5	6 *	7	8	9
2					*	*			
3	*				*	*			
4									*
5		*	*					*	
6	*	*	*						
7									
8					*				
9				*					

They both describe the following graph (graphical view):

5

Graph traversal:

- The most elementary graph algorithm:
 - goal: visit all vertices, by following all edges in some order
 - e.g., maze traversal
 - the most common graph traversal with a list storing "waiting" vertices
 - 1. FIFO list (queue) breadth first search
 - 2. LIFO list (stack) depth first search
 - 3. recursive depth first search
- Applications:
 - finding connected components
 - determining if the graph is 2-colorable
 - finding an odd cycle, if exists
 - computing pairwise (unweighted) distance (BFS)
 - finding biconnected components (DFS)
 - finding strongly connected components (DFS)

Breadth First Search (BFS):

- Input: simple undirected graph G = (V, E) and start vertex s
- Output: distance (smallest number of edges) from *s* to each reachable vertex (in a same connected component, if *G* is not connected)
- Pseudocode:

```
**G = (V, E), s \in V start vertex
   procedure BFS(G,s)
   for each v \in V-s do
        c[v] \leftarrow \text{WHITE}
                                       **unknown yet
        d[v] \leftarrow \infty
                                       **distance from s
        p[v] \leftarrow \text{NIL}
                                       **predecessor
   Q \leftarrow \emptyset
                                       **waiting vertex queue
   enqueue(Q, s)
   c[s] \leftarrow \text{GRAY}
                                       **in queue Q
   d[s] \leftarrow 0
   while Q \neq \emptyset do
        u \leftarrow \text{dequeue}(Q)
        for each v \in Adj[u] do
             if c[v] = WHITE then
                  c[v] \leftarrow \text{GRAY}
                  d[v] \leftarrow d[u] + 1
                  p[v] \leftarrow u
                  enqueue(Q, v)
        c[u] \leftarrow \mathsf{BLACK}
                                       **visited
• An example:
   V = \{1, 2, 3, 4, 5, 6\}
```

$$E = \{\{1, 3\}, \{1, 5\}, \{2, 4\}, \{2, 5\}, \{3, 4\}, \{3, 5\}, \{4, 6\}\}$$

$$s = 2$$

7

BFS example:

•
$$V = \{1, 2, 3, 4, 5, 6\}$$

 $E = \{\{1, 3\}, \{1, 5\}, \{2, 4\}, \{2, 5\}, \{3, 4\}, \{3, 5\}, \{4, 6\}\}$
 $s = 2$

Adjacency lists:

1:	3	5	
2:	4	5	
3:	1	4	5
4:	2	3	6
5:	1	2	3
6:	4		

	1	2	3	4	5	6	$\mid Q$
color	W	G	W	W	W	W	{2}
distance	∞	0	∞	∞	∞	∞	
parent	NIL	NIL	NIL	NIL	NIL	NIL	
color	W	В	W	G	G	W	{4, 5}
distance	∞	0	∞	1	1	∞	
parent	NIL	NIL	NIL	2	2	NIL	
color	W	В	G	В	G	G	{5, 3, 6}
distance	∞	0	2	1	1	2	
parent	NIL	NIL	4	2	2	4	
color	G	В	G	В	В	G	{3, 6, 1}
distance	2	0	2	1	1	2	
parent	5	NIL	4	2	2	4	
color	G	В	В	В	В	G	{6, 1}
distance	2	0	2	1	1	2	
parent	5	NIL	4	2	2	4	
color	G	В	В	В	В	В	{1}
distance	2	0	2	1	1	2	
parent	5	NIL	4	2	2	4	
color	В	В	В	В	В	В	Ø
distance	2	0	2	1	1	2	
parent	5	NIL	4	2	2	4	

BFS example:

9

BFS example:

- Adjacency lists:
- BFS tree:

Notes:

- root is the start vertex s
- parent of x is predecessor p[x]
- left-to-right child order $\underline{depends}$ on neighbor ordering (in Adj[u])

BFS analysis:

- n = |V|, m = |E|
- Handshaking Lemma: $\sum_{v \in V} \text{degree}(v) = 2m$
- Analysis:
 - each vertex enqueued exactly once: WHITE \rightarrow GRAY
 - each vertex dequeued exactly once: GRAY \rightarrow BLACK
 - running time:
 - 1. adjacency list representation: $\Theta(n + \sum_{v \in V} \text{degree}(v)) = n + 2m) = \Theta(n + m)$
 - 2. adjacency matrix representation: $\Theta(n + \sum_{v \in V} n = n + n^2) = \Theta(n^2)$
 - space complexity:
 - 1. adjacency list representation: $\Theta(n + \sum_{v \in V} \text{degree}(v)) = n + 2m) = \Theta(n + m)$
 - 2. adjacency matrix representation: $\Theta(\sum_{v \in V} n = n^2) = \Theta(n^2)$
- BFS product:
 - 1. every s-to-v shortest path (tracing the parents)
 - 2. putting these paths together forms the BFS tree
- Warning: vertices in other connected components wouldn't be discovered !!!

EXERCISE: modify the pseudocode to discover ALL vertices

Lecture 24: Graph Algorithms

Have you understood the lecture contents?

well	ok	not-at-all	topic
			graph representation recall
			graph notions
			graph variants?
			breadth first search execution
			breadth first search analysis