Lecture 24: Graph Algorithms

Agenda:

- Graph notions (recall)
- Graph representations (recall)
- Graph traversals
- Breadth-first search (BFS)

Reading:

- Textbook pages 525-539

Lecture 24: Graph Algorithms
Review of some notions:

- (simple, undirected) graph $G=(V, E)$
- vertex set V
- edge set E
* an edge is an unordered pair of two distinct vertices
- Notions:
- adjacent (vertex - vertex, edge - edge)
- incident (vertex - edge)
- neighborhood of a vertex
- degree of a vertex - size of its neighborhood
- path (vertex - vertex)
- simple path
- connected (every pair of vertices is connected via a path)
- subgraph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ of $G=(V, E)$
* it is a graph, $V^{\prime} \subseteq V$, and $E^{\prime} \subseteq E$
- connected component (maximal connected subgraph)
- vertex-disjoint simple paths
- biconnected graph
* connected, and every pair of vertices are connected via two vertex-disjoint (simple) paths
- biconnected component - maximal biconnected subgraph

Lecture 24: Graph Algorithms

More notions:

- Notions on simple, undirected graphs:
- cycle - a path with two ending vertices collapsed
- simple cycle
- acyclic graph - a graph containing no cycles - also called forest
- tree - connected forest
- complete graph $\left(|E|=\frac{|V| \times(|V|-1)}{2}\right)$ every pair of vertices are adjacent
- induced subgraph on a subset of vertices, say $U \subset V$ $(U, E[U])$, where $E[U]=\left\{\left(v_{1}, v_{2}\right):\left(v_{1}, v_{2}\right) \in E \& \& v_{1}, v_{2} \in\right.$ $U\}$
- clique (subset of vertices) - the induced subgraph is complete
- independent set (of vertices) - the induced subgraph contains no edge
- vertex coloring - adjacent vertices get distinct colored
- Graph variants:
- multigraph (remove "simple")
- digraph (remove "undirected")
- multi-digraph (remove "simple" and "undirected")
- edge-weighted graph (every edge has a weight)

Additional notions on graph variants:

- Rooted tree:
- directed tree
- one vertex as the root
- can define the child-parent relationship
- we have seen this (forest of rooted trees, in DSUF)
- When the base graph is directed, path/cycle is also directed
- Directed acyclic graph - DAG

Two representations:

- Adjacency lists: for example,

1:	3	6	
$2:$	5	6	
$3:$	1	5	6
4:	9		
5:	2	3	8
$7:$	1	2	3
$7:$			
$8:$	5		
$9:$	4		

- Adjacency matrix: for example,

They both describe the following graph (graphical view):

Graph traversal:

- The most elementary graph algorithm:
- goal: visit all vertices, by following all edges in some order
- e.g., maze traversal
- the most common graph traversal with a list storing "waiting' vertices

1. FIFO list (queue) - breadth first search
2. LIFO list (stack) — depth first search
3. recursive - depth first search

- Applications:
- finding connected components
- determining if the graph is 2 -colorable
- finding an odd cycle, if exists
- computing pairwise (unweighted) distance (BFS)
- finding biconnected components (DFS)
- finding strongly connected components (DFS)

Lecture 24: Graph Algorithms

Breadth First Search (BFS):

- Input: simple undirected graph $G=(V, E)$ and start vertex s
- Output: distance (smallest number of edges) from s to each reachable vertex
(in a same connected component, if G is not connected)
- Pseudocode:
procedure $\operatorname{BFS}(G, s) \quad * * G=(V, E), s \in V$ start vertex

```
for each \(v \in V-s\) do
    \(c[v] \leftarrow\) WHITE \(\quad * *\) unknown yet
        \(d[v] \leftarrow \infty\)
        \(p[v] \leftarrow\) NIL
\(Q \leftarrow \emptyset\)
enqueue \((Q, s)\)
\(c[s] \leftarrow\) GRAY \(\quad * *\) in queue \(Q\)
\(d[s] \leftarrow 0\)
while \(Q \neq \emptyset\) do
    \(u \leftarrow\) dequeue \((Q)\)
    for each \(v \in \operatorname{Adj}[u]\) do
        if \(c[v]=\) WHITE then
                        \(c[v] \leftarrow\) GRAY
            \(d[v] \leftarrow d[u]+1\)
            \(p[v] \leftarrow u\)
            enqueue \((Q, v)\)
    \(c[u] \leftarrow\) BLACK \(\quad * *\) visited
```

- An example:

$$
\begin{aligned}
& V=\{1,2,3,4,5,6\} \\
& E=\{\{1,3\},\{1,5\},\{2,4\},\{2,5\},\{3,4\},\{3,5\},\{4,6\}\} \\
& s=2
\end{aligned}
$$

BFS example:

- $V=\{1,2,3,4,5,6\}$
$E=\{\{1,3\},\{1,5\},\{2,4\},\{2,5\},\{3,4\},\{3,5\},\{4,6\}\}$
$s=2$

Adjacency lists:

1:	3	5	
2:	4	5	
3:	1	4	5
4:	2	3	6
5:	1	2	3
6:	4		

Lecture 24: Graph Algorithms
BFS example:

	1	2	3	4	5	6	Q
color	W	G	W	W	W	W	$\{2\}$
distance	∞	0	∞	∞	∞	∞	
parent	NIL	NIL	NIL	NIL	NIL	NIL	
color	W	B	W	G	G	W	$\{4,5\}$
distance	∞	0	∞	1	1	∞	
parent	NIL	NIL	NIL	2	2	NIL	
color	W	B	G	B	G	G	$\{5,3,6\}$
distance	∞	0	2	1	1	2	
parent	NIL	NIL	4	2	2	4	
color	G	B	G	B	B	G	$\{3,6,1\}$
distance	2	0	2	1	1	2	
parent	5	NIL	4	2	2	4	
color	G	B	B	B	B	G	$\{6,1\}$
distance	2	0	2	1	1	2	
parent	5	NIL	4	2	2	4	
color	G	B	B	B	B	B	$\{1\}$
distance	2	O	2	1	1	2	
parent	5	NIL	4	2	2	4	
color	B	B	B	B	B	B	0
distance	2	0	2	1	1	2	
parent	5	NIL	4	2	2	4	

BFS example:

- Adjacency lists:

$$
\text { 1: } 35
$$

2: 45

3: 14 | 5 |
| :--- |

4: $2 \begin{array}{lll}3 & 6\end{array}$
5: $1 \begin{array}{lll} & 2 & 3\end{array}$
6: 4

- BFS tree:

Notes:

- root is the start vertex s
- parent of x is predecessor $p[x]$
- left-to-right child order depends on neighbor ordering (in $\operatorname{Adj}[u])$

BFS analysis:

- $n=|V|, m=|E|$
- Handshaking Lemma: $\sum_{v \in V} \operatorname{degree}(v)=2 m$
- Analysis:
- each vertex enqueued exactly once: WHITE \rightarrow GRAY
- each vertex dequeued exactly once: GRAY \rightarrow BLACK
- running time:

1. adjacency list representation:

$$
\left.\Theta\left(n+\sum_{v \in V} \operatorname{degree}(v)\right)=n+2 m\right)=\Theta(n+m)
$$

2. adjacency matrix representation:

$$
\Theta\left(n+\sum_{v \in V} n=n+n^{2}\right)=\Theta\left(n^{2}\right)
$$

- space complexity:

1. adjacency list representation:

$$
\left.\Theta\left(n+\sum_{v \in V} \operatorname{degree}(v)\right)=n+2 m\right)=\Theta(n+m)
$$

2. adjacency matrix representation:

$$
\Theta\left(\sum_{v \in V} n=n^{2}\right)=\Theta\left(n^{2}\right)
$$

- BFS product:

1. every s-to- v shortest path (tracing the parents)
2. putting these paths together forms the BFS tree

- Warning: vertices in other connected components wouldn't be discovered !!!
EXERCISE: modify the pseudocode to discover ALL vertices

Have you understood the lecture contents?

well	ok	not-at-all	topic
\square	\square	\square	graph representation recall
\square	\square	\square	graph notions
\square	\square	\square	graph variants?
\square	\square	\square	breadth first search execution
\square	\square	\square	breadth first search analysis

