Lecture 23: Disjoint Sets

Agenda:

- 2nd implementation forest of rooted trees (review)
- Improvements:
 - Union by rank rUnion
 - Compressed find cFind

Reading:

• Textbook pages 505 – 522

2nd implementation — forest of rooted trees

- Forest of rooted trees:
 - elements of a set \longleftrightarrow nodes in the rooted trees
 - representative of a set \longleftrightarrow root of the tree
 - each node needs only 'parent' \longrightarrow implement via an array
 - P(x) parent of x, for x = 1, 2, ..., n
- procedure MakeSet(x) **initialize parent for x

 $P(x) \leftarrow x$

• procedure Find(x) **return root of the tree containing x

while
$$P(x) \neq x$$
 do
 $x \leftarrow P(x)$
return x

- procedure Union(x, y) **make root of x's tree **a child of root of y's tree $rx \leftarrow \operatorname{Find}(x)$ $ry \leftarrow \operatorname{Find}(y)$ $P(rx) \leftarrow ry$
- Running time per operation $\Theta(n)$

Union by rank — rUnion:

- Observation: running time affected by the depth of the element(s) in both find and union
- Goal: to reduce the height of the tree
- Tree height determined by how we do the union
- Improvement union by rank (denoted as rUnion)
 - idea: when union two sets, root of shorter tree becomes a child of the root of higher tree
 - rank of an element x height of subtree rooted at x
 - pseudocode:

procedure rUnion(x, y) **make smaller rank root **child of the other root $rx \leftarrow \operatorname{Find}(x)$ $ry \leftarrow \operatorname{Find}(y)$ if rank $(rx) > \operatorname{rank}(ry)$ then $P(ry) \leftarrow rx$ else $P(rx) \leftarrow ry$ if rank $(rx) = \operatorname{rank}(ry)$ then rank $(ry) \leftarrow \operatorname{rank}(ry) + 1$

• Need to initialize the rank for every element:

procedure MakeSet(x) **initialize parent for x

$$P(x) \leftarrow x$$

rank $(x) \leftarrow 0$

• procedure ConnectedComponents(G)

```
for each vertex v \in V(G) do

MakeSet(v)

for each edge (x, y) \in E(G) do

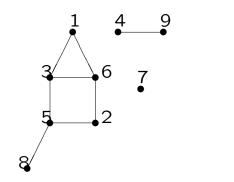
if not SameComponent(x, y, G) then

rUnion(x, y) ** previously, Union(x, y)
```

• procedure SameComponent(x, y, G)

return Find(x) = Find(y)

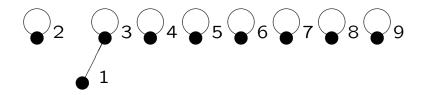
• An example:



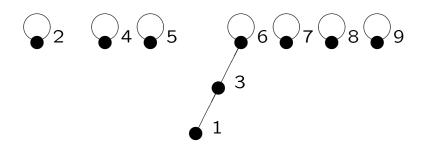
 $V = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ $E = \{\{1, 3\}, \{1, 6\}, \{2, 5\}, \{2, 6\}, \{3, 5\}, \{3, 6\}, \{4, 9\}, \{5, 8\}\}$

- Graph G = (V, E): $V = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ $E = \{\{1, 3\}, \{1, 6\}, \{2, 5\}, \{2, 6\}, \{3, 5\}, \{3, 6\}, \{4, 9\}, \{5, 8\}\}$
- After MakeSetS:

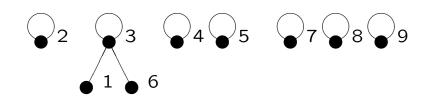
- Graph G = (V, E): $V = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ $E = \{\{1, 3\}, \{1, 6\}, \{2, 5\}, \{2, 6\}, \{3, 5\}, \{3, 6\}, \{4, 9\}, \{5, 8\}\}$
- After considering edge (1,3):



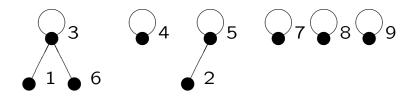
- Graph G = (V, E): $V = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ $E = \{\{1, 3\}, \{1, 6\}, \{2, 5\}, \{2, 6\}, \{3, 5\}, \{3, 6\}, \{4, 9\}, \{5, 8\}\}$
- After considering edge (1,6):
 by original union:



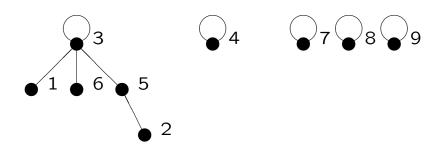
by rUnion:



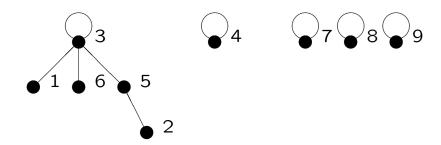
- Graph G = (V, E): $V = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ $E = \{\{1, 3\}, \{1, 6\}, \{2, 5\}, \{2, 6\}, \{3, 5\}, \{3, 6\}, \{4, 9\}, \{5, 8\}\}$
- After considering edge (2,5):



• After considering edge (2,6):

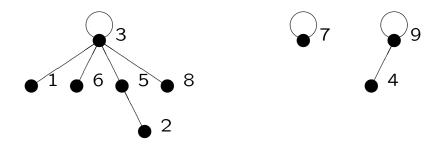


- Graph G = (V, E): $V = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ $E = \{\{1, 3\}, \{1, 6\}, \{2, 5\}, \{2, 6\}, \{3, 5\}, \{3, 6\}, \{4, 9\}, \{5, 8\}\}$
- After considering edges (3,5) and (3,6)



(no change since 3, 5, 6 are already in a same component):

• After considering edge (4,9) and (5,8):



• Therefore, there are 3 connected components

Analysis of (rUnion + Find):

- n MakeSet and (m-n) Union/Find
- Each MakeSet $\Theta(1)$ time
- Each Find $\Theta(depth(x))$ time
 - T_x the tree containing x
 - #elements in $T_x \ge 2^{\text{height}(T_x)}$ proof? by induction
 - so, depth(x) \leq height(T_x) \leq lg(#elements in T_x) \leq lg n
- Each rUnion $\Theta(\operatorname{depth}(x) + \operatorname{depth}(y))$ time
- Worst case: $\Theta(n + (m - n) \lg n) = \Theta(m \lg n)$ time (assuming m >> n)
- On average, $\Theta(\lg n)$ per operation

Compressed find — cFind:

- Another observation to make the trees as short as possible
- Idea:
 - during the time we Find the root of the tree containing x
 - we pass all the elements on the *x*-to-root path
 - re-examine them and make their parents the root
 - Find TWICE to make the tree shorter
- pseudocode (non-recursive):

procedure cFind(x)

```
\begin{array}{ll}t\leftarrow x\\ \text{while }P(t)\neq t \text{ do}\\ t\leftarrow P(t)\\ root\leftarrow t\\ t\leftarrow x\\ \text{while }P(t)\neq t \text{ do}\\ x\leftarrow t\\ t\leftarrow P(t)\\ P(x)\leftarrow root\\ return \ root\end{array} ** change the parent to root
```

• pseudocode (recursive):

procedure cFind(x)

 $\begin{array}{ll} \text{if } P(x) \neq x \text{ do} & **x \text{ isn't the root} \\ P(x) \leftarrow \text{cFind}(P(x)) \\ \text{return } P(x) \end{array}$

Analysis of (rUnion + cFind):

- n MakeSet and (m-n) Union/Find
- Each MakeSet $\Theta(1)$ time
- Each cFind $\Theta(depth(x))$ time
 - $\lg^* n$ the smallest t such that $2^{2^{2^{\dots^{2^2}}} \ge n}$ where there are t 2's

n	2	4	16	65536	2 ⁶⁵⁵³⁶	
$\lg^* n$	1	2	3	4	5	

- depth(x) grows more slowly than $\lg^* n$

proof not required ... just memorize it ...

- Each rUnion $\Theta(\operatorname{depth}(x) + \operatorname{depth}(y))$ time
- Worst case:

 $O(n + (m - n) \lg^* n) = O(m \lg^* n)$ time (assuming m >> n)

• On average, $O(\lg^* n)$ per operation — almost constant

Lecture 23: Disjoint Sets

Have you understood the lecture contents?

well	ok	not-at-all	topic
			disjoint sets?
			3 operations
			forest of rooted trees
			finding connected components
			union by rank
			running time analysis
			compressed find
			running time