Lecture 23: Disjoint Sets

Agenda:

- $2^{\text {nd }}$ implementation - forest of rooted trees (review)
- Improvements:
- Union by rank rUnion
- Compressed find cFind

Reading:

- Textbook pages 505-522
- Forest of rooted trees:
- elements of a set \longleftrightarrow nodes in the rooted trees
- representative of a set \longleftrightarrow root of the tree
- each node needs only 'parent' \longrightarrow implement via an array
- $P(x)$ - parent of x, for $x=1,2, \ldots, n$
- procedure MakeSet(x) **initialize parent for x

$$
P(x) \leftarrow x
$$


```
while P(x)\not=x do
    x\leftarrowP(x)
    return }
```

- procedure Union (x, y) **make root of x 's tree **a child of root of y 's tree

$$
\begin{aligned}
& r x \leftarrow \operatorname{Find}(x) \\
& r y \leftarrow \operatorname{Find}(y) \\
& P(r x) \leftarrow r y
\end{aligned}
$$

- Running time per operation - $\Theta(n)$

Lecture 23: Disjoint Sets
Union by rank - rUnion:

- Observation: running time affected by the depth of the element(s) in both find and union
- Goal: to reduce the height of the tree
- Tree height determined by how we do the union
- Improvement - union by rank (denoted as rUnion)
- idea: when union two sets, root of shorter tree becomes a child of the root of higher tree
- rank of an element x - height of subtree rooted at x
- pseudocode:

```
procedure \(\operatorname{rUnion}(x, y) \quad * *\) make smaller rank root
                                    **child of the other root
    \(r x \leftarrow \operatorname{Find}(x)\)
    \(r y \leftarrow \operatorname{Find}(y)\)
    if \(\operatorname{rank}(r x)>\operatorname{rank}(r y)\) then
        \(P(r y) \leftarrow r x\)
    else
        \(P(r x) \leftarrow r y\)
        if \(\operatorname{rank}(r x)=\operatorname{rank}(r y)\) then
                \(\operatorname{rank}(r y) \leftarrow \operatorname{rank}(r y)+1\)
```

- Need to initialize the rank for every element:
procedure MakeSet(x) **initialize parent for x

$$
\begin{aligned}
& P(x) \leftarrow x \\
& \operatorname{rank}(x) \leftarrow 0
\end{aligned}
$$

Finding connected components of a graph:

- procedure ConnectedComponents (G)

```
for each vertex v\inV(G) do
    MakeSet(v)
for each edge (x,y) \inE(G) do
    if not SameComponent (x,y,G) then
        rUnion(x,y) ** previously, Union(x,y)
```

- procedure SameComponent (x, y, G)

$$
\text { return } \operatorname{Find}(x)=\operatorname{Find}(y)
$$

- An example:

$V=\{1,2,3,4,5,6,7,8,9\}$
$E=\{\{1,3\},\{1,6\},\{2,5\},\{2,6\},\{3,5\},\{3,6\},\{4,9\},\{5,8\}\}$

Finding connected components of a graph:

- Graph $G=(V, E)$:

$$
\begin{aligned}
V & =\{1,2,3,4,5,6,7,8,9\} \\
E & =\{\{1,3\},\{1,6\},\{2,5\},\{2,6\},\{3,5\},\{3,6\},\{4,9\},\{5,8\}\}
\end{aligned}
$$

- After MakeSets:

Finding connected components of a graph:

- Graph $G=(V, E)$:

$$
\begin{aligned}
V & =\{1,2,3,4,5,6,7,8,9\} \\
E & =\{\{1,3\},\{1,6\},\{2,5\},\{2,6\},\{3,5\},\{3,6\},\{4,9\},\{5,8\}\}
\end{aligned}
$$

- After considering edge $(1,3)$:

Finding connected components of a graph:

- Graph $G=(V, E)$:
$V=\{1,2,3,4,5,6,7,8,9\}$
$E=\{\{1,3\},\{1,6\},\{2,5\},\{2,6\},\{3,5\},\{3,6\},\{4,9\},\{5,8\}\}$
- After considering edge $(1,6)$: by original union:

by rUnion:

Finding connected components of a graph:

- Graph $G=(V, E)$:

$$
\begin{aligned}
V & =\{1,2,3,4,5,6,7,8,9\} \\
E & =\{\{1,3\},\{1,6\},\{2,5\},\{2,6\},\{3,5\},\{3,6\},\{4,9\},\{5,8\}\}
\end{aligned}
$$

- After considering edge $(2,5)$:

- After considering edge $(2,6)$:

Finding connected components of a graph:

- Graph $G=(V, E)$:

$$
\begin{aligned}
V & =\{1,2,3,4,5,6,7,8,9\} \\
E & =\{\{1,3\},\{1,6\},\{2,5\},\{2,6\},\{3,5\},\{3,6\},\{4,9\},\{5,8\}\}
\end{aligned}
$$

- After considering edges $(3,5)$ and $(3,6)$

(no change since 3,5,6 are already in a same component):
- After considering edge $(4,9)$ and $(5,8)$:

- Therefore, there are 3 connected components

Analysis of (rUnion + Find):

- n MakeSet and $(m-n)$ Union/Find
- Each MakeSet - Θ (1) time
- Each Find $-\Theta(\operatorname{depth}(x))$ time
- T_{x} - the tree containing x
- \#elements in $T_{x} \geq 2^{\text {height }\left(T_{x}\right)}$ - proof? by induction
- so, depth $(x) \leq \operatorname{height}\left(T_{x}\right) \leq \lg \left(\right.$ \#elements in $\left.T_{x}\right) \leq \lg n$
- Each rUnion $-\Theta(\operatorname{depth}(x)+\operatorname{depth}(y))$ time
- Worst case:

$$
\Theta(n+(m-n) \lg n)=\Theta(m \lg n) \text { time (assuming } m \gg n)
$$

- On average, $\Theta(\operatorname{Ig} n)$ per operation

Lecture 23: Disjoint Sets
Compressed find - cFind:

- Another observation - to make the trees as short as possible
- Idea:
- during the time we Find the root of the tree containing x
- we pass all the elements on the x-to-root path
- re-examine them and make their parents the root
- Find TWICE to make the tree shorter
- pseudocode (non-recursive):
procedure cFind (x)

```
\(t \leftarrow x\)
    while \(P(t) \neq t\) do \(\quad * *\) find the root
    \(t \leftarrow P(t)\)
    root \(\leftarrow t\)
    \(t \leftarrow x\)
    while \(P(t) \neq t\) do \(\quad * *\) change the parent to root
        \(x \leftarrow t\)
        \(t \leftarrow P(t)\)
        \(P(x) \leftarrow\) root
    return root
```

- pseudocode (recursive):
procedure cFind (x)

$$
\begin{aligned}
& \text { if } P(x) \neq x \text { do } \quad * * x \text { isn't the root } \\
& \quad P(x) \leftarrow \operatorname{cFind}(P(x)) \\
& \text { return } P(x)
\end{aligned}
$$

Analysis of (rUnion + cFind):

- n MakeSet and ($m-n$) Union/Find
- Each MakeSet - $\Theta(1)$ time
- Each cFind - $\Theta(\operatorname{depth}(x))$ time
- $\mathrm{Ig}^{*} n$ - the smallest t such that $2^{2^{2 . .^{2}}} \geq n$ where there are $t 2$'s

| n | $2 \ldots$ | $4 \ldots$ | $16 \ldots$ | $65536 \ldots$ | 2^{65536} | \ldots |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\lg ^{*} n$ | 1 | 2 | 3 | 4 | 5 | \ldots |

- depth(x) grows more slowly than $\mathrm{Ig}^{*} n$ proof not required ... just memorize it ...
- Each rUnion $-\Theta(\operatorname{depth}(x)+\operatorname{depth}(y))$ time
- Worst case: $O\left(n+(m-n) \lg ^{*} n\right)=O\left(m \lg ^{*} n\right)$ time (assuming $\left.m \gg n\right)$
- On average, $O\left(\lg ^{*} n\right)$ per operation - almost constant

Lecture 23: Disjoint Sets
Have you understood the lecture contents?

well	ok	not-at-all	topic
\square	\square	\square	disjoint sets?
\square	\square	\square	3 operations
\square	\square	\square	forest of rooted trees
\square	\square	\square	finding connected components
\square	\square	\square	union by rank
\square	\square	\square	running time analysis
\square	\square	\square	compressed find
\square	\square	\square	running time

