Lecture 22: Disjoint Sets

Agenda:

- 1st implementation an array of representatives (review)
- 2nd implementation forest of rooted trees

Reading:

• Textbook pages 501 – 509

An array of representatives (recall)

- R(x) the representative of the set containing x
 - $\Theta(n)$ space
 - how to describe a set now:
 elements with the same representative are in a same set
 - report a set in $\Theta(n)$ time
- procedure MakeSet(x) **initialize representative for x

 $R(x) \leftarrow x$

• procedure Find(x) **representative of x

return R(x)

• procedure Union(x, y)

 $egin{aligned} & rx \leftarrow R(x) \ & ry \leftarrow R(y) \ & ext{for } j \leftarrow 1 \ & ext{to } n \ & ext{do} \ & ext{if } R(j) = ry \ & ext{then} \ & R(j) \leftarrow rx \end{aligned}$

• Running time per operation $\Theta(n)$

2nd implementation — forest of rooted trees

- Forest of rooted trees:
 - elements of a set \longleftrightarrow nodes in the rooted trees
 - representative of a set \longleftrightarrow root of the tree
 - each node needs only 'parent' \longrightarrow implement via an array
 - P(x) parent of x, for x = 1, 2, ..., n
- procedure MakeSet(x) **initialize parent for x

 $P(x) \leftarrow x$

• procedure Find(x) **return root of the tree containing x

while
$$P(x) \neq x$$
 do
 $x \leftarrow P(x)$
return x

- procedure Union(x, y) **make root of x's tree **a child of root of y's tree $rx \leftarrow \text{Find}(x)$ $ry \leftarrow \text{Find}(y)$ $P(rx) \leftarrow ry$ $P(ry) \leftarrow rx$
- Running time per operation ???

An example:

sets at start	$\{1\}$	{2}	{ 3 }	{4}	{5}	{6}	{7 }	{8}
index	1	2	3	4	5	6	7	8
parent	1	2	3	4	5	6	7	8
Union(1,4)	4	2	3	4	5	6	7	8
Find(1)	4							
Find(4)				4				
Union(2,3)	4	3	3	4	5	6	7	8
Union(5,1)	4	3	3	4	4	6	7	8
Union(1,8)	4	3	3	8	4	6	7	8
Union(6,5)	4	3	3	8	4	8	7	8
Find(6)						8		
Find(3)			3					
sets at finish $\{1, 4, 5, 6, 8\}, \{2, 3\}, \{7\}$								
forest at finish:								

• procedure ConnectedComponents(G)

```
for each vertex v \in V(G) do

MakeSet(v)

for each edge (x, y) \in E(G) do

if not SameComponent(x, y, G) then

Union(x, y)
```

• procedure SameComponent(x, y, G)

return
$$Find(x) = Find(y)$$

• An example:

 $V = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ $E = \{\{1, 3\}, \{1, 6\}, \{2, 5\}, \{2, 6\}, \{3, 5\}, \{3, 6\}, \{4, 9\}, \{5, 8\}\}$

- Graph G = (V, E): $V = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ $E = \{\{1, 3\}, \{1, 6\}, \{2, 5\}, \{2, 6\}, \{3, 5\}, \{3, 6\}, \{4, 9\}, \{5, 8\}\}$
- After MakeSetS:

- Graph G = (V, E): $V = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ $E = \{\{1, 3\}, \{1, 6\}, \{2, 5\}, \{2, 6\}, \{3, 5\}, \{3, 6\}, \{4, 9\}, \{5, 8\}\}$
- After considering edge (1,3):

- Graph G = (V, E): $V = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ $E = \{\{1, 3\}, \{1, 6\}, \{2, 5\}, \{2, 6\}, \{3, 5\}, \{3, 6\}, \{4, 9\}, \{5, 8\}\}$
- After considering edge (1,6):

- Graph G = (V, E): $V = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ $E = \{\{1, 3\}, \{1, 6\}, \{2, 5\}, \{2, 6\}, \{3, 5\}, \{3, 6\}, \{4, 9\}, \{5, 8\}\}$
- After considering edge (2,5):

- Graph G = (V, E): $V = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ $E = \{\{1, 3\}, \{1, 6\}, \{2, 5\}, \{2, 6\}, \{3, 5\}, \{3, 6\}, \{4, 9\}, \{5, 8\}\}$
- After considering edge (2,6):

- Graph G = (V, E): $V = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ $E = \{\{1, 3\}, \{1, 6\}, \{2, 5\}, \{2, 6\}, \{3, 5\}, \{3, 6\}, \{4, 9\}, \{5, 8\}\}$
- After considering edges (3,5) and (3,6)

(no change since 3, 5, 6 are already in a same component):

- Graph G = (V, E): $V = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ $E = \{\{1, 3\}, \{1, 6\}, \{2, 5\}, \{2, 6\}, \{3, 5\}, \{3, 6\}, \{4, 9\}, \{5, 8\}\}$
- After considering edge (4,9):

Lecture 22: Disjoint Sets Finding connected components of a graph:

- Graph G = (V, E): $V = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ $E = \{\{1, 3\}, \{1, 6\}, \{2, 5\}, \{2, 6\}, \{3, 5\}, \{3, 6\}, \{4, 9\}, \{5, 8\}\}$
- After considering edge (5,8):

- Sets at finish:
 - $\{1, 2, 3, 5, 6, 8\}$ with representative 8
 - $\{4, 9\}$ with representative 9
 - $\{7\}$ with representative 7
- Therefore, there are 3 connected components

Lecture 22: Disjoint Sets

Analysis of the implementation:

- n MakeSet and (m-n) Union/Find
- Each MakeSet $\Theta(1)$ time
- Each Find $\Theta(\operatorname{depth}(x))$ time

since we need to get to the root of the tree containing element \boldsymbol{x}

• Each Union — $\Theta(\operatorname{depth}(x) + \operatorname{depth}(y))$ time

since we need to find the representatives for \boldsymbol{x} and \boldsymbol{y} and then use constant time to update

- Worst case: $\Theta(n + (m - n)n) = \Theta(mn)$ time (assuming m >> n)
- On average, $\Theta(n)$ per operation

amortized running time analysis

<u>Conclusion</u>: Forest of rooted trees is NOT better than Array of representatives

Yet it allows speedup, just adding some tricks ... (next lecture)

Lecture 22: Disjoint Sets

Have you understood the lecture contents?

well	ok	not-at-all	topic
			disjoint sets?
			3 operations
			forest of rooted trees
			finding connected components
			running time analysis