Agenda:

- Introduction
- Application graph (connected) components
- 1st implementation an array of representatives

Reading:

• Textbook pages 498 – 505

Overview:

- An abstract data type (ADT)
- Analysis: via sequences of operations
- Implementation: array of representatives
- Application: graph components
- Implementation: forest of rooted trees (next lecture)
 - basic implementation
 - improvement: union by rank
 - improvement: compressed find

Disjoint sets:

- An abstract data type
- It maintains: pairwise disjoint sets
- One element of each set is the representative
- Operations:
 - MakeSet(x) make x itself into a set and use x to be the representative: $S_x \leftarrow \{x\}$
 - Find(x) return the representative of the set $S_{f(x)}$ containing x, which is f(x)
 - Union(x, y) find the sets containing x and y, respectively, and union them into a new set with representative z: $S_z \leftarrow S_{f(x)} \cup S_{f(y)}$
- Analysis over a sequence of operations on n elements
 - MakeSet(1), MakeSet(2), ..., MakeSet(n)
 - all the Union and Find operations
 - *m* number of operations
 - running time for all m = n + |U| + |F| operations?

Simplest DS implementation

— array R of representatives:

- R(x) the representative of the set containing x
 - $\Theta(n)$ space
 - how to describe a set now: elements with the same representative are in a same set
 - report a set in $\Theta(n)$ time
- procedure MakeSet(x) **initialize representative for x

 $R(x) \leftarrow x$

• procedure Find(x) **representative of x

return R(x)

• procedure Union(x, y)

 $rx \leftarrow R(x)$ $ry \leftarrow R(y)$ for $j \leftarrow 1$ to n do if R(j) = ry then if R(j) = rx then $R(j) \leftarrow rx$

 $R(j) \leftarrow ry$

An example:

sets at start	$\{1\}$	{2}	{ 3 }	{4}	{5}	{6}	{7 }	{8}
index	1	2	3	4	5	6	7	8
representative	1	2	3	4	5	6	7	8
Union(1,4)	1	2	3	1	5	6	7	8
Find(1)	1							
Find(4)				1				
Union(2,3)	1	2	2	1	5	6	7	8
Union(5,1)	5	2	2	5	5	6	7	8
Union(1,8)	5	2	2	5	5	6	7	5
Union(6,5)	6	2	2	6	6	6	7	6
Find(6)						6		
Find(3)			2					

sets at finish $\{1, 4, 5, 6, 8\}, \{2, 3\}, \{7\}$

A DSUF application

— finding connected components of a graph:

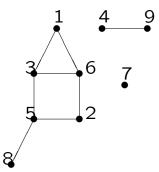
• procedure ConnectedComponents(G)

for each vertex $v \in V(G)$ do MakeSet(v)for each edge $(x, y) \in E(G)$ do if not SameComponent(x, y, G) then Union(x, y)

• procedure SameComponent(x, y, G)

return Find(x) = Find(y)

• An example:

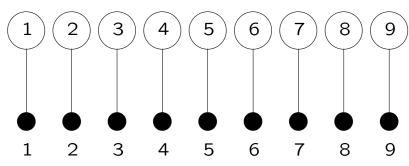


 $V = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$

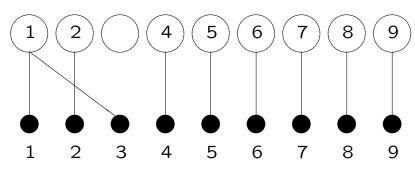
 $E = \{\{1,3\},\{1,6\},\{2,5\},\{2,6\},\{3,5\},\{3,6\},\{4,9\},\{5,8\}\}$

6

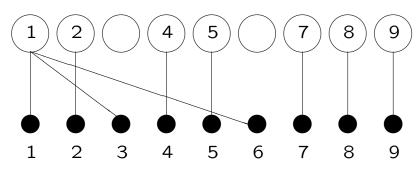
- Graph G = (V, E): $V = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ $E = \{\{1, 3\}, \{1, 6\}, \{2, 5\}, \{2, 6\}, \{3, 5\}, \{3, 6\}, \{4, 9\}, \{5, 8\}\}$
- After MakeSets:



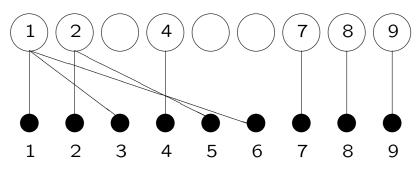
- Graph G = (V, E): $V = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ $E = \{\{1, 3\}, \{1, 6\}, \{2, 5\}, \{2, 6\}, \{3, 5\}, \{3, 6\}, \{4, 9\}, \{5, 8\}\}$
- After considering edge (1,3):



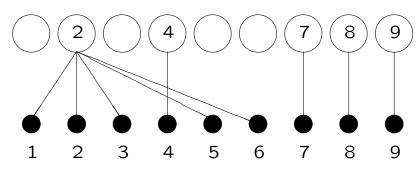
- Graph G = (V, E): $V = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ $E = \{\{1, 3\}, \{1, 6\}, \{2, 5\}, \{2, 6\}, \{3, 5\}, \{3, 6\}, \{4, 9\}, \{5, 8\}\}$
- After considering edge (1,6):



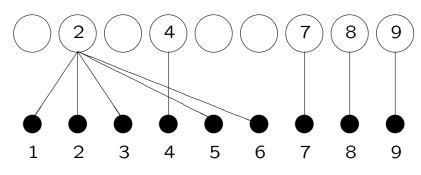
- Graph G = (V, E): $V = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ $E = \{\{1, 3\}, \{1, 6\}, \{2, 5\}, \{2, 6\}, \{3, 5\}, \{3, 6\}, \{4, 9\}, \{5, 8\}\}$
- After considering edge (2,5):



- Graph G = (V, E): $V = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ $E = \{\{1, 3\}, \{1, 6\}, \{2, 5\}, \{2, 6\}, \{3, 5\}, \{3, 6\}, \{4, 9\}, \{5, 8\}\}$
- After considering edge (2,6):

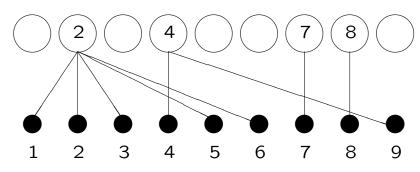


- Graph G = (V, E): $V = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ $E = \{\{1, 3\}, \{1, 6\}, \{2, 5\}, \{2, 6\}, \{3, 5\}, \{3, 6\}, \{4, 9\}, \{5, 8\}\}$
- After considering edges (3,5) and (3,6)

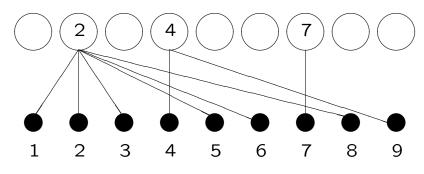


(no change since 3, 5, 6 are already in a same component):

- Graph G = (V, E): $V = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ $E = \{\{1, 3\}, \{1, 6\}, \{2, 5\}, \{2, 6\}, \{3, 5\}, \{3, 6\}, \{4, 9\}, \{5, 8\}\}$
- After considering edge (4,9):



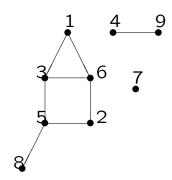
- Graph G = (V, E): $V = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ $E = \{\{1, 3\}, \{1, 6\}, \{2, 5\}, \{2, 6\}, \{3, 5\}, \{3, 6\}, \{4, 9\}, \{5, 8\}\}$
- After considering edge (5,8):



• Sets at finish:

 $\{1, 2, 3, 5, 6, 8\}, \{4, 9\}, and \{7\}$

• Therefore, there are 3 connected components



Analysis of the simplest implementation:

- n MakeSet and (m-n) Union/Find
- Each MakeSet $\Theta(1)$ time
- Each Find $\Theta(1)$ time

since we record for every element x its representative as R(x)

• Each Union — $\Theta(n)$ time

since we need to check for every element in order to update its representative and for every element it takes $\Theta(1)$ time

• Worst case:

 $\Theta(n + (m - n)n) = \Theta(mn)$ time (assuming m >> n)

• On average, $\Theta(n)$ per operation

amortized running time analysis

Have you understood the lecture contents?

well	ok	not-at-all	topic
			disjoint sets?
			3 operations
			array of representatives
			finding connected components
			running time analysis