Lecture 21: Disjoint Sets

Agenda:

- Introduction
- Application - graph (connected) components
- $1^{\text {st }}$ implementation - an array of representatives

Reading:

- Textbook pages 498 - 505

Lecture 21: Disjoint Sets

Overview:

- An abstract data type (ADT)
- Analysis: via sequences of operations
- Implementation: array of representatives
- Application: graph components
- Implementation: forest of rooted trees (next lecture)
- basic implementation
- improvement: union by rank
- improvement: compressed find

Disjoint sets:

- An abstract data type
- It maintains: pairwise disjoint sets
- One element of each set is the representative
- Operations:
- MakeSet (x) — make x itself into a set and use x to be the representative: $S_{x} \leftarrow\{x\}$
- Find (x) - return the representative of the set $S_{f(x)}$ containing x, which is $f(x)$
- $\operatorname{Union}(x, y)$ - find the sets containing x and y, respectively, and union them into a new set with representative $z: S_{z} \leftarrow S_{f(x)} \cup S_{f(y)}$
- Analysis over a sequence of operations on n elements
- MakeSet(1), MakeSet(2), ..., MakeSet(n)
- all the Union and Find operations
- m - number of operations
- running time for all $m=n+|U|+|F|$ operations?

Simplest DS implementation

— array R of representatives:

- $R(x)$ - the representative of the set containing x
- $\Theta(n)$ space
- how to describe a set now:
elements with the same representative are in a same set
- report a set in $\Theta(n)$ time
- procedure MakeSet (x) **initialize representative for x

$$
R(x) \leftarrow x
$$

- procedure $\operatorname{Find}(x) \quad * * r e p r e s e n t a t i v e ~ o f ~ x ~$

$$
\text { return } R(x)
$$

- procedure Union (x, y)

$$
\begin{aligned}
& r x \leftarrow R(x) \\
& r y \leftarrow R(y) \\
& \text { for } j \leftarrow 1 \text { to } n \text { do } \\
& \text { if } R(j)=r y \text { then }
\end{aligned}
$$

An example:								
sets at start	$\{1\}$	$\{2\}$	$\{3\}$	$\{4\}$	$\{5\}$	$\{6\}$	$\{7\}$	$\{8\}$
index	1	2	3	4	5	6	7	8
representative	1	2	3	4	5	6	7	8
Union(1, 4)	1	2	3	$\mathbf{1}$	5	6	7	8
Find(1)	1							
Find(4)				1				
Union(2, 3)	1	2	2	1	5	6	7	8
Union(5, 1)	5	2	2	5	5	6	7	8
Union(1, 8)	5	2	2	5	5	6	7	5
Union(6,5)	6	2	2	6	6	6	7	6
Find(6)						6		
Find(3)			2					

[^0]
A DSUF application

- finding connected components of a graph:
- procedure ConnectedComponents (G)

$$
\begin{aligned}
& \text { for each vertex } v \in V(G) \text { do } \\
& \text { MakeSet }(v) \\
& \text { for each edge }(x, y) \in E(G) \text { do } \\
& \text { if not SameComponent }(x, y, G) \text { then } \\
& \operatorname{Union}(x, y)
\end{aligned}
$$

- procedure SameComponent (x, y, G)

$$
\text { return } \operatorname{Find}(x)=\operatorname{Find}(y)
$$

- An example:

$V=\{1,2,3,4,5,6,7,8,9\}$
$E=\{\{1,3\},\{1,6\},\{2,5\},\{2,6\},\{3,5\},\{3,6\},\{4,9\},\{5,8\}\}$

Finding connected components of a graph:

- Graph $G=(V, E)$:

$$
\begin{aligned}
V & =\{1,2,3,4,5,6,7,8,9\} \\
E & =\{\{1,3\},\{1,6\},\{2,5\},\{2,6\},\{3,5\},\{3,6\},\{4,9\},\{5,8\}\}
\end{aligned}
$$

- After MakeSets:

Finding connected components of a graph:

- Graph $G=(V, E)$:

$$
\begin{aligned}
& V=\{1,2,3,4,5,6,7,8,9\} \\
& E=\{\{1,3\},\{1,6\},\{2,5\},\{2,6\},\{3,5\},\{3,6\},\{4,9\},\{5,8\}\}
\end{aligned}
$$

- After considering edge $(1,3)$:

Finding connected components of a graph:

- Graph $G=(V, E)$:

$$
\begin{aligned}
& V=\{1,2,3,4,5,6,7,8,9\} \\
& E=\{\{1,3\},\{1,6\},\{2,5\},\{2,6\},\{3,5\},\{3,6\},\{4,9\},\{5,8\}\}
\end{aligned}
$$

- After considering edge $(1,6)$:

Finding connected components of a graph:

- Graph $G=(V, E)$:

$$
\begin{aligned}
& V=\{1,2,3,4,5,6,7,8,9\} \\
& E=\{\{1,3\},\{1,6\},\{2,5\},\{2,6\},\{3,5\},\{3,6\},\{4,9\},\{5,8\}\}
\end{aligned}
$$

- After considering edge $(2,5)$:

Finding connected components of a graph:

- Graph $G=(V, E)$:

$$
\begin{aligned}
& V=\{1,2,3,4,5,6,7,8,9\} \\
& E=\{\{1,3\},\{1,6\},\{2,5\},\{2,6\},\{3,5\},\{3,6\},\{4,9\},\{5,8\}\}
\end{aligned}
$$

- After considering edge $(2,6)$:

Finding connected components of a graph:

- Graph $G=(V, E)$:

$$
\begin{aligned}
& V=\{1,2,3,4,5,6,7,8,9\} \\
& E=\{\{1,3\},\{1,6\},\{2,5\},\{2,6\},\{3,5\},\{3,6\},\{4,9\},\{5,8\}\}
\end{aligned}
$$

- After considering edges $(3,5)$ and $(3,6)$

(no change since $3,5,6$ are already in a same component):

Finding connected components of a graph:

- Graph $G=(V, E)$:

$$
\begin{aligned}
& V=\{1,2,3,4,5,6,7,8,9\} \\
& E=\{\{1,3\},\{1,6\},\{2,5\},\{2,6\},\{3,5\},\{3,6\},\{4,9\},\{5,8\}\}
\end{aligned}
$$

- After considering edge $(4,9)$:

Finding connected components of a graph:

- Graph $G=(V, E)$:

$$
\begin{aligned}
& V=\{1,2,3,4,5,6,7,8,9\} \\
& E=\{\{1,3\},\{1,6\},\{2,5\},\{2,6\},\{3,5\},\{3,6\},\{4,9\},\{5,8\}\}
\end{aligned}
$$

- After considering edge $(5,8)$:

- Sets at finish:

$$
\{1,2,3,5,6,8\},\{4,9\}, \text { and }\{7\}
$$

- Therefore, there are 3 connected components

Analysis of the simplest implementation:

- n MakeSet and $(m-n)$ Union/Find
- Each MakeSet - Θ (1) time
- Each Find - Θ (1) time
since we record for every element x its representative as $R(x)$
- Each Union - $\Theta(n)$ time
since we need to check for every element in order to update its representative and for every element it takes $\Theta(1)$ time
- Worst case:
$\Theta(n+(m-n) n)=\Theta(m n)$ time (assuming $m \gg n)$
- On average, $\Theta(n)$ per operation
amortized running time analysis

Lecture 21: Disjoint Sets
Have you understood the lecture contents?

well	ok	not-at-all	topic
\square	\square	\square	disjoint sets?
\square	\square	\square	3 operations
\square	\square	\square	array of representatives
\square	\square	\square	finding connected components
\square	\square	\square	running time analysis

[^0]: sets at finish $\{1,4,5,6,8\}, \quad\{2,3\}, \quad\{7\}$

