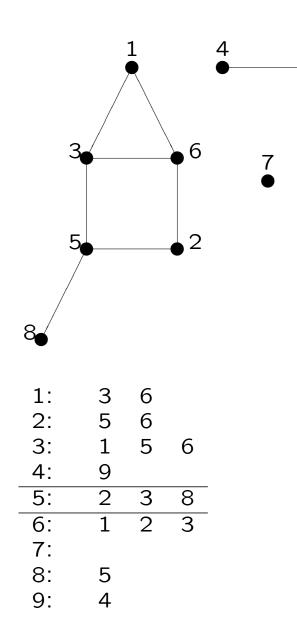
Agenda:

- Basic definitions
- Typically
 - connected component
 - biconnected component

Reading:

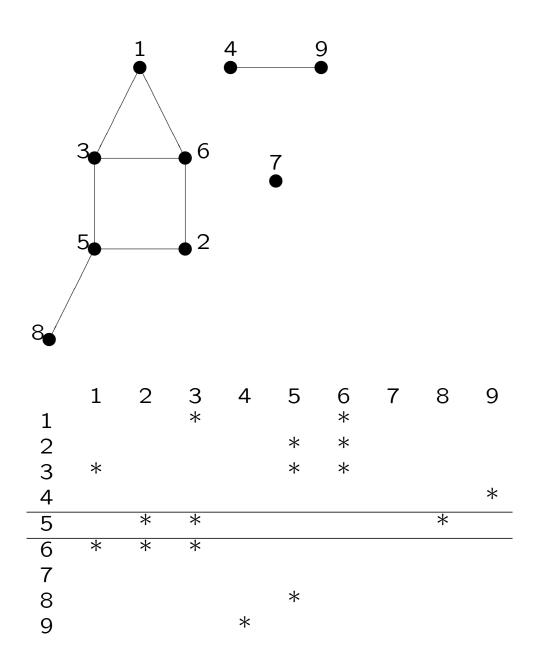
Textbook pages 1080 - 1084, 527 - 531, 558 - 559

An example:

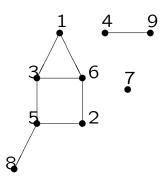


9

An example:

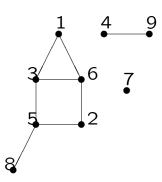


Definitions:



- (simple, undirected) graph G = (V, E)
 - vertex set V
 - edge set E
 - * an edge e is a pair of vertices v_1 and v_2
 - * unordered undirected
 - * $v_1 \neq v_2$ simple
- $V = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ $E = \{\{1, 3\}, \{1, 6\}, \{2, 5\}, \{2, 6\}, \{3, 5\}, \{3, 6\}, \{4, 9\}, \{5, 8\}\}$
- Notions:
 - adjacent (vertex vertex, edge edge)
 e.g., 1 and 3 are adjacent; (1,3) and (3,5) are adjacent
 - incident (vertex edge)
 e.g., 1 is incident with (1,3)

Graph notions:



- Computer representations:
 - adjacency lists
 - adjacency matrix
- Neighborhood of a vertex
- Degree of a vertex size of its neighborhood
- Path (vertex vertex), simple path
 e.g., (1,3,5,2,6,3,5,8) and (1,3,5,2,6) are paths
 the latter is a simple path
- Connected (every pair of vertices is connected via a path)
- Subgraph G' = (V', E') of G = (V, E)
 - it is a graph
 - $V' \subseteq V$
 - $E' \subseteq E$
- Connected component (maximal connected subgraph)

Binary equivalence relation:

- A relation ~ involving two elements (in a set A) for example, "≤" relation for real numbers
- Reflexive: $a \sim a$ for any $a \in A$
- Symmetric: $a_1 \sim a_2$ iff $a_2 \sim a_1$
- Transitive: $a_1 \sim a_2$ and $a_2 \sim a_3$ imply $a_1 \sim a_3$
- Binary equivalence relation: reflexive + symmetric + transitive e.g., "=" relation for real numbers
- Equivalence class of a

the subset of elements b such that $a \sim b$

Therefore, the equivalence class of a contains b implies it is also the equivalence class of b ...

- The equivalence classes form a partition of A
 - union to A
 - disjoint

Connected component:

• A binary equivalence relation \sim on vertex set V

 $v_1 \sim v_2$ iff "there is a path connecting v_1 and v_2 "

- The connected component containing vertex v is the equivalence class of v:
 - the connected components form a partition of *G*, such that
 - no edge crossing the components

Biconnected component:

- Simple path connecting v_1 and v_2
 - all vertices in the path are distinct
- Two paths connecting v₁ and v₂ are vertex-disjoint
 share no common internal vertex
- Biconnected graph
 - |V| > 2
 - connected
 - every pair of vertices are connected via two vertex-disjoint (simple) paths
- Notes:
 - don't bother the case $|V| \leq 2$
 - connectivity does NOT implies biconnectivity
 - articulation vertex cut vertex
 - !!! its removal disconnects G
 - bridge cut edge
 - !!! its removal disconnects G
- Biconnected component maximal biconnected subgraph
 - a partition of E (not necessarily a partition of V)

Future subjects:

- How to compute the connected components?
 using data structure Disjoint Sets (next lecture)
- How to compute the biconnected components?
 using graph traversal Depth-First-Search

Future graph definitions:

- Not necessarily simple multiple edges and loops exist
- Directed edge ordered
- Hypergraph an edge might contain more then 2 vertices

Have you understood the lecture contents?

well	ok	not-at-all	topic
			what is a graph?
			representing a graph
			graph notions (adjacent, etc.)
			connected component
			binary equivalence relation
			biconnected component