
Lecture 19: Edit Distance

Agenda:

• Scoring schemes in sequence comparison

• Edit distance

• Affine gap penalty scoring scheme

Reading:

• No textbook pages

1



Lecture 19: Edit Distance

LCS problem review:

Definitions: – Sequence or String:

dynamicprogramming is a sequence over the English alpha-
bet

– Base/letter/character

– Subsequence:

the given sequence with zero or more bases left out

e.g., dog is a subsequence of dynamicprogramming

WARNing: bases appear in the same order, but not nec-
essarily consecutive

– Common subsequence

– LCS problem: given two sequences X = x1x2 . . . xn and
Y = y1y2 . . . ym, find a maximum-length common subse-
quence of them.

• The LCS problem has the “optimal substructure” ...

– if xn is NOT in the LCS (to be computed), then we only
need to compute an LCS of x1x2 . . . xn−1 and y1y2 . . . ym

...

– similarly, if ym is NOT in the LCS (to be computed),
then we only need to compute an LCS of x1x2 . . . xn and
y1y2 . . . ym−1 ...

– if xn and ym are both in the LCS (to be computed), then
xn = ym and we need to compute an LCS of x1x2 . . . xn−1

and y1y2 . . . ym−1;

and then adding xn to the end to form an LCS for the
original problem

2



Lecture 19: Edit Distance

Sequence Alignment:

Definition: An alignment of two sequences S1 and S2 is obtained by first
inserting spaces, either into or at the ends of S1 and S2, and
then placing the two resultant sequences one above the other
so that every character or space in either sequence is opposite
a unique character or a unique space in the other sequence.

• An example, S1 = rests, S2 = stress

- - r e s t - s

s t r e s - s s

Note: space - is not allowed to be opposite to space -!!!

• Scoring scheme:

For every pair of characters in Σ ∪ {−}, say a and b, define
a score s(a, b) for them to be aligned in one column of the
alignment.

• An example scoring scheme — LCS:

s(a, a) = 1, for all a ∈ Σ; otherwise s(a, ·) = 0

• Another notion: distance — how much it costs if a is replaced
by b?

• A distance measure (metric) must satisfy 3 conditions:

1. d(a, a) = 0;

2. d(a, b) = d(b, a);

3. d(a, b) ≤ d(a, c) + d(b, c).

3



Lecture 19: Edit Distance

Edit Distance:

• A distance metric which specifies how much it costs to replace
letter a by letter b — d(a, b).

• Goal: compute an edit transcript which minimizes the overall
cost.

• Again, Edit Distance possesses the optimal substructure ...

Explain how ???

Letting Edit[i, j] to denote the minimum cost of editing S1[1..i]
into S2[1..j], then we have the following recurrence:

Edit[i, j] = min

{
Edit[i− 1, j] + d(S1[i],−),
Edit[i, j − 1] + d(−, S2[j]),
Edit[i− 1, j − 1] + d(S1[i], S2[j])

• Base cases ???

4



Lecture 19: Edit Distance

Edit Distance:

• Pseudocode to implement the above recurrence

• Correctness

• Can return an associated Edit Transcript ... trace back

• Running time: Θ(n×m)

There are n×m entries each takes constant time to compute.

• Space requirement ... Θ(n×m)

Can be reduced to Θ(min{n, m})

5



Lecture 19: Edit Distance

Scoring Schemes:

• Edit distance:

1. letter dependent scoring scheme;

2. letter independent scoring scheme: match, mismatch, in-
sertion/deletion (indel)

• An edit transcript ⇐⇒ an alignment

Score/Cost of the alignment is the sum of scores/costs of
columns ...

• Now ask: from rests to stress,

Are r and e deleted separately, or they are deleted at the same
time?

If deleted at the same time, how do we assign a cost for it?

• Or, consecutive spaces should be counted as a gap ...

• Affine gap penalty scoring schemes:

penalties for a gap: gap opening do and gap extension de

• Now how do we compute an optimal edit transcript?

Consider three cases . . .

6



Lecture 19: Edit Distance

Edit Distance with Affine Gap Penalty Scoring Scheme:

• It still possesses the optimal substructure ...

Letting EditM [i, j] to denote the minimum cost of editing
S1[1..i] into S2[1..j] where the last operation is either a match
or a mismatch;

Letting EditI[i, j] to denote the minimum cost of editing S1[1..i]
into S2[1..j] where the last operation is an insertion;

Letting EditD[i, j] to denote the minimum cost of editing
S1[1..i] into S2[1..j] where the last operation is a deletion.

• Recurrence:

Ẽdit[i, j] = min{EditM [i, j], EditI[i, j], EditD[i, j]}

EditM [i, j] = Ẽdit[i− 1, j − 1] + d(S1[i], S2[j]);

EditI[i, j] = min

{
EditM [i, j − 1] + do + de,
EditI[i, j − 1] + de,
EditD[i, j − 1] + do + de

EditD[i, j] = min

{
EditM [i− 1, j] + do + de,
EditI[i− 1, j] + do + de,
EditD[i− 1, j] + de

Output Ẽdit[n, m] !

• Base cases ???

• Running time? Space complexity?

7



Lecture 19: Edit Distance

Have you understood the lecture contents?

well ok not-at-all topic

� � � sequence alignment

� � � edit distance

� � � DP for edit distance

� � � affine gap penalty scoring scheme

� � � edit distance with AGPSS

� � � DP for edit distance with AGPSS

8


